RU2501742C2 - Статический декантатор для предварительного сгущения ила с обработки воды и установка, содержащая такой декантатор - Google Patents
Статический декантатор для предварительного сгущения ила с обработки воды и установка, содержащая такой декантатор Download PDFInfo
- Publication number
- RU2501742C2 RU2501742C2 RU2011130809/05A RU2011130809A RU2501742C2 RU 2501742 C2 RU2501742 C2 RU 2501742C2 RU 2011130809/05 A RU2011130809/05 A RU 2011130809/05A RU 2011130809 A RU2011130809 A RU 2011130809A RU 2501742 C2 RU2501742 C2 RU 2501742C2
- Authority
- RU
- Russia
- Prior art keywords
- sludge
- decanter
- concentration
- pump
- thickened
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/02—Settling tanks with single outlets for the separated liquid
- B01D21/04—Settling tanks with single outlets for the separated liquid with moving scrapers
- B01D21/06—Settling tanks with single outlets for the separated liquid with moving scrapers with rotating scrapers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/2405—Feed mechanisms for settling tanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/245—Discharge mechanisms for the sediments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
- B01D21/32—Density control of clear liquid or sediment, e.g. optical control ; Control of physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
- B01D21/34—Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/211—Measuring of the operational parameters
- B01F35/2111—Flow rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/211—Measuring of the operational parameters
- B01F35/2111—Flow rate
- B01F35/21111—Mass flow rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/221—Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/221—Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
- B01F35/2212—Level of the material in the mixer
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/14—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
- C02F11/147—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5209—Regulation methods for flocculation or precipitation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/10—Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/11—Turbidity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/40—Liquid flow rate
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Centrifugal Separators (AREA)
- Treatment Of Sludge (AREA)
Abstract
Группа изобретений относится к статическому декантатору и водоочистной установке, использующей этот декантатор, и может использоваться для предварительного сгущения жидкого ила при очистке сточных вод. Декантатор содержит наклонное дно 8, насос 3 для подачи жидкого ила, устройство инжекции полимера в жидкий ил, слив верхнего продукта 23 и насос 26 для откачки предварительно сгущенного ила из декантатора. Декантатор содержит также средства для ускорения декантации ила, средства регулирования концентрации взвешенных веществ в загущенном иле на выходе, способные удерживать постоянной концентрацию предварительно загущенного ила, извлекаемого из декантатора, несмотря на колебания концентраций на входе, и средства регулирования уровня взвеси ила, способные сохранять этот уровень как можно более низким. Технический результат состоит в повышении степени предварительного сгущения ила, исключающей дополнительную обработку ила перед устройством сгущения ила. 2 н. и 10 з.п. ф-лы, 6 ил.
Description
Изобретение относится к статическому декантатору для предварительного сгущения жидкого ила в водоочистной установке, в частности установке очистки сточных вод, содержащему наклонное дно и оборудованному насосом для питания жидким илом, устройством инжекции полимера в жидкий ил, сливом верхнего продукта и насосом для откачивания из декантатора предварительно загущенного ила.
Декантаторы этого типа известны, в частности, из технического руководства Mémento Technique de l'Eau, 10 Ed. DEGREMONT, v. 2, p. 833.
В водоочистной установке декантатор находится обычно за устройством осветления, которое находится за аэрационным бассейном. Поток, выходящий с осветлителя и составляющий жидкий ил, входящий в декантатор, имеет переменную концентрацию взвеси, которая может составлять от 1 до 8 г/л. Предварительно загущенный ил, извлекаемый из декантатора, может иметь концентрацию взвеси от 15 до 20 г/л.
Этот ил затем подвергают сгущающей обработке или обезвоживанию, чтобы уменьшить его объем.
Характеристики извлеченного предварительно загущенного ила имеют колебания, которые должны быть уменьшены, чтобы оптимизировать работу устройств сгущения, установленных за декантатором, и чтобы снизить потребление энергии системой в целом.
Желательно также улучшить степень предварительного сгущения ила, чтобы облегчить сгущающую обработку и обезвоживание и способствовать, таким образом, снижению расхода энергии.
Таким образом, целью изобретения является главным образом разработать статический декантатор, который позволит получить на выходе предварительно сгущенный ил, благоприятный для оптимального функционирования устройства сгущения, в частности центрифуги, не вызывая ухудшения качества очищенной воды.
Целью изобретения является также дать декантатор, оборудованный так, чтобы оптимизировать расход полимера.
Согласно изобретению статический декантатор для предварительного сгущения жидкого ила в водоочистной установке, в частности установке очистки сточных вод, в целях оптимизации работы устройств сгущения, установленных за декантатором, содержит наклонное дно, оборудован насосом для подачи жидкого ила, устройством инжекции полимера в жидкий ил, сливом верхнего продукта и откачивающим насосом для удаления предварительно загущенного ила из декантатора и отличается тем, что он содержит:
- средства ускорения декантации ила,
- средства регулирования концентрации взвеси в предварительно загущенном иле на выходе, способные удерживать по существу постоянной концентрацию предварительно загущенного ила, извлекаемого из декантатора, несмотря на изменения входных концентраций,
- и средства регулирования уровня взвешенного слоя ила, способные удерживать этот уровень как можно более низким.
Таким образом, статический декантатор является быстродействующим декантатором, который позволяет получить предварительно загущенный ил за достаточно короткое время, чтобы избежать ухудшения обработанной воды, в частности за время ниже времени, которое повлекло бы снижение растворимости фосфора из-за бактерий. Высоленный фосфор ухудшил бы качество очищенной воды. Быстродействующий декантатор обеспечивает, кроме того, постоянное и повышенное предварительное сгущение для последующей обработки.
Средства ускорения декантации ила могут иметь угол наклона дна декантатора к горизонтали в интервале от 20° до 45°, а также вращающийся нижний скребок. Этот скребок предпочтительно имеет руку, оборудованную чистильными пластинами, расположенными решеткой, чтобы эффективно и быстро отводить сгущенный ил к центральному отстойнику. Этот центральный отстойник также очищается скребком. Рукоять благоприятно снабжена бороной, облегчающей предварительное сгущение ила. Рукоять скребка может также иметь форму буквы V, примыкающей ко дну декантатора.
Предпочтительно, средства регулирования концентрации предварительно загущенного ила содержат средства регулирования массового потока взвеси, входящей в декантатор, и средство регулирования концентрации предварительно загущенного ила, исходя из входящего массового потока.
Благоприятно, средства регулирования массового потока взвеси, входящей в декантатор, содержат:
- питающий насос для подачи жидкого ила с переменной производительностью,
- расходомер жидкого ила,
- зонд для измерения концентрации взвеси в жидком иле и
- регулятор, который получает информацию от расходомера и зонда и контролирует скорость питающего насоса, чтобы удержать по существу постоянным массовый поток подачи.
Предпочтительно, средства регулирования концентрации предварительно загущенного ила, исходя из входящего массового потока, содержат:
- откачивающий насос переменной производительности для удаления предварительно загущенного ила,
- расходомер для измерения предварительно загущенного ила,
- зонд для измерения концентрации взвеси в предварительно загущенном иле и
- регулятор, который получает информацию от расходомера и зонда и контролирует скорость откачивающего насоса, чтобы удержать по существу постоянной концентрацию извлекаемого предварительно загущенного ила, причем начальная скорость извлечения рассчитывается, исходя из входящего массового потока и заданной концентрации предварительно загущенного извлекаемого ила.
Благоприятно, декантатор содержит средства регулирования уровня взвешенного слоя ила, способные сохранять этот уровень как можно более низким, с оптимизацией расхода полимера.
Средства регулирования уровня взвешенного слоя ила могут содержать зонд для измерения высоты взвеси ила, питающий насос с переменной производительностью для подачи полимера, расходомер на линии инжекции полимера и регулятор или вариатор скорости, получающий информацию от зонда измерения высоты взвешенного слоя ила и от расходомера и способный контролировать производительность насоса, чтобы оптимизировать расход полимера.
Декантатор рассчитан так, чтобы время пребывания ила в декантаторе не превышало двух часов. Предпочтительно, декантатор имеет усеченно-коническое дно с сечением, уменьшающимся к низу, причем угол наклона (α) образующих дна к горизонтали составляет от 20° до 45°. Уровень взвешенного слоя ила благоприятно сохраняется по существу на уровне большого основания усеченно-конического дна. Окружная скорость скребка может составлять от 10 до 20 см/с. Благоприятно, скребок содержит по меньшей мере один чистящий нож и борону.
Изобретение относится также к водоочистной установке, отличающейся тем, что она содержит декантатор, какой описан выше, и тем, что спускной выход декантатора напрямую соединен с устройством сгущения ила, в частности центрифугой или ленточным фильтром, без буферного резервуара для ила между декантатором и устройством сгущения ила.
Помимо описанных выше устройств изобретение содержит определенное число других устройств, речь о которых более конкретно пойдет ниже на одном примере осуществления, описанном с обращением к приложенным чертежам, который ни в коей мере не является ограничительным. На этих чертежах:
Фиг.1 показывает схематический вертикальный разрез декантатора согласно изобретению, с его оборудованием.
Фиг.2 показывает вертикальный разрез по диаметру, в увеличенном масштабе, демонстрирующий детали вращающегося скребка с чистящими ножами и его бороной.
Фиг.3 показывает схематический горизонтальный разрез скребка с фиг.2.
Фиг.4 представляет собой обобщенную схему водоочистной установки с декантатором согласно изобретению.
Фиг.5 является графиком, показывающим коррекцию подгонки скорости извлечения.
Фиг.6 является графиком, иллюстрирующим принцип расчета доли вносимого полимера.
Обращаясь к фиг.1 и 4, можно видеть быстродействующий статический декантатор D для установки очистки сточных вод, схематически показанной на фиг.4. Установка содержит аэрационный бассейн 1 для обработки активного ила с последующим осветлителем 2, из которого осветленная вода отбирается из верхней части 2a, тогда как жидкий ил направляют частью в декантатор D, а частью возвращают на вход бассейна 1.
Концентрация взвеси жидкого ила, поступающего в декантатор D, может составлять примерно от 1 до 8 г/л. Концентрация взвеси в предварительно загущенном иле, выходящем из декантатора D, обычно составляет от 15 до 20 г/л. Поток, выходящий из декантатора D, направляется к устройству сгущения, в частности к центрифуге 3. Концентрация взвеси на выходе центрифуги 3 может составлять от 50 до 60 г/л (и даже от 200 до 300 г/л). Поток, выходящий из центрифуги, проводится либо на устройство 4 перегнивания ила, либо на устройство 5 обезвоживания, либо на устройство 6 сушки.
Чтобы заставить устройство сгущения, в частности центрифугу 3, работать на оптимуме своих рабочих характеристик, предусмотрен скоростной декантатор D согласно изобретению, чтобы на выходе можно было получить предварительно загущенный ил, имеющий по существу постоянную концентрацию взвеси, несмотря на колебания входной концентрации.
Как видно на фиг.1, скоростной декантатор D состоит из реактора 7 с вертикальной осью, дном 8, наклоненным к горизонтали под углом α, который может составлять от 20° до 45°.
Обычно реактор 7 является цилиндрическим, а дно 8 является усеченно-коническим с сечением, уменьшающимся к низу и сходящимся к центральной сборной емкости 9. Декантатор D снабжен нижним поворотным скребком 10 с рукоятью 11 в форме буквы V, прилегающей по диаметру ко дну 8 декантатора. Рукоять 11 снабжена чистящими ножами 12, расположенными решеткой (фиг.2 и 3), чтобы эффективно и быстро провести ил к центральной сборной емкости 9, которая также чистится скребком, и бороной 12a, облегчающей предварительное сгущение ила. Борона 12a имеет вертикальные ножи, распределенные в радиальном направлении. Центральная емкость 9 исследовалась особо, чтобы избежать короткого тока при извлечении ила. Предусмотрено, что время пребывания ила в декантаторе D ограничено менее чем двумя часами.
Декантатор D оборудован насосом 13 с переменной производительностью, чтобы подавать жидкий ил, который подается по нагнетательному трубопроводу 14, снабженному зондом 15 для измерения концентрации D1 взвеси. Зонд 15 обычно является зондом оптического типа. Расходомер 16, в частности, электромагнитного типа, установлен в линии 14. За расходомером на линии установлен смеситель 17, чтобы позволить инжекцию полимера в жидкий ил, облегчающую декантацию ила. Раствор вводимого полимера готовится в емкости B с добавлением питьевой воды 18. Насос 19 переменной производительности предусмотрен, чтобы обеспечить питание полимером смесителя 17. Расходомер 20 установлен на нагнетательной линии насоса 19, чтобы обеспечить скорость подачи раствора полимера, вводимого в смеситель 17. Жидкий ил, смешанный с полимером, вводится в верхней части 21 декантатора D, которая оборудована, в его внутренней верхней части, желобом 22 для сбора верхнего продукта, отводимого через внешний сброс 23.
Кроме того, декантатор D оборудован в верхней части зондом 24 для измерения высоты взвешенного слоя ила V в декантаторе. Зонд 24 обычно является ультразвуковым. На разных уровнях на наружной стенке декантатора предусмотрены клапаны 25, чтобы можно было отбирать пробы.
Отвод предварительно загущенного ила из сборного ствола 9 обеспечивается с помощью насоса 26 переменной производительности, нагнетание которого подается в линию 27, в которой установлен зонд 28 для измерения концентрации D2 взвеси и расходомер 29.
В качестве неограничивающих числовых примеров: питающий насос 13 может иметь производительность от 9 до 53 м3/ч, тогда как откачивающий насос 26 может иметь производительность от 3 до 16 м3/ч. Декантатор D может иметь диаметр примерно 3 метра и высоту примерно 4 метра.
Информация от зонда 15 и расходомера 16 проводится на ПИД-регулятор 30, выход которого управляет скоростью вращения насоса 13. Информация от зонда 28 и расходомера 29 поступает на ПИД-регулятор 31, выход которого управляет скоростью вращения откачивающего насоса 26.
Информация, поступающая от зонда 24 и расходомера 20, проводится на ПИД-регулятор или вариатор скорости 32, выход которого управляет скоростью вращения насоса 19, подающего полимер.
Регуляторы 30, 31 вместе с измерительными зондами 15, 28, расходомерами 16, 29 и насосами с переменной производительностью 13, 26 образуют средства M регулирования концентрации взвеси ила, извлекаемого из декантатора D.
Регулятор 30, измерительный зонд 15, расходомер 16 и насос с переменной производительностью 13 образуют средства M1 регулирования массового потока FM1 взвеси, входящей в декантатор D.
Регулятор 31, измерительный зонд 28, расходомер 29 и насос переменной производительности 26 образуют средства M2 регулирования концентрации отводимого ила, исходя из входящего массового потока FM1.
Регулятор или вариатор 32, зонд 24 измерения высоты взвеси, расходомер 20 и насос 19 с переменной производительностью образуют средства M3 регулирования расхода полимера, инжектируемого в декантатор D.
Автоматическое управление потоками, обрабатываемыми в декантаторе D, основано на этих разных регулировках:
- контроль постоянного потока FM1 питания реактора жидким илом,
- контроль сохранения концентрации D2 извлекаемого предварительно загущенного ила,
- поддержание как можно более низкого уровня V взвеси ила в реакторе D с оптимизацией расхода полимера.
Совокупность этих трех регулировок позволяет обеспечить:
- оптимизацию расхода вводимого полимера, как только появляется необходимость добавления полимера;
- мониторинг качества осветленной воды в переливе;
- удержание взвешенного слоя ила на как можно более низком уровне, чтобы избежать повышенных времен пребывания, старения и снижения качества предварительно загущенного ила (снижение содержания азота в иле, снижение растворимости фосфора);
- поддержание постоянной концентрации или на выходе, что позволяет уменьшить и даже отказаться от буферного резервуара для сбора предварительно загущенного ила, обычно помещаемого перед центрифугой 3 и за декантатором D.
Работа декантатора D и средств регулирования следующая.
Регулирование входного массового потока ила
Массовый поток FM1 взвеси в обрабатываемой воде, поступающий в декантатор D, задается оператором. Концентрация D1 взвеси в обрабатываемой воде дается зондом или датчиком 15. Если F1 - скорость подачи воды на обработку, то массовый поток есть F1*D1, и он должен быть равен постоянному значению FM1. Заданное значение потока F1, которое требуется обеспечить, определяется выражением
F1 = FM1/D1.
ПИД-регулятор 30 устанавливает скорость питающего насоса 13, чтобы сохранить заданное значение скорости подачи F1, используя измерение расходомера 16.
Регулирование концентрации извлекаемого ила, исходя из входящего массового потока FM1
Заданная концентрация извлекаемого ила (ConsD2) устанавливается оператором. Первая скорость извлечения F2 рассчитывается, предполагая в первом приближении, что эффективная концентрация извлеченного ила равна выбранной заданной величине. В этом случае, записав, что извлекаемый массовый поток равен входящему массовому потоку: F2* ConsD2 = FM1, получают, что:
F2 = FM1/ConsD2
ПИД-регулятор 31 устанавливает скорость откачивающего насоса 26, чтобы удержать заданное значение скорости Q = F2, используя замер расходомера 29.
Однако концентрация D2 извлекаемого ила, измеренная зондом 27, не будет равна ConsD2, но будет близкой. Проводится периодическая коррекция (каждые 30-300 секунд) скорости, чтобы подстроить скорость так, чтобы получить концентрацию на выходе, равную заданной фиксированной величине.
Эта коррекция скорости поясняется со ссылкой на график на фиг.5. Коррекция скорости ΔQ отложена по абсциссе, а отклонения ±dConsD2 между измеренным значением D2 и заданным значением ConsD2 отложено по ординате. Начало отсчета корректировки скорости, соответствующая ΔQ = 0, находится в точке 33, которая соответствует скорости, позволяющей реально получить значение ConsD2. Корректировки ΔQ являются положительными или отрицательными в зависимости от того, нужно ли повысить или понизить скорость относительно скорости, соответствующей точке 33. Начало отсчета отклонений ±dConsD2 находится на значении ConsD2, и отклонения являются положительными, когда замер D2 превышает ConsD2, и отрицательными в противоположном случае. Кривые 34, 35 корректировки скорости определяются экспериментально. Кривая 34 с более сильным наклоном соответствует разбавлению отводимого из декантатора D выходящего потока, слишком насыщенного твердыми материалами, тогда как кривая 35, имеющая более слабый наклон, соответствует сгущению выходящего из декантатора D потока, недостаточно наполненного твердыми веществами. Реакции в системе будут разными при разбавлении и сгущении, откуда и следуют разные наклоны.
В примере, показанном на фиг.5, первая рассчитанная скорость извлечения F2 дает значение концентрации, измеренной зондом 28, равное: mesD2, которое больше D2. Соответственно, кривая 34 соответствует точке 36 на оси абсцисс. Рассчитанная исходная скорость F2 повышается на ΔQ1. Настройка, обеспеченная регулятором 30, позволяет приблизить измеренную концентрацию к заданному значению ConsD2.
На практике максимальные значения корректировки скорости ± ΔQmaxi составляют порядка ±0,55 м3/ч. Измерительный сигнал соответствует среднему за 10 минут, обновляемому каждую минуту.
Регулировка инжекции полимера
Насос 19 подачи полимера управляется регулятором 32 или вариатором скорости, и заданное значение скорости рассчитывается, исходя из массового потока подачи FM1 = F1*D1 и положения уровня взвешенного слоя ила V.
Расчет расхода полимера
Заданное значение для полимера рассчитывается со следующими элементами:
Tpolym = степень обработки полимером (оптимальная доза полимера, вводимого в обрабатываемую воду)
CPolym = концентрация полимера (концентрация полимера во вводимом растворе)
FMAcalc = расчетный поток (F1real × D1real)
ConsQpolym = заданное значение расхода полимера (заданное значение расхода вводимого раствора полимера)
ConsQpolym × CPolym = Tpolym × FMAcalc,
откуда получается заданное значение расхода полимера:
ConsQpolym = Tpolym × FMAcalc × 1/Cpolym.
Расчет расхода полимера, изменяемого в зависимости от уровня взвешенного слоя ила
Следующие пояснения даются со ссылками на фиг.6, которая показывает кривую подгонки доли полимера. Уровень взвешенного слоя ила нанесен по ординате, а доля полимера отложена по абсциссе.
Начало 0 координат соответствует максимально низкому уровню взвешенного слоя ила, то есть находящемуся на дне декантатора D. S1 или "Порог 1" соответствует уровню взвешенного слоя ила, полученному с долей полимера, считающейся минимальной. Эта минимальная доля полимера может составлять порядка 0,5 мг/л. S2 или "Порог 2" соответствует уровню взвешенного слоя ила, полученному с долей полимера, рассматриваемой как максимальная. Эта максимальная доля может составлять порядка 2 мг/л. Кривая 37 показывает изменение уровня взвешенного слоя ила в зависимости от применяемой доли полимера.
На оси ординат точка E соответствует максимально возможному теоретически уровню взвеси, то есть на максимальном уровне зонда 24; точка "Уровень LSL", находящаяся ниже "Порог 1", соответствует прекращению инжекции полимера.
Сигнал, указывающий уровень взвешенного слоя ила V, подается ультразвуковым зондом 24. Усреднение на длине волны 10 нм проводится и обновляется каждую минуту.
Производительность насоса 19 подачи полимера остается рассчитать, исходя из расчетного массового потока подачи FMAcalc. Эта производительность при необходимости периодически корректируется, чтобы удержать уровень взвешенного слоя ила V в заданном диапазоне между S1 и S2 и как можно более низким. Эта коррекция проводится в следующих условиях.
Периодически через каждые T3 секунды, где 1 с < T3 < 1800 с, отслеживается положение уровня взвешенного слоя ила V. "Уровень (t)" в момент t соответствует "используемой степени обработки".
Степень обработки Tpolym, используемая для расчета расхода полимера, будет корректироваться в зависимости от измерения уровня взвешенного слоя ила, проведенного по истечении времени срабатывания T3.
Пока "Уровень (t)" остается в интервале от S1 до S2, доля вводимого полимера корректируется согласно участку прямой 37.
С момента, когда уровень взвешенного слоя ила становится ниже порогового значения S1, доля вводимого полимера сохраняется на уровне Taux mini. Если уровень взвеси опустится ниже уровня LSL, инжекцию прекращают.
Когда уровень взвешенного слоя ила становится выше предела S2, доля вводимого полимера сохраняется на уровне Taux maxi, чтобы опустить взвесь ила.
Применяемые ограничения Tpolym составляют, например, 0,5 мг/л в минимуме и 2,0 г/л в максимуме. При пуске первый расчет проводится с параметризуемой исходной долей (T initpolym). Пороговые значения S1 и S2 являются параметризуемыми.
Изобретение позволяет удерживать по существу постоянную концентрацию извлекаемого ила и оптимизировать таким образом работу машин, в частности центрифуг, за декантатором. Это приводит в результате к лучшему кпд установки и к снижению потребления энергии.
Изобретение позволяет также снизить расход полимера, который практически уменьшен вдвое, при сохранении и даже улучшении качества извлекаемого ила.
Чистящие ножи 12 скребка 10 позволяют быстро провести ил к зоне 9, чтобы снизить время его пребывания в декантаторе D. Время пребывания ила в декантаторе предпочтительно ниже 2 часов.
Борона 12a позволяет привести в движение хлопья, способствуя дегазации и сгущению ила.
Claims (12)
1. Статический декантатор для предварительного сгущения жидкого ила в водоочистной установке, в частности установке очистки сточных вод, для оптимизации работы устройств сгущения, установленных за декантатором, содержащий наклонное дно и оборудованный питающим насосом для подачи жидкого ила, устройством инжекции полимера в жидкий ил, сливом верхнего продукта и откачивающим насосом для отвода предварительно загущенного ила из декантатора, отличающийся тем, что он содержит:
- средства ускорения декантации ила,
- средства регулирования (M) концентрации взвеси на выходе в предварительно загущенном иле, способные удерживать по существу постоянной концентрацию предварительно загущенного ила, извлекаемого из декантатора, несмотря на колебания входных концентраций,
- и средства регулирования (M3) уровня взвешенного слоя ила (V), способные удерживать этот уровень как можно более низким.
- средства ускорения декантации ила,
- средства регулирования (M) концентрации взвеси на выходе в предварительно загущенном иле, способные удерживать по существу постоянной концентрацию предварительно загущенного ила, извлекаемого из декантатора, несмотря на колебания входных концентраций,
- и средства регулирования (M3) уровня взвешенного слоя ила (V), способные удерживать этот уровень как можно более низким.
2. Декантатор по п.1, отличающийся тем, что средства ускорения декантации ила имеют угол наклона (α) дна декантатора к горизонтали в интервале от 20° до 45° и нижний поворотный скребок (10).
3. Декантатор по п.2, отличающийся тем, что скребок (10) содержит рукоять (11), снабженную чистящими ножами (12), размещенными решеткой, чтобы эффективно и быстро проводить декантированный ил к центральному отстойнику (9), который также чистится скребком.
4. Декантатор по п.3, отличающийся тем, что рукоять (11) снабжена бороной (12a), облегчающей предварительное сгущение ила.
5. Декантатор по любому из предыдущих пунктов, отличающийся тем, что средства регулирования (M) концентрации предварительно загущенного ила содержат средства регулирования (M1) массового потока (FM1) взвеси, входящей в декантатор, и средства регулирования (M2) концентрации предварительно загущенного ила, исходя из входящего массового потока.
6. Декантатор по п.5, отличающийся тем, что средства регулирования (M1) массового потока взвеси, входящей в декантатор, содержат:
- насос (13) переменной производительности для подачи жидкого ила,
- расходомер (16) для измерения скорости подачи жидкого ила,
- измерительный зонд (15) для измерения концентрации (D1) взвеси в жидком иле и
- регулятор (30), который получает информацию, поступающую от расходомера (16) и зонда (15), и контролирует скорость откачивающего насоса (13), чтобы удержать по существу постоянным массовый поток подачи (FM1).
- насос (13) переменной производительности для подачи жидкого ила,
- расходомер (16) для измерения скорости подачи жидкого ила,
- измерительный зонд (15) для измерения концентрации (D1) взвеси в жидком иле и
- регулятор (30), который получает информацию, поступающую от расходомера (16) и зонда (15), и контролирует скорость откачивающего насоса (13), чтобы удержать по существу постоянным массовый поток подачи (FM1).
7. Декантатор по п.5, отличающийся тем, что средства регулирования (M2) концентрации ила, извлекаемого из входящего массового потока, содержат:
- насос (26) для откачивания предварительно загущенного ила с переменной производительностью,
- расходомер (29) для измерения расхода предварительно загущенного ила,
- измерительный зонд (28) для измерения концентрации (D2) взвеси в предварительно загущенном иле и
- регулятор (31), который получает информацию, поступающую от расходомера (29) и зонда (28), и контролирует скорость откачивающего насоса (26), чтобы удержать по существу постоянной концентрацию предварительно загущенного ила, причем исходная скорость извлечения рассчитывается, исходя из входящего массового потока (FM1) и заданной концентрации откачиваемого ила (ConsD2).
- насос (26) для откачивания предварительно загущенного ила с переменной производительностью,
- расходомер (29) для измерения расхода предварительно загущенного ила,
- измерительный зонд (28) для измерения концентрации (D2) взвеси в предварительно загущенном иле и
- регулятор (31), который получает информацию, поступающую от расходомера (29) и зонда (28), и контролирует скорость откачивающего насоса (26), чтобы удержать по существу постоянной концентрацию предварительно загущенного ила, причем исходная скорость извлечения рассчитывается, исходя из входящего массового потока (FM1) и заданной концентрации откачиваемого ила (ConsD2).
8. Декантатор по п.1, отличающийся тем, что средства регулирования (M3) уровня взвешенного слоя ила содержат зонд (24) для измерения высоты взвеси ила, насос переменной производительности (19) для подачи полимера, расходомер (20) на линии инжекции полимера и регулятор (32) или вариатор скорости, получающий информацию от зонда (24), измеряющего высоту взвешенного слоя ила, и от расходомера (20) и способный контролировать производительность насоса (19), чтобы оптимизировать расход полимера.
9. Декантатор по п.1, отличающийся тем, что предусмотрено, что время пребывания ила в декантаторе не превышает двух часов.
10. Декантатор по п.1, отличающийся тем, что уровень взвешенного слоя ила (V) удерживается по существу на уровне большого основания усеченно-конического дна.
11. Декантатор по п.2, отличающийся тем, что окружная скорость скребка (10) составляет от 10 до 20 см/с.
12. Водоочистная установка, отличающаяся тем, что она содержит декантатор по любому из предыдущих пунктов и тем, что спускной выход декантатора напрямую соединен с устройством сгущения ила, в частности центрифугой (3) или ленточным фильтром, без буферного чана для сгущенного ила между декантатором (D) и устройством сгущения ила.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0807445A FR2940270B1 (fr) | 2008-12-24 | 2008-12-24 | Decanteur statique rapide pour pre-epaississement des boues de traitement d'eau, et installation comportant un tel decanteur. |
FR0807445 | 2008-12-24 | ||
PCT/IB2009/055928 WO2010073222A1 (fr) | 2008-12-24 | 2009-12-23 | Decanteur statique rapide pour pre-epaississement des boues de traitement d'eau, et installation comportant un tel decanteur. |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011130809A RU2011130809A (ru) | 2013-01-27 |
RU2501742C2 true RU2501742C2 (ru) | 2013-12-20 |
Family
ID=41066348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011130809/05A RU2501742C2 (ru) | 2008-12-24 | 2009-12-23 | Статический декантатор для предварительного сгущения ила с обработки воды и установка, содержащая такой декантатор |
Country Status (10)
Country | Link |
---|---|
US (1) | US9011677B2 (ru) |
EP (1) | EP2370194B1 (ru) |
CN (1) | CN102264445B (ru) |
BR (1) | BRPI0923619A2 (ru) |
CA (1) | CA2750849C (ru) |
ES (1) | ES2733877T3 (ru) |
FR (1) | FR2940270B1 (ru) |
PT (1) | PT2370194T (ru) |
RU (1) | RU2501742C2 (ru) |
WO (1) | WO2010073222A1 (ru) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012135696A2 (en) * | 2011-04-01 | 2012-10-04 | University Of South Alabama | Methods and compositions for the diagnosis, classification, and treatment of cancer |
FR3000054B1 (fr) * | 2012-12-26 | 2017-11-03 | Degremont | Procede de traitement de boues primaires d'eaux usees municipales ou industrielles, et installation pour la mise en oeuvre de ce procede |
JP5900576B1 (ja) * | 2014-10-24 | 2016-04-06 | 栗田工業株式会社 | 水処理方法及び水処理装置 |
FR3040388B1 (fr) * | 2015-08-27 | 2022-02-11 | Degremont | Procede de traitement des eaux usees comportant un decanteur statique rapide et installation associee |
JP6269635B2 (ja) * | 2015-11-02 | 2018-01-31 | 栗田工業株式会社 | 沈殿槽及びその運転方法 |
CN106362606A (zh) * | 2016-10-18 | 2017-02-01 | 上海锅炉厂有限公司 | 一种生产磁悬液的装置及方法 |
US11873238B2 (en) | 2017-01-30 | 2024-01-16 | Intellisense.Io Ltd | Mineral recovery control |
GB2560153B8 (en) * | 2017-01-30 | 2021-01-13 | Intellisense Io Ltd | Mineral recovery control |
JP6875166B2 (ja) * | 2017-03-27 | 2021-05-19 | 住友重機械エンバイロメント株式会社 | 凝集沈殿処理装置 |
EP3634599B1 (en) | 2017-06-07 | 2024-04-17 | Kadant Black Clawson LLC | Improved clarifier with independent sump scraper drive |
DE102017126251A1 (de) * | 2017-11-09 | 2019-05-09 | Huber Se | Kläranlage sowie Verfahren zur Behandlung von Abwasser |
CN107854872A (zh) * | 2017-12-11 | 2018-03-30 | 北京北排装备产业有限公司 | 一种非金属链条式刮泥机水下监测装置及其使用方法 |
JP7056825B2 (ja) * | 2018-03-13 | 2022-04-19 | 住友重機械エンバイロメント株式会社 | 固液分離装置 |
CN109534414A (zh) * | 2018-11-29 | 2019-03-29 | 泰禹丰机械制造(信阳)有限公司 | 一种有效拦截清除水母的设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3281594A (en) * | 1959-08-28 | 1966-10-25 | Walter E Garrison | Sludge-pumping control system |
SU874102A1 (ru) * | 1980-02-22 | 1981-10-23 | Предприятие П/Я Р-6956 | Декантатор |
EP0158714A2 (de) * | 1983-11-28 | 1985-10-23 | Johann Müller AG Kieswerk & Baggereiunternehmung | Behälter und Anlage zum Klären von mit Feststoffen beladenen Flüssigkeiten |
RU2209775C2 (ru) * | 1997-08-06 | 2003-08-10 | Сосьете Ле Никель - Слн | Способ обезвоживания пульп никельсодержащих окисленных руд |
RU2280621C2 (ru) * | 2001-10-01 | 2006-07-27 | Папирфабрик Аугуст Келер Аг | Способ и установка для очистки сточных вод |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1518136A (en) * | 1922-04-25 | 1924-12-09 | Dorr Co | Automatic density control for thickeners |
US2154132A (en) * | 1936-05-28 | 1939-04-11 | Edward B Mallory | Process of controlling the purification of sewage |
US2365293A (en) * | 1941-04-25 | 1944-12-19 | Worthington Pump & Mach Corp | Water treating apparatus |
US3608723A (en) * | 1968-12-05 | 1971-09-28 | Met Pro Water Treatment Corp | Floc blanket level controller comprising means for sensing light diffusely reflected from the floc blanket |
DE1911007B2 (de) * | 1969-03-04 | 1980-04-17 | Passavant-Werke Michelbacher Huette, 6209 Aarbergen | Einrichtung zur Schwerkrafteindickung von Schlämmen |
ZA766411B (en) * | 1975-11-10 | 1977-10-26 | American Minechem Corp | Method and apparatus for controlled dewaterizing of coal treatment underflow |
NL7614571A (nl) * | 1976-01-02 | 1977-07-05 | I U Conversion Systems Inc | Inrichting en werkwijze voor het indikken van slib. |
US4055494A (en) * | 1977-02-14 | 1977-10-25 | Envirotech Corporation | Thickening device and method |
US4226714A (en) * | 1978-12-27 | 1980-10-07 | The Anaconda Company | Thickener control system |
US4392955A (en) * | 1979-12-26 | 1983-07-12 | Ecodyne Corporation | Liquid treatment apparatus |
AT381691B (de) * | 1982-01-07 | 1986-11-10 | Andritz Ag Maschf | Verfahren zur regelung einer entwaesserungsmaschine und entwaesserungsmaschine |
JPH07121327B2 (ja) * | 1985-11-22 | 1995-12-25 | 株式会社安川電機 | 重力式汚泥濃縮槽における汚泥濃度計の管理方法 |
US5006231A (en) * | 1989-03-20 | 1991-04-09 | Consolidation Coal Company | Flocculant control system |
CA2019262A1 (en) * | 1989-06-20 | 1990-12-20 | Ian Christopher Robertson Gilchrist | Sedimentation control process |
DE4138469A1 (de) * | 1991-11-22 | 1993-05-27 | Intersepara Holding Ag Huenenb | Verfahren und vorrichtung zum betrieb eines klaergeraets |
US5435924A (en) * | 1994-02-16 | 1995-07-25 | Albertson; Orris E. | Sludge collection apparatus and method |
US5601704A (en) * | 1994-04-11 | 1997-02-11 | The Graver Company | Automatic feedback control system for a water treatment apparatus |
AU3064897A (en) * | 1996-05-16 | 1997-12-05 | Baker Hughes Incorporated | Method and apparatus for controlling thickeners, clarifiers and settling tanks |
US5904855A (en) * | 1997-02-27 | 1999-05-18 | David H. Manz | Closed chemically enhanced treatment system |
JP3836250B2 (ja) * | 1998-05-08 | 2006-10-25 | オルガノ株式会社 | 凝集沈殿装置 |
FR2784093B1 (fr) * | 1998-10-06 | 2000-11-24 | Suez Lyonnaise Des Eaux | Perfectionnements apportes au traitement d'eaux usees selon les procedes par boues activees |
SE9901772D0 (sv) * | 1999-05-14 | 1999-05-14 | Sven Bernhardsson | Processtyrning |
US6408227B1 (en) * | 1999-09-29 | 2002-06-18 | The University Of Iowa Research Foundation | System and method for controlling effluents in treatment systems |
US6673240B2 (en) * | 2001-03-16 | 2004-01-06 | John J. Fassbender | Feed control system for liquid clarification tanks |
US6673246B2 (en) * | 2002-02-28 | 2004-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Reusable polysilsesquioxane adsorbents for pollutants |
US6814874B2 (en) * | 2002-08-06 | 2004-11-09 | Chicago Bridge & Iron Company | Claricone sludge level control system |
US7527726B2 (en) * | 2006-01-25 | 2009-05-05 | Q'max Solutions Inc. | Fluid treatment apparatus |
US7637379B2 (en) * | 2006-12-07 | 2009-12-29 | Council Of Scientific & Industrial Research | Circular secondary clarifier for wastewater treatment and an improved solids-liquid separation process thereof |
CA2629593A1 (en) * | 2008-04-11 | 2009-10-11 | James Michael Dunbar | Feedback control scheme for optimizing dewatering processes |
-
2008
- 2008-12-24 FR FR0807445A patent/FR2940270B1/fr active Active
-
2009
- 2009-12-23 ES ES09801559T patent/ES2733877T3/es active Active
- 2009-12-23 CA CA2750849A patent/CA2750849C/fr active Active
- 2009-12-23 PT PT09801559T patent/PT2370194T/pt unknown
- 2009-12-23 EP EP09801559.7A patent/EP2370194B1/fr active Active
- 2009-12-23 CN CN200980152285.8A patent/CN102264445B/zh active Active
- 2009-12-23 BR BRPI0923619A patent/BRPI0923619A2/pt not_active Application Discontinuation
- 2009-12-23 RU RU2011130809/05A patent/RU2501742C2/ru not_active IP Right Cessation
- 2009-12-23 US US13/141,773 patent/US9011677B2/en active Active
- 2009-12-23 WO PCT/IB2009/055928 patent/WO2010073222A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3281594A (en) * | 1959-08-28 | 1966-10-25 | Walter E Garrison | Sludge-pumping control system |
SU874102A1 (ru) * | 1980-02-22 | 1981-10-23 | Предприятие П/Я Р-6956 | Декантатор |
EP0158714A2 (de) * | 1983-11-28 | 1985-10-23 | Johann Müller AG Kieswerk & Baggereiunternehmung | Behälter und Anlage zum Klären von mit Feststoffen beladenen Flüssigkeiten |
RU2209775C2 (ru) * | 1997-08-06 | 2003-08-10 | Сосьете Ле Никель - Слн | Способ обезвоживания пульп никельсодержащих окисленных руд |
RU2280621C2 (ru) * | 2001-10-01 | 2006-07-27 | Папирфабрик Аугуст Келер Аг | Способ и установка для очистки сточных вод |
Also Published As
Publication number | Publication date |
---|---|
EP2370194A1 (fr) | 2011-10-05 |
WO2010073222A1 (fr) | 2010-07-01 |
ES2733877T3 (es) | 2019-12-03 |
CN102264445A (zh) | 2011-11-30 |
PT2370194T (pt) | 2019-07-16 |
FR2940270A1 (fr) | 2010-06-25 |
CA2750849A1 (fr) | 2010-07-01 |
US9011677B2 (en) | 2015-04-21 |
CN102264445B (zh) | 2015-08-05 |
CA2750849C (fr) | 2017-04-18 |
US20110272346A1 (en) | 2011-11-10 |
FR2940270B1 (fr) | 2012-07-27 |
BRPI0923619A2 (pt) | 2016-01-12 |
EP2370194B1 (fr) | 2019-04-10 |
RU2011130809A (ru) | 2013-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2501742C2 (ru) | Статический декантатор для предварительного сгущения ила с обработки воды и установка, содержащая такой декантатор | |
US8691089B2 (en) | Method for separating suspended solids from a waste fluid | |
KR20070121760A (ko) | 오니농축장치 및 오니농축방법 | |
KR102013599B1 (ko) | 송풍장치를 활용한 하수처리장 침전조의 스컴 제거장치 | |
JP4878252B2 (ja) | ベルト型濃縮機 | |
JP5619379B2 (ja) | 固液分離装置 | |
CA2959918C (en) | Sludge blending thickener | |
US9975784B2 (en) | System for controlling waste water treatment in a waste water treatment plant | |
JP5876719B2 (ja) | 急速攪拌強度の制御方法及びその制御装置 | |
JP2002035503A (ja) | 濁水処理装置 | |
JP4272635B2 (ja) | ベルト式濃縮機およびその運転方法 | |
GB2577925A (en) | Method of controlling the dosage of a flocculating agent | |
WO2017033160A1 (fr) | Procédé de traitement des eaux usées comportant un décanteur statique rapide et installation associée | |
KR101552506B1 (ko) | 미생물 슬러지 농축장치 | |
KR102066510B1 (ko) | 경사형 스파이럴 슬러지수집기 | |
Prasad | Sedimentation in Water and Used Water Purification | |
RU2781007C1 (ru) | Способ коагуляции загрязнений природных и сточных вод и устройство для осуществления указанного способа | |
JP2019126770A (ja) | 固液分離装置 | |
JP6309912B2 (ja) | 繊維状物回収装置 | |
KR20010012004A (ko) | 원심분리기 농축기. 탈수기 자동제어장치 (m-0901) | |
Suhr et al. | Applications of decanter centrifugals in the beet sugar process | |
CZ309840B6 (cs) | Způsob čištění odpadních vod a zařízení k provádění způsobu | |
WO1997034677A1 (en) | Counter-flow liquid clarifier | |
AU1916997A (en) | Counter-flow liquid clarifier | |
JPH07290082A (ja) | 活性汚泥装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181224 |