RU2475520C2 - Способ повышения стабильности дизельного биотоплива при хранении - Google Patents

Способ повышения стабильности дизельного биотоплива при хранении Download PDF

Info

Publication number
RU2475520C2
RU2475520C2 RU2008126167/05A RU2008126167A RU2475520C2 RU 2475520 C2 RU2475520 C2 RU 2475520C2 RU 2008126167/05 A RU2008126167/05 A RU 2008126167/05A RU 2008126167 A RU2008126167 A RU 2008126167A RU 2475520 C2 RU2475520 C2 RU 2475520C2
Authority
RU
Russia
Prior art keywords
diesel
biofuel
diesel biofuel
during storage
stability
Prior art date
Application number
RU2008126167/05A
Other languages
English (en)
Other versions
RU2008126167A (ru
Inventor
Аксель ИНГЕНДО
Кристиан РОТЕР
Клаус-Петер ХАЙЗЕ
Original Assignee
Лангсесс Дойчланд ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32313557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2475520(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10252714A external-priority patent/DE10252714B4/de
Priority claimed from DE10252715A external-priority patent/DE10252715A1/de
Application filed by Лангсесс Дойчланд ГмбХ filed Critical Лангсесс Дойчланд ГмбХ
Publication of RU2008126167A publication Critical patent/RU2008126167A/ru
Application granted granted Critical
Publication of RU2475520C2 publication Critical patent/RU2475520C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • C10L1/1832Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

Изобретение относится к области присадок к топливам, в частности к способу повышения стабильности дизельного биотоплива при хранении. Способ заключается в том, что жидкий исходный раствор, содержащий в пересчете на исходный раствор от 15 до 60 вес.% растворенного 2,6-ди-трет-бутилгидрокситолуола, растворенного в дизельном топливе, добавляют дозами к стабилизируемому дизельному биотопливу до концентрации от 0,005 до 2 вес.% 2,6-ди-трет-бутилгидрокситолуола в пересчете на весь раствор дизельного биотоплива. Способ позволяет повысить стабильность дизельного биотоплива при хранении, полученного из алкиловых эфиров кислот жирного ряда. При этом под стабильностью при хранении понимают снижение помутнения дизельного биотоплива. 2 з.п. ф-лы, 2 ил., 2 табл., 10 пр.

Description

Изобретение относится к области присадок к топливам, более конкретно к способу повышения стабильности дизельного биотоплива при хранении.
Дизельное биотопливо, которым в настоящее время все больше заменяют нефтяное дизельное топливо, в качестве топлива для дизелей и автомобилей, блочных теплоэлектроцентралей, кораблей и катеров, а также стационарных дизельных двигателей безрельсовых сухопутных транспортных средств с моторным приводом, имеет химический состав из сложных алкиловых эфиров кислот жирного ряда. При этом речь идет преимущественно о сложном метиловом эфире кислоты жирного ряда. Дизельное биотопливо получают при этом путем так называемой переэтерификации, когда растительные масла, например рапсовое, соевое, пальмовое и другие, а также старое пищевое масло или животные жиры вступают в реакцию обмена с метанолом в присутствии катализатора (чаще всего натронного щелока). Кроме сложного метилового эфира кислоты жирного ряда, применяемого в качестве дизельного биотоплива, другим таким продуктом является еще глицерин. Такое получение дизельного биотоплива, названное также CD-способом, описано в нескольких патентных документах (DE-A 4209779, US-A 5354878, EP-A 562504).
Так как значение дизельного биотоплива как альтернативного топлива для дизелей в последнее время возросло, то и производство дизельного биотоплива растет все больше.
В отличие от минерального горючего недостатком здесь все также остается ограниченная стабильность дизельного биотоплива при хранении. Это обусловлено высоким содержанием в дизельном биотопливе ненасыщенных сложных эфиров кислот жирного ряда, которое с течением времени в результате упрощения молекул ненасыщенных сложных эфиров кислот жирного ряда до продуктов с короткой цепью все больше снижает энергетическую ценность этого альтернативного горючего и приводит к образованию осадка, узнаваемого по помутнению дизельного биотоплива.
Другие последствия этого расщепления сложного метилового эфира кислоты жирного ряда достаточно известны и они возникают по той же причине расщепления, что и у сложных глицериновых эфиров кислот жирного ряда, жиров и масел. Возникающими продуктами расщепления являются перекиси, альдегиды и свободные кислоты жирного ряда с короткой цепью, которые образуют, по-видимому, растворимые и нерастворимые полимеры в виде осадка. Системы впрыскивания, насосы и жиклеры дизельных двигателей представляют собой чувствительные конструктивные элементы, которые легко могут подвергнуться действию коррозии при окислении. Образовавшиеся в дизельном биотопливе «сшитые» нерастворимые полимеры могут закупорить жиклеры и привести к трудно растворимым отложениям. В результате функциональная способность дизельных двигателей значительно ограничивается.
Кроме того, растворимые и нерастворимые полимеры из общих продуктов расщепления, образовавшиеся в результате окислительного расщепления, вызывают неполное сгорание с образованием сажи, что может привести к повреждению двигателя. Поэтому все эти продукты расщепления не должны присутствовать в дизельном биотопливе.
Свободные жирные кислоты вызывают коррозию металла двигателя и системы впрыскивания и сокращают срок службы двигателя и его мощность.
Применение этого альтернативного носителя энергии из сырья в качестве топлива для автомобилей делает поэтому повышение стабильности дизельного биотоплива при хранении абсолютно необходимым.
Задачей изобретения является разработка способа повышения стабильности дизельного биотоплива, полученного из сложных алкиловых эфиров кислот жирного ряда. При этом под стабильностью при хранении понимают снижение помутнения дизельного биотоплива, являющееся следствием того, что продукты расщепления, появляющиеся в дизельном биотопливе в результате окислительных процессов, реагируют с растворимыми и нерастворимыми полимерами и выпадают в осадок.
Поставленная задача решается предлагаемым способом повышения стабильности дизельного биотоплива при хранении, заключающимся в том, что жидкий исходный раствор, содержащий 10-60 вес.% 2,6-ди-трет-бутилгидрокситолуола, растворенного в дизельном биотопливе, в пересчете на исходный раствор, добавляют к стабилизируемому дизельному биотопливу до концентрации 0,005-2 вес.% 2,6-ди-трет-бутилгидрокситолуола в пересчете на весь раствор дизельного биотоплива.
Под дизельным биотопливом понимают при этом все насыщенные и ненасыщенные сложные алкиловые эфиры кислот жирного ряда, применяемые в качестве моторного дизельного биотоплива, в частности сложный метиловый эфир кислоты жирного ряда, обычно предлагаемый под названием «Биодизель», для применения его в качестве топлива в автомобилях для дизельных двигателей, блочных теплоэлектроцентралей, кораблей и катеров, а также стационарных дизельных двигателей безрельсовых сухопутных транспортных средств с моторным приводом.
Обычно это сложные метиловые эфиры кислот жирного ряда, применяемые в качестве дизельного биотоплива, в частности сложный C14-C24-метиловый эфир кислоты жирного ряда, которые можно предложить как в чистом виде, так и в смеси. Дизельное биотопливо, применяемое в заявленном способе, может содержать, кроме того, все обычные добавки, которые добавляют, например, для повышения стабильности топлива в зимний период.
Обычно дизельное биотопливо, стабильность которого при хранении улучшена заявленным способом, получают в результате переэтерификации с метанолом растительных масел, например рапсового, соевого, пальмового или старого пищевого масла и жира или животного жира. Преимущественно дизельное биотопливо стабилизируют согласно изобретению, получая его путем названной переэтерификации рапсового или соевого масла.
Используемый в предлагаемом способе жидкий исходный раствор получают за счет того, что при температуре от 70 до 120°С, предпочтительно от 90 до 120°С, жидкий, при необходимости, дистиллированный 2,6-ди-трет-бутилгидрокситолуол (далее по тексту «БГТ»; он известен также как 2,6-ди-трет-бутил-п-крезол), при перемешивании добавляют к дизельному биотопливу до концентрации 15-60 вес.% БГТ в пересчете на весь исходный раствор.
БГТ при комнатной температуре представляет собой твердое вещество, которое при комнатной температуре можно добавлять к дизельному биотопливу только при повышенных затратах. Но используемый в предлагаемом способе жидкий раствор, содержащий от 15 до 60 вес.% БГТ, предпочтительно от 20 до 40 вес.% БГТ, можно легко добавлять к стабилизируемому дизельному биотопливу.
Даже через продолжительное время неожиданным образом осадок БГТ не обнаруживается в этом высококонцентрированном исходном растворе.
Обычно указанный жидкий раствор добавляют к стабилизируемому дизельному биотопливу до концентрации, составляющей, предпочтительно, от 0,1 до 1 вес.% в пересчете на весь раствор дизельного биотоплива. Можно добавлять в дизельное биотопливо также и более высокие концентрации БГТ.
Самые большие эффекты стабильности наблюдаются при концентрации 2 вес.%. По сравнению с нестабилизированным дизельным биотопливом стабилизированное предлагаемым способом дизельное биотопливо имеет значительно улучшенную стабильность при хранении, т.е. в дизельном биотопливе, стабилизированном предлагаемым способом, не наблюдается нежелательный осадок из нерастворимых полимеров, полученных в результате окислительного расщепления.
Кроме того, было установлено, что БГТ выгодным образом способствует повышению температуры затвердевания дизельного биотоплива.
Под температурой затвердевания понимают температуру, при которой дизельное биотопливо начинает выкристаллизовываться.
О повышенной стабильности дизельного биотоплива при хранении свидетельствует отсутствие мути в дизельном биотопливе, обусловленной наличием продуктов расщепления, образовавшихся в результате окислительных процессов. При этом помутнение получается в виде осадка.
Изобретение позволяет воспрепятствовать тому, чтобы этот осадок закупорил жиклеры или создал нежелательные отложения во внутренней камере двигателя (поршни, провода) в результате неполного сгорания, что может привести к повреждению двигателя.
Изобретение иллюстрируется следующими примерами.
Примеры 1-5
Дизельное биотопливо (из рапсового масла), к которому БГТ (в продаже известен как Baynox® фирмы Bayer AG) был добавлен в повышающихся количествах, подвергался тесту с применением прибора Ранцимат 679 (фирмы Metrohm), состоящего из управляющей части и мокрой части.
В мокрой части образцы нагревают и в присутствии меди продувают воздухом. Во время окислительного старения появляются летучие органические кислоты с низшими цепями, которые вводят в измерительные ячейки, заполненные дистиллированной водой. Там постоянно регистрируют и отмечают электропроводность.
Конец старения или окислительная стабильность выявляются путем резкого повышения электропроводности. Время достижения критической точки обозначают как индукционный период и оно служит мерой стабильности старения.
В последующих примерах ко всем образцам при испытаниях были предъявлены те же требования.
Продолжительность опыта 120 мин при температуре 70°С и пропускании воздуха в количестве 60 мл/час.
Затем образцы исследуют при помощи GC-аналитической проверки на содержание в них ненасыщенных сложных метиловых эфиров кислот жирного ряда.
Результаты представлены в таблице 1.
Таблица 1
Сложный метиловый эфир кислоты жирного ряда Диз. биот.* Масляная мельница Пустая
Сложный метиловый эфир рапсового масла
Сравнительный пример 1 БГТ
0,0 вес.%
Пример 1 БГТ
0,02 вес.%
Пример 2 БГТ
0,04 вес.%
Пример 3 БГТ
0,06 вес.%
Пример 4 БГТ
0,08 вес.%
Пример 5 БГТ
0,1 вес.%
С16/ 1× двойн. связь 0,2 0,2 0,2 0,3 0,2 0,3
С18/ 2× двойн. Связь 21,6 0,4 0,9 2,3 3,7 5,5 11,3
С18/ 1× двойн. Связь 67,4 43,7 50,8 58,0 60,5 62,7 64,9
С22/ 1× двойн. Связь 0,2 1,3 1,6 1,7 1,8 1,7 1,7
С24/ 1× двойн. Связь 0,3 0,3 0,2 0,2 0,2 0,2
* дизельное биотопливо
Фиг.1 показывает результаты в графической форме.
Результаты показывают, что чем больше содержание БГТ в образце, тем больше доля многократно ненасыщенных сложных метиловых эфиров кислот жирного ряда.
Образец, в который не был добавлен БГТ, показывает сильное расщепление ненасыщенных сложных метиловых эфиров кислот жирного ряда в зависимости от концентрации БГТ.
БГТ может задержать расщепление ненасыщенных сложных метиловых эфиров кислот жирного ряда в биодизеле в зависимости от дозы.
5-литровую колбу с горлышком наполняют двумя литрами дизельного биотоплива (далее по тексту «биодизель»), во второй такой же сосуд вливают такое же количество биодизеля, но с добавлением 0,05% БГТ. Емкости не закрывают и оставляют при комнатной температуре, иногда встряхивая (2-3 раза в неделю). Примерно через 6 недель в продукте, не содержащем БГТ, появляется первое помутнение. Еще через неделю можно было четко увидеть муть из-за наличия нерастворимых полимеров.
В емкости, где был добавлен БГТ, через 8 недель помутнения из-за нерастворимых полимеров не наблюдается.
Примеры 6-8
Для оценки устойчивости биодизеля (из рапсового масла) к окислению проводят следующие методы измерения.
Методы измерения
Биодизель исследовали при помощи кислорода под давлением 10 бар методом DTA (дифференциального термоанализа согласно Германскому промышленному стандарту Nr. 51007). Для этого к биодизелю добавляют возрастающее количество БГТ согласно порядку проведения опытов.
Определение теплового потока, поступающего к образцу, измеренное относительно базового образца, которые подпадают под определенную температурную программу, является основанием для динамического дифференциального термоанализа. Благодаря этому методу можно определить удельную теплоту, стеклование, характеристики плавления и кристаллизации, тепловые эффекты, чистоту, полиморфность, химические реакции и реакционную кинетику. В некоторых случаях проводится программа динамики температуры, т.е. перекрывается интересующий температурный диапазон.
Условия опытов и их результаты сведены в таблице 2.
Таблица 2
Биодизель (мг) БГТ (вес.%)* Кислород (мг) Скорость нагрева (К/мин) Начало окисления (°С) Выделяющаяся энергия (Дж/г)
Сравн. пример 2 100 - 10 1 59 490
Пример 6 100 0,1 10 1 97 510
Пример 7 100 1,0 10 1 104 580
Пример 8 100 5,0 10 1 104 430
* в пересчете на использованное количество биодизеля
Оценка примеров 6-8
Сравнительный пример 2 (биодизель без БГТ) показывает в дифференциальном термоанализе при добавлении чистого кислорода (примерно 10 бар) уже при температуре примерно 60°С начало сильной экзотермической реакции окисления.
В примерах 6-8 биодизель с различными добавками БГТ был исследован при добавлении кислорода. При этом оказалось, что уже при добавлении 0,1% БГТ реакция окисления начинается только с 97°С, причем она проходит при явно повышенной норме выработки теплоты. Благодаря повышению количества БГТ до 1% достигается только ограниченная дополнительная стабилизация, т.е. окисление наступает начиная только со 104°С. Дальнейшее увеличение количества БГТ до 5% не способствует повышению стабильности.
Пример 9
Получение раствора БГТ в биодизеле
В колбе с мешалкой объемом 2 л перемешивают 1500 мл биодизеля при комнатной температуре.
300 г БГТ в жидком виде добавляют в течение 10 минут из капельной воронки, нагретой при помощи пара или воды до 80-90°С таким образом, что БГТ сразу растворяется.
Затем охлаждают до комнатной температуры и переливают через фильтр в 21,5-литровую металлическую канистру.
20%-ный раствор после двухнедельного хранения при 0°С не мутнеет и не имеет осадка.
Пример 10
Предотвращение образования осадка
В две разные, большие по объему 5-литровые емкости наливают по 2 л того же образца биодизеля, причем так, что каждая емкость оказываются наполненной наполовину и биодизель занимает как можно большую поверхность.
В емкость Р5-0,0 БГТ не добавляют, а в емкость Р5-0,05 добавляют 500 ч./млн БГТ.
Через 30 дней нахождения при комнатной температуре в закрытой емкости Р5-0,0, куда не был добавлен БГТ, обнаруживается четкое помутнение биодизеля, вызванное сшитыми нерастворимыми полимерами. Напротив, биодизель в емкости Р5-0,05, куда было добавлено 500 ч./млн БГТ, остается чистым и прозрачным и не имеет осадка в виде нерастворимых полимеров.
Результаты представлены на фиг.2.

Claims (3)

1. Способ повышения стабильности дизельного биотоплива при хранении, отличающийся тем, что жидкий исходный раствор, содержащий, в пересчете на исходный раствор, от 15 до 60 вес.% 2,6-ди-трет-бутилгидрокситолуола, растворенного в дизельном биотопливе, добавляют дозами к стабилизируемому дизельному биотопливу до концентрации от 0,005 до 2 вес.% 2,6-ди-трет-бутилгидрокситолуола, в пересчете на весь раствор дизельного биотоплива.
2. Способ по п.1, отличающийся тем, что исходный раствор добавляют дозами к дизельному биотопливу до концентрации от 0,1 до 1 вес.% 2,6-ди-трет-бутилгидрокситолуола, в пересчете на весь раствор дизельного биотоплива.
3. Способ по п.1 или 2, отличающийся тем, что дизельное биотопливо представляет собой дизельное биотопливо, полученное в результате реакции обмена с метанолом рапсового, соевого, пальмового масла или старого пищевого масла или животного жира.
RU2008126167/05A 2002-11-13 2003-07-08 Способ повышения стабильности дизельного биотоплива при хранении RU2475520C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10252714A DE10252714B4 (de) 2002-11-13 2002-11-13 Verfahren zur Erhöhung der Oxidationsstabilität von Biodiesel sowie die Verwendung von Mono- oder Dialkylhydroxytoluol zur Erhöhung der Oxidationsstabilität von Biodiesel
DE10252715.6 2002-11-13
DE10252715A DE10252715A1 (de) 2002-11-13 2002-11-13 Verfahren zur Erhöhung der Lagerstabilität von Biodiesel sowie die Verwendung von 2,4-Di-tert.-Butylhydroxytoluol zur Erhöhung der Lagerstabilität von Biodiesel
DE10252714.8 2002-11-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2005118759/04A Division RU2340655C2 (ru) 2002-11-13 2003-07-08 Применение 2,6-ди-трет-бутилгидрокситолуола для повышения стабильности дизельного биотоплива при хранении

Publications (2)

Publication Number Publication Date
RU2008126167A RU2008126167A (ru) 2010-01-10
RU2475520C2 true RU2475520C2 (ru) 2013-02-20

Family

ID=32313557

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2008126167/05A RU2475520C2 (ru) 2002-11-13 2003-07-08 Способ повышения стабильности дизельного биотоплива при хранении
RU2005118759/04A RU2340655C2 (ru) 2002-11-13 2003-07-08 Применение 2,6-ди-трет-бутилгидрокситолуола для повышения стабильности дизельного биотоплива при хранении

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2005118759/04A RU2340655C2 (ru) 2002-11-13 2003-07-08 Применение 2,6-ди-трет-бутилгидрокситолуола для повышения стабильности дизельного биотоплива при хранении

Country Status (13)

Country Link
US (2) US20040139649A1 (ru)
EP (2) EP1563041B1 (ru)
AT (1) ATE399834T1 (ru)
AU (1) AU2003257439A1 (ru)
DE (1) DE50310078D1 (ru)
DK (1) DK1563041T3 (ru)
ES (2) ES2308038T3 (ru)
PL (1) PL203138B1 (ru)
PT (1) PT1563041E (ru)
RU (2) RU2475520C2 (ru)
SI (1) SI1563041T1 (ru)
UA (1) UA86007C2 (ru)
WO (1) WO2004044104A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015475A1 (de) * 2005-04-04 2006-10-05 Degussa Ag Verfahren zur Erhöhung der Oxidationsstabilität von Biodiesel
DE102005015474A1 (de) * 2005-04-04 2006-10-05 Degussa Ag Verfahren zur Erhöhung der Oxidationsstabilität von Biodiesel
DE102005048881A1 (de) * 2005-10-12 2007-04-19 Forschungszentrum Karlsruhe Gmbh Verfahren zur Lösungskristallisation von Stoffgemischen
WO2007079765A1 (de) * 2005-12-30 2007-07-19 Clean Oil Ag Pflanzenöl-dieselkraftstoff
BRPI0620902A2 (pt) * 2006-01-04 2011-11-29 Ciba Holding Inc composições estabilizadas de combustìvel biodiesel
WO2007102948A2 (en) * 2006-02-03 2007-09-13 Eastman Chemical Company Antioxidant compositions useful in biodiesel and other fatty acid and acid ester compositions
DE102006017105A1 (de) * 2006-04-10 2007-10-11 Degussa Gmbh Verfahren zur Erhöhung der Oxidationsstabilität von Biodiesel
EP1847583A3 (en) * 2006-04-21 2008-11-05 Infineum International Limited Improvements in Biofuel
EP1847584A3 (en) * 2006-04-21 2008-10-22 Infineum International Limited Improvements in Biofuel
CN101535451A (zh) * 2006-07-11 2009-09-16 英诺斯派克燃料专业有限责任公司 石油和可再生燃料混合物的稳定剂组合物
US7901469B2 (en) * 2006-07-26 2011-03-08 Alternative Fuels Group Inc. Alternative organic fuel formulations including vegetable oil
BRPI0719687A2 (pt) * 2006-11-27 2013-12-24 Ciba Holding Inc Composições estabilizadas de combustível biodiesel
GB0714725D0 (en) * 2007-07-28 2007-09-05 Innospec Ltd Fuel oil compositions and additives therefor
US20090094887A1 (en) * 2007-10-16 2009-04-16 General Electric Company Methods and compositions for improving stability of biodiesel and blended biodiesel fuel
EP2174554A3 (en) 2008-10-09 2011-01-12 Infineum International Limited Improving the oxidation stability of oils of vegetable or animal origin
US20120233912A1 (en) 2011-03-18 2012-09-20 Otkrytoe Aktsionernoe Obschestvo "Sterlitamaxky Neftekhimichesky Zavod" Antioxidant additive composition, a solution thereof, and a method for improving the storage stability of biodiesel fuel (variants)
KR20140020933A (ko) * 2011-03-25 2014-02-19 에보니크 오일 아디티페스 게엠베하 연료 오일의 산화 안정성을 개선시키기 위한 조성물
PL406629A1 (pl) 2011-03-29 2014-07-21 Fuelina, Inc. Paliwo hybrydowe i sposób jego wytwarzania
RU2476585C1 (ru) * 2012-03-07 2013-02-27 Открытое Акционерное Общество "Стерлитамакский Нефтехимический Завод" Композиция антиокислительной присадки, ее раствор и способ повышения стабильности биодизельного топлива при хранении (варианты)
JP2015528523A (ja) * 2012-09-13 2015-09-28 エボニック オイル アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Oil Additives GmbH 植物油および動物性脂肪の低温特性および酸化安定性を向上させるための組成物
US10308885B2 (en) 2014-12-03 2019-06-04 Drexel University Direct incorporation of natural gas into hydrocarbon liquid fuels
EP3053992A1 (de) 2015-02-09 2016-08-10 LANXESS Deutschland GmbH Biodiesel
WO2017054921A1 (en) * 2015-09-30 2017-04-06 Inachem Gmbh Storage -stable compositions of antioxidants containing ascorbic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769178A (en) * 1985-03-19 1988-09-06 Kao Corporation Cold-rolling lube oil for metallic materials
EP0626442A1 (en) * 1993-05-24 1994-11-30 The Lubrizol Corporation Pour point depressant treated fatty acid esters as biodegradable, combustion engine fuels
RU2174998C2 (ru) * 1996-07-11 2001-10-20 Циба Спешиалти Кемикалз Холдинг Инк. Способ предотвращения окислительной деструкции и образования смол в бензине, композиция, стабилизированная против окислительной деструкции и образования смол, и стабилизаторы для предотвращения образования смол в бензине

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4209779C1 (ru) 1992-03-26 1993-07-15 Oelmuehle Leer Connemann Gmbh & Co., 2950 Leer, De
US5580482A (en) * 1995-01-13 1996-12-03 Ciba-Geigy Corporation Stabilized lubricant compositions
US5891203A (en) * 1998-01-20 1999-04-06 Ethyl Corporation Fuel lubricity from blends of a diethanolamine derivative and biodiesel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769178A (en) * 1985-03-19 1988-09-06 Kao Corporation Cold-rolling lube oil for metallic materials
EP0626442A1 (en) * 1993-05-24 1994-11-30 The Lubrizol Corporation Pour point depressant treated fatty acid esters as biodegradable, combustion engine fuels
RU2174998C2 (ru) * 1996-07-11 2001-10-20 Циба Спешиалти Кемикалз Холдинг Инк. Способ предотвращения окислительной деструкции и образования смол в бензине, композиция, стабилизированная против окислительной деструкции и образования смол, и стабилизаторы для предотвращения образования смол в бензине

Also Published As

Publication number Publication date
PL203138B1 (pl) 2009-08-31
ES2308038T3 (es) 2008-12-01
WO2004044104A1 (de) 2004-05-27
EP1972679B1 (de) 2017-05-10
ES2629089T3 (es) 2017-08-07
RU2005118759A (ru) 2006-01-10
DK1563041T3 (da) 2008-10-20
RU2340655C2 (ru) 2008-12-10
US20040139649A1 (en) 2004-07-22
PL376777A1 (pl) 2006-01-09
EP1563041B1 (de) 2008-07-02
EP1563041A1 (de) 2005-08-17
UA86007C2 (ru) 2009-03-25
SI1563041T1 (sl) 2009-02-28
PT1563041E (pt) 2008-09-25
AU2003257439A1 (en) 2004-06-03
ATE399834T1 (de) 2008-07-15
DE50310078D1 (de) 2008-08-14
RU2008126167A (ru) 2010-01-10
EP1972679A1 (de) 2008-09-24
US20080313956A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
RU2475520C2 (ru) Способ повышения стабильности дизельного биотоплива при хранении
US7367995B2 (en) Biodiesel additive and method of preparation thereof
Gardy et al. The influence of blending process on the quality of rapeseed oil-used cooking oil biodiesels
CA2734885A1 (en) Fatty ester compositions with improved oxidative stability
EP2147966B1 (fr) Additif pour combustible liquide, combustible liquide le contenant et son utilisation pour les appareils de production d'énergie et/ou de chauffage et/ou de cuisson
CN100392048C (zh) 用2,6-二叔丁基对甲酚提高生物柴油储存稳定性的方法
Park et al. Synthesis of antioxidant and evaluation of its oxidation stability for biodiesel
JP2011256314A (ja) バイオディーゼル燃料用酸化防止剤及びバイオディーゼル燃料
El Rafie et al. Improvement of neat biodiesel characteristics by mixing with ozonated vegetable oil
Villarante et al. Physicochemical characterization of candlenut (Aleurites moluccana)-derived biodiesel purified with deed eutectic solvents
Akhabue et al. Effect of selected metal contaminants on the stability of castor oil methyl ester
Manurung et al. Palm ethyl ester purification by using Choline Chloride–1, 2 propanediol as deep eutectic solvent
Tsujimoto Saturated Hydrocarbons in Basking-Shark Liver Oil.
Ajiboye Effects of Antioxidant Concentration and Thermal Degradation on the Stability of Castor (Ricinus Communis) Biodiesel
US20100088950A1 (en) Oils
RU1837067C (ru) Способ получени дизельного топлива
Jaya et al. Production of Biodiesel Out of crude palm oil by using NaOH Catalyst
Parrilla et al. Endurance and durability in biodiesel powered engines
RAMLI et al. Study on the Effects of Blending N-Butyl Levulinate with Palm Methyl Ester on the Fuel Properties
Bouaziz et al. Biodiesel Production from Raw Tunisian Cas-tor Oil and Its Application as Alternative Fuel
FR2792646A1 (fr) Composition d'additifs multifonctionnels d'operabilite a froid des distillats moyens
RU2457238C1 (ru) Унифицированный модификатор моторных топлив
RU2326157C2 (ru) Топливная композиция
AU2006100428A4 (en) Production of biodiesel
BG64828B1 (bg) Метод за получаване на горивна смес от дизелово гориво