RU2491271C2 - Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты - Google Patents

Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты Download PDF

Info

Publication number
RU2491271C2
RU2491271C2 RU2008137274/04A RU2008137274A RU2491271C2 RU 2491271 C2 RU2491271 C2 RU 2491271C2 RU 2008137274/04 A RU2008137274/04 A RU 2008137274/04A RU 2008137274 A RU2008137274 A RU 2008137274A RU 2491271 C2 RU2491271 C2 RU 2491271C2
Authority
RU
Russia
Prior art keywords
catalyst
metal oxide
mixed metal
acrylic acid
stream
Prior art date
Application number
RU2008137274/04A
Other languages
English (en)
Other versions
RU2008137274A (ru
Inventor
Скотт ХАН
Цзиньцу СЮЙ
Original Assignee
Ром Энд Хаас Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ром Энд Хаас Компани filed Critical Ром Энд Хаас Компани
Publication of RU2008137274A publication Critical patent/RU2008137274A/ru
Application granted granted Critical
Publication of RU2491271C2 publication Critical patent/RU2491271C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/04Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к улучшенному способу селективного удаления примеси пропионовой кислоты из потока акриловой кислоты. Способ включает введение потока акриловой кислоты в реакцию в присутствии смешанного металлооксидного катализатора, предназначенного для удаления пропионовой кислоты; в котором смешанный металлооксидный катализатор включает смешанный оксид металлов, описывающийся эмпирической формулой AaMbNcXdZeOf, в которой A представляет собой Mo; M представляет собой V; N представляет собой Te; X представляет собой Nb: и Z представляет собой Pd; и O обозначает кислород в оксиде, и в которой, если a=1, то b=0,01-1,0, c=0,01-1,0, d=0,01-1,0, e=0-0,1 и f зависит от степени окисления других элементов. 7 з.п. ф-лы, 2 табл., 2 пр.

Description

Настоящее изобретение относится к улучшенному способу селективного удаления примеси пропионовой кислоты, далее в настоящем изобретении "ПК", из потока акриловой кислоты, далее в настоящем изобретении "АК".
(Мет)акриловая кислота (АК), один пример ненасыщенной карбоновой кислоты, используется для самых различных целей. Типичные области применения включают: изготовление листовых акриловых пластмасс, смол для прессования, модификаторов для поливинилхлорида, технологических добавок, акриловых лаков, лаков для полов, герметиков, трансмиссионных жидкостей для автомобилей, модификаторов картерного масла, покрытий для автомобилей, ионообменных смол, модификаторов вяжущих веществ, полимеров для обработки воды, клеев для электроники, покрытий для металлов и акриловых волокон.
Пропионовая кислота (ПК), примесь в мономерной акриловой кислоте, является нежелательным летучим органическим соединением, которое может повлиять на качество выпускающейся акриловой кислоты. Так, при использовании современных технологий промышленного получения АК, включающих двустадийное частичное окисление пропилены, концентрации ПК составляют менее 1000 част./млн, что является типичным значением, приведенным в технических условиях. Однако АК, полученная частичным окислением пропана, может содержать от 3000 до 30000 мас. част./млн ПК. Такие концентрации ПК приводят к значительному ухудшению качества продукта, если ее невозможно удалить из АК.
При использовании в настоящем изобретении термин "(мет)" со следующим за ним другим термином, таким как акрилат, означает и акрилаты, и метакрилаты. Например, термин "(мет)акрилат" означает акрилат или метакрилат; термин "(мет)акриловая" означает акриловую или метакриловую;
термин "(мет)акриловая кислота" означает акриловую кислоту или метакриловую кислоту.
Очистка ПК от АК при получении АК является сложной задачей и приводит к значительным затратам. АК и ПК невозможно разделить обычной перегонкой, поскольку их температуры кипения почти одинаковы. Кроме того, экстракция ПК из АК обычными растворителями, такими как изопропилацетат, толуол или дифениловый эфир, также безуспешна вследствие близких растворимостей АК и ПК.
В настоящее время единственной промышленной технологией эффективного отделения ПК от АК является кристаллизация из расплава, описанная в US 5504247. Однако для снижения содержания ПК до установленного техническими условиями значения, составляющего менее 1000 част./млн, необходимы большие начальные капиталовложения. Кроме того, для эксплуатации установки по кристаллизации из расплава необходимо большое количество энергии. Поскольку окисление пропана становится экономически привлекательной технологией получения АК вследствие быстрого развития каталитических методик в этой области, необходимы экономичные и эффективных технологии удаления ПК.
Для селективного удаления ПК из потока АК предложены различные технологии, в том числе с использованием дополнительного реактора после стадии получения продукта. К сожалению, при удалении ПК происходит значительное окисление АК. Например, в JP 2000053611 отмечена технология снижения содержания ПК до 115 част./млн от 337 част./млн над катализатором, содержащим MoFeCoO, и при этом уменьшение выхода АК достигает 8,6%.
Поэтому в основу настоящего изобретения была положена задача получения улучшенного катализатора для применения при удалении ПК из потока АК в условиях окисления. В результате, согласно изобретению неожиданно было установлено, что наиболее селективным катализатором для удаления ПК из потока АК является тот же смешанный оксид металлов (СОМ), который используется для получения АК и ПК путем окисления пропана. Поэтому объектом настоящего изобретения является катализатор удаления ПК, предназначенный для применения при получении мономеров АК высокой чистоты.
Настоящее изобретение относится к способу селективного удаления пропионовой кислоты из потока акриловой кислоты включающему:
введение потока акриловой кислоты в реакцию в присутствии смешанного металлооксидного катализатора, предназначенного для удаления пропионовой кислоты;
в котором смешанный металлооксидный катализатор включает смешанный оксид металлов, описывающийся эмпирической формулой
AaMbNcXdZeOf,
в которой А представляет собой по меньшей мере один элемент, выбранный из группы, включающей Мо и W; М представляет собой по меньшей мере один элемент, выбранный из группы, включающей V и Се; N представляет собой по меньшей мере один элемент, выбранный из группы, включающей Те, Sb и Se; X представляет собой по меньшей мере один элемент, выбранный из группы, включающей Nb, Ta, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pt, Sb, Bi, B, In, As, Ge, Sn, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Hf, Pb, P, Pm, Eu, Gd, Dy, Ho, Er, Tm, Yb и Lu; и Z представляет собой по меньшей мере один элемент, выбранный из группы, включающей Zn, Ga, Ir, Sm, Pd, Au, Ag, Cu, Sc, Y, Pr, Nd и Tb; и О обозначает кислород в оксиде, и в которой, если a=1, то b=0,01-1,0, c=0,01-1,0, d=0,01-1,0, e=0-0,1 и f зависит от степени окисления других элементов.
Предпочтительно, если смешанные оксиды металлов, предлагаемые в настоящем изобретении, описываются формулами MoaVmTenNbxOo и WaVmTenNbxOo, в которых a, m, n, x и o являются такими, как определено выше.
АК, предлагаемую в настоящем изобретении, можно получить по любой обычной методике, известной специалистам с общей подготовкой в данной области техники. Кроме того, для получения АК можно использовать любое обычное сырье, при условии, что поток образовавшейся АК содержит некоторое количество ПК в качестве примеси. Точнее, поток образовавшейся АК содержит более 1000, 500 или 100 част./млн ПК в качестве примеси. Примеры сырья, которое можно использовать для получения АК в контексте настоящего изобретения, включают, но не ограничиваются только ими, содержащие одну или несколько функциональных групп углеводороды, такие как альдегиды, спирты, диолы и т.п., легкие алканы и алкены кроме пропана, такие как пропилен, биомассу и другие не основанные на нефти источники углеводородов. Предпочтительно, если поток образовавшейся АК может представлять собой поток продукта, образовавшегося при окислении пропана или пропилена. Поток образовавшейся АК может представлять собой поток продукта, образовавшегося в результате одностадийного или многостадийного окисления.
Смешанный металлооксидный катализатор взаимодействует с образовавшейся АК и селективно удаляет ПК. Смешанный металлооксидный катализатор для удаления ПК можно поместить в тот же реактор окисления пропана вместе с катализатором окисления пропана или в отдельный реактор для завершения удаления ПК. Эту заключительную стадию можно проводить с отделением и без отделения кислотных продуктов перед заключительной стадией. Например, в случае, если основным сырьем для окислительной реакции получения АК является пропан, поток, выходящий из реактора окисления пропана можно прямо направить в отдельный реактор для удаления ПК без отделения кислотных продуктов.
Реакцию смешанного металлооксидного катализатора для удаления ПК и АК проводят при температуре ниже 325°C при времени пребывания, равном от 0,1 до 6 с. Альтернативно, рабочая температура или температура реакционной смеси составляет менее 300°C или 275°C и время пребывания равно от 0,1 до 3 с.
В то же время катализатор для удаления ПК также можно поместить в один тот же реактор вместе с катализатором окисления пропана. Предпочтительно, если катализатор для удаления ПК находится ниже по технологической линии от катализатора окисления пропана. Также предпочтительно, если в реакторе имеются разные зоны регулирования температуры, так чтобы удаление ПК можно было проводить при температуре, отличающейся от температуры в зоне окисления пропана.
Кроме того, в реактор для удаления ПК можно вводить кислород, если концентрация кислорода в потоке продукта, выходящем из реактора окисления пропана, является очень низкой.
Реакцию удаления ПК можно проводить в жидкой фазе, а не газовой. При удалении ПК можно объединять несколько потоков АК. Эта комбинация обладает тем преимуществом, что обеспечивается снижение капиталовложений оператора/собственника. Кроме того, реакцию удаления ПК можно сочетать с известными методиками разделения, такими как перегонка и кристаллизация из расплава, и таким образом очистить полученную АК до степени, желательной в соответствии с техническими условиями.
Удаление ПК, предлагаемое в настоящем изобретении, необязательно может являться частью интегрированной технологии производства АК, включающей стадию генерации пропилена и расположенные ниже по технологической линии установки отделения АК.
Смешанные оксиды металлов, предлагаемые в настоящем изобретении, можно получить по методикам, обычно известным специалистам с общей подготовкой в данной области техники. Один неограничивающий пример способа раскрыт в настоящем изобретении.
На первой стадии получают смесь путем смешивания соединений металлов, предпочтительно по меньшей мере одно из которых содержит кислород, и по меньшей мере одного растворителя в количестве, подходящем для образования взвеси или раствора. Предпочтительно, если на этой стадии получения катализатора образуется раствор. Обычно соединения металлов содержит элементы A, M, N, O и X, определенные выше.
Подходящие растворители включают водные растворы и спирты, включая, но не ограничиваясь только ими, воду, метанол, этанол, пропанол и диолы и т.п., а также другие полярные растворители, известные в данной области техники. Обычно предпочтительной является вода. Водой является любая вода, пригодная для использования в химическом синтезе, включая, но не ограничиваясь только ими, дистиллированную воду и деионизованную воду. Предпочтительно, чтобы объем содержащейся воды был достаточным для того, чтобы компоненты в основном находились в растворе достаточно долго, чтобы на стадиях обработки свести к минимуму разделение на компоненты и/или разделение фаз. В соответствии с этим объем воды меняется в зависимости от количеств и растворимости объединяемых материалов. Однако, как отмечено выше, предпочтительно чтобы объем воды был достаточным для того, чтобы при смешивании образовался водный раствор.
Например, если получают смешанный оксид металлов формулы MoaVbTecNbxOn, то к водному раствору, содержащему заданное количество метаванадата аммония, можно последовательно прибавить водный раствор теллуровой кислоты, водный раствор оксалата ниобия и парамолибдат аммония, так чтобы соблюдалось необходимое отношение содержаний атомов соответствующих металлов.
После образования смеси воду удаляют по любой подходящей технологии, известной в данной области техники, и получают предшественник катализатора. Такие технологии включают, но не ограничиваются только ими, вакуумную сушку, сушку вымораживанием, распылительную сушку, сушку в роторном испарителе и воздушную сушку. Вакуумную сушку обычно проводят при давлении в диапазоне от 1,3 до 66,6 кПа. Сушка вымораживанием обычно включает замораживание взвеси или раствора, например, с помощью жидкого азота, и сушку замороженной взвеси или раствора в вакууме. Распылительную сушку обычно проводят в инертной атмосфере, такой как атмосфера азота или аргона, при температуре на входе в диапазоне от 125 до 200°C и при температуре на выходе в диапазоне от 75 до 150°C. Сушку в роторном испарителе обычно проводят в бане при температуре в диапазоне от 25 до 90°C и при давлении в диапазоне от 1,3 до 101,3 кПа, предпочтительно - в бане при температуре в диапазоне от 40 до 90°C и при давлении в диапазоне от 1,3 до 46,7 кПа, более предпочтительно - в бане при температуре в диапазоне от 40 до 60°C и при давлении в диапазоне от 1,3 до 5,3 кПа. Воздушную сушку проводят при температуре в диапазоне от 25 до 90°C. Сушка в роторном испарителе и воздушная сушка обычно являются предпочтительными технологиями сушки.
Полученный предшественник смешанного металлооксидного катализатора прокаливают. Прокаливание можно проводить в окислительной атмосфере, а также можно проводить в неокислительной атмосфере, например, в инертной атмосфере или в вакууме. Инертная атмосфера может состоять из любого вещества, которое не взаимодействует с предшественником смешанного металлооксидного катализатора. Подходящие примеры включают, но не ограничиваются только ими, азот, аргон, ксенон, гелий и их смеси. Инертная атмосфера может протекать или не протекать над поверхностью предшественника катализатора. Если инертная атмосфера не протекает над поверхностью катализатора, то такой случай называют статическим окружением. Если инертная атмосфера все же протекает над поверхностью предшественника смешанного металлооксидного катализатора, то скорость потока может меняться в широком диапазоне, например, объемная скорость потока равна от 1 до 500 ч.
Прокаливание обычно проводят при температуре от 350 до 850°C, предпочтительно - от 400 до 700°C, более предпочтительно - от 500 до 640°C. Прокаливание проводят в течение времени, достаточного для образования указанного выше катализатора. Обычно для получения искомого смешанного металлооксидного катализатора прокаливание проводят в течение от 0,5 до 30 ч, предпочтительно - от 1 до 25 ч, более предпочтительно - в течение от 1 до 15 ч.
В предпочтительном режиме работы предшественник смешанного металлооксидного катализатора прокаливают в две стадии. На первой стадии предшественник катализатора прокаливают в окислительной атмосфере (например, на воздухе) при температуре от 200 до 400°C, предпочтительно - от 275 до 325°C в течение от 15 мин до 8 ч, предпочтительно - в течение от 1 до 3 ч. На второй стадии материал, полученный на первой стадии, прокаливают в неокислительной атмосфере (например, в инертной атмосфере) при температуре от 500 до 750°C, предпочтительно - в течение от 550 до 650°C, в течение от 15 мин до 8 ч, предпочтительно - в течение от 1 до 3 ч. При прокаливании на второй стадии необязательно можно прибавить восстанавливающий газ, например, аммиак или водород.
В одном варианте осуществления настоящего изобретения предшественник катализатора, полученный на первой стадии, помещают в необходимую окислительную атмосферу при комнатной температуре и затем температуру повышают до температуры прокаливания, соответствующей первой стадии, и выдерживают в течение времени, необходимого для первой стадии прокаливания. Затем атмосферу заменяют на неокислительную атмосферу, необходимую для второй стадии, температуру повышают до температуры прокаливания, соответствующей второй стадии, и выдерживают в течение времени, необходимого для второй стадии прокаливания.
Хотя для прокаливания можно использовать любое средство нагревания, например, печь, прокаливание предпочтительно проводить в потоке необходимой газовой среды. Поэтому прокаливание предпочтительно проводить в слое с непрерывным потоком необходимого газа (газов), проходящего через слой частиц твердого предшественника катализатора.
В результате прокаливания образуется катализатор, описывающийся формулой AaMmNnXxOo, в которой A, M, N, X, O, a, m, n, x и o являются такими, как определено выше.
Исходные вещества для получения указанного выше смешанного металлооксидного катализатора не ограничиваются описанными выше. Можно использовать самые различные материалы, включая, например, оксиды, нитраты, галогениды или оксигалогениды, алкоксиды, ацетилацетонаты и металлоорганические соединения. Например, в качестве источника молибдена для катализатора можно использовать гептамолибдат аммония. Однако вместо гептамолибдата аммония также можно использовать такие соединения, как MoO3, MoO2, MoCl5, MoOCl4, Mo(OC2H5)5, ацетилацетонат молибдена, фосфомолибденовую кислоту и кремнемолибденовую кислоту. Аналогичным образом, в качестве источника ванадия для катализатора можно использовать метаванадат аммония. Однако вместо метаванадата аммония также можно использовать такие соединения, как V2O5, V2O3, VOCl3, VCl4, VO(OC2H5)3, ацетилацетонат ванадия и ванадилацетилацетонат. Источники теллура могут включать теллуровую кислоту, TeCl4, Te(OC2H5)5, Te(OCH(CH3)2)4 и ТеО2. Источники ниобия могут включать аммонийниобийоксалат, Nb2O5, NbCl5, ниобиевую кислоту и Nb(OC2H5)5, а также более доступный оксалат ниобия.
Полученный таким образом смешанный оксид металлов обладает превосходной каталитической активностью. Однако путем размола тот же самый смешанный оксид металлов можно превратить в катализатор, обладающий улучшенными каталитическими характеристиками.
Размол можно провести по любым обычным методикам, известным специалистам с общей подготовкой в данной области техники. Можно использовать мокрый и сухой размол. В случае сухого размола можно использовать размол потоком газа, при котором крупные частицы сталкиваются друг с другом в высокоскоростном потоке газа. Кроме того, для обработки небольших количеств размол можно проводить не только механически, но и с помощью ступки и т.п. В случае мокрого размола его проводят в мокром состоянии путем прибавления воды или органического растворителя к указанному выше смешанному оксиду металлов. Можно использовать обычную технологию с применением средней мельницы с вращающимся цилиндром или средней мельницы перемешивающего типа. Средняя мельница с вращающимся цилиндром представляет собой мельницу для мокрого размола такого типа, в котором контейнер, содержащий размалываемый объект, вращается, и включает, например, шаровую мельницу и стержневую мельницу. Средняя мельница перемешивающего типа представляет собой мельницу для мокрого размола такого типа, в котором размалываемый объект, содержащийся в контейнере, перемешивается перемешивающим аппаратом, и включает, например, вращающуюся мельницу шнекового типа и вращающуюся мельницу дискового типа.
Условия размола легко можно установить такими, чтобы они соответствовали природе указанного выше смешанного оксида металлов, вязкости, концентрации и т.п.использующегося растворителя в случае мокрого размола, или выбрать условия, оптимальные для размалывающего аппарата. Однако предпочтительно проводить размол до мех пор, пока средний размер частиц размолотого предшественника катализатора станет не больше 20 мкм, более предпочтительно - не больше 5 мкм. Как отмечено выше, размол повышает каталитическую активность смешанного металлооксидного катализатора.
Каталитическую активность смешанного металлооксидного катализатора можно дополнительно повысить путем прибавления растворителя к размолотому предшественнику катализатора с образованием раствора или взвеси с последующей повторной сушкой. На концентрацию раствора или взвеси не налагаются особые ограничения и обычно раствор или взвесь делают такими, чтобы суммарная концентрация исходных веществ, из которых получают размолотый предшественник катализатора, составляла от 10 до 60 мас.%. Затем раствор или взвесь сушат по такой технологии, как распылительная сушка, сушка вымораживанием, выпаривание досуха или вакуумная сушка, предпочтительно - распылительная сушка.
Кроме того, полученный смешанный металлооксидный катализатор можно пропитать различными элементами, включая, но не ограничиваясь только ими Те и Nb, и повторно прокалить для улучшения его рабочих характеристик.
Взаимодействие размолотого катализатора с некоторыми органическими или неорганическими кислотами, такими как, например, щавелевая кислота в растворе в метаноле или воде при повышенной температуре, такой как 40-100°C, также улучшает каталитическую активность.
Смешанный металлооксидный катализатор, полученный указанным выше способом, можно использовать в том виде, в котором он получен, в качестве готового катализатора или его можно подвергнуть термической обработке при температуре в диапазоне от 200 до 700°C в течение периода времени, составляющего от 0,1 до 10 ч.
Полученный таким образом смешанный металлооксидный катализатор можно использовать в том виде, в котором он получен, в качестве твердого катализатора, но можно превратить в катализатор на подходящем носителе, таком как диоксид кремния, оксид алюминия, диоксид титана, алюмосиликат, диатомовая земля или диоксид циркония. Кроме того, его можно сформовать в частицы необходимой формы и размера в соответствии с масштабом производства или конструкцией реактора.
Альтернативно, содержащие металл компоненты, входящие в состав смешанного металлооксидного катализатора, предлагаемого в настоящем изобретении, можно нанести на материалы, такие как, например, оксид алюминия, диоксид кремния, алюмосиликат, диоксид циркония или диоксид титана, с помощью обычных методик смачивания. В одной методике растворы, содержащие соединения металлов, вводят во взаимодействие с сухой подложкой, так что она смачивается; полученный смоченный материал сушат, например, при температуре от 20 до 200°C, и затем прокаливают, как описано выше. В другой методике растворы, содержащие соединения металлов, вводят во взаимодействие с подложкой, обычно при отношениях объема раствора, содержащего соединения металлов, к объему подложки, превышающих 3:1, и раствор перемешивают, так что происходит обмен ионов металлов с подложкой. Затем содержащую металлы подложку сушат и прокаливают, как подробно описано выше.
Настоящее изобретение более подробно описано в приведенных ниже примере и сравнительных примерах, которые не следует рассматривать в качестве ограничивающих объем настоящего изобретения.
ПРИМЕРЫ
ПРИГОТОВЛЕНИЕ КАТАЛИЗАТОРА
Приготовление смешанного оксидного катализатора, описывающегося
формулой: Mo1V0,285Te0,21Nb0,164Pd0,01Ox,
в которой x зависит от валентностей остальных металлов, входящих в СОМ, проводили следующим образом:
1. Заранее рассчитанные количества солей Мо, V и Те растворяли в 200 г ДИ (деионизованной) воды при 70°C в двухлитровой круглодонной колбе и получали оранжевый раствор.
2. Заранее рассчитанные количества солей Nb, Pd и щавелевой кислоты растворяли в 180 г ДИ воды при комнатной температуре в стакане объемом 250 мл.
3. К раствору солей Мо, V и Те при 70°С перемешивании прибавляли концентрированную азотную кислоту, окраска переходила в красно-оранжевую.
4. К раствору солей Mo,V и Те прибавляли раствор соли Nb и получали оранжевый гель.
5. Для получения твердого вещества удаляли воду.
6. Твердое вещество сушили в вакуумной печи в течение ночи при комнатной температуре.
7. Оранжевое твердое вещество извлекали из колбы и получали предшественник смешанного оксида металлов.
8. Предшественник смешанного оксида металлов прокаливали в трубчатых печах следующим образом: нагревали в воздухе со скоростью 10°С/мин до 275°С, выдерживали при этой температуре в течение 30 мин, атмосферу заменяли на аргон, нагревали со скоростью 2°С/мин до 615°С, выдерживали в течение 120 мин.
9. Прокаленный твердый материал измельчали и просеивали через сито 10 меш.
10. Эти частицы сначала перемешивали в воде при комнатной температуре в течение 5 ч, затем сушили. Без ухудшения рабочих характеристик катализатора стадию 10 можно проводить в сочетании с последующей стадией пропитки, 11.
11. Затем обработанный водой катализатор пропитывали водным раствором, содержащим теллуровую кислоту и аммонийниобийоксалат. Воду удаляли.
12. Высушенный материал прокаливали для превращения теллуровой кислоты и аммонийниобийоксалата в соответствующие оксиды, прокаливание сначала проводили в воздухе при 300°С в течение 3 ч, затем в аргоне при 500°С в течение 2 ч.
13. Повторно прокаленный материал измельчали в морозильнике/мельнице.
14. Измельченный материал экстрагировали водным раствором щавелевой кислоты при 100°С в течение 30 мин - 5 ч. Твердый материал отделяли фильтрованием и сушили в вакуумной печи в течение ночи.
15. Материал прессовали и просеивали с получением гранул 14-20 меш для оценки реактора.
ПРИГОТОВЛЕНИЕ СРАВНИТЕЛЬНОГО КАТАЛИЗАТОРА 1: ФОСФАТ ЖЕЛЕЗА (FePO4)
Катализатор фосфат железа проявляет особую селективность в некоторых реакциях окислительного дегидрирования, таких как получение метакриловой кислоты окислительным дегидрированием изомасляной кислоты (Applied Catalysis A: General, 109, 135-146, 1994) и получение пировиноградной кислоты из молочной кисоты (Applied Catalysis A: General 234, 235-243, 2002). Фосфат железа получали по методике, описанной в литературе (Applied Catalysis A: General 234, 235-243, 2002), приведенной ниже:
1. Приготовление геля Fe(OH)3: Раствор NH4OH 14 мас.% (-90 г) при перемешивании при комнатной температуре по каплям прибавляли к раствору, содержащему 48,8 г Fe(HO3)3,9Н2O и 2000 мл H2O.
2. Воду сливали, затем к осадку прибавляли 16,6 г 85% H3PO4.
3. Смесь H3PO4/Fe(OH)3 переносили в колбу, кипятили в течение 3-5 ч и получали светло-коричневато-белый осадок.
4. Осадок отфильтровывали и промывали водой для удаления избытка H3PO4.
5. Осадок на фильтре сушили в сушильном шкафу при 120°С в течение ночи.
6. Высушенный осадок на фильтре размалывали и прессовали в пеллеты.
7. Пеллеты прокаливали в потоке воздуха при 400°С в течение 8 ч с линейным повышением температуры со скоростью 2°С/мин и затем пеллеты размалывали до крупности 14-20 меш.
ПРИГОТОВЛЕНИЕ СРАВНИТЕЛЬНОГО КАТАЛИЗАТОРА 2:
Cs2Mo12V1,5P2O45,8
Катализатор Cs2Mo12V1,5P2O45,8 готовили в соответствии с патентом US 4370490, по данным которого катализатор Cs2Mo12V1,5P2O45,8 обладает высокой селективностью при окислительном дегидрировании изомасляной кислоты в метакриловую кислоту. Ниже подробно описана методика приготовления катализатора:
1. Готовили раствор "A": 2,88 г 85% H3PO4+25 мл H2O.
2. Готовили раствор "В": 26,8 г 28% NH4OH+48,3 мл H2O+26,5 г (NH4)6Mo7O24H2O.
3. Раствор "А" прибавляли к раствору "В" при перемешивании и получали смесь "АВ".
4. Готовили раствор "С": 4,85 г CsNO3+50 мл H2O.
5. Смесь "АВ" при перемешивании прибавляли к раствору "С" и получали новую смесь "АВС".
6. Готовили раствор "D": 2,2 г NH4VO3+35 мл 10% моноэтаноламина в H2O.
7. Раствор "D" прибавляли к смеси "АВС". Новую смесь обозначали, как "ABCD".
8. 10,21 г Диатомовой земли и 2,05 г Aerosil® 200, полученного от фирмы DeGussa Chemicals, прибавляли к смеси "ABCD" в качестве подложки для катализатора.
9. Катализатор на подложке "ABCD/SiO2" сушили над плиткой при перемешивании в течение 1 ч при 50°C и затем сушили в вакууме с помощью роторного испарителя.
10. Высушенный "ABCD/SiO2" прокаливали в камерной печи при 110°С в течение 7 ч, затем при 300°С в течение 3 ч. Скорость линейного повышения температуры составляла 5°С/мин.
11. Прокаленную твердую массу, полученную на стадии "10", для исследования просеивали до крупности 14-20 меш.
Готовый катализатор описывается формулой "Cs2Mo12V1,5P2O45,8/SiO2".
ПРИГОТОВЛЕНИЕ СРАВНИТЕЛЬНОГО КАТАЛИЗАТОРА 3:
Mo12V3W1,2Cu1,2Sb0,5Ox
Формула катализатора 3 имеет вид Mo12V3W1,2Cu1,2Sb0,5Ox и его использовали для превращения акролеина в АК. Катализатор готовили по методике, описанной в патенте US 5959143. Готовый катализатор перед исследованием просеивали до крупности 14-20 меш.
1. Готовили раствор "Е". Следующие химикаты (a-e) прибавляли в указанной последовательности в емкость роторного испарителя объемом 1000 мл:
a) 300 мл Н2O, нагретой до ~85°C
b) 7,67 г метавольфрамата аммония
c) 9,11 г NH4VO3
d) 55 г гептамолибдата аммония
e) 1,89 г Sb2O3
2. Готовили раствор "F": 48 мл H2O+7,78 г CuSO4, 5H2O
3. Раствор "F" по каплям прибавляли к раствору "Е" в течение 10-15 мин и получали взвесь.
4. Взвесь сушили в емкости роторного испарителя в вакууме при 50°C и затем сушили в вакууме течение ночи
5. Высушенную смесь дополнительно сушили при 120°C в течение 16 ч и прокаливали при 390°С в течение 5 ч. Скорость линейного повышения температуры составляла 1°С/мин.
ПРИМЕР 1
Каждый из катализаторов, предлагаемых в настоящем изобретении, и сравнительных катализаторов сначала исследовали в реакции окислительного дегидрирования ПК для изучения того, можно ли получить АК путем окисления ПК. Условия исследования были такими: 4 мол.% ПК, 3 мол.% O2, 33 мол.% H2O, остальное - N2. Полная скорость потока реагирующей газовой смеси составляла 80 мл/мин. Количество катализатора составляло ~5 г (14-20 меш). Прямоточный трубчатый реактор с обеих сторон от слоя катализатора заполняли огнеупорной глиной, выпускающейся фирмой Norton Chemicals. Температура реактора равнялась 200-400°C. Продукты анализировали с помощью газовой хроматографии. Степени превращения, приведенные в таблице, обычно рассчитывали следующим образом:
Степень превращения ПК (%)=100×[(молей ПК в загрузке - молей ПК в продукте)/молей ПК в загрузке]
Селективность по отношению к АК (%)=100×[молей АК в продукте/(молей ПК в загрузке - молей ПК в продукте)]
Выход АК (%)=100 × (молей АК в продукте/молей ПК в загрузке)
Результаты приведены в таблице 1.
Таблица 1.
Характеристики различных катализаторов окисления для реакции окислительного дегидрирования ПК
Катализатор Степень превращения ПК (%) Селективность по отношению к АК (%) Выход АК (%)
СРАВНИТЕЛЬНЫЙ ПРИМЕР 1 (FePO4) 27 2 0, 5
60 2 1,2
СРАВНИТЕЛЬНЫЙ ПРИМЕР 2 CS2MO12V1,5P2O45,8 25 15 3,8
61 14 8,5
СРАВНИТЕЛЬНЫЙ ПРИМЕР 3 26 6 1,6
Катализатор (Mo12V3W1,2Cu1,2Sb0,5Ox) Степень превращения ПК (%) Селективность по отношению к АК (%) Выход АК (%)
47 6 2,8
КАТАЛИЗАТОР (Mo1V0,285Te0,21Nb0,164Pd0,01Ox) 15 23 3,4
38 17 6,5
69 12 8,3
Все исследованные выше катализаторы обнаруживали определенную селективность по отношению к АК при окислении ПК. Из данных таблицы 1 можно заключить, что катализатор Mo1V0,285Te0,21Nb0,164Pd0,01Ox обладает наибольшей селективностью по отношению к АК, составляющей 12-23%, при степенях превращения ПК, сравнимых с данными для других исследованных катализаторов. Эти результаты свидетельствуют о намного лучших характеристиках катализатора, предлагаемого в настоящем изобретении, по сравнению с множеством других типов катализаторов, исследованных для 10 проведения превращения ПК в АК.
ПРИМЕР 2
Затем каждый катализатор исследовали с загрузкой смеси АК и ПК, в которой концентрация ПК составляла примерно 4000 част./млн. Результаты исследований приведены в таблице 2. Значения, приведенные в таблице, рассчитывали следующим образом:
Потери АК (%)=100×[1-(молей АК на выходе из реактора/молей АК, загружаемой в реактор)]
Содержание ПК в АК (част./млн.)=1000000×(молей ПК на выходе из реактора/молей АК на выходе из реактора)
Таблица 2.
Сопоставление эффективности разных катализаторов для селективного удаления ПК из потока АК
Катализатор Реактор Т (°C) Содержание ПК в АК (част./млн) Потери АК (%)
СРАВНИТЕЛЬНЫЙ ПРИМЕР 1 (FePO4) 180 4062 0
220 3858 2,5
230 3694 3,5
240 3425 4,4
250 3223 5,4
270 1870 23,2
СРАВНИТЕЛЬНЫЙ ПРИМЕР 2 (Cs2Mo12V1,5P2O45,8) 180 4515 0
230 4014 2,7
Катализатор Реактор Т (°C) Содержание ПК в АК (част./млн.) Потери АК (%)
270 4151 4,5
290 4108 6,3
310 4112 14,2
330 3145 27,9
СРАВНИТЕЛЬНЫЙ ПРИМЕР 3 (Mo12V3W1,2Cu1,2Sb0,5Ox) 180 3827 0
230 3835 1,8
250 3843 2
270 3833 2,9
290 3713 5,8
310 3010 13,8
320 2409 16.4
330 1425 25,8
340 536 34
КАТАЛИЗАТОР (Mo1V0,285Te0,21Nb0,164Pd0,01Ox) 180 3987 0
220 3824 2
250 3565 2,3
280 2583 3,7
300 1350 5,9
310 686 7,2
320 257 8,6
Как показано в таблице 2, вследствие намного большей относительной концентрации АК в ПК (АК/ПК ≈ 250), АК неизбежно расходуется одновременно с окислением ПК. Однако израсходованное количество АК при удалении ПК зависит от катализатора. Смешанный металлооксидный катализатор (Mo1V0,285Te0,21Nb0,164Pd0,01Ox) являлся значительно более селективным катализатором. Катализатор, предлагаемый в настоящем изобретении, приводил к расходу ~6% АК при снижении концентрации ПК примерно до 1000 част./млн., тогда как для снижения концентрации ПК до такого же уровня катализаторы другого состава приводили примерно к расходу АК, примерно в 4 раза большему. В частности, неожиданно оказалось то, что наиболее эффективным катализатором удаления ПК оказался именно тот катализатор, который использовался в самом начале для образования ПК по реакции окисления пропана.

Claims (8)

1. Способ селективного удаления пропионовой кислоты из потока акриловой кислоты, включающий:
введение потока акриловой кислоты в реакцию в присутствии смешанного металлооксидного катализатора, предназначенного для удаления пропионовой кислоты;
в котором смешанный металлооксидный катализатор включает смешанный оксид металлов, описывающийся эмпирической формулой AaMbNcXdZeOf,
в которой A представляет собой Mo; M представляет собой V; N представляет собой Te; X представляет собой Nb; и Z представляет собой Pd; и O обозначает кислород в оксиде, и в которой, если a=1, то b=0,01-1,0, c=0,01-1,0, d=0,01-1,0, e=0-0,1 и f зависит от степени окисления других элементов.
2. Способ по п.1, в котором катализатор представляет собой по меньшей мере один оксид металла, выбранный из группы, включающей Mo, V, Te, Nb и O или их комбинации.
3. Способ по п.1, в котором поток акриловой кислоты содержит в качестве примеси более 100 ч./млн пропионовой кислоты.
4. Способ по п.1, в котором поток акриловой кислоты представляет собой поток продукта технологии окисления пропана или пропилена.
5. Способ по п.1, в котором поток акриловой кислоты представляет собой поток продукта одностадийной или многостадийной технологии окисления.
6. Способ по п.1, в котором смешанный металлооксидный катализатор для удаления пропионовой кислоты находится в том же реакторе, который применяется для получения потока акриловой кислоты.
7. Способ по п.1, в котором смешанный металлооксидный катализатор для удаления пропионовой кислоты находится в отдельном реакторе, не в том, который применяется для получения потока акриловой кислоты.
8. Способ по п.1, в котором стадию удаления пропионовой кислоты объединяют с перегонкой или кристаллизацией из расплава.
RU2008137274/04A 2007-09-19 2008-09-18 Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты RU2491271C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99445007P 2007-09-19 2007-09-19
US60/994,450 2007-09-19

Publications (2)

Publication Number Publication Date
RU2008137274A RU2008137274A (ru) 2010-03-27
RU2491271C2 true RU2491271C2 (ru) 2013-08-27

Family

ID=40298697

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008137274/04A RU2491271C2 (ru) 2007-09-19 2008-09-18 Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты

Country Status (7)

Country Link
US (1) US20090076303A1 (ru)
EP (1) EP2039674B1 (ru)
JP (1) JP4822559B2 (ru)
KR (2) KR101261039B1 (ru)
CN (1) CN101391950B (ru)
RU (1) RU2491271C2 (ru)
TW (1) TWI378917B (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019191B (zh) * 2010-11-15 2012-09-05 应城市澳赛斯化工有限责任公司 一种制备对碘苯腈的催化剂
WO2012101471A1 (en) 2011-01-28 2012-08-02 Arkema France Improved process for manufacturing acrolein/acrylic acid
WO2012102411A2 (ja) 2011-01-28 2012-08-02 日本化薬株式会社 飽和アルデヒドを選択的に低減させる触媒と、その製造方法
CN110075838A (zh) * 2011-03-25 2019-08-02 罗门哈斯公司 混合金属氧化物催化剂的蒸汽再煅烧
US20130274520A1 (en) * 2012-04-11 2013-10-17 The Procter & Gamble Company Purification Of Bio Based Acrylic Acid To Crude And Glacial Acrylic Acid
US9452967B2 (en) * 2012-04-11 2016-09-27 The Procter & Gamble Company Process for production of acrylic acid or its derivatives
US8884050B2 (en) * 2012-04-11 2014-11-11 The Procter & Gamble Company Process for production of acrylic acid or its derivatives from hydroxypropionic acid or its derivatives
EP3039006B1 (en) * 2013-08-28 2018-10-24 Archer Daniels Midland Co. Separation of propionic acid from acrylic acid
EP3012244A1 (en) 2014-10-24 2016-04-27 Sulzer Chemtech AG Process and apparatus for purification of acrylic acid
TWI823241B (zh) 2017-02-21 2023-11-21 美商松下電器(美國)知識產權公司 通訊裝置及通訊方法
EP3962642A1 (en) 2019-05-02 2022-03-09 Dow Global Technologies LLC Process for aldehyde byproduct reduction in acrylic acid production using highly active and selective catalysts
CN110128055A (zh) * 2019-06-04 2019-08-16 湖南宜美瑞新材料有限公司 一种地坪漆
CN114644552B (zh) * 2022-04-25 2023-04-14 中国科学院兰州化学物理研究所 一种丙烯酸加氢制备丙酸的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94037591A (ru) * 1993-10-15 1996-09-10 Басф Аг (De) Способ очистки (мет)акриловой кислоты от альдегидной примеси
JP2000053611A (ja) * 1998-08-11 2000-02-22 Mitsubishi Chemicals Corp アクリル酸混合ガス中のプロピオン酸の低減方法
JP2000169420A (ja) * 1998-12-07 2000-06-20 Mitsubishi Chemicals Corp アクリル酸の製造方法
US20050054880A1 (en) * 2001-11-30 2005-03-10 Jean-Luc Dubois Method for producing acrylic acid from propane in the absence of molecular oxygen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3161102D1 (en) 1980-08-28 1983-11-10 Roehm Gmbh Process for the oxidizing dehydrogenation of isobutyric acid to methacrylic acid
JP3334296B2 (ja) * 1993-01-28 2002-10-15 三菱化学株式会社 不飽和カルボン酸の製造方法
TW305830B (ru) * 1993-03-26 1997-05-21 Sulzer Chemtech Ag
JPH07330658A (ja) * 1994-06-02 1995-12-19 Daicel Chem Ind Ltd アクリル酸またはそのエステルの製造方法
JP3786297B2 (ja) 1995-03-03 2006-06-14 日本化薬株式会社 触媒の製造方法
DE19627847A1 (de) * 1996-07-10 1998-01-15 Basf Ag Verfahren zur Herstellung von Acrylsäure
JPH10218831A (ja) * 1997-02-06 1998-08-18 Mitsubishi Chem Corp アクリル酸混合ガス中のプロピオン酸の低減方法
JPH1135519A (ja) * 1997-07-25 1999-02-09 Mitsubishi Chem Corp アクリル酸の製造方法
US6114278A (en) * 1998-11-16 2000-09-05 Saudi Basic Industries Corporation Catalysts for catalytic oxidation of propane to acrylic acid, methods of making and using the same
JP4074194B2 (ja) * 2001-01-12 2008-04-09 ストックハウゼン ゲーエムベーハー (メタ)アクリル酸の精製方法及びその製造装置
FR2844262B1 (fr) * 2002-09-10 2004-10-15 Atofina Procede de fabrication d'acide acrylique a partir de propane, en l'absence d'oxygene moleculaire
DE102004021764A1 (de) * 2004-04-30 2005-06-02 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenpartialoxidation wenigstens einer C3-Kohlenwasserstoffvorläuferverbindung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94037591A (ru) * 1993-10-15 1996-09-10 Басф Аг (De) Способ очистки (мет)акриловой кислоты от альдегидной примеси
JP2000053611A (ja) * 1998-08-11 2000-02-22 Mitsubishi Chemicals Corp アクリル酸混合ガス中のプロピオン酸の低減方法
JP2000169420A (ja) * 1998-12-07 2000-06-20 Mitsubishi Chemicals Corp アクリル酸の製造方法
US20050054880A1 (en) * 2001-11-30 2005-03-10 Jean-Luc Dubois Method for producing acrylic acid from propane in the absence of molecular oxygen

Also Published As

Publication number Publication date
TW200914414A (en) 2009-04-01
JP4822559B2 (ja) 2011-11-24
EP2039674B1 (en) 2012-06-27
CN101391950B (zh) 2013-02-13
KR20120099354A (ko) 2012-09-10
CN101391950A (zh) 2009-03-25
EP2039674A3 (en) 2009-12-09
EP2039674A2 (en) 2009-03-25
RU2008137274A (ru) 2010-03-27
TWI378917B (en) 2012-12-11
KR101261039B1 (ko) 2013-05-09
KR20090030212A (ko) 2009-03-24
US20090076303A1 (en) 2009-03-19
JP2009078262A (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
RU2491271C2 (ru) Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты
KR100707954B1 (ko) 알칸의 산화에 유용한 촉매
US6841699B2 (en) Recalcined catalyst
EP0962253B1 (en) A process for preparing a multi-metal oxide catalyst
US6407031B1 (en) Promoted multi-metal oxide catalyst
EP1871522B1 (en) Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
US6790988B2 (en) Ir and/or Sm promoted multi-metal oxide catalyst
JP3992531B2 (ja) 混合金属酸化物触媒
US20020065431A1 (en) Promoted multi-metal oxide catalyst
EP1574255A2 (en) Modified Mo-V-Nb-based metal oxide catalysts
EP1574253A2 (en) Process for modifying of Mo-V-Nb-based metal oxide catalysts
JP2008545743A (ja) エタンを選択的に酸化してエチレンを製造する方法
US6982343B2 (en) Treatment of mixed metal oxide catalyst
EP1586377A2 (en) Processes for preparing unsaturated carboxylic acids or their esters using modified mixed oxide catalysts
EP1935868B1 (en) Improved process for the selective (AMM) oxidation of lower molecular weight alkanes and alkanes
JP2004161753A (ja) アルカン及び/またはアルケンからの不飽和カルボン酸及び不飽和カルボン酸エステルの調製
US20020038052A1 (en) Calcination
US20220193640A1 (en) Aldehyde byproduct reduction in acrylic acid production using highly active and elective catalysts

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200919