RU2508079C2 - Система для доставки саморасширяющегося стента - Google Patents
Система для доставки саморасширяющегося стента Download PDFInfo
- Publication number
- RU2508079C2 RU2508079C2 RU2011117988/14A RU2011117988A RU2508079C2 RU 2508079 C2 RU2508079 C2 RU 2508079C2 RU 2011117988/14 A RU2011117988/14 A RU 2011117988/14A RU 2011117988 A RU2011117988 A RU 2011117988A RU 2508079 C2 RU2508079 C2 RU 2508079C2
- Authority
- RU
- Russia
- Prior art keywords
- stent
- spiral
- strip
- carrier
- angle
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2002/9534—Instruments specially adapted for placement or removal of stents or stent-grafts for repositioning of stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
Изобретение относится к медицинской технике, а именно к системе для доставки саморасширяющегося стента. Система для доставки саморасширяющегося стента включает внутреннюю часть, расположенную коаксиально по отношению к наружной части, толкатель, расположенный на проксимальном конце внутренней части, и скользящий элемент, расположенный коаксиально по отношению к внутренней части. Внутренняя и наружная части включают дистальный и проксимальный концы. Скользящий элемент расположен в и контактирует с внутренним диаметром стента. До раскрытия стента стент удерживается во внутреннем диаметре наружной части. В течение раскрытия стента скользящий элемент может вращаться и двигаться в продольном направлении вдоль внутренней части, позволяя стенту двигаться дистально или вращаться в наружной части, в то время как наружная часть стягивается для раскрытия стента. Система доставки позволяет удерживать стент на доставляющем катетере, одновременно позволяя стенту изменять длину и вращаться внутри катетера, если необходимо. 25 з.п. ф-лы, 21 ил., 1 табл.
Description
Область техники, к которой относится изобретение
Предложенное изобретение относится к саморасширяющемуся стенту и системе доставки саморасширяющегося стента. Система доставки позволяет удерживать стент на доставляющем катетере, одновременно позволяя стенту изменять длину и вращаться внутри катетера, если необходимо. Изобретение также относится к системе доставки саморасширяющегося стента, способного к существенненному укорочению, например, более чем на 10%.
Уровень техники
Большинство коммерческих саморасширяющихся стентов не предназначено для переустановки в систему доставки (возрату в систему доставки и перемещению) после того, как стент стал расширяться в сосуде, артерии, канале или полом органе организма пациента. Преимуществом стента является его способность переустанавливаться после того, как стент стал расширяться, в случае, если стент был помещен в неправильное или не оптимальное положение, т.е. стент может быть переустановлен, снова развернут, или захвачен и удален. Переустанавливаемый стент и система его доставки имеет значительное преимущество относительно безопасности его использования по сравнению с непереустанавливаемыми стентами и системами доставки.
Многие обычно используемые саморасширяющиеся стенты имеют ограничения в укорочении стента, и обычно стенты способны укорачиваться на незначительном уровне. Укорочение стента является мерой изменения длины стента от сжатого состояния или состояния радиальной компрессии, когда стент загружают на или в поставочный катетер, до состояния расширения. Процент укорочения обычно определяют как изменение длины стента между состоянием загрузки в доставочный катетер (сжатого состояния) и диаметром расширения (расправления) до максимально отмеченного диаметра, разделенное на длину стента в состоянии загрузки в доставочный катетер. Стенты со значительным уровнем укорочения создают трудности при расправлении в полых органах организма пациента, таких как сосуды, артерии, вены или тракт. Дистальный конец стента имеет тенденцию двигаться в проксимальном направлении при расширении стента в полых органах организма пациента. Укорочение может приводить к размещению стента в неправильном или неоптимальном положении. Системы доставки, которые могли бы компенсировать укорочение стента, будут иметь много преимуществ по сравнению с системами доставки, не способными к такой компенсации.
Стент представляет тубулярную структуру, которая в сжатом состоянии или состоянии радиальной компрессии может быть вставлена в ограниченное пространство полых органов в живом организме, таких как содержащие жидкость сосуды, например, артерии или другие сосуды. После установки стента в сосуд, стент может расширяться (раскрываться) радиально в месте его установки. Стенты типично характеризуют как раскрываемые баллоном или самораскрывающиеся (саморасширяющиеся). Для раскрываемых баллоном стентов необходим баллон, который обычно является частью системы доставки, для расправления стента и расширения сосуда. Самораскрывающийся стент предназначен, в зависимости от материала, геометрии или технологии производства, для расширения от сжатого состояния до расправленного состояния после его фиксации в сосуде. В определенных ситуациях силы, превышающие силы расширения самораскрывающегося стента, требуются для расширения больного сосуда. В этом случае баллон или подобное устройство может быть применено для увеличения расширения самораскрывающегося стента.
Стенты обычно используют в лечении сосудистых и несосудистых заболеваний. Например, сжатый стент может быть вставлен в закупоренную артерию и затем раширен для восстановления тока крови в артерии. До высвобождения стент обычно удерживают в сжатом состоянии в катетере или подобных устройствах. После завершения процедуры стент остается внутри артерии пациента в расширенном состоянии. Здоровье и иногда жизнь пациента зависят от способности стента оставаться в расширенном состоянии.
Многие обычно используемые стенты являются гибкими в сжатом состоянии, чтобы облегчить доставку стента, например, в артерию. Некоторые стенты являются гибкими после размещения и расширения. Но, после размещения, при определенных применениях стент может быть подвергнут существенному изгибанию или сгибанию, аксиальной (вдоль оси) компрессии и неоднократному смещению вдоль его длины, например, при стентировании поверхностной бедренной артерии. Это может вызывать тяжелую деформацию и ослабление конструкции, что приводит к потере стента.
Сходная проблема существует с подобными стенту протезами. Примером может быть протез, используемый с другими компонентами в основанной на катетере системе доставки клапана. Такой подобный стенту протез держит клапан, который размещен в сосуде.
Раскрытие изобретения
Настоящее изобретение предусматривает основанную на катетере систему доставки саморасширяющихся стентов. Система доставки переустанавливаемого стента согласно изобретению имеет проксимальный и дистальный концы, которые включают внутренний и наружный элементы, обычно стрежни или катетер, или наружную оболочку катетера, который закручен в скользящий элемент на проксимальном конце стента. Скользящий элемент может вращаться и двигаться в продольном направлении относительно внутреннего стержня или трубки, такой как направляющая трубка-проводник, таким образом, что проксимальный конец стента может двигаться дистально в то время, как стент расширяется. Толкатель может быть использован на направляющей трубке-проводнике таким образом, что направляющая трубка-проводник, толкатель и стент двигаются в проксимальном направлении относительно наружной оболочки и переустанавливают стент в наружной оболочке. Более того, толкатель и направляющая трубка-проводник могут двигаться в дистальном направлении, в то время как наружная оболочка стягивается в проксимальном направлении для того, чтобы обеспечить при расширении стента аккомодацию к укорочению.
Система доставки может также включать пружинный элемент в системе катетерной доставки, который создает (аксиальную) нагрузку, действующую вдоль оси, на проксимальный конец стента в течение расширения стента. Пружинный элемент, как описывается, может смещать направление движения стента вдоль оси внутри доставочного катетера для обеспечения движения в дистальном направлении в то время, как стент расширяется. Это смещение движения является предпочтительным для стентов, которые укорачиваются на значительном уровне, так как смещение движения уменьшает количество движений на дистальном конце стента в течение расширения стента.
Система доставки с помощью катетера может быть использована для расширения стентов в подвздошных, бедренных, подколенных, сонных, нервно-сосудистых или коронарных артериях при лечении множества сосудистых заболеваний.
Стент согласно настоящему изобретению включают элементы несущей спирали или полосу, взаимосвязанные с помощью спиралевидных элементов. Такая структура обеспечивает комбинацию признаков, желательных для стентов, таких как, например, существенная гибкость (упругость), стабильность в поддержании просвета сосудов, размера ячеек и радиальной силы. Однако, добавление спиралевидных элементов, взаимосвязывающих полосу несущей спирали, осложняет изменение диаметра стента. Типично, структура стента должна быть способна к изменению размера диаметра стента. Например, стент обычно доставляется к месту повреждения артерии в состоянии малого диаметра, затем расширяется до большего диаметра в месте повреждения артерии. Структура стента согласно настоящему изобретению обеспечивает предопределенную геометрическую взаимосвязь между полосой несущей спирали и взаимосвязанными спиралевидными элементами для того, чтобы поддерживать связность (топологию) при любом размере диаметра стента.
Стент в соответствии с настоящим изобретением является саморасширяимся стентом, сделанным из сверхпластичного нитинола. Стенты такого типа производят для того, чтобы обеспечить специфическую структуру в полностью раскрытом или свободном состоянии. Дополнительно, стент такого типа должен быть способен к сжатию в радиальном направлении до малого размера диаметра, который может упоминаться как «закрученный» диаметр. Радиальное сжатие стента до малого диаметра может упоминаться как «закручивание» стента. Разница в диаметре саморасширяющегося стента в полностью раскрытом или свободном состоянии и в состоянии «закрученности» может быть большой. Не является необычным увеличение диаметра стента в полностью раскрытом состоянии от 3 до 4 раз по сравнению с диаметром в состоянии «закрученности». Саморасширяющийся стент предназначен, в зависимости от выбора материала, геометрии, способов производства, для обеспечения расширения от состояния «закрученного» диаметра до состояния диаметра в полностью раскрытом состоянии при высвобождении в сосуд-мишень.
Стент в соответствии с настоящим изобретением включает полосу несущей спирали, намотанную по спирали вокруг оси стента. Полоса несущей спирали включает волнообразный структурный компонент несущих элементов, имеющих пики на каждой стороне волнообразного структурного компонента. Множество спиралевидных элементов намотаны по спирали вокруг оси стента в том же направлении, что и полоса несущей спирали. Спиралевидные элементы обычно удлиняются там, где длина намного больше ширины. Спиралевидные элементы взаимосвязывают, по крайней мере, некоторые из несущих элементов первого витка с, по крайней мере, некоторыми из несущих элементов второго витка в или вблизи пиков волнообразных структурных компонентов. В стенте согласно настоящему изобретению построенный треугольник геометрической взаимосвязи имеет первую сторону с длиной ножек LC, которая является эффективной длиной спиралевидного элемента между взаимосвязанными пиками первого и второго витков полосы несущей спирали, вторую сторону с длиной ножек, которая является расстоянием по окружности между указанным пиком первого витка и указанным пиком второго витка, взаимосвязанных спиралевидным элементом, разделенным на синус угла As полосы несущей спирали от продольной оси стента, третью сторону с длиной ножек, которая является продольным расстоянием, на которое продолжается полоса несущей спирали в 1 окружности витка (Р1) минус эффективная длина LS несущего элемента, причем первый угол первой стороны составляет 180° минус угол As, второй угол второй стороны представляет угол Ас спиралевидного элемента, обычно продолжающегося вокрук оси стента, измеренный от продольной оси, и третий угол третьей стороны представляет угол As минус угол Ас, где отношение длины Lc к длине Ls, умноженное на количество прилегающих волнообразных компонентов несущих элементов Ns, образующих полосу несущей спирали, принимает значения больше чем или приблизительно равные 1. Эта величина определяется как отношение спиралевидный элемент/несущий элемент и выражается Lc/Ls*Ns.
Краткое описание чертежей
Детальное описание фигур представлено для более полного понимания настоящего изобретения, его признаков и преимуществ, однако фигуры служат лишь для иллюстрации воплощений осуществления настоящего изобретения, которые описываются со ссылкой на следующие фигуры:
Фиг.1 является схематически изображением системы доставки в соответствии с настоящим изобретением.
Фиг.2 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, до расширения.
Фиг.3 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, до переустановки.
Фиг.4 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, в конфигурации согласно другому воплощению.
Фиг.5 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, в конфигурации согласно еще одному воплощению.
Фиг.6 представляет изображение секции Х-Х, как показано на Фиг.5, в конфигурации согласно еще одному воплощению.
Фиг.7 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, до начала раскрытия стента.
Фиг.8 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, в течение раскрытия стента.
Фиг.9 является схематически изображением системы доставки в соответствии с настоящим изобретением.
Фиг.10 является схематически изображением стента в соответствии с первым воплощением настоящего изобретения, причем стент изображен в частично раскрытом (расширенном) состоянии.
Фиг.11 представляет детальное увеличенное изображение части А, как показано на Фиг.1.
Фиг.12 является схематически изображением стента в соответствии с еще одним воплощением настоящего изобретения.
Фиг.13 представляет детальное увеличенное изображение части В, как показано на Фиг.3.
Фиг.14 является схематически изображением стента в соответствии с еще одним воплощением настоящего изобретения.
Фиг.15 является схематически изображением стента в соответствии с еще одним воплощением настоящего изобретения.
Фиг.16 является схематически изображением стента в соответствии с еще одним воплощением настоящего изобретения.
Фиг.17 представляет детальное увеличенное изображение части С, как показано на Фиг.7.
Фиг.18 является схематически изображением стента в соответствии с еще одним воплощением настоящего изобретения.
Фиг.19 является схематически изображением спиралевидного стента в соответствии с еще одним воплощением настоящего изобретения.
Фиг.20 представляет детальное увеличенное изображение части D, как показано на Фиг.14.
Фиг.21 представляет детальное увеличенное изображение секции Х-Х, как показано на Фиг.1, в соответствии с еще одним воплощением настоящего изобретения.
Осуществление изобретения
Система доставки 10 саморасширяющегося стента в соответствии с настоящим изобретением, как показано на Фиг.1, состоит из внутренних и наружных коаксиальных элементов, например, стержня или трубки. Наружная трубка, которая также известна как наружная оболочка 11, удерживает стент 12 в закрученном или радиально сжатом состоянии. Внутренние элементы могут состоять из множественных компонентов, включая дистальный наконечник 8, направляющую трубку-проводник 14 и толкатель 16 для обеспечения воздействия аксиальных сил на стент, в то время как наружная оболочка оттягивается для раскрытия стента. Толкатель 16 может также действовать в качестве проксимального ограничителя. Другие элементы системы доставки стента могут включать поршень с наконечником Люэра 6, прикрепленный к проксимальному концу толкателя 16, рукоятку 3, прикрепленную к наружной оболочке 11, которая включает порт Люера 4, таким образом, что пространство между внутренними элементами и наружной оболочкой 11 может быть промыто физраствором для удаления попавшего воздуха. Толкатель 16 может представлять сложную структуру из множественных компонентов, таких как трубка из нержавеющей стали на проксимальном конце и полимерная трубка внутри наружной оболочки 11.
Система доставки стента 10 согласно настоящему изобретению, как представлено в детальном изображении секции X-X на Фиг.2, состоит из наружной оболочки 11, доставочного катетера, в котором стент 12 удерживается в закрученном или радиально сжатом состоянии. Система доставки стента 10 может быть отнесена к катетерной системе доставки как доставочному катетеру. Скользящий элемент 13 расположен так, чтобы иметь область контакта (взаимодействия) с внутренним диаметром закрученного стента 12. Скользящий элемент 13 раположен коаксиально с направляющей трубкой-проводником 14 и может вращаться и скользить относительно направляющей трубки-проводника 14. Дистальный ограничитель 15 фиксирован на направляющей трубке-проводнике 14 в положении, дистальном по отношению к скользящему элементу 13. Толкатель 16 расположен проксимально к стенту 12 и скользящему элементу 13 и создает аксиальные силы, передающиеся стенту 12, в то время как наружную оболочку 11 стягивают, чтобы расширить стент и обеспечить проксимальный ограничитель. Стент 12 и скользящий элемент 13 могут двигаться, перемещаться или вращаться внутри наружной оболочки 11 и относительно направляющей трубки-проводника 14, в то время как наружная оболочка 11 стягивается и стент 12 расширяется. Это является преимуществом, когда конструкция стента является такой, что стент 12 укорачивается в длине и/или вращается так, что он расширяется от закрученного состояния до расширенного состояния большего диаметра. Система доставки в соответствии с настоящим изобретением позволяет осуществлять движения стента внутри наружной оболочки 11, а не в полом органе организма. До того, как наружная оболочка 11 будет полностью стянута, посредством чего произойдет высвобождение стента 12, стент может быть снова захвачен (переустановлен) с помощью движения направляющей трубки-проводника 14 и прикреплен к дистальному ограничителю 15, расположенному проксимально относительно стента 12 и скользящего элемента 13, пока не произойдет контакт дистального ограничителя 15 со скользящим элементом 13, как показано в детальном изображении секции X-X на Фиг.3. Так как стент 12 и скользящий элемент 13 тесно контактируют друг с другом, наружная оболочка 11 может двигаться в дистальном направлении относительно стента 12, скользящего элемента 13, направляющей трубки-проводника 14 и дистального ограничителя 15, посредством чего захватывая стент 12 внутрь наружной оболочки 11. В этом воплощении толкатель 16 находится в контакте со стентом 12, в то время как наружная оболочка 11 стягивается для расширения стента 12.
В другом воплощении скользящий элемент 13 предназначен для взаимодействия с внутренним диаметром стента 12 и контактом с толкателем 16, в то время как наружная оболочка стягивается, как показано на Фиг.4. В этом воплощении уменьшается аксиальная нагрузка на стент 12 в течение раскрытия стента.
В описанном выше воплощении скользящий элемент 13 расположен коаксиально направляющей трубке-проводнику 14 и может вращаться и скользить относительно направляющей трубки-проводника 14. Направляющая трубка-проводник 14 может быть полой, образуя просвет, который продолжается вдоль длины системы доставки стента, для аккомодации к направляющему проводнику, который часто используется для облегчения размещения системы доставки стента в нужном сосуде, артерии, тракте или полом органе организма. Противоположно, направляющая трубка-проводник 14 может быть неполым твердым стержнем 18, как показано на Фиг.5.
В еще одном воплощении аксиальная сила на проксимальный конец стента создается проксимальным ограничителем 19, прикрепленным к неполому стержню 18 таким образом, что проксимальный ограничитель 19 и неполый стержень представляют унитарную структуру, как показано на Фиг.21. Проксимальный ограничитель 19 и неполый стержень 18 могут быть изготовлены из различных материалов, соединенных вместе, или сделаны из одного материала.
В еще одном воплощении, как представлено для секции Z-Z на Фиг.6, скользящий элемент 13 образован структурой, где часть скользящего элемента 13 является полимером, который формуют к внутреннему диаметру 21 стента 12 и/или боковой стенке 22 стента 12. Скользящий элемент 13 может представлять композитную или ламинированную структуру, включающую полимерную часть 23, взаимосвязанную со стентом 12, и ригидную часть 24 вблизи внутреннего диаметра скользящего элемента 13.
В еще одном воплощении, как показано для секции Х-Х на Фиг.7 и Фиг.8, пружинный элемент 25 включен в толкатель 16 таким образом, что пружинный элемент 25 сжимается, в то время как аксиальная сила на проксимальном конце стента 12 возрастает до тех пор, пока наружная оболочка 11 не начинает двигаться в проксимальном направлении отосительно стента 12. В то время как стент 12 расширяется, пружинный элемент 25 продолжает создавать аксиальную нагрузку на проксимальном конце стента 12 и одновременно толкает проксимальный конец 12 дистально, в то время как стент 12 укорачивается, выходя из наружной оболочки 11. На фиг.7 показан пружинный элемент 25 в состоянии декомпрессии до начала расширения стента 12, где стент 12 находится под воздействием аксиальной нагрузки. На фиг.8 показан пружинный элемент 25 в компрессионном состоянии после начала расширения, где стент 12 находится под воздействием аксиальной нагрузки, где X2<X1. В то время как стент 12 раскрывается из наружной оболочки 11, аксиальная нагрузка на стент 12 обычно будет уменьшаться от пика нагрузки в начале расширения. В то время как аксиальная нагрузка уменьшается, сила пружины толкает проксимальный конец стента 12 в направлении любого движения стента 12, обусловленного укорачиванием, происходящем на проксимальном конце стента 12, таким образом, что проксимальный конец стента 12 двигается в дистальном направлении вместо движения дистального конца стента 12 в проксимальном направлении.
В еще одном воплощении, пружинный элемент 26 включен в проксимальный конец системы доставки стента 10, где дистальный конец 27 пружинного элемента 26 эффективно взаимодействует с толкателем 16, и проксимальный конец 28 пружинного элемента 26 фиксирован таким образом, что, толкатель 16 сжимает пружинный элемент 26, в то время как аксиальная сила на проксимальном конце стента 12 увеличивается до тех пор, пока наружная оболочка 11 не начинает двигаться в проксимальном направлении относительно стента 12. По мере раскрытия стента 12, пружинный элемент 26 двигает толкатель 16 проксимально, в то время как стент 12 укорачивается, выходя из наружной оболочки 11.
Фиг.10 с деталями, изображенными на Фиг.11, иллюстрирует стент 500, который может быть использован в системе доставки стента 10. На Фиг.10 представлено изображение первого воплощения стента 500 в соответствии с настоящим изобретением в частично расширенном состоянии. Как представлено, изображение является развернутым планом сечения открытого тубулярного стента вдоль линии, параллельной оси, и развернутого на плоскости. Для того, чтобы представить, как выглядит стент в действительности, верхний край фиг.10 нужно соединить с нижним краем. Стент 500 состоит из полосы несущей спирали 502, взаимосвязанной спиралевидными элементами 507. Расположенные параллельно (рядами) спиралевидные элементы 507 образуют спиралевидную полосу 510. Спиралевидная полоса 510 образует двойную спираль с полосой несущей спирали 502 и продолжается от одного конца стента к другому. Полоса несущей спирали 502 включает волнообразный структурный компонент несущих элементов 503, которые имеют пики 508 на каждой стороне волнообразного структурного компонента и ножки 509 между пиками 508. Спиралевидные элементы 507 взаимосвязаны с несущими элементами 503 полосы несущей спирали 502 через или вблизи пиков 508. Часть NSC 505 полосы несущей спирали 502 определяется количеством несущих элементов 503 (NSC) полосы несущей спирали 502 между спиралевидными элементами 507 по мере продолжения полосы несущей спирали 502 вокруг стента 500. Количество несущих элементов 503 (NSC) в части NSC 505 полосы несущей спирали 502 больше, чем количество несущих элементов 503 (N) в одной окружности витка полосы несущей спирали 502. Количество несущих элементов 503 (NSC) в части NSC 505 является постоянным.
В этом воплощении, стент 500 имеет N=12.728 спиральных несущих элементов 503 в одной окружности витка полосы несущей спирали 502 и имеет NSC=16.5 спиральных несущих элементов 503 в части NSC 505. Часть CCDn 512 части NSC 505 полосы несущей спирали 502 определяется количеством несущих элементов 503 (CCDn), равным NSC минус N. Количество несущих элементов 503 (CCDn) в части CCDn 512 и количество несущих элементов 503 (N) в одной окружности витка полосы несущей спирали 502 не является необходимо постоянным при различных состояниях размера диаметра стента 500. Стент 500 имеет CCDn=3.772 спиральных несущих элемента 503 в части CCDn 512. Поскольку эту связность (топологию) необходимо поддерживать при любом размере диаметра, геометрическая связь между полосой несущей спирали 502 и спиралевидным элементом 507 может быть описана в виде треугольника 511. Треугольник 511 имеет первую сторону 516 с длиной ножек, равной эффективной длине (Lc) 530 спиралевидного элемента 507, вторую сторону 513 с длиной ножек, равной расстоянию по окружности спирали (CCD) 531 части CCDn 512 полосы несущей спирали 502, разделенному на синус угла As 535 полосы несущей спирали 502 от продольной оси стента 500, третью сторону 514 с длиной ножек (SS) 532, равной продольному расстоянию (Р1) 534, на которое продолжается полоса несущей спирали 502 в 1 окружности витка минус эффективная длина Ls 533 несущего элемента, причем первый угол 537 первой стороны 516 равен 180° минус угол As 535, второй угол 536 второй стороны 513 равен углу Aс 536 спиралевидного элемента 507 от продольной оси стента 500, и третий угол 538 третьей стороны 514 равен углу As 535 минус угол Aс, 536. Если расстояние по окружности (Ps) 539 элемента несущей спирали 503 одинаково для всех элементов несущей спирали 503 в части CCDn 512, то расстояние по окружности спиралевидного элемента CCD 531 равно количеству элементов несущей спирали 503 в части CCDn 512, умноженному на расстояние по окружности (Ps) 539 элемента несущей спирали. Расстояния, показанные на любых фигурах, которые представляют изображение стента на плоскости, отражают расстояния на поверхности стента, например, вертикальные расстояния отражают расстояния по окружности и угловые расстояния отражают расстояния по спирали. Первая сторона 516 треугольника геометрической взаимосвязи 511 изображена параллельно линейной части спиралевидного элемента 507 так, что угол Ас 536 равен углу линейной части спиралевидного элемента 507. Если спиралевидный элемент 507 не имеет по существу линейной части, но продолжается вокруг стента по спирали, эквивалентный угол 536 может быть использован для построения треугольника геометрической взаимосвязи 511. Например, если спиралевидный элемент 507 представлен волнообразным элементом 907, как показано на Фиг.19, линия 901 может быть прочерчена через кривую волнообразного элемента 907 и использована для определения угла 536.
Структура стента 400, как показано на Фиг.12 и 13, сходна со структурой стента 500, который включает полосу несущей спирали 402, взаимосвязанную посредством спиралевидных элементов 507. Стент 400 отличен в том, что полоса несущей спирали 402 включает два волнообразных компонента несущих элементов 403а и 403b, которые имеют пики 508 на каждой стороне волнообразных компонентов. Несущий элемент 403а соединен с несущим элементом 403b. Сходно с полосой несущей спирали 502, полоса несущей спирали 402 также имеет часть NSC 405 и часть CCDn 412. Полоса несущей спирали 402 может быть определена, как имеющая количество Ns волнообразных компонентов несущих элементов, равное 2. Полоса несущей спирали 502 может быть определена, как имеющая количество Ns волнообразных компонентов несущих элементов, равное 1. В противоположном воплощении стент настоящего изобретения имеет полосу несущей спирали с количеством Ns волнообразных компонентов несущих элементов, равное 3. В еще одном воплощении стент настоящего изобретения имеет полосу несущей спирали с количеством Ns волнообразных компонентов несущих элементов, равное любому целому числу. Стенты с полосой несущей спирали, имеющей количество Ns волнообразных компонентов несущих элементов, равное или больше 2, обеспечивают преимущество в том, что полоса несущей спирали образует закрытую ячеистую структуру с малым размером ячеек, которая желательна в случае дополнительного риска эмболии. Стенты с малым размером ячеек имеют тенденцию к захвату бляшек или другого потенциального эмболического дебриса лучше, чем стенты с большим размером ячеек.
Стенты с описанной структурой обеспечивают комбинацию признаков, желательных в случае, когда соотношение спиралевидный элемент/несущий элемент, отношение LC к LS, умноженное на количество волнообразных компонентов несущих элементов NS, в полосе несущей спирали (Lc умноженное на Ns, разделенное на Ls), больше или равно 1. Например, соотношение спиралевидный элемент/несущий элемент для стента 500 равно 2.06 и для стента 400 равно 2.02. Стент 200, как показано на фиг.18, имеет структуру, сходную со структурой стента 500. Соотношение спиралевидный элемент/несущий элемент для стента 200 равно примерно 1.11.
Для того, чтобы стент настоящего изобретения был закручен до малого диаметра, геометрия структуры претерпевает некоторые изменения. Вследствие спиральной структуры полосы несущей спирали, угол несущего элемента As должен уменьшаться, в то время как диаметр стента увеличивается. Вследствие взаимосвязи между первым витком полосы несущей спирали и вторым витком полосы несущей спирали, создаваемой спиралевидным элементом, угол элемента Ac должен также уменьшаться для аккомодации к малому углу As. Если угол спиралевидного элемента Ac не уменьшается, или возникают трудности с уменьшением, в то время как стент закручивается и угол As уменьшается, то спиралевидные элементы будут иметь тенденцию к взаимодействию друг с другом и препятствовять закручиванию, или для закручивания будет требоваться больше усилия. Изменение угла спиралевидного элемента в течение закручивания облегчается, если соотношение спиралевидный элемент/несущий элемент больше 1. Соотношение спиралевидный элемент/несущий элемент, меньшее чем 1, приводит к увеличению жесткости спиралевидного элемента, вследствие чего больше силы требуется для того, чтобы изогнуть спиралевидный элемент до уменьшения угла в течение процесса закручивания, что нежелательно.
Полоса несущей спирали 602 стента 600, как показано на Фиг.14, переходит к и продолжается как концевая несущая часть 622, где угол витка AT1 волнообразного компонента несущих элементов 624a, образующих концевую несущую часть 622, больше, чем угол полосы несущей спирали As. Концевая несущая часть 622 включает второй виток волнообразного компонента несущих элементов 624b, где угол AT2 второго витка больше, чем угол первого витка AT1. Несущие элементы 603 полосы несущей спирали 602 взаимосвязаны с несущими элементами 624a первого витка концевой несущей части 622 посредством серии переходных спиралевидных элементов 623, которые определяют переходную спиралевидную часть 621. Все несущие элементы 624а первого витка концевой части 622 соединяются посредством спиралевидных элементов 623 с полосой несущей спирали 602. Пики 620 полосы несущей спирали 602 не соединяются с концевой несущей частью 622. Наличие переходной спиралевидной части 621 приводит к тому, что концевая несущая часть 622 имеет по существу плоский конец 625. Полоса несущей спирали 402 стента 400 переходит к и продолжается как концевая часть, где угол первого витка AT1 волнообразного компонента несущих элементов, образующих концевую несущую часть 622, больше, чем угол полосы несущей спирали As. Угол AT2 второго витка больше, чем AT1, и угол последующих витков концевой части также увеличивается (т.е. AT1<AT2<AT3<AT4). Как показано на Фиг.20, стент 600 включает один пик 626 концевой несущей части 622, соединенный с двумя пиками 620 полосы несущей спирали 602 посредством переходных спиралевидных элементов 623.
Следующие определения представлены ниже.
(N) - Число элементов несущей спирали в одной окружности витка несущей спирали.
(As) - Угол витка полосы несущей спирали, измеренный от продольной оси стента.
(Ac) - Эффективный угол спиралевидного элемента, измеренный от продольной оси стента.
(P1) - Продольное расстояние (шаг) несущей спирали в 1 окружности витка. Равен окружности стента, разделенной на арктангенс As.
(Ps) - Расстояние по окружности (шаг) между ножками несущего элемента полосы несущей спирали. Предполагая, что шаг (расстояние по окружности) одинаков для всех несущих элементов полосы несущей спирали, шаг равен окружности стента, разделенной на N.
(NSC) - Количество несущих элементов полосы несущей спирали между спиралевидными элементами по мере продолжения полосы несущей спирали.
(CCDn) - Количество несущих элементов полосы несущей спирали между взаимосвязанными несущими элементами, равное NSC минус N.
(CCD) - Расстояние по окружности спирали является расстоянием по окружности между взаимосвязанными несущими элементами, равное CCDn, умноженное на Ps, если Ps одинаково для всех несущих элементов в части CCDn.
(Lc) - Эффективная длина спиралевидного элемента, как определено посредством геометрической взаимосвязи в виде треугольника, как представлено в таблице 1.
(SS) - Разделение несущих элементов, как определено посредством геометрической взаимосвязи в виде треугольника, как представлено в таблице 1.
(Ls) - Эффективная длина несущего элемента. Равна Р1 минус SS.
(Ns) - Количество прилегающих волнообразных компонентов несущих
элементов, образующих полосу несущей спирали.
Соотношение спиралевидный элемент/несущий элемент - отношение LC к длине LS, умноженное на количество прилегающих волнообразных компонентов несущих элементов, образующих полосу несущей спирали, NS, выраженное как Lc/Ls*Ns.
Соотношение длина несущего элемента/разделение несущего элемента - отношение эффективной длины несущего элемента (Ls) к разделению несущего элемента (SS), выраженное как Ls/SS.
Таблица 1 | ||
Длина ножки | Угол | |
Сторона 1 | Lc | 180° минус As |
Сторона 2 | CCD разделенное на синус (As) | Ac |
Сторона 3 | SS | As минус Ac |
В одном воплощении разница между углом несущего элемента, As, и углом спиралевидного элемента. Ac, больше, чем примерно 20°. Поскольку является необходимым уменьшение угла спиралевидного элемента, когда стент закручивается, если угол спиралевидного элемента и угол несущего элемента в расширенном состоянии находятся слишком близко друг к другу, трудность с закручиванием стента увеличивается.
Для стента согласно настоящему изобретению соотношение длина несущего элемента/разделение несущего элемента является измерением относительного угла для углов несущего и спиралевидного элементов. Стенты с соотношением длина несущего элемента/разделение несущего элемента, составляющим меньше, чем, примерно, 2.5, имеют улучшенную способность закручивания. Свойства стента можно дополнительно улучшить, если угол несущего элемента составляет от 55° до 80°, и угол спиралевидного элемента составляет от 45° до 60° в расширенном состоянии. Дополнительно, углы Ac спиралевидных элементов в расширенном состоянии делают закручивание стента настоящего изобретения более трудным. Углы спиралевидных элементов, составляющие менее, чем 60° в раширенном состоянии, облегчают закручивание стента настоящего изобретения.
Для стента настоящего изобртения дополнительно к изменению угла спиралевидного элемента в течение закручивания, полоса несущей спирали вращается вдоль продольной оси стента для аккомодации связности между последующими витками полосы несущей спирали в течение закручивания, что приводит к увеличению витков полосы несущей спирали вдоль длины стента, когда стент закручивается. В одном воплощении шаг полосы несущей спирали (P1) приблизительно одинаков и в расширенном и в закрученном состоянии. Рассматривая, что увеличение витков полосы несущей спирали вдоль длины стента, когда стент закручивается, содействует укорочению стента, преимуществом стента настоящего изобретения является аппроксимированное увеличение количества витков полосы несущей спирали, менее, чем примерно на 30% при закручивании, преимущественно менее, чем, примерно, на 26%. Увеличение на 26% количества витков полосы несущей спирали соответствует укорочению примерно на 20%, которое, как полагают, является максимальным укорочением, используемым в клинике (Serruys, Patrick, W., Kutryk, Michael, J.В., Eds., Handbook of Coronary Stents, Second Edition, Martin Dunitz Ltd., London, 1998.).
Фиг.15 иллюстрирует другое воплощение стента 700 в соответствии с настюящим изобретением. Полоса несущей спирали 702 продолжается по спирали от одного конца стента 700 к другому. Каждый несущий элемент 703 связан с несущим элементом в последующем витке полосы несущей спирали 702 посредством спиралевидного элемента 707. Несущий элемент 703 включает части (ножки) 709. Каждая иа ножек 709 имеет равную длину.
Фиг.16, с деталями, как показано на Фиг.17, иллюстрирует еще одно воплощение стента 800. В этом воплощении, спиралевидный элемент 807 включает изогнутую переходную часть 852 на концах 853 и 854. Изогнутая переходящая часть 852 связана с несущим элементом 803.
Стент 800 включает переходные спиралевидные части 859 на каждом конце 861 стента 800. Концевые несущие части 858 образованы парой витков несущих элементов 860. Спиралевидный элемент 807 включает две спиралевидные части 807а и 807b, которые разделены брешью (промежутком) 808, как показано на Фиг.17. Промежуток 808 может иметь размер, равный нулю, где спиралевидные части 807а и 807b соприкасаются. Промежуток 808 заканчивается вблизи концов 853 и 854. Промежуток 808 может заканчиваться в любом месте вдоль длины спиралевидной части или во множестве точек вдоль спиралевидной части 807, таким образом, что промежуток будет прерываться вдоль спиралевидной части 807.
Стенты 400, 500, 600, 700 и 800 изготавливаются из общеупотребляемого материала для саморасширяющихся стентов, такого как сплав нитинола, никеля и титана (Ni/Ti), хорошо известного из предшествующего уровня техники. В еще одном воплощении стент 12 представляет собой стент, описанный в патенте США No.7,556,644.
Стенты в соответствии с настоящим изобретением могут быть помещены в сосуды с использованием методов, известных из предшествующего уровня техники. Стенты могут быть установлены на проксимальном конце катетера, проведены через катетер и высвобождены в требуемом желательном положении. Противоположно, стенты могут быть доставлены на дистальном конце катетера и высвобождены в требуемом положении. Стенты могут быть самораскрываемыми или раскрываемыми с помощью средств, таких как сегмент катетера с надувным баллоном. После размещения стента в требуемом положении в просвете полого органа катетер удаляют.
Стенты в соответствии с настоящим изобретением могут быть размещены в просвете полого органа, такого как сосуды или тракт, любых видов млекопитающих, включая человека, без повреждения стенки полого ограна. Например, стент может быть установлен в районе аневризмы для лечения аневризмы. В другом воплощении, гибкий стент устанавливают в большой бедренной артерии. При лечении сосудистых заболеваний или тракта катетер вводят в пораженный участок сосуда или тракта. Стент доставляют с помощью катетера в пораженный участок. Например, сосуд может быть кровеносным сосудом, подвздошной, бедренной, подколенной, сонной, нервно-сосудистой, почечной или коронарной артерией или веной.
Стенты настоящего изобретения пригодны для лечения сосудов в организме человека, которые подвергаются воздействию значительных биомеханических сил. Стенты, которые имплантируют в сосуды в организме человека, подвергающиеся воздействию значительных биомеханических сил, должны пройти жесткие испытания на прочность, чтобы получить разрешение на рыночное производство и продажу. В этих испытаниях обычно имитируют нагрузки, возникающие в организме человека, в циклах до 10 лет использования. В зависимости от условий имитирования нагрузок, количество циклов испытаний составляет от 1 до 400 млн. Например, для стентов, предназначенных для использования в бедренной подколенной артерии, может потребоваться пройти тест на сгибание, в котором стент изгибают по радиусу, примерно, 20 мм от 1 до 20 млн. раз, или подвергают аксиальной компрессии, составляющей, примерно, 10% от 1 до 10 млн. раз.
Все вышеописанные воплощения изобретения иллюстрируют лишь некоторые из возможных воплощений изобретения. Другие многочисленные воплощения изобретения могут быть осуществлены специалистами в данной области на основе раскрытия изобретения в описании, не выходя за объем притязаний. Например, стент может включать части спирали только с левосторонним или правосторонним направлением намотки, или полоса несущей спирали может включать скорее множественные изменения направления витков, чем только одно изменение. Также, полоса несущей спирали может включать любое количество оборотов на единицу длины или вариабельный шаг, и полосы несущих и/или спиралевидных элементов вдоль стента могут быть разной длины.
Система доставки стента в соответствии с настоящим изобретением используется для доставки любого стента, который может быть переустановлен после частичного раскрытия.
Claims (26)
1. Система для доставки саморасширяющегося стента, включающая внутреннюю часть, расположенную коаксиально по отношению к наружной части, причем указанные внутренняя и наружная части включают дистальный и проксимальный концы; толкатель, расположенный на проксимальном конце внутренней части; и скользящий элемент, расположенный коаксиально по отношению к внутренней части, и скользящий элемент расположен в и контактирует с внутренним диаметром стента; причем, до раскрытия стента, стент удерживается во внутреннем диаметре наружной части, и в течение раскрытия стента скользящий элемент может вращаться и двигаться в продольном направлении вдоль внутренней части, позволяя стенту двигаться дистально или вращаться в наружной части, в то время как наружная часть стягивается для раскрытия стента.
2. Система по п.1, отличающаяся тем, что толкатель и внутренняя часть двигаются дистально, в то время как наружная часть стягивается в проксимальном направлении в течение раскрытия стента для аккомодации к укорочению стента.
3. Система по п.1, отличающаяся тем, что дополнительно включает дистальный ограничитель, соединенный с внутренней частью в положении, дистальном относительно скользящего элемента.
4. Система по п.3, отличающаяся тем, что до того, как наружная часть полностью стягивается для высвобождения стента, внутренняя часть и дистальный ограничитель, соединенный с внутренней частью, двигаются проксимально по отношению к стенту до тех пор, пока дистальный ограничитель не приходит в контакт со скользящим элементом, посредством чего стент удерживается в наружной части.
5. Система по п.1, отличающаяся тем, что скользящий элемент контактирует с толкателем, в то время как наружная часть стягивается.
6. Система по п.1, отличающаяся тем, что толкатель обеспечивает проксимальный ограничитель.
7. Система по п.1, отличающаяся тем, что наружная часть является наружной оболочкой.
8. Система по п.1, отличающаяся тем, что внутренняя часть является направляющей трубкой-проводником.
9. Система по п.8, отличающаяся тем, что направляющая трубка-проводник является полой.
10. Система по п.1, отличающаяся тем, что внутренняя часть является твердым стержнем.
11. Система по п.1, отличающаяся тем, что скользящий элемент расположен во внутреннем диаметре на внутренней стенке стента.
12. Система по п.1, отличающаяся тем, что скользящий элемент включает наружную часть, образуемую из полимера, и наружная часть скользящего элемента формуется к внутреннему диаметру стента.
13. Система по п.1, отличающаяся тем, что скользящий элемент является ламинированной структурой, имеющей наружную и внутреннюю части, причем наружная часть скользящего элемента образована полимером и формуется к внутреннему диаметру стента, и внутренняя часть скользящего элемента является жесткой частью.
14. Система по п.1, отличающаяся тем, что дополнительно включает пружинный элемент, присоединенный к дистальному концу толкателя, причем пружинный элемент смещает движение стента вдоль оси внутрь системы доставки и толкает проксимальный конец стента в дистальном направлении в течение раскрытия стента.
15. Система по п.1, отличающаяся тем, что саморасширяющийся стент включает полосу несущей спирали, намотанную по спирали вокруг оси стента, причем полоса несущей спирали включает волнообразный структурный компонент несущих элементов, имеющий пики на каждой стороне; множество спиралевидных элементов, намотанных по спирали вокруг оси стента, причем спиралевидные элементы продолжаются в том же направлении, что и полоса несущей спирали, и взаимосвязывают, по крайней мере, некоторые из указанных пиков первого витка через или рядом, по крайней мере, с некоторыми из указанных пиков второго витка полосы несущей спирали, где построенный треугольник геометрической взаимосвязи имеет первую сторону с длиной ножек Lс, которая является эффективной длиной спиралевидного элемента между взаимосвязанными пиками первого и второго витков полосы несущей спирали, вторую сторону с длиной ножек, которая является расстоянием по окружности между указанным пиком первого витка и указанным пиком второго витка, взаимосвязанных спиралевидными элементами, разделенным на синус угла As полосы несущей спирали от продольной оси стента, третью сторону с длиной ножек, которая является продольным расстоянием, на которое продолжается полоса несущей спирали в 1 окружности витка (Р1), минус эффективная длина Ls несущего элемента, причем первый угол первой стороны равен 180° минус угол As, второй угол второй стороны равен углу Ас спиралевидного элемента от продольной оси, и третий угол третьей стороны равен углу As минус угол Aс, причем соотношение спиралевидный элемент/несущий элемент является отношением длины первой ножки Lc к длине Ls, умноженным на количество прилегающих волнообразных компонентов несущих элементов, образующих полосу несущей спирали, Ns, большее или равное приблизительно 1.
16. Система по п.15, отличающаяся тем, что соотношение спиралевидный элемент/несущий элемент больше чем 2,0.
17. Система по п.15, отличающаяся тем, что полоса несущей спирали включает множество волнообразных компонентов несущих элементов, причем указанные волнообразные компоненты соединены один с другим.
18. Система по п.17, отличающаяся тем, что включает два указанных волнообразных компонента.
19. Система по п.17, отличающаяся тем, что включает три указанных волнообразных компонента.
20. Система по п.15, отличающаяся тем, что дополнительно включает несущую часть, соединенную с концом полосы несущей спирали, причем указанная несущая часть включает множество несущих элементов и намотана вокруг оси стента под острым углом, образованным между плоскостью, перпендикулярной к оси стента, и витком несущей части, причем указанный угол меньше, чем острый угол, образуемый между плоскостью, перпендикулярной к оси стента, и витком полосы несущей спирали; и переходящие части спирали взаимосвязаны между указанной несущей частью и витком полосы несущей спирали, прилегающей к несущей части, и полоса переходящей спирали включает переходящие элементы, связанные, по крайней мере, с некоторыми из спиралевидных элементов витка полосы несущей спирали, прилегающими к указанной несущей части, и, по крайней мере, с некоторыми из несущих элементов несущей части.
21. Система по п.20, отличающаяся тем, что прилегающие элементы переходящей спирали увеличиваются от более короткой длины по окружности стента, в то время как виток несущей части выходит из полосы несущей спирали.
22. Система по п.20, отличающаяся тем, что спиралевидные элементы полосы несущей спирали не соединяются с несущей частью.
23. Система по п.15, отличающаяся тем, что ножки в каждой паре ножек имеют равную длину.
24. Система по п.15, отличающаяся тем, что спиралевидные элементы включают изогнутую переходную часть на каждом конце, причем указанная переходная часть соединена с пиками полосы несущей спирали.
25. Система по п.15, отличающаяся тем, что спиралевидные элементы включают пару спиралевидных частей, разделенных промежутком.
26. Система по п.1, отличающаяся тем, что саморасширяющийся стент включает полосу несущей спирали, намотанную по спирали вокруг оси стента, причем полоса несущей спирали включает волнообразный структурный компонент несущих элементов, и волнообразный структурный компонент имеет пики на каждой стороне; множество спиралевидных элементов, намотанных по спирали вокруг оси стента, причем спиралевидные элементы продолжаются в том же направлении, что и полоса несущей спирали, и взаимосвязывают, по крайней мере, некоторые из указанных пиков первого витка через или рядом, по крайней мере, с некоторыми из указанных пиков второго витка полосы несущей спирали, где построенный треугольник геометрической взаимосвязи имеет первую сторону с длиной ножек Lc, которая является эффективной длиной спиралевидного элемента между взаимосвязанными пиками первого и второго витков полосы несущей спирали, вторую сторону с длиной ножек, которая является расстоянием по окружности между указанным пиком первого витка и указанным пиком второго витка, взаимосвязанных спиралевидными элементами, разделенным на синус угла As полосы несущей спирали от продольной оси стента, третью сторону с длиной ножек, которая является продольным расстоянием, на которое продолжается полоса несущей спирали в 1 окружности витка (Р1), минус эффективная длина Ls несущего элемента, причем первый угол первой стороны равен 180° минус угол As, второй угол второй стороны равен углу Aс спиралевидного элемента от продольной оси, и третий угол третьей стороны равен углу As минус угол Aс.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10307308P | 2008-10-06 | 2008-10-06 | |
US61/103,073 | 2008-10-06 | ||
US12/573,527 | 2009-10-05 | ||
US12/573,527 US9149376B2 (en) | 2008-10-06 | 2009-10-05 | Reconstrainable stent delivery system |
PCT/US2009/059604 WO2010042458A1 (en) | 2008-10-06 | 2009-10-06 | Reconstrainable stent delivery system |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011117988A RU2011117988A (ru) | 2012-11-20 |
RU2508079C2 true RU2508079C2 (ru) | 2014-02-27 |
Family
ID=42099603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011117988/14A RU2508079C2 (ru) | 2008-10-06 | 2009-10-06 | Система для доставки саморасширяющегося стента |
Country Status (12)
Country | Link |
---|---|
US (2) | US9149376B2 (ru) |
EP (1) | EP2341867B1 (ru) |
JP (1) | JP5429828B2 (ru) |
KR (1) | KR101406963B1 (ru) |
CN (1) | CN102227194B (ru) |
AU (1) | AU2009302559A1 (ru) |
BR (1) | BRPI0920690B8 (ru) |
CA (1) | CA2739835C (ru) |
MX (2) | MX2011003665A (ru) |
NZ (1) | NZ592332A (ru) |
RU (1) | RU2508079C2 (ru) |
WO (1) | WO2010042458A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2692492C1 (ru) * | 2016-02-02 | 2019-06-25 | Инспайрмд, Лтд. | Деформируемый кончик для доставки стента и способы применения |
US10624770B2 (en) | 2015-01-11 | 2020-04-21 | Ascyrus Medical, Llc | Hybrid device for surgical aortic repair configured for adaptability of organs of various anatomical characteristics and method of using the same |
Families Citing this family (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866679B2 (en) | 2002-03-12 | 2005-03-15 | Ev3 Inc. | Everting stent and stent delivery system |
US7780723B2 (en) | 2005-06-13 | 2010-08-24 | Edwards Lifesciences Corporation | Heart valve delivery system |
US9061119B2 (en) | 2008-05-09 | 2015-06-23 | Edwards Lifesciences Corporation | Low profile delivery system for transcatheter heart valve |
US20150039072A1 (en) * | 2008-07-31 | 2015-02-05 | Bradley Beach | Flexible stent |
US8652202B2 (en) | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US20120310321A1 (en) * | 2009-10-05 | 2012-12-06 | Bradley Beach | Reconstrainable stent delivery system |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
US20110130825A1 (en) * | 2009-12-01 | 2011-06-02 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
WO2012040240A1 (en) | 2010-09-20 | 2012-03-29 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US9839540B2 (en) | 2011-01-14 | 2017-12-12 | W. L. Gore & Associates, Inc. | Stent |
US10166128B2 (en) | 2011-01-14 | 2019-01-01 | W. L. Gore & Associates. Inc. | Lattice |
US9155619B2 (en) | 2011-02-25 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US9744033B2 (en) | 2011-04-01 | 2017-08-29 | W.L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
US9119716B2 (en) | 2011-07-27 | 2015-09-01 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
EP2747716B1 (en) | 2011-08-22 | 2020-03-18 | Cook Medical Technologies LLC | Reconstrainable stent system |
US9554806B2 (en) | 2011-09-16 | 2017-01-31 | W. L. Gore & Associates, Inc. | Occlusive devices |
US9782282B2 (en) | 2011-11-14 | 2017-10-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US9877858B2 (en) | 2011-11-14 | 2018-01-30 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US9510935B2 (en) | 2012-01-16 | 2016-12-06 | W. L. Gore & Associates, Inc. | Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon |
US20130226278A1 (en) | 2012-02-23 | 2013-08-29 | Tyco Healthcare Group Lp | Methods and apparatus for luminal stenting |
US9072624B2 (en) | 2012-02-23 | 2015-07-07 | Covidien Lp | Luminal stenting |
US9375308B2 (en) | 2012-03-13 | 2016-06-28 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US9078659B2 (en) | 2012-04-23 | 2015-07-14 | Covidien Lp | Delivery system with hooks for resheathability |
US9724222B2 (en) | 2012-07-20 | 2017-08-08 | Covidien Lp | Resheathable stent delivery system |
US9283072B2 (en) | 2012-07-25 | 2016-03-15 | W. L. Gore & Associates, Inc. | Everting transcatheter valve and methods |
US10376360B2 (en) | 2012-07-27 | 2019-08-13 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic valve apparatus and methods |
KR101416524B1 (ko) * | 2012-08-09 | 2014-07-14 | 연세대학교 산학협력단 | 자기 확장 스텐트의 이송장치 |
AU2013299425A1 (en) | 2012-08-10 | 2015-03-19 | Altura Medical, Inc. | Stent delivery systems and associated methods |
US9931193B2 (en) | 2012-11-13 | 2018-04-03 | W. L. Gore & Associates, Inc. | Elastic stent graft |
US9566633B2 (en) | 2012-11-15 | 2017-02-14 | Vactronix Scientific, Inc. | Stents having a hybrid pattern and methods of manufacture |
US9737398B2 (en) | 2012-12-19 | 2017-08-22 | W. L. Gore & Associates, Inc. | Prosthetic valves, frames and leaflets and methods thereof |
US9144492B2 (en) | 2012-12-19 | 2015-09-29 | W. L. Gore & Associates, Inc. | Truncated leaflet for prosthetic heart valves, preformed valve |
US10321986B2 (en) | 2012-12-19 | 2019-06-18 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic heart valve |
US10966820B2 (en) | 2012-12-19 | 2021-04-06 | W. L. Gore & Associates, Inc. | Geometric control of bending character in prosthetic heart valve leaflets |
US10279084B2 (en) | 2012-12-19 | 2019-05-07 | W. L. Gore & Associates, Inc. | Medical balloon devices and methods |
US9968443B2 (en) | 2012-12-19 | 2018-05-15 | W. L. Gore & Associates, Inc. | Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet |
US9101469B2 (en) | 2012-12-19 | 2015-08-11 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with leaflet shelving |
WO2014144809A1 (en) | 2013-03-15 | 2014-09-18 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
JP5586742B1 (ja) * | 2013-06-28 | 2014-09-10 | 株式会社World Medish | 高柔軟性ステント |
US10130500B2 (en) | 2013-07-25 | 2018-11-20 | Covidien Lp | Methods and apparatus for luminal stenting |
US9782186B2 (en) | 2013-08-27 | 2017-10-10 | Covidien Lp | Vascular intervention system |
US8968383B1 (en) | 2013-08-27 | 2015-03-03 | Covidien Lp | Delivery of medical devices |
US10842918B2 (en) | 2013-12-05 | 2020-11-24 | W.L. Gore & Associates, Inc. | Length extensible implantable device and methods for making such devices |
JP5550028B1 (ja) * | 2014-01-27 | 2014-07-16 | 株式会社World Medish | 高柔軟性ステント |
US9827094B2 (en) | 2014-09-15 | 2017-11-28 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with retention elements |
CN205964238U (zh) | 2015-01-31 | 2017-02-22 | 灵活支架解决方案股份有限公司 | 脉管内装置和可再约束支架输送系统 |
JP6499497B2 (ja) | 2015-04-15 | 2019-04-10 | 株式会社Pentas | プッシャーガイドワイヤ |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US10179046B2 (en) | 2015-08-14 | 2019-01-15 | Edwards Lifesciences Corporation | Gripping and pushing device for medical instrument |
US10350067B2 (en) | 2015-10-26 | 2019-07-16 | Edwards Lifesciences Corporation | Implant delivery capsule |
JP7075122B2 (ja) | 2015-10-27 | 2022-05-25 | コンテゴ メディカル インコーポレイテッド | 経管的血管形成デバイス及び使用方法 |
US11259920B2 (en) | 2015-11-03 | 2022-03-01 | Edwards Lifesciences Corporation | Adapter for prosthesis delivery device and methods of use |
US10321996B2 (en) | 2015-11-11 | 2019-06-18 | Edwards Lifesciences Corporation | Prosthetic valve delivery apparatus having clutch mechanism |
US10799677B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US11219746B2 (en) | 2016-03-21 | 2022-01-11 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799676B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US20200179144A1 (en) * | 2016-03-31 | 2020-06-11 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Helical ultra low foreshortening stent |
AU2016403450B2 (en) | 2016-04-21 | 2019-10-03 | W. L. Gore & Associates, Inc. | Diametrically adjustable endoprostheses and associated systems and methods |
CN107510518B (zh) * | 2016-06-16 | 2019-11-26 | 上海微创医疗器械(集团)有限公司 | 支架系统以及支架的存放方法 |
EP3554613B1 (en) | 2016-12-13 | 2024-02-28 | Contego Medical, Inc. | Therapeutic agent coated angioplasty balloon with embolic filter and protective cover |
CN106580530B (zh) * | 2016-12-20 | 2018-11-16 | 有研医疗器械(北京)有限公司 | 一种精确定位的远、近端后释放覆膜支架输送系统及方法 |
US10376396B2 (en) * | 2017-01-19 | 2019-08-13 | Covidien Lp | Coupling units for medical device delivery systems |
US10433993B2 (en) | 2017-01-20 | 2019-10-08 | Medtronic Vascular, Inc. | Valve prosthesis having a radially-expandable sleeve integrated thereon for delivery and prevention of paravalvular leakage |
WO2018165358A1 (en) | 2017-03-08 | 2018-09-13 | W. L. Gore & Associates, Inc. | Steering wire attach for angulation |
US10940030B2 (en) | 2017-03-10 | 2021-03-09 | Serenity Medical, Inc. | Method and system for delivering a self-expanding stent to the venous sinuses |
US11224511B2 (en) | 2017-04-18 | 2022-01-18 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
KR102693746B1 (ko) | 2017-04-18 | 2024-08-13 | 에드워즈 라이프사이언시스 코포레이션 | 심장 판막 밀봉 장치 및 그를 위한 전달 장치 |
US10973634B2 (en) | 2017-04-26 | 2021-04-13 | Edwards Lifesciences Corporation | Delivery apparatus for a prosthetic heart valve |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
CN107137168B (zh) * | 2017-06-21 | 2019-07-05 | 青岛容商天下网络有限公司 | 可降解可收回4d打印线型有机人体支架及其使用方法 |
HRP20231208T1 (hr) | 2017-06-30 | 2024-01-19 | Edwards Lifesciences Corporation | Priključna stanica za transkateterske zaliske |
BR112019027404A2 (pt) | 2017-06-30 | 2020-07-07 | Edwards Lifesciences Corporation | mecanismos de travamento e liberação para dispositivos implantáveis transcateter |
US10857334B2 (en) | 2017-07-12 | 2020-12-08 | Edwards Lifesciences Corporation | Reduced operation force inflator |
US10806573B2 (en) | 2017-08-22 | 2020-10-20 | Edwards Lifesciences Corporation | Gear drive mechanism for heart valve delivery apparatus |
US11051939B2 (en) | 2017-08-31 | 2021-07-06 | Edwards Lifesciences Corporation | Active introducer sheath system |
CA3071133C (en) | 2017-09-12 | 2023-02-28 | W.L. Gore & Associates, Inc. | Leaflet frame attachment for prosthetic valves |
US11109963B2 (en) | 2017-09-27 | 2021-09-07 | W. L. Gore & Associates, Inc. | Prosthetic valves with mechanically coupled leaflets |
CA3072814C (en) | 2017-09-27 | 2023-01-03 | W.L. Gore & Associates, Inc. | Prosthetic valve with expandable frame and associated systems and methods |
CN107550602B (zh) * | 2017-09-28 | 2024-05-14 | 沛嘉医疗科技(苏州)有限公司 | 一种经导管主动脉瓣输送系统及其使用方法 |
US11090153B2 (en) | 2017-10-13 | 2021-08-17 | W. L. Gore & Associates, Inc. | Telescoping prosthetic valve and delivery system |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
IL305364B2 (en) | 2017-10-18 | 2025-04-01 | Edwards Lifesciences Corp | In Hebrew: Catheter assembly |
US11207499B2 (en) | 2017-10-20 | 2021-12-28 | Edwards Lifesciences Corporation | Steerable catheter |
WO2019089135A1 (en) | 2017-10-31 | 2019-05-09 | W. L. Gore & Associates, Inc. | Transcatheter deployment systems and associated methods |
CA3205219A1 (en) | 2017-10-31 | 2019-05-09 | Edwards Lifesciences Corporation | Medical valve and leaflet promoting tissue ingrowth |
EP3703618A1 (en) | 2017-10-31 | 2020-09-09 | W. L. Gore & Associates, Inc. | Prosthetic heart valve |
ES2894768T3 (es) * | 2017-12-15 | 2022-02-15 | Perfuze Ltd | Catéteres mejorados y dispositivos y sistemas que incorporan tales catéteres |
US11123209B2 (en) | 2018-04-12 | 2021-09-21 | Covidien Lp | Medical device delivery |
US11071637B2 (en) | 2018-04-12 | 2021-07-27 | Covidien Lp | Medical device delivery |
US11413176B2 (en) | 2018-04-12 | 2022-08-16 | Covidien Lp | Medical device delivery |
US10786377B2 (en) * | 2018-04-12 | 2020-09-29 | Covidien Lp | Medical device delivery |
CN116269937A (zh) | 2018-04-30 | 2023-06-23 | 爱德华兹生命科学公司 | 推进式护套样式 |
US11844914B2 (en) | 2018-06-05 | 2023-12-19 | Edwards Lifesciences Corporation | Removable volume indicator for syringe |
KR102137315B1 (ko) | 2018-08-29 | 2020-07-23 | 인제대학교 산학협력단 | 스텐트를 리패키징하기 위한 시스 및 이를 이용한 스텐트 리패키징 방법 |
US11779728B2 (en) | 2018-11-01 | 2023-10-10 | Edwards Lifesciences Corporation | Introducer sheath with expandable introducer |
JP7502298B2 (ja) | 2018-12-11 | 2024-06-18 | エドワーズ ライフサイエンシーズ コーポレイション | 人工心臓弁のための送達システム |
CN119606605A (zh) | 2018-12-12 | 2025-03-14 | 爱德华兹生命科学公司 | 组合的导引器和可扩张鞘 |
RU2714577C1 (ru) * | 2019-02-17 | 2020-02-18 | Общество с ограниченной ответственностью "Современные медицинские технологии" | Антимиграционный стент-эндопротез и средство его доставки |
US11497601B2 (en) | 2019-03-01 | 2022-11-15 | W. L. Gore & Associates, Inc. | Telescoping prosthetic valve with retention element |
US11413174B2 (en) | 2019-06-26 | 2022-08-16 | Covidien Lp | Core assembly for medical device delivery systems |
RU2723737C1 (ru) * | 2019-11-05 | 2020-06-17 | Общество с ограниченной ответственностью "Современные медицинские технологии" | Способ нанесения хитозана и антимиграционный стент-эндопротез с покрытием из хитозана |
IL300278A (en) | 2020-08-24 | 2023-04-01 | Edwards Lifesciences Corp | Methods and systems for aligning the commissure of an artificial heart valve with the commissure of a native valve |
CA3193292A1 (en) | 2020-08-31 | 2022-03-03 | Edwards Lifesciences Corporation | Systems and methods for crimping and device preparation |
US12042413B2 (en) | 2021-04-07 | 2024-07-23 | Covidien Lp | Delivery of medical devices |
US12109137B2 (en) | 2021-07-30 | 2024-10-08 | Covidien Lp | Medical device delivery |
US11944558B2 (en) | 2021-08-05 | 2024-04-02 | Covidien Lp | Medical device delivery devices, systems, and methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
EA005172B1 (ru) * | 2001-07-06 | 2004-12-30 | Ангиомед Гмбх Унд Ко.Медицинтехник Кг | Устройство подачи, имеющее узел толкателя для саморасширяющегося стента с конфигурацией для быстрой замены стента |
US20050246010A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use |
US7118592B1 (en) * | 2000-09-12 | 2006-10-10 | Advanced Cardiovascular Systems, Inc. | Covered stent assembly for reduced-shortening during stent expansion |
US20070198078A1 (en) * | 2003-09-03 | 2007-08-23 | Bolton Medical, Inc. | Delivery system and method for self-centering a Proximal end of a stent graft |
US7294146B2 (en) * | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
Family Cites Families (302)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4307723A (en) | 1978-04-07 | 1981-12-29 | Medical Engineering Corporation | Externally grooved ureteral stent |
US4425908A (en) | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4432132A (en) | 1981-12-07 | 1984-02-21 | Bell Telephone Laboratories, Incorporated | Formation of sidewall oxide layers by reactive oxygen ion etching to define submicron features |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US4665906A (en) | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US5275622A (en) | 1983-12-09 | 1994-01-04 | Harrison Medical Technologies, Inc. | Endovascular grafting apparatus, system and method and devices for use therewith |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4740207A (en) | 1986-09-10 | 1988-04-26 | Kreamer Jeffry W | Intralumenal graft |
US4762128A (en) | 1986-12-09 | 1988-08-09 | Advanced Surgical Intervention, Inc. | Method and apparatus for treating hypertrophy of the prostate gland |
US5133732A (en) | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US5266073A (en) | 1987-12-08 | 1993-11-30 | Wall W Henry | Angioplasty stent |
US6004330A (en) | 1989-08-16 | 1999-12-21 | Medtronic, Inc. | Device or apparatus for manipulating matter |
IE73670B1 (en) | 1989-10-02 | 1997-07-02 | Medtronic Inc | Articulated stent |
US5190540A (en) | 1990-06-08 | 1993-03-02 | Cardiovascular & Interventional Research Consultants, Inc. | Thermal balloon angioplasty |
JP3256540B2 (ja) | 1990-10-09 | 2002-02-12 | メッドトロニック・インコーポレイテッド | 対象物体を操作するためのデバイスまたは装置 |
US5197978B1 (en) | 1991-04-26 | 1996-05-28 | Advanced Coronary Tech | Removable heat-recoverable tissue supporting device |
FR2683449A1 (fr) | 1991-11-08 | 1993-05-14 | Cardon Alain | Endoprothese pour implantation transluminale. |
US5507767A (en) | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5683448A (en) | 1992-02-21 | 1997-11-04 | Boston Scientific Technology, Inc. | Intraluminal stent and graft |
WO1995014500A1 (en) | 1992-05-01 | 1995-06-01 | Beth Israel Hospital | A stent |
SG69973A1 (en) | 1993-03-11 | 2000-01-25 | Medinol Ltd | Stent |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
CA2144305C (en) | 1993-07-23 | 2005-01-11 | Scott E. Boatman | A flexible stent having a pattern formed from a sheet of material |
US5913897A (en) | 1993-09-16 | 1999-06-22 | Cordis Corporation | Endoprosthesis having multiple bridging junctions and procedure |
GB2281865B (en) | 1993-09-16 | 1997-07-30 | Cordis Corp | Endoprosthesis having multiple laser welded junctions,method and procedure |
US5989280A (en) | 1993-10-22 | 1999-11-23 | Scimed Lifesystems, Inc | Stent delivery apparatus and method |
JP2703510B2 (ja) | 1993-12-28 | 1998-01-26 | アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド | 拡大可能なステント及びその製造方法 |
FR2714815B1 (fr) | 1994-01-10 | 1996-03-08 | Microfil Ind Sa | Prothèse élastique pour élargir un conduit, notamment un vaisseau sanguin. |
US6165213A (en) | 1994-02-09 | 2000-12-26 | Boston Scientific Technology, Inc. | System and method for assembling an endoluminal prosthesis |
US5733303A (en) | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US5843120A (en) | 1994-03-17 | 1998-12-01 | Medinol Ltd. | Flexible-expandable stent |
US5449373A (en) | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US6165210A (en) | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
JP3766935B2 (ja) | 1994-04-29 | 2006-04-19 | シメッド ライフ システムズ,インコーポレーテッド | コラーゲンを有するステント |
US5540701A (en) | 1994-05-20 | 1996-07-30 | Hugh Sharkey | Passive fixation anastomosis method and device |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
DE69528216T2 (de) | 1994-06-17 | 2003-04-17 | Terumo K.K., Tokio/Tokyo | Verfahren zur Herstellung eines Dauerstents |
US6015429A (en) | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5545210A (en) | 1994-09-22 | 1996-08-13 | Advanced Coronary Technology, Inc. | Method of implanting a permanent shape memory alloy stent |
AU700717B2 (en) | 1994-10-20 | 1999-01-14 | Intra Therapeutics, Inc. | Cystoscope delivery system |
EP0788332B1 (en) | 1994-10-27 | 2000-11-08 | Boston Scientific Limited | Stent delivery device |
US5836964A (en) | 1996-10-30 | 1998-11-17 | Medinol Ltd. | Stent fabrication method |
CA2163824C (en) | 1994-11-28 | 2000-06-20 | Richard J. Saunders | Method and apparatus for direct laser cutting of metal stents |
US5591226A (en) | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
ATE395014T1 (de) | 1995-03-01 | 2008-05-15 | Boston Scient Scimed Inc | Längsflexibler und expandierbarer stent |
US7204848B1 (en) | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US6896696B2 (en) | 1998-11-20 | 2005-05-24 | Scimed Life Systems, Inc. | Flexible and expandable stent |
US6579314B1 (en) | 1995-03-10 | 2003-06-17 | C.R. Bard, Inc. | Covered stent with encapsulated ends |
US5591197A (en) | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
ATE232067T1 (de) | 1995-04-14 | 2003-02-15 | Boston Scient Ltd | Stentanbringungsvorrichtung mit rollmembran |
US5591198A (en) | 1995-04-27 | 1997-01-07 | Medtronic, Inc. | Multiple sinusoidal wave configuration stent |
US6602281B1 (en) | 1995-06-05 | 2003-08-05 | Avantec Vascular Corporation | Radially expansible vessel scaffold having beams and expansion joints |
US6010530A (en) | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
US5788707A (en) | 1995-06-07 | 1998-08-04 | Scimed Life Systems, Inc. | Pull back sleeve system with compression resistant inner shaft |
ZA9610721B (en) | 1995-12-21 | 1998-06-19 | Cornell Res Foundation Inc | Grapevine leafroll virus proteins and their uses. |
EP1477133B9 (en) | 1996-03-05 | 2007-11-21 | Evysio Medical Devices Ulc | Expandable stent |
US6334871B1 (en) | 1996-03-13 | 2002-01-01 | Medtronic, Inc. | Radiopaque stent markers |
IL117472A0 (en) | 1996-03-13 | 1996-07-23 | Instent Israel Ltd | Radiopaque stent markers |
US5649949A (en) | 1996-03-14 | 1997-07-22 | Target Therapeutics, Inc. | Variable cross-section conical vasoocclusive coils |
US6152957A (en) | 1996-04-26 | 2000-11-28 | Jang; G. David | Intravascular stent |
US6039756A (en) | 1996-04-26 | 2000-03-21 | Jang; G. David | Intravascular stent |
US5669932A (en) | 1996-05-29 | 1997-09-23 | Isostent, Inc. | Means for accurately positioning an expandable stent |
US5697971A (en) | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5797952A (en) | 1996-06-21 | 1998-08-25 | Localmed, Inc. | System and method for delivering helical stents |
US5755781A (en) | 1996-08-06 | 1998-05-26 | Iowa-India Investments Company Limited | Embodiments of multiple interconnected stents |
US6254628B1 (en) | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US5807404A (en) | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US6325826B1 (en) | 1998-01-14 | 2001-12-04 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US5776142A (en) | 1996-12-19 | 1998-07-07 | Medtronic, Inc. | Controllable stent delivery system and method |
US6551350B1 (en) | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US5925061A (en) | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US6241757B1 (en) | 1997-02-04 | 2001-06-05 | Solco Surgical Instrument Co., Ltd. | Stent for expanding body's lumen |
US5827321A (en) | 1997-02-07 | 1998-10-27 | Cornerstone Devices, Inc. | Non-Foreshortening intraluminal prosthesis |
ES2291586T3 (es) | 1997-02-11 | 2008-03-01 | Warsaw Orthopedic, Inc. | Sistema de placa cervical anterior y tornillo para huesos. |
US5810872A (en) | 1997-03-14 | 1998-09-22 | Kanesaka; Nozomu | Flexible stent |
US5792144A (en) | 1997-03-31 | 1998-08-11 | Cathco, Inc. | Stent delivery catheter system |
US5718713A (en) | 1997-04-10 | 1998-02-17 | Global Therapeutics, Inc. | Surgical stent having a streamlined contour |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US5741327A (en) | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
DE29708879U1 (de) | 1997-05-20 | 1997-07-31 | Jomed Implantate GmbH, 72414 Rangendingen | Koronarer Stent |
US5891192A (en) | 1997-05-22 | 1999-04-06 | The Regents Of The University Of California | Ion-implanted protein-coated intralumenal implants |
BE1011180A6 (fr) | 1997-05-27 | 1999-06-01 | Medicorp R & D Benelux Sa | Endoprothese luminale auto expansible. |
US6409755B1 (en) | 1997-05-29 | 2002-06-25 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US5913895A (en) | 1997-06-02 | 1999-06-22 | Isostent, Inc. | Intravascular stent with enhanced rigidity strut members |
EP0890346A1 (en) | 1997-06-13 | 1999-01-13 | Gary J. Becker | Expandable intraluminal endoprosthesis |
EP0884029B1 (en) | 1997-06-13 | 2004-12-22 | Gary J. Becker | Expandable intraluminal endoprosthesis |
US5843175A (en) | 1997-06-13 | 1998-12-01 | Global Therapeutics, Inc. | Enhanced flexibility surgical stent |
FR2764794B1 (fr) | 1997-06-20 | 1999-11-12 | Nycomed Lab Sa | Dispositif tubulaire expanse a epaisseur variable |
IL121316A (en) | 1997-07-15 | 2001-07-24 | Litana Ltd | A medical device for planting in an alloy body with memory properties |
US6340367B1 (en) | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
ES2290995T3 (es) | 1997-09-24 | 2008-02-16 | Med Institute, Inc. | Endoprotesis radialmente expandible. |
US6042606A (en) | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
US6071308A (en) | 1997-10-01 | 2000-06-06 | Boston Scientific Corporation | Flexible metal wire stent |
NO311781B1 (no) | 1997-11-13 | 2002-01-28 | Medinol Ltd | Flerlags-stenter av metall |
US5961548A (en) | 1997-11-18 | 1999-10-05 | Shmulewitz; Ascher | Bifurcated two-part graft and methods of implantation |
US6156062A (en) | 1997-12-03 | 2000-12-05 | Ave Connaught | Helically wrapped interlocking stent |
US6022374A (en) | 1997-12-16 | 2000-02-08 | Cardiovasc, Inc. | Expandable stent having radiopaque marker and method |
US6626939B1 (en) | 1997-12-18 | 2003-09-30 | Boston Scientific Scimed, Inc. | Stent-graft with bioabsorbable structural support |
US5910144A (en) | 1998-01-09 | 1999-06-08 | Endovascular Technologies, Inc. | Prosthesis gripping system and method |
US6190406B1 (en) | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
US6719779B2 (en) | 2000-11-07 | 2004-04-13 | Innercool Therapies, Inc. | Circulation set for temperature-controlled catheter and method of using the same |
US6533807B2 (en) | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US6676696B1 (en) | 1998-02-12 | 2004-01-13 | Thomas R. Marotta | Endovascular prosthesis |
US6077296A (en) | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
AU2891899A (en) | 1998-03-05 | 1999-09-20 | Boston Scientific Limited | Intraluminal stent |
US6019778A (en) | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6241762B1 (en) | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US7179289B2 (en) | 1998-03-30 | 2007-02-20 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US6520983B1 (en) | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
US6264687B1 (en) | 1998-04-20 | 2001-07-24 | Cordis Corporation | Multi-laminate stent having superelastic articulated sections |
US6740113B2 (en) | 1998-05-29 | 2004-05-25 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US6168621B1 (en) | 1998-05-29 | 2001-01-02 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
CA2334223C (en) | 1998-06-04 | 2008-11-18 | New York University | Endovascular thin film devices and methods for treating and preventing stroke |
US6261319B1 (en) | 1998-07-08 | 2001-07-17 | Scimed Life Systems, Inc. | Stent |
US5911754A (en) | 1998-07-24 | 1999-06-15 | Uni-Cath Inc. | Flexible stent with effective strut and connector patterns |
DE19839646A1 (de) | 1998-08-31 | 2000-03-09 | Jomed Implantate Gmbh | Stent |
US6682554B2 (en) | 1998-09-05 | 2004-01-27 | Jomed Gmbh | Methods and apparatus for a stent having an expandable web structure |
US6193744B1 (en) | 1998-09-10 | 2001-02-27 | Scimed Life Systems, Inc. | Stent configurations |
US6093194A (en) | 1998-09-14 | 2000-07-25 | Endocare, Inc. | Insertion device for stents and methods for use |
DE29816878U1 (de) | 1998-09-21 | 1998-12-24 | Schmitz-Rode, Thomas, Dipl.-Ing. Dr.med., 52070 Aachen | Im Schneidverfahren herstellbarer Helixstent |
US5997563A (en) | 1998-09-28 | 1999-12-07 | Medtronic, Inc. | Implantable stent having variable diameter |
US6042597A (en) | 1998-10-23 | 2000-03-28 | Scimed Life Systems, Inc. | Helical stent design |
US6544278B1 (en) | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
US6059813A (en) | 1998-11-06 | 2000-05-09 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
CA2289169A1 (en) | 1998-11-11 | 2000-05-11 | Ogawa Spring Co., Ltd. | Stent, manufacturing method thereof and indwelling method thereof |
US6190403B1 (en) | 1998-11-13 | 2001-02-20 | Cordis Corporation | Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity |
US6355059B1 (en) | 1998-12-03 | 2002-03-12 | Medinol, Ltd. | Serpentine coiled ladder stent |
SG75982A1 (en) | 1998-12-03 | 2000-10-24 | Medinol Ltd | Controlled detachment stents |
US6503270B1 (en) | 1998-12-03 | 2003-01-07 | Medinol Ltd. | Serpentine coiled ladder stent |
US6743252B1 (en) | 1998-12-18 | 2004-06-01 | Cook Incorporated | Cannula stent |
US6254609B1 (en) | 1999-01-11 | 2001-07-03 | Scimed Life Systems, Inc. | Self-expanding stent delivery system with two sheaths |
EP1020166A1 (en) | 1999-01-12 | 2000-07-19 | Orbus Medical Technologies, Inc. | Expandable intraluminal endoprosthesis |
US6251134B1 (en) | 1999-02-28 | 2001-06-26 | Inflow Dynamics Inc. | Stent with high longitudinal flexibility |
US6287333B1 (en) | 1999-03-15 | 2001-09-11 | Angiodynamics, Inc. | Flexible stent |
US6325825B1 (en) | 1999-04-08 | 2001-12-04 | Cordis Corporation | Stent with variable wall thickness |
US6899730B1 (en) | 1999-04-15 | 2005-05-31 | Scimed Life Systems, Inc. | Catheter-stent device |
DE60042520D1 (de) | 1999-04-15 | 2009-08-20 | Smart Therapeutics Inc | Intravaskularer stent zur behandlung von lesionen neurovascularer blutgefässe |
US6730116B1 (en) | 1999-04-16 | 2004-05-04 | Medtronic, Inc. | Medical device for intraluminal endovascular stenting |
US6273911B1 (en) | 1999-04-22 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Variable strength stent |
US6245101B1 (en) | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US6375676B1 (en) | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6673103B1 (en) | 1999-05-20 | 2004-01-06 | Scimed Life Systems, Inc. | Mesh and stent for increased flexibility |
US7005126B1 (en) | 1999-06-08 | 2006-02-28 | Human Gene Therapy Research Institute | Method for tumor treatment using infusion of xenogeneic cells to induce hyperacute rejection and innocent bystander effect |
US7192442B2 (en) | 1999-06-30 | 2007-03-20 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US6551351B2 (en) | 1999-07-02 | 2003-04-22 | Scimed Life Systems | Spiral wound stent |
US6485507B1 (en) | 1999-07-28 | 2002-11-26 | Scimed Life Systems | Multi-property nitinol by heat treatment |
US6142987A (en) | 1999-08-03 | 2000-11-07 | Scimed Life Systems, Inc. | Guided filter with support wire and methods of use |
US6302907B1 (en) | 1999-10-05 | 2001-10-16 | Scimed Life Systems, Inc. | Flexible endoluminal stent and process of manufacture |
AU1084101A (en) | 1999-10-14 | 2001-04-23 | United Stenting, Inc. | Stents with multilayered struts |
US6171328B1 (en) | 1999-11-09 | 2001-01-09 | Embol-X, Inc. | Intravascular catheter filter with interlocking petal design and methods of use |
US6264671B1 (en) | 1999-11-15 | 2001-07-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery catheter and method of use |
US6585758B1 (en) | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
EP1242004B1 (en) | 1999-12-21 | 2004-12-08 | Imperial College of Science, Technology and Medicine | Vascular stents |
WO2001049338A1 (en) | 1999-12-30 | 2001-07-12 | Li Wei Pin | Controlled delivery of therapeutic agents by insertable medical devices |
US6361546B1 (en) | 2000-01-13 | 2002-03-26 | Endotex Interventional Systems, Inc. | Deployable recoverable vascular filter and methods for use |
US6334866B1 (en) | 2000-01-14 | 2002-01-01 | William H. Wall | Stent device for performing endovascular repair of aneurysms |
SG86458A1 (en) | 2000-03-01 | 2002-02-19 | Medinol Ltd | Longitudinally flexible stent |
US6723119B2 (en) | 2000-03-01 | 2004-04-20 | Medinol Ltd. | Longitudinally flexible stent |
US7828835B2 (en) | 2000-03-01 | 2010-11-09 | Medinol Ltd. | Longitudinally flexible stent |
US7758627B2 (en) | 2000-03-01 | 2010-07-20 | Medinol, Ltd. | Longitudinally flexible stent |
US6953476B1 (en) | 2000-03-27 | 2005-10-11 | Neovasc Medical Ltd. | Device and method for treating ischemic heart disease |
US6352552B1 (en) | 2000-05-02 | 2002-03-05 | Scion Cardio-Vascular, Inc. | Stent |
US6423091B1 (en) | 2000-05-16 | 2002-07-23 | Cordis Corporation | Helical stent having flat ends |
CN1217631C (zh) | 2000-05-22 | 2005-09-07 | 奥勃斯医学技术股份有限公司 | 自膨胀扩展器 |
ES2300339T3 (es) | 2000-05-31 | 2008-06-16 | Fox Hollow Technologies, Inc. | Sistema de proteccion contra la embolizacion en intervenciones vasculares. |
US8298257B2 (en) | 2000-06-29 | 2012-10-30 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US6532380B1 (en) | 2000-06-30 | 2003-03-11 | Cedars Sinai Medical Center | Image guidance for coronary stent deployment |
US6540775B1 (en) | 2000-06-30 | 2003-04-01 | Cordis Corporation | Ultraflexible open cell stent |
US20020077693A1 (en) | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
US6562898B2 (en) | 2000-07-05 | 2003-05-13 | Katsuhisa Masumoto | Resin composition and manufacturing method therefor |
US6969401B1 (en) | 2000-08-18 | 2005-11-29 | Marotta Thomas R | Endovascular prosthesis |
US6607552B1 (en) | 2000-09-18 | 2003-08-19 | Scimed Life Systems, Inc. | Rolling socks |
US6565595B1 (en) | 2000-09-18 | 2003-05-20 | Scimed Life Systems, Inc. | Two component sleeves |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
US6492615B1 (en) | 2000-10-12 | 2002-12-10 | Scimed Life Systems, Inc. | Laser polishing of medical devices |
DE60115821T2 (de) | 2000-10-13 | 2006-08-31 | Medtronic AVE, Inc., Santa Rosa | Hydraulisches Stenteinbringungssystem |
US6663664B1 (en) | 2000-10-26 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with time variable radial force |
US6506211B1 (en) | 2000-11-13 | 2003-01-14 | Scimed Life Systems, Inc. | Stent designs |
US6843802B1 (en) | 2000-11-16 | 2005-01-18 | Cordis Corporation | Delivery apparatus for a self expanding retractable stent |
US6579308B1 (en) | 2000-11-28 | 2003-06-17 | Scimed Life Systems, Inc. | Stent devices with detachable distal or proximal wires |
US6517567B2 (en) | 2000-11-30 | 2003-02-11 | Albert R. Bass, Jr. | Apparatus and method for pacifier withdrawal |
US6913617B1 (en) | 2000-12-27 | 2005-07-05 | Advanced Cardiovascular Systems, Inc. | Method for creating a textured surface on an implantable medical device |
JP4323102B2 (ja) | 2001-01-15 | 2009-09-02 | テルモ株式会社 | 柔軟ステント |
JP4727070B2 (ja) | 2001-06-01 | 2011-07-20 | テルモ株式会社 | ステント |
US7169165B2 (en) | 2001-01-16 | 2007-01-30 | Boston Scientific Scimed, Inc. | Rapid exchange sheath for deployment of medical devices and methods of use |
US6899727B2 (en) | 2001-01-22 | 2005-05-31 | Gore Enterprise Holdings, Inc. | Deployment system for intraluminal devices |
US6736839B2 (en) | 2001-02-01 | 2004-05-18 | Charles Cummings | Medical device delivery system |
US6563080B2 (en) | 2001-02-15 | 2003-05-13 | Scimed Life Systems, Inc. | Laser cutting of stents and other medical devices |
US6613077B2 (en) | 2001-03-27 | 2003-09-02 | Scimed Life Systems, Inc. | Stent with controlled expansion |
US6585753B2 (en) | 2001-03-28 | 2003-07-01 | Scimed Life Systems, Inc. | Expandable coil stent |
GB0107910D0 (en) | 2001-03-29 | 2001-05-23 | Isis Innovation | Deployable stent |
DE60209583T2 (de) | 2001-03-30 | 2006-12-21 | Terumo K.K. | Stent |
WO2002093988A1 (en) | 2001-05-11 | 2002-11-21 | Epion Corporation | Method and system for improving the effectiveness of medical devices by adhering drugs to the surface thereof |
US6926732B2 (en) | 2001-06-01 | 2005-08-09 | Ams Research Corporation | Stent delivery device and method |
US6562067B2 (en) | 2001-06-08 | 2003-05-13 | Cordis Corporation | Stent with interlocking elements |
US6612012B2 (en) | 2001-06-11 | 2003-09-02 | Cordis Neurovascular, Inc. | Method of manufacturing small profile medical devices |
US6673106B2 (en) | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6818013B2 (en) | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
SG108867A1 (en) | 2001-09-06 | 2005-02-28 | Medinol Ltd | Self articulating stent |
IL160817A0 (en) | 2001-09-10 | 2004-08-31 | Medinol Ltd | Longitudinally flexible stent |
US20030229390A1 (en) | 2001-09-17 | 2003-12-11 | Control Delivery Systems, Inc. | On-stent delivery of pyrimidines and purine analogs |
US7175655B1 (en) | 2001-09-17 | 2007-02-13 | Endovascular Technologies, Inc. | Avoiding stress-induced martensitic transformation in nickel titanium alloys used in medical devices |
JP3605388B2 (ja) | 2001-10-16 | 2004-12-22 | 川澄化学工業株式会社 | ステント |
GB2382776A (en) | 2001-11-21 | 2003-06-11 | Tayside Flow Technologies Ltd | Helix shaped insert for flow modification in a duct or stent |
US20050070992A1 (en) | 2001-11-28 | 2005-03-31 | Aptus Endosystems, Inc. | Prosthesis systems and methods sized and configured for the receipt and retention of fasteners |
US7147656B2 (en) * | 2001-12-03 | 2006-12-12 | Xtent, Inc. | Apparatus and methods for delivery of braided prostheses |
US20030135266A1 (en) * | 2001-12-03 | 2003-07-17 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US7182779B2 (en) | 2001-12-03 | 2007-02-27 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
EP1467679B1 (en) | 2001-12-20 | 2015-11-04 | TriVascular, Inc. | Advanced endovascular graft |
US7163553B2 (en) | 2001-12-28 | 2007-01-16 | Advanced Cardiovascular Systems, Inc. | Intravascular stent and method of use |
US6981985B2 (en) | 2002-01-22 | 2006-01-03 | Boston Scientific Scimed, Inc. | Stent bumper struts |
US7445629B2 (en) | 2002-01-31 | 2008-11-04 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US7169170B2 (en) | 2002-02-22 | 2007-01-30 | Cordis Corporation | Self-expanding stent delivery system |
US7942924B1 (en) | 2002-03-04 | 2011-05-17 | Endovascular Technologies, Inc. | Staged endovascular graft delivery system |
US7052511B2 (en) | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Delivery system and method for deployment of foreshortening endoluminal devices |
US20030195609A1 (en) | 2002-04-10 | 2003-10-16 | Scimed Life Systems, Inc. | Hybrid stent |
US20030204244A1 (en) | 2002-04-26 | 2003-10-30 | Stiger Mark L. | Aneurysm exclusion stent |
DE10219014A1 (de) | 2002-04-27 | 2003-11-13 | Ruesch Willy Gmbh | Selbstexpandierbarer Stent |
US7122048B2 (en) | 2002-05-03 | 2006-10-17 | Scimed Life Systems, Inc. | Hypotube endoluminal device |
WO2003094798A1 (en) | 2002-05-08 | 2003-11-20 | Abbott Laboratories | Endoprosthesis having foot extensions |
DE60334791D1 (de) | 2002-05-16 | 2010-12-16 | Cook Inc | Flexibler widerhaken zur verankerung einer prothese |
US6830638B2 (en) | 2002-05-24 | 2004-12-14 | Advanced Cardiovascular Systems, Inc. | Medical devices configured from deep drawn nickel-titanium alloys and nickel-titanium clad alloys and method of making the same |
US20040002752A1 (en) | 2002-06-26 | 2004-01-01 | Scimed Life Systems, Inc. | Sacrificial anode stent system |
US6761731B2 (en) | 2002-06-28 | 2004-07-13 | Cordis Corporation | Balloon-stent interaction to help reduce foreshortening |
US8080052B2 (en) | 2002-06-28 | 2011-12-20 | Cordis Corporation | Stent with diagonal flexible connecting links |
US6969402B2 (en) | 2002-07-26 | 2005-11-29 | Syntheon, Llc | Helical stent having flexible transition zone |
US6878162B2 (en) | 2002-08-30 | 2005-04-12 | Edwards Lifesciences Ag | Helical stent having improved flexibility and expandability |
DE60201905T2 (de) | 2002-09-09 | 2005-11-10 | Abbott Laboratories Vascular Enterprises Ltd. | System zum Einführen eines selbstexpandierenden Stents |
AU2003267164A1 (en) | 2002-09-12 | 2004-04-30 | Cook Incorporated | Retrievable filter |
US7001422B2 (en) | 2002-09-23 | 2006-02-21 | Cordis Neurovascular, Inc | Expandable stent and delivery system |
US7135038B1 (en) | 2002-09-30 | 2006-11-14 | Advanced Cardiovascular Systems, Inc. | Drug eluting stent |
US7169172B2 (en) | 2002-11-01 | 2007-01-30 | Counter Clockwise, Inc. | Method and apparatus for caged stent delivery |
US7169178B1 (en) | 2002-11-12 | 2007-01-30 | Advanced Cardiovascular Systems, Inc. | Stent with drug coating |
US6923829B2 (en) | 2002-11-25 | 2005-08-02 | Advanced Bio Prosthetic Surfaces, Ltd. | Implantable expandable medical devices having regions of differential mechanical properties and methods of making same |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7044965B1 (en) | 2002-12-13 | 2006-05-16 | Spielberg Theodore E | Therapeutic cellular stent |
EP1587450A2 (en) | 2002-12-16 | 2005-10-26 | The Regents Of The University Of Michigan | Assembly and planar structure for use therein which is expandable into a 3-d structure such as a stent and device for making the planar structure |
DE10261822A1 (de) | 2002-12-20 | 2004-07-01 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Helix-Steg-Verbindung |
US20050033410A1 (en) | 2002-12-24 | 2005-02-10 | Novostent Corporation | Vascular prothesis having flexible configuration |
US7846198B2 (en) | 2002-12-24 | 2010-12-07 | Novostent Corporation | Vascular prosthesis and methods of use |
US20050165469A1 (en) | 2002-12-24 | 2005-07-28 | Michael Hogendijk | Vascular prosthesis including torsional stabilizer and methods of use |
US20040147998A1 (en) | 2003-01-24 | 2004-07-29 | Nolting John E. | Differentially coated stent |
US7942920B2 (en) | 2003-02-25 | 2011-05-17 | Cordis Corporation | Stent with nested fingers for enhanced vessel coverage |
US8083791B2 (en) | 2003-04-14 | 2011-12-27 | Tryton Medical, Inc. | Method of treating a lumenal bifurcation |
US7591832B2 (en) | 2003-04-24 | 2009-09-22 | Medtronic, Inc. | Expandable guide sheath and apparatus with distal protection and methods for use |
GB0310714D0 (en) | 2003-05-09 | 2003-06-11 | Angiomed Ag | Fluid flow management in stent delivery system |
KR100561713B1 (ko) | 2003-05-23 | 2006-03-20 | (주) 태웅메디칼 | 가변상태 유지형 스텐트의 제조방법과 이에 의해 제조된가변상태 유지형 스텐트 |
US20040260377A1 (en) | 2003-06-17 | 2004-12-23 | Medinol, Ltd. | Shape memory alloy endoprosthesis delivery system |
US20040260384A1 (en) | 2003-06-17 | 2004-12-23 | Medtronic Ave | Superelastic coiled stent |
US7131993B2 (en) | 2003-06-25 | 2006-11-07 | Boston Scientific Scimed, Inc. | Varying circumferential spanned connectors in a stent |
US8784472B2 (en) | 2003-08-15 | 2014-07-22 | Boston Scientific Scimed, Inc. | Clutch driven stent delivery system |
US6945990B2 (en) | 2003-08-16 | 2005-09-20 | Medtronic Vascular, Inc. | Double sheath deployment system |
US8500792B2 (en) | 2003-09-03 | 2013-08-06 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
US20050080479A1 (en) | 2003-09-29 | 2005-04-14 | Feng James Q. | Expandable endovascular stent |
US7060090B2 (en) | 2003-10-15 | 2006-06-13 | Medtronic Vascular, Inc. | Stent with increased longitudinal flexibility and scaffolding |
US20050090888A1 (en) | 2003-10-28 | 2005-04-28 | Hines Richard A. | Pleated stent assembly |
US7316711B2 (en) | 2003-10-29 | 2008-01-08 | Medtronic Vascular, Inc. | Intralumenal stent device for use in body lumens of various diameters |
US20050096725A1 (en) | 2003-10-29 | 2005-05-05 | Pomeranz Mark L. | Expandable stent having removable slat members |
US20050125025A1 (en) | 2003-12-05 | 2005-06-09 | Marcel Rioux | Styptic device |
US7873400B2 (en) | 2003-12-10 | 2011-01-18 | Stryker Leibinger Gmbh & Co. Kg. | Adapter for surgical navigation trackers |
US20050131530A1 (en) | 2003-12-15 | 2005-06-16 | Darack Ed E. | Endoluminal stent |
WO2005063251A1 (en) | 2003-12-17 | 2005-07-14 | Pfizer Products Inc. | Modified stent useful for delivery of drugs along stent strut |
US20070156225A1 (en) | 2003-12-23 | 2007-07-05 | Xtent, Inc. | Automated control mechanisms and methods for custom length stent apparatus |
US7243408B2 (en) | 2004-02-09 | 2007-07-17 | Boston Scientific Scimed, Inc. | Process method for attaching radio opaque markers to shape memory stent |
US8500751B2 (en) | 2004-03-31 | 2013-08-06 | Merlin Md Pte Ltd | Medical device |
KR100663624B1 (ko) * | 2004-04-29 | 2007-01-02 | 엘지.필립스 엘시디 주식회사 | 액정표시장치 제조방법 |
US20050256562A1 (en) | 2004-05-14 | 2005-11-17 | Boston Scientific Scimed, Inc. | Stent delivery handle and assembly formed therewith |
US7763064B2 (en) | 2004-06-08 | 2010-07-27 | Medinol, Ltd. | Stent having struts with reverse direction curvature |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
JP2006029900A (ja) | 2004-07-14 | 2006-02-02 | Tdk Corp | エンコーダ用磁気センサ |
US8308789B2 (en) | 2004-07-16 | 2012-11-13 | W. L. Gore & Associates, Inc. | Deployment system for intraluminal devices |
US7744641B2 (en) | 2004-07-21 | 2010-06-29 | Boston Scientific Scimed, Inc. | Expandable framework with overlapping connectors |
US7323008B2 (en) | 2004-08-09 | 2008-01-29 | Medtronic Vascular, Inc. | Flexible stent |
US20060064155A1 (en) | 2004-09-01 | 2006-03-23 | Pst, Llc | Stent and method for manufacturing the stent |
US7763067B2 (en) | 2004-09-01 | 2010-07-27 | C. R. Bard, Inc. | Stent and method for manufacturing the stent |
US7018403B1 (en) | 2004-09-14 | 2006-03-28 | Advanced Cardiovascular Systems, Inc. | Inclined stent pattern for vulnerable plaque |
US7914570B2 (en) | 2004-10-07 | 2011-03-29 | Boston Scientific Scimed, Inc. | Non-shortening helical stent |
EP1819300B1 (en) | 2004-10-26 | 2012-07-04 | Cordis Corporation | Stent having phased hoop sections |
US20060173490A1 (en) | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US7918880B2 (en) | 2005-02-16 | 2011-04-05 | Boston Scientific Scimed, Inc. | Self-expanding stent and delivery system |
US8377041B2 (en) | 2005-02-28 | 2013-02-19 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
US7740652B2 (en) * | 2005-03-30 | 2010-06-22 | Boston Scientific Scimed, Inc. | Catheter |
CN101484089B (zh) | 2005-04-04 | 2015-11-25 | 可挠支架装置公司 | 可挠支架 |
US20070055365A1 (en) | 2005-04-28 | 2007-03-08 | The Cleveland Clinic Foundation | Stent with integrated filter |
US20070027522A1 (en) | 2005-06-14 | 2007-02-01 | Chang Jean C | Stent delivery and guidewire systems |
US7637939B2 (en) | 2005-06-30 | 2009-12-29 | Boston Scientific Scimed, Inc. | Hybrid stent |
US8956400B2 (en) | 2005-10-14 | 2015-02-17 | Flexible Stenting Solutions, Inc. | Helical stent |
US20070100420A1 (en) * | 2005-11-02 | 2007-05-03 | Kavanagh Joseph T | Guided stent delivery systems of minimal diameter |
US7621946B2 (en) | 2006-03-06 | 2009-11-24 | Boston Scientific Scimed, Inc. | Implantable medical endoprosthesis delivery system with hub |
EP1998716A4 (en) | 2006-03-20 | 2010-01-20 | Xtent Inc | APPARATUS AND METHODS FOR ESTABLISHING RELATED PROSTHETIC SEGMENTS |
US8092508B2 (en) * | 2006-03-30 | 2012-01-10 | Stryker Corporation | Implantable medical endoprosthesis delivery system |
DE102006033399B4 (de) | 2006-07-19 | 2009-04-09 | Jotec Gmbh | Markersystem und Einführsystem für ein solches Markersystem |
MX344492B (es) * | 2006-10-22 | 2016-12-16 | Idev Tech Inc * | Dispositivos y métodos para el avance de stent. |
US20080125849A1 (en) | 2006-11-13 | 2008-05-29 | Janet Burpee | Delivery system catheter with rotating distal end |
US8252035B2 (en) | 2007-08-01 | 2012-08-28 | Cappella, Inc. | Device delivery system with two stage withdrawal |
US7988723B2 (en) * | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
US7963987B2 (en) * | 2007-12-28 | 2011-06-21 | Cook Medical Technologies Llc | Sequential implant delivery system |
US20090234279A1 (en) * | 2008-03-14 | 2009-09-17 | Goldstein James A | Mechanical propulsion catheter apparatus and methods |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
CN101779992B (zh) | 2009-01-19 | 2012-08-22 | 加奇生物科技(上海)有限公司 | 可回撤自弹式脑神经支架的输送装置 |
DE102009021039B3 (de) | 2009-05-13 | 2010-11-25 | Acandis Gmbh & Co. Kg | Medizinische Vorrichtung zur Freisetzung in einem Hohlorgan und Einfuhrsystem für medizinische Geräte |
-
2009
- 2009-10-05 US US12/573,527 patent/US9149376B2/en active Active
- 2009-10-06 AU AU2009302559A patent/AU2009302559A1/en not_active Abandoned
- 2009-10-06 NZ NZ592332A patent/NZ592332A/en unknown
- 2009-10-06 BR BRPI0920690A patent/BRPI0920690B8/pt active IP Right Grant
- 2009-10-06 MX MX2011003665A patent/MX2011003665A/es active IP Right Grant
- 2009-10-06 EP EP09819725.4A patent/EP2341867B1/en active Active
- 2009-10-06 JP JP2011531104A patent/JP5429828B2/ja active Active
- 2009-10-06 WO PCT/US2009/059604 patent/WO2010042458A1/en active Application Filing
- 2009-10-06 KR KR1020117009979A patent/KR101406963B1/ko active Active
- 2009-10-06 CA CA2739835A patent/CA2739835C/en active Active
- 2009-10-06 MX MX2014015796A patent/MX389949B/es unknown
- 2009-10-06 RU RU2011117988/14A patent/RU2508079C2/ru active
- 2009-10-06 CN CN200980147615.4A patent/CN102227194B/zh active Active
-
2015
- 2015-08-28 US US14/839,589 patent/US10010438B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US7118592B1 (en) * | 2000-09-12 | 2006-10-10 | Advanced Cardiovascular Systems, Inc. | Covered stent assembly for reduced-shortening during stent expansion |
EA005172B1 (ru) * | 2001-07-06 | 2004-12-30 | Ангиомед Гмбх Унд Ко.Медицинтехник Кг | Устройство подачи, имеющее узел толкателя для саморасширяющегося стента с конфигурацией для быстрой замены стента |
US7294146B2 (en) * | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US20070198078A1 (en) * | 2003-09-03 | 2007-08-23 | Bolton Medical, Inc. | Delivery system and method for self-centering a Proximal end of a stent graft |
US20050246010A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10624770B2 (en) | 2015-01-11 | 2020-04-21 | Ascyrus Medical, Llc | Hybrid device for surgical aortic repair configured for adaptability of organs of various anatomical characteristics and method of using the same |
RU2721137C2 (ru) * | 2015-01-11 | 2020-05-18 | ЭССАЙРУС МЕДИКАЛ, ЭлЭлСи | Устройство для стентирования и набор для стентирования аорты |
US12279981B2 (en) | 2015-01-11 | 2025-04-22 | Ascyrus Medical, LLC. | Hybrid device for surgical aortic repair configured for adaptability of organs of various anatomical characteristics and method of using the same |
RU2692492C1 (ru) * | 2016-02-02 | 2019-06-25 | Инспайрмд, Лтд. | Деформируемый кончик для доставки стента и способы применения |
Also Published As
Publication number | Publication date |
---|---|
BRPI0920690B1 (pt) | 2020-07-14 |
EP2341867A4 (en) | 2014-01-08 |
NZ592332A (en) | 2012-06-29 |
JP2012504483A (ja) | 2012-02-23 |
CA2739835C (en) | 2016-11-01 |
CN102227194A (zh) | 2011-10-26 |
US20160113794A1 (en) | 2016-04-28 |
US20100094394A1 (en) | 2010-04-15 |
EP2341867A1 (en) | 2011-07-13 |
KR20110084210A (ko) | 2011-07-21 |
CN102227194B (zh) | 2015-10-07 |
JP5429828B2 (ja) | 2014-02-26 |
MX389949B (es) | 2025-03-20 |
US9149376B2 (en) | 2015-10-06 |
KR101406963B1 (ko) | 2014-06-13 |
WO2010042458A1 (en) | 2010-04-15 |
BRPI0920690B8 (pt) | 2021-06-22 |
AU2009302559A1 (en) | 2010-04-15 |
BRPI0920690A2 (pt) | 2015-12-29 |
CA2739835A1 (en) | 2010-04-15 |
US10010438B2 (en) | 2018-07-03 |
MX2011003665A (es) | 2011-07-04 |
RU2011117988A (ru) | 2012-11-20 |
EP2341867B1 (en) | 2017-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2508079C2 (ru) | Система для доставки саморасширяющегося стента | |
US7988723B2 (en) | Flexible stent | |
CA2610108C (en) | Flexible stent | |
US20150148887A1 (en) | Flexible devices | |
RU2719020C2 (ru) | Система доставки саморасширяющегося стента | |
US20150039072A1 (en) | Flexible stent | |
AU2015264947B2 (en) | Reconstrainable stent delivery system |