RU2472704C1 - Способ каталитического гидрирования тетрахлорида кремния - Google Patents

Способ каталитического гидрирования тетрахлорида кремния Download PDF

Info

Publication number
RU2472704C1
RU2472704C1 RU2011137665/05A RU2011137665A RU2472704C1 RU 2472704 C1 RU2472704 C1 RU 2472704C1 RU 2011137665/05 A RU2011137665/05 A RU 2011137665/05A RU 2011137665 A RU2011137665 A RU 2011137665A RU 2472704 C1 RU2472704 C1 RU 2472704C1
Authority
RU
Russia
Prior art keywords
silicon tetrachloride
silicon
mixture
temperature
hydrogenation
Prior art date
Application number
RU2011137665/05A
Other languages
English (en)
Inventor
Андрей Владимирович Воротынцев
Вадим Александрович Боровков
Владимир Михайлович Воротынцев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority to RU2011137665/05A priority Critical patent/RU2472704C1/ru
Application granted granted Critical
Publication of RU2472704C1 publication Critical patent/RU2472704C1/ru

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

Изобретение относится к получению кремнийсодержащих материалов, которые используются в процессах получения полупроводникового кремния. Способ включает каталитическое гидрирование тетрахлорида кремния с последующим разделением продуктов реакции, при этом в качестве катализатора используют хлориды переходных металлов или их смеси, гидрирование ведут при температуре не ниже 200°C, предпочтительно при 300-350°C, а образующиеся продукты реакции охлаждают до температуры не выше 100°C. Способ является энергосберегающим за счет гидрирования тетрахлорида кремния при низкой температуре с достаточно высокой конверсией по тетрахлориду кремния порядка 75-90%. При проведении процесса из смеси продуктов удаляют образующиеся хлорсиланы, а непрореагировавшие тетрахлорид кремния и водород возвращают в технологический цикл, что позволяет доводить конверсию тетрахлорида кремния до 100%. 2 з.п. ф-лы, 9 пр.

Description

Заявляемое изобретение относится к получению кремнийсодержащих материалов и касается разработки способа каталитического гидрирования тетрахлорида кремния для получения сырья, которое можно использовать в процессе получения полупроводникового кремния, с целью создания замкнутого цикла производства полупроводникового кремния.
Одним из наиболее перспективных направлений использования тетрахлорида кремния является превращение его в трихлорсилан и, возможно, в дихлорсилан, монохлорсилан и моносилан методом гидрирования с последующим возвратом продуктов в производство поликристаллического кремния.
Гидрирование тетрахлорида кремния с использованием катализаторов позволяет в значительной степени снизить энергоемкость конверсии тетрахлорида кремния, т.к. каталитическая реакция протекает при значительно низкой температуре по сравнению с традиционными способами гидрирования тетрахлорида кремния, например широко применяемым методом термического гидрирования тетрахлорида кремния.
Термическое гидрирование - это процесс восстановления тетрахлорида кремния при высоких температурах (1000-1300°С) при повышенном давлении в присутствии водорода (см., например, патент Японии №63008207, МКИ С01В 33/107, опубл. 14.01.1988).
Достоинством метода термического гидрирования является простота его реализации, а недостатком - высокое энергопотребление и низкая конверсия по исходному продукту - не более 30%, а значит, его высокая его себестоимость.
Известен способ восстановления тетрахлорида кремния в присутствии гидрида магния в органических растворителях при температуре 200-400°С, при этом в реакции участвуют переходные металлы в виде хлоридов титана и хрома, которые играют роль переносчиков атомов хлора за счет изменения валентности (см. патент США №4725419, МКИ С01В 33/04, опубл. 16.02.1988).
Гидрид магния, использующийся как катализатор, является хорошим гидрирующим агентом. Ведение процесса осуществляют в органических растворителях (например, бензол, антроцен и др.), в которых легко происходит нуклеофильное замещение атома водорода на атом хлора и восстановление хлорида магния до гидрида магния. Выход трихлорсилана по тетрахлориду кремния составляет 61-63 мол.%.
Известен способ, в котором восстановление тетрахлорида кремния ведут смесью хлоргидридов алюминия в сольватных системах на основе диметилового эфира, этиленгликоля, бензола или толуола (см. патент США №3926833, МКИ С01В 25/06, С01В 33/04, опубл. 16.12.1975).
Недостатком вышеописанных способов является использование органических растворителей, которые являются источником загрязнения целевого продукта примесями углеродсодержащих веществ, и использование гидридов металлов, которые, в свою очередь, являются взрывоопасными соединениями.
Достаточно много публикаций посвящено каталитическому гидрированию хлоридов кремния водородом. В качестве акцепторов хлора при этом используют алюминий, магний, железо, титан, гидрид титана, кремний и др.
Известен способ гидрирования тетрахлорида кремния водородом над гидридом титана или губчатым титаном при 250-400°С (см. патент Японии №50-17035, МКИ С01В 33/08, опубл. 18.06.1976). Выход трихлорсилана в смеси с дихлорсиланом, монохлорсиланом и силаном составляет 21 мас.%.
Недостатком этого способа является низкий выход продукта из-за того, что идет дезактивация катализатора при протекании побочной реакции с хлористым водородом.
Известен способ гидрирования тетрахлорида кремния водородом в присутствии кремния при использовании в качестве катализатора хлорида или бромида алюминия при температуре 350°С (см.патент США №2458703, МКИ С01В 33/04, опубл. 11.01.1949).
Недостатком этого способа является то, при температуре 350°С галогениды алюминия возгоняются, переходят в газовую фазу и загрязняют продукты реакции электроактивной примесью алюминия. Кроме того, за счет возгонки хлорида алюминия процесс гидрирования тетрахлорида кремния является периодическим и возогнанный хлорид алюминия надо возвращать в технологический цикл производства. По мере расходования трихлорида алюминия добавляют новую партию катализатора и процесс повторяют.
Известен способ каталитического гидродегалогенирования тетрахлорида кремния в трихлорсилан в присутствии водорода при температуре 600-900°С, в котором в качестве катализатора используют тонкоизмельченные переходные металлы или их соединения, выбранные из группы, состоящей из никеля, меди, железа, кобальта, молибдена, палладия, платины, рения, церия и лантана, способные образовывать силициды с элементарным кремнием или соединениями кремния (см. патент США №5716590, МКИ С01В 33/02, опубл. 10.02.1998). В присутствии кремния как упомянутые металлы, так и их соединения образуют силициды переходных металлов, которые и являются катализаторами способа конверсии тетрахлорида кремния в трихлорсилан. При указанной выше температуре 600-900°С происходит спекание частиц катализатора, что приводит к падению его активности, вплоть до полной дезактивизации катализатора.
Известен способ получения трихлорсилана гидрированием тетрахлорида кремния водородом при температуре 450-600°С, в котором катализатор смешивают с кремнием (см патент США №7056484, МКИ С01В 33/03, опубл. 12.02.2004). В качестве катализатора используют медь, и/или железо, или соединения меди и железа, например оксид меди (I), хлорид меди (I), или хлорид железа (II). Указывается также возможность вышеуказанные катализаторы смешивать с другими активными веществами, как хлоридами, бромидами или йодидами алюминия, ванадия и сурьмы. Выход трихлорсилана составляет 12%.
Известен способ каталитического гидрирования тетрахлорида кремния в присутствии водорода, в котором в качестве катализатора используют, по меньшей мере, один металл или одну соль металла, выбранного из элементов второй главной группы Периодической системы элементов при температуре в пределах от 300 до 1000°С (см. патент РФ №2371388, МКИ С01В 33/107, опубл. 27.10.2009).
В этом решении авторами упомянутого патента было обнаружено, что конверсия тетрахлорида кремния может быть достигнута простым и экономичным способом, если смесь тетрахлорсилана/водород пропускать через металл или соль металла, который представляет, по меньшей мере, один элемент второй главной группы Периодической системы элементов и образует стабильные хлориды металла в условиях реакции, а эту каталитическую реакцию, соответственно, осуществлять при температуре от 300 до 1000°С, предпочтительно, от 600 до 950°С, особенно, от 700 до 900°С. Выход трихлорсилана составляет не более 23%. Упомянутый способ выбран в качестве прототипа.
Задачей, на решение которой направлено заявляемое изобретение, является разработка энергосберегающего способа гидрировния тетрахлорида кремния за счет достаточно высокой конверсии по тетрахлориду кремния, порядка 75-90%, при достаточно низкой температуре реакции.
Эта задача решается за счет того, что в известном способе гидрирования тетрахлорида кремния водородом при использовании в качестве катализатора хлоридов металлов, согласно заявляемому изобретению, в качестве катализатора используют хлориды переходных металлов или их смеси, например хлорид никеля, хлорид меди и др., гидрирование ведут при температуре не ниже 200°C, а образующиеся продукты реакции на выходе из реактора охлаждают до температуры не выше 100°C.
В предпочтительном варианте гидрирование ведут при температуре 300-350°C, т.к. при этой температуре достигается наивысшая конверсия тетрахлорида кремния.
В предпочтительном варианте используют мелкодисперсный катализатор и/или нанесенный на пористый кремнистый носитель или носитель из диоксида кремния, т.к. при использовании катализатора на носителе для инициирования реакции можно использовать несколько меньшее количество катализатора.
В процессе синтеза из смеси продуктов удаляют образующиеся хлорсиланы, а непрореагировавшие тетрахлорид кремния и водород возвращают в технологический цикл. Таким образом конверсию тетрахлорида кремния можно доводить до 100%.
Новым в способе является то, что в качестве катализатора используют хлориды переходных металлов или их смеси, при этом гидрирование ведут при температуре не ниже 200°C, а образующиеся продукты реакции охлаждают до 100°C на выходе из реактора. Использование в качестве катализатора хлоридов переходных металлов или их смесей обеспечивают достаточно низкую температуру процесса, а также высокую степень конверсии по тетрахлориду кремния.
По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 75-90%.
Опытным путем было установлено, что достаточно высокий процент конверсии по тетрахлориду кремния происходит при температура не ниже 200°C и, как показали эксперименты, является существенной для того, чтобы данная реакция протекала с хорошей конверсией (порядка 75-90%) по тетрахлориду кремния. Ниже 200°C реакция не идет в силу того, что происходит сильная адсорбция исходных продуктов на катализаторе.
Опытным путем было также установлено, что охлаждение смеси продуктов реакции нужно вести до температуры, не выше 100°C. При этой температуре происходит резкое охлаждение продуктов реакции с образованием смеси хлорсиланов, а при температуре выше 100°C в продуктах реакции образуются хлористый водород и кремний.
Таким образом, упомянутые новые признаки являются существенными, т.к. каждый из них необходим, а вместе они достаточны для решения поставленной задачи - разработки энергосберегающего способа гидрировния тетрахлорида кремния за счет достаточно низкой температуры реакции, с достаточно высокой конверсией по тетрахлориду кремния, порядка 75-90%.
Как было упомянуто выше, при гидрировании тетрахлорида кремния в качестве катализатора используют тонкоизмельченные переходные металлы или их соединения, выбранные из группы, состоящей из никеля, меди, железа, кобальта, молибдена, палладия, платины, рения, церия и лантана, способные образовывать силициды с элементарным кремнием или соединениями кремния (см. патент США №5716590). В одном из примеров упомянутого источника показано использование в качестве катализатора хлорида никеля в присутствии с кремнием. Таким образом в качестве катализатора используют силицид никеля, а не хлорид никеля. В связи с тем, что хлорид никеля используют с кремнием, то образуется силицид никеля, который и является катализатором, при этом образование силицид никеля приводит к падению активности катализатора, вплоть до полной его дезактивации.
Пример 1. В реактор загружают 6 г хлорида никеля, который нагревают до 200°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3C; и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 75%.
Пример 2. В реактор загружают смесь 6 г хлорида меди, который нагревают до 350°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 80°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Продукты реакции разделяют ректификацией. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 80%.
Пример 3. В реактор загружают смесь 4 г хлорида никеля и 2 г хлорида меди (II), которые нагревают до 300°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 50°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Продукты реакции разделяют криофильтрацией при температурах замерзания соответствующих продуктов реакции. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 85%
Пример 4. На пористый носитель из диоксида кремния наносят 2 г смеси хлорида никеля и хлорида меди (II). Время контакта исходной газовой смеси с катализатором составляет 0,3 мин. Гидрировние тетрахлорида кремния протекает при температуре 200-350°C с последующим охлаждением до 50°С на выходе из реактора, с последующим разделением продуктов реакции мембранными методами. Конверсия по тетрахлориду кремния составляет 90%.
Пример 5. В реактор загружают 6 г хлорида железа, который нагревают до 300°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 4:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°С на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 78%.
Пример 6. В реактор загружают 5 г хлорида титана, который нагревают до 150°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношении 2:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°С на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 83%.
Пример 7. В реактор загружают смесь 4 г хлорида железа и 2 г хлорида титана (II), которые нагревают до 250°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношении 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°С на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Продукты реакции разделяют криофильтрацией при температурах замерзания соответствующих продуктов реакции. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 90%.
Пример 8. В реактор загружают 5 г хлорида вольфрама, который нагревают до 300°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношении 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 50°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH3Cl и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 87%.
Пример 9. На пористый носитель из оксида алюминия наносят 3 г смеси хлорида вольфрама и хлорида титана. Время контакта исходной газовой смеси с катализатором составляет 0,1 мин. Гидрирование тетрахлорида кремния протекает при температуре 150-200°C с последующим охлаждением до 50°C на выходе из реактора, с последующим разделением продуктов реакции мембранными методами. Конверсия по тетрахлориду кремния составляет 90%.
Заявляемый способ является энергосберегающим, так как гидрирование тетрахлорида кремния протекает при температуре 200-350°C с конверсией по тетрахлориду кремния 75-90%, в то время как в прототипе гидрирование тетрахлорида кремния ведут при температуре 700-1000°C. В процессе синтеза из смеси продуктов удаляют образующиеся хлорсиланы, а непрореагировавшие тетрахлорид кремния и водород возвращают в технологический цикл. Таким образом конверсию тетрахлорида кремния можно доводить до 100%.

Claims (3)

1. Способ каталитического гидрирования тетрахлорида кремния с последующим разделением продуктов реакции, отличающийся тем, что в качестве катализатора используют хлориды переходных металлов или их смеси, при этом гидрирование ведут при температуре не ниже 200°С, а образующиеся продукты реакции на выходе из реактора охлаждают до температуры не выше 100°C.
2. Способ по п.1, отличающийся тем, что гидрирование ведут при температуре 300-350°C.
3. Способ по п.1, отличающийся тем, что используют мелкодисперсный катализатор, и/или нанесенный на пористый кремнистый носитель, или носитель из диоксида кремния.
RU2011137665/05A 2011-09-14 2011-09-14 Способ каталитического гидрирования тетрахлорида кремния RU2472704C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011137665/05A RU2472704C1 (ru) 2011-09-14 2011-09-14 Способ каталитического гидрирования тетрахлорида кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011137665/05A RU2472704C1 (ru) 2011-09-14 2011-09-14 Способ каталитического гидрирования тетрахлорида кремния

Publications (1)

Publication Number Publication Date
RU2472704C1 true RU2472704C1 (ru) 2013-01-20

Family

ID=48806454

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011137665/05A RU2472704C1 (ru) 2011-09-14 2011-09-14 Способ каталитического гидрирования тетрахлорида кремния

Country Status (1)

Country Link
RU (1) RU2472704C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716590A (en) * 1993-12-17 1998-02-10 Wacker-Chemie Gmbh Catalytic hydrodehalogenation of halogen-containing compounds of group IV elements
RU2371388C2 (ru) * 2004-04-23 2009-10-27 Дегусса Аг Способ получения трихлорсилана каталитическим гидрогалогенированием тетрахлорида кремния
KR20100091573A (ko) * 2009-02-11 2010-08-19 코아텍주식회사 촉매와 반응열을 이용한 삼염화실란의 제조방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716590A (en) * 1993-12-17 1998-02-10 Wacker-Chemie Gmbh Catalytic hydrodehalogenation of halogen-containing compounds of group IV elements
RU2371388C2 (ru) * 2004-04-23 2009-10-27 Дегусса Аг Способ получения трихлорсилана каталитическим гидрогалогенированием тетрахлорида кремния
KR20100091573A (ko) * 2009-02-11 2010-08-19 코아텍주식회사 촉매와 반응열을 이용한 삼염화실란의 제조방법 및 장치

Similar Documents

Publication Publication Date Title
TWI602780B (zh) 受碳化合物污染的氯矽烷或氯矽烷混合物的後處理方法
Lee et al. Catalytic conversion of silicon tetrachloride to trichlorosilane for a poly-Si process
KR101664521B1 (ko) 아미노 관능성 중합체 촉매 전구체의 처리 방법
KR20130133794A (ko) 히드리도실란의 제조 방법
JP2011516376A (ja) 純シリコンを製造するための方法およびシステム
TW201249744A (en) Integrated process for conversion of STC-containing and OCS-containing sidestreams into hydrogen-containing chlorosilanes
CN103298821A (zh) 制备二有机二卤代硅烷的方法
TW201233627A (en) Process for preparing trichlorosilane
KR101309600B1 (ko) 트리클로로실란 제조방법
JP5914240B2 (ja) 多結晶シリコンの製造方法
RU2472704C1 (ru) Способ каталитического гидрирования тетрахлорида кремния
CN103998375A (zh) 高纯度氯代聚硅烷的制造方法
WO2014100705A1 (en) Conserved off gas recovery systems and processes
JP3853894B2 (ja) 塩化水素の減少した混合物の製造方法
CN101687651A (zh) 催化氢化
CN107108236A (zh) 氢化卤代硅烷的方法
CN107207267A (zh) 由在工艺废气流中所含的氯硅烷混合物获得六氯乙硅烷的方法
CN100404131C (zh) 一种用于有机氯硅烷合成的硅-铜触体的制备方法
JP7477620B2 (ja) クロロシラン混合物から不純物を除去する方法
JP5742622B2 (ja) トリクロロシラン製造方法及び製造装置
JP5657493B2 (ja) ホウ素化合物の不純物を減じたトリクロロシラン製造方法
CN102482299A (zh) 使氯硅烷加氢脱氯成氢硅烷的催化剂及用该催化剂合成氢硅烷的方法
JP4256998B2 (ja) シラン化合物の不均化反応生成物の製造方法
CN101481114A (zh) 多晶硅副产品四氯化硅的回收利用方法
JP2648615B2 (ja) モノシランの簡便な製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160915