RU2460738C2 - Жидкий малеинированный бутилкаучук - Google Patents

Жидкий малеинированный бутилкаучук Download PDF

Info

Publication number
RU2460738C2
RU2460738C2 RU2008104320/04A RU2008104320A RU2460738C2 RU 2460738 C2 RU2460738 C2 RU 2460738C2 RU 2008104320/04 A RU2008104320/04 A RU 2008104320/04A RU 2008104320 A RU2008104320 A RU 2008104320A RU 2460738 C2 RU2460738 C2 RU 2460738C2
Authority
RU
Russia
Prior art keywords
grafted
polymer
liquid polymer
liquid
butyl
Prior art date
Application number
RU2008104320/04A
Other languages
English (en)
Other versions
RU2008104320A (ru
Inventor
Руи РЕСЕНДЕС (CA)
Руи РЕСЕНДЕС
Джон Скотт ПЭРЕНТ (CA)
Джон Скотт ПЭРЕНТ
Ральф Аллен УИТНИ (CA)
Ральф Аллен УИТНИ
Original Assignee
Ленксесс Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ленксесс Инк. filed Critical Ленксесс Инк.
Publication of RU2008104320A publication Critical patent/RU2008104320A/ru
Application granted granted Critical
Publication of RU2460738C2 publication Critical patent/RU2460738C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/08Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/08Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
    • C08F255/10Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms on to butene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/04Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к жидким малеинированным бутилкаучуковым композициям. Описан привитой жидкий полимер, полученный способом, включающим взаимодействие полимера С4-C7 моноолефинового мономера и С414 мультиолефинового мономера, включающего бутилкаучук, в присутствии материала для проведения привитой сополимеризации, включающего малеиновый ангидрид, и инициатора свободнорадикальной полимеризации, включающего органический пероксид, причем привитой жидкий полимер имеет среднечисленную молекулярную массу (Mn) от 150000 до 30000. Описано вулканизированное соединение, содержащее описанный выше привитой жидкий полимер и вулканизирующий агент на основе мультифункционального амина. Описан способ разложения не жидкого бутилового полимера до привитого жидкого бутилового полимера, где способ включает взаимодействие не жидкого бутилового полимера C4-C7 моноолефинового мономера и С414 мультиолефинового мономера, включающего бутилкаучук, в присутствии материала для проведения привитой сополимеризации, включающего малеиновый ангидрид, и инициатора свободнорадикальной полимеризации, включающего перекись дикумила, причем привитой жидкий полимер имеет среднечисленную молекулярную массу (Mn) от 150000 до 30000. Технический результат - получен жидкий малеинированный бутилкаучук. 5 н. и 11 з.п. ф-лы, 2 табл., 2 ил., 10 пр.

Description

Область техники
Данное изобретение относится к жидким малеинированным бутилкаучуковым композициям. Данное изобретение также относится к способу получения жидких малеинированных бутилкаучуковых композиций. Данное изобретение также относится к жидким малеинированным бутилкаучуковым композициям, которые вулканизируются в присутствии мультифункциональных аминов.
Уровень техники
Бутилкаучук (сополимер изобутилена и небольшого количества изопрена) известен своими превосходными изолирующими свойствами и паронепроницаемостью. Во многих областях применения бутилкаучук применяется в виде вулканизированного соединения. Системы вулканизации, обычно применяемые для данного полимера, включают серу, хиноиды, каучуки, доноры серы и высокоэффективные ускорители вулканизации с низким содержанием серы.
Хорошо известно, что радикалоцепная полимеризация изобутилена является неосуществимой из-за собственного механизма автоингибирования, существующего в системе. Фактически инициирование изобутилена в присутствии источника радикала происходит быстро. Однако константа скорости полимеризации (kp) является довольно незначительной и предпочтительный ход реакции (ингибирование, ki) включает отщепление аллильных атомов водорода от молекулы изобутилена (ki>>kp).
Также хорошо известно, что бутилкаучук и полиизобутилен разлагаются под действием органических перекисей. Более того, в патентах США №3862265 и 4749505 сказано, что сополимеры C4-C7 изомоноолефина с вплоть до 10 мас.% изопрена или вплоть до 20 мас.% пара-алкилстирола претерпевают снижение молекулярного веса при перемешивании с высоким сдвигом. Это явление усиливается в присутствии инициаторов свободнорадикальной полимеризации.
У White et al. (патент США №5578682) представлен процесс пост-полимеризации для получения полимера с бимодальным молекулярно-массовым распределением, полученного из полимера, который исходно имеет мономодальное молекулярно-массовое распределение. Полимер, например полиизобутилен, бутилкаучук или сополимер изобутилена и параметилстирола, смешивают с полиненасыщенным сшивающим агентом (и, необязательно, инициатором свободнорадикальной полимеризации) и подвергают обработке в условиях высокого сдвига в присутствии органической перекиси.
Также малеинирование полиолефинов является хорошо известным процессом, который применяют для получения малеинированных материалов (таких как малеинированный полиэтилен), который обладает улучшенными уровнями взаимодействия с кремнекислыми и/или глиняными наполнителями. Получение таких материалов может быть проведено с применением термопластичного экструдера, в котором полимерный субстрат смешивают с малеиновым ангидридом и перекисным инициатором.
Сущность изобретения
Неожиданно было обнаружено, что при комбинировании процесса радикального разложения бутилкаучука (ИИК) с процессом малеинирования, инициированным перекисью, возможно одновременно снижать молекулярный вес ИИК и вызывать его малеинирование, что дает химически подобный, но физически отличающийся жидкий продукт с ангидридными функциональными группами. Также было неожиданно обнаружено, что возможно вулканизировать эти материалы в присутствии диаминов или диолов.
Данное изобретение относится к привитым жидким полимерам, содержащим полимер С47 моноолефинового мономера и C4-C14 мультиолефинового мономера, материал для проведения привитой сополимеризации и инициатор свободнорадикальной полимеризации.
Данное изобретение также относится к способу привитой сополимеризации, включающему взаимодействие полимера С4-C7 моноолефинового мономера и C4-C14 мультиолефинового мономера в присутствии материала для привитой сополимеризации и инициатора свободнорадикальной полимеризации.
Данное изобретение также относится к способу разложения не жидкого полимера до привитого жидкого полимера, где способ включает взаимодействие не жидкого полимера С4-C7 моноолефинового мономера и С414 мультиолефинового мономера в присутствии материала для привитой сополимеризации и инициатора свободнорадикальной полимеризации с получением привитого жидкого полимера.
Данное изобретение также относится к способу получения вулканизированного соединения, включающему взаимодействие полимера C47 моноолефинового мономера и C414 и мультиолефинового мономера в присутствии материала для привитой сополимеризации и инициатора свободнорадикальной полимеризации с получением привитого жидкого полимера, с последующей вулканизацией привитого жидкого полимера в присутствии мультифункционального аминового вулканизирующего вещества.
Краткое описание фигур
На фигуре 1 показана радикалоцепная полимеризация изобутилена. Для ссылки добавлены значения энергии диссоциации цепи для алифатических, винильных и аллильных атомов водорода.
На фигуре 2 показана вулканизация ИИК с малеиновыми функциональными группами в присутствии диаминов.
Подробное описание изобретения
Далее представлено описание данного изобретения в целях иллюстрации, но не ограничения. За исключением рабочих примеров, или если указано иначе, все цифры, выражающие количества, проценты и так далее, в описании должны рассматриваться как модифицируемые во всех случаях термином «около». Также все интервалы включают любое сочетание максимальных и минимальных описанных значений, и включают любые их промежуточные значения, которые могут быть или могут не быть приведены отдельно.
Данное изобретение относится к бутиловым полимерам, термин «бутилкаучук», «бутиловый полимер» и «бутилкаучуковый полимер» применяются в данном описании взаимозаменяемо. Подходящие бутиловые полимеры в соответствии с данным изобретением получают из смеси мономеров, содержащей С4-C7 моноолефиновый мономер и C414 мультиолефиновый мономер.
Предпочтительно смесь мономеров содержит от около 80 до около 99 мас.% С47 моноолефинового мономера и от около 1,0 до около 20 мас.% С4-C14 мультиолефинового мономера. Более предпочтительно смесь мономеров содержит от около 85 до около 99 мас.% С47 моноолефинового мономера и от около 1,0 до около 15 мас.% C4-C14 мультиолефинового мономера. Наиболее предпочтительно смесь мономеров содержит от около 95 до около 99 мас.% С47 моноолефинового мономера и от около 1,0 до около 5,0 мас.% С4-C14 мультиолефинового мономера.
Предпочтительный C47 моноолефиновый мономер может быть выбран из изобутилена, гомополимеров изобутилена, 2-метил-1-бутен, 3-метил-1-бутен, 2-метил-2-бутен, 4-метил-1-пентен и их смеси. Наиболее предпочтительным C4-C7 моноолефиновым мономером является изобутилен.
Предпочтительный C4-C14 мультиолефиновый мономер может быть выбран из изопрена, бутадиена, 2-метилбутадиена, 2,4-диметилбутадиена, пиперилена, 3-метил-1,3-пентадиена, 2,4-гексадиена, 2-неопентилбутадиена, 2-метил-1,5-гексадиена, 2,5-диметил-2,4-гексадиена, 2-метил-1,4-пентадиена, 2-метил-1,6-гептадиена, циклопентадиена, метилциклопентадиена, циклогексадиена, 1-винилциклогексадиена и их смесей. Наиболее предпочтительным С414 мультиолефиновым мономером является изопрен.
Смесь мономеров, применяемая для получения подходящих бутилкаучуковых полимеров в соответствии с данным изобретением, может содержать сшивающие агенты, агенты передачи и другие мономеры, при условии, что другие мономеры сополимеризуемы с мономерами из смеси мономеров. Подходящие сшивающие агенты, агенты передачи и мономеры включают все известные специалистам в данной области техники.
Бутилкаучуковые полимеры, применяемые в соответствии с данным изобретением, могут быть получены любым способом, известным в данной области техники, и, следовательно, способ не ограничен определенным способом полимеризации мономерной смеси. Такие способы хорошо известны специалистам в данной области техники и обычно включают взаимодействие смеси мономеров, описанной выше, с системой катализаторов. Полимеризация может быть проведена при температуре обычной для получения бутиловых полимеров, например, в интервале от -100°С до +50°С. Полимер может быть получен полимеризацией в растворе или суспензионной полимеризацией. Полимеризация может быть проведена в суспензии (суспензионный способ), см., например, Ullmann's Encyclopedia of Industrial Chemistry (Fifth, Completely Revised Edition, Volume A23; Editors Elvers et al., 290-292). В промышленном масштабе бутилкаучук получают практически исключительно как изобутеновый/изопреновый сополимер полимеризацией в катионном растворе при низкой температуре; см., например, Kirk-Othmer, Encyclopedia of Chemical Technology, 2nd ed., Vol.7, page 688, Interscience Publ., New York/London/Sydney, 1965 и Winnacker-Kuchler, Chemische Technologie, 4th Edition, Vol.6, pages 550-555, Carl Hanser Verlag, Munchen/Wien, 1962. Выражение «бутилкаучук» также может означать галогенированный бутилкаучук.
В соответствии с данным изобретением бутилкаучуки могут быть привиты с применением материала для привитой сополимеризации, такого как этиленненасыщенная карбоновая кислота или ее производные (включая сложные эфиры, амиды, ангидриды). В соответствии с данным изобретением процесс привитой сополимеризации может быть проведен любым обычным и известным способом привитой сополимеризации. Подходящие материалы для привитой сополимеризации включают малеиновый ангидрид, хлормалеиновый ангидрид, итаконовый ангидрид, гемический ангидрид или соответствующую дикарбоновую кислоту, такую как малеиновая кислота или фумаровая кислота, или их сложные эфиры. Материал для привитой сополимеризации обычно применяют в количестве от 0,1 до 15 на 100 частей бутилкаучука (/100 частей), предпочтительно в количестве от 1 до 10/100 частей, более предпочтительно от 3 до 5/100 частей.
Предпочтительно привитую сополимеризацию бутилкаучука проводят с применением привитой сополимеризации, вызванной свободными радикалами, без применения растворителя. Свободнорадикальную привитую сополимеризацию проводят с применением инициатора свободнорадикальной полимеризации, таких как перекиси и гидроперекиси, предпочтительно такие, которые имеют температуру плавления более около 100°С. Подходящие инициаторы свободнорадикальной полимеризации включают, но не ограничены ими, перекись дилауроила, 2,5-диметил-2,5-ди(трет-бутилперокси)гексин-3 (Luperox® 130, Arkema Group) или его гексановый аналог, 2,5-диметил-2,5-ди(трет-бутилперокси)гексан (Luperox® 101, Arkema Group), перекись ди-третичного бутила и перекись дикумила. Вызванная свободными радикалами привитая сополимеризация бутилкаучука также может быть проведена с применением радиационного, сдвигового или теплового разложения.
Инициатор обычно применяют в количестве от около 0,1/100 частей до около 5/100 частей, по отношению к 100 частям бутилкаучука, предпочтительно от около 0,3 до около 3/100 частей, более предпочтительно от около 0,5 до около 1/100 частей. Материал для привитой сополимеризации и инициатор свободнорадикальной полимеризации обычно применяют в массовом соотношении от 1:1 до 20:1, предпочтительно от 5:1 до 10:1.
Разложение и/или привитая сополимеризация инициатора может быть проведена любым способом, известным специалисту в данной области техники; предпочтительно ее проводят при температуре от около 50 до 250°С, предпочтительно от около 160 до 200°С. Предпочтительно применяют инертную атмосферу. Общее время для разложения и привитой сополимеризации обычно составляет от 1 до 30 минут. Разложение и привитая сополимеризация может проводиться в закрытом смесителе, двухвалковых вальцах, одночервячном экструдере, двухчервячном экструдере или любом их сочетании. В общем, предпочтительно проводить смешивания с высоким сдвигом полимера и агента привитой сополимеризации в присутствии инициатора свободнорадикальной полимеризации.
Привитые бутиловые полимеры, получаемые в соответствии с данным изобретением, являются жидкими и обычно демонстрируют среднечисленную молекулярную массу (Mn) в интервале от около 200000 до около 20000, более предпочтительно от около 150000 до около 30000, еще более предпочтительно от около 100000 до около 40000, даже более предпочтительно от около 95000 до около 50000 по результатам ГПХ (гельпроникающей хроматографии).
Коэффициент полидисперсности (КПД) представляет собой соотношение Mw к Mn и предпочтительно составляет от около 1 до 3, более предпочтительно от около 1 до 2,5, еще более предпочтительно от около 1 до 2.
Жидкие привитые полимеры, полученные в соответствии с данным изобретением, могут быть вулканизированы в присутствии мультифункциональных аминов или диолов. Подходящие мультифункциональные амины имеют формулу NxRNy, где х и y являются одинаковыми или разными целыми числами, имеющими значение 2 или более 2, и где R является любым известным линейным, циклическим или разветвленным, органическим или неорганическим разделителем. Подходящие мультифункциональные амины включают этилендиамин, триметилендиамин, тетраметилендиамин, гексаметилендиамин, октаметилендиамин, гексаметиленбис(2-аминопропил)амин, диэтилентриамин, триэтилентетрамин, полиэтиленполиамин, трис(2-аминоэтил)амин, 4,4'-метиленбис(циклогексиламин), N,N'-бис(2-аминоэтил)-1,3-пропандиамин, N,N'-бис(3-аминопропил)-1,4-бутандиамин, N,N'-бис(3-аминопропил)этилендиамин, N,N'-бис(3-аминопропил)-1,3-пропандиамин, 1,3-циклогексанбис(метиламин), фенилендиамин, ксилилендиамин, β-(4-аминофенил)этиламин, диаминотолуол, диаминоантрацен, диаминонафталин, диаминостирол, метилендианилин, 2,4-бис(4-аминобензил)анилин, аминофениловый эфир, триэтилентетраамин, тетраэтиленпентаамин, пентаэтиленгексамин, бензолтетраамин, 1,6-диаминогексан, бис(4-аминофенил)метан и 1,3-фенилендиамин.
Композиции в соответствии с данным изобретением могут применяться во множестве областей, включая полученные литьем под давлением уплотнители для топливных батарей, клеи, герметики или полиуретановые субстраты.
Примеры
ГПХ проводят с применением аппаратов Waters Alliance 2690 Separations Module и Viscotek Model 300 Triple Detector Array. Образцы для ГПХ готовят растворением в тетрагидрофуране (ТГФ). Содержание малеинового ангидрида (МАн) определяют с применением калиброванной Фурье-ИК-спектроскопии (FT-IR). Калибровочные данные получают наливом ИИК пленок из растворов гексана, содержащих известные количества 2-додецен-1-илянтарного ангидрида (ДДЯА).
Поглощение основного карбонильного резонанса, полученного от ангидрида (от 1830 см-1 до 1749 см-1) нормализуют для толщины пленки с применением резонанса главной цепи полимера (от 978 см-1 до 893 см-1) для получения линейной калибровки для весового процента функциональной группы ангидрида с привитым модифицированным ИИК.
Степень поперечного сшивания определяют с применением анализа содержания геля. Образец известной массы экстрагируют толуолом при температуре кипения с обратным холодильником из проволочной сетчатой камеры в течение трех часов, после чего камеру сушат до постоянного веса. Содержание геля указывают как весовой процент неэкстрагированного полимера.
Реакции малеинирования/разложения из примеров 2-10 проводят по следующей методике: ИИК (см. таблицу 1 и таблицу 2) смешивают с требуемым количеством ДКП (дикумиловой перекисью, Aldrich Chemical Co.) или Luperox® 130 (2,5-диметил-2,5-ди(трет-бутилперокси)гексин-3, Arkema Group) и малеиновым ангидридом (МАн), как показано в таблице 1, в порционном смесителе Haake при комнатной температуре. Полученный концентрат затем обрабатывают в смесителе Atlas Laboratories Minimixer при температуре 160° или 200°С с получением ИИК-g-МАн.
Полученный малеинированный бутиловый продукт (1-2 г) растворяют в гексане (~15 мл), затем осаждают из ацетона (~150 мл). Образцы с низким молекулярным весом отстаивают в течение 12 часов после осаждения для облегчения выделения полимера. Все материалы сушат в вакууме, и содержание ангидрида определяют с применением калиброванной методики FT-IR.
Проводят ряд ГПХ экспериментов для определения степени, до которой незначительные количества перекиси снижают молекулярный вес ИИК. В примерах 1-10 исследуется роль перекиси и МАн в разложении ИИК. Как можно видеть из данных, представленных в таблице 1, сочетание МАн и ДКП вызывает наиболее значительную степень разложения.
Таблица 1
Пример Температура (°С) Mn (среднечисленная молекулярная масса) Mw (средневесовая молекулярная масса)
1 ИИК* нет реакции 261000 573000
2 ИИК* 180 242000 548000
3 ИИК* 200 246000 542000
4 ИИК/МАн 5% мас. / DCP 0,50% мас. 200 94400 268000
5 ИИК/DCP 0,50% мас. 200 126000 344000
6 ИИК/DCP 0,25% мас. 200 181000 487000
7 ИИК/МАн 5% мас. 200 230000 596000
ИИК* - непрореагировавший бутил. Полное время разложения = 10 минут.
Содержание связанного полимера определяют путем обработки МАн привитого бутилкаучука избытком аминопропилтриметоксисилана. Для этой цели 2 мас.% раствор малеинированного ИИК в толуоле загружают в стеклянный реактор с механическим перемешиванием. Затем добавляют 3-аминопропилтриметоксисилан (АПТМС, 3 экв. по отношению к привитому ангидриду), и смесь кипятят с обратным холодильником в течение 30 мин. После охлаждения образец подвергают FT-IR анализу и затем добавляют двуокись кремния (HiSil® 233, PPG Industries, 40 мас.%). Смесь кипятят с обратным холодильником в течение 20 мин и осаждают из ацетона (~200 мл). Выделенный продукт сушат в вакууме до постоянного веса и загружают в проволочную сетчатую камеру. Затем образец экстрагируют кипящим толуолом в течение 2 часов, сушат и повторно взвешивают. Данные записывают как весовой процент нерастворимого полимера после подсчета окиси количества двуокиси кремния, оставшейся в образце. Результаты имидирования, перечисленные в таблице 1, показывают, что связывание с двуокисью кремния делает нерастворимой очень значительную часть модифицированных полимеров, что позволяет предположить, что распределение композиции привитого компонента сополимера в цепях является относительно однородным.
В примерах 9-10, реакции сшивания проводят по следующей методике: ИИК-g-МАн (~1 г), полученный по методике, описанной выше (пример 4), с требуемым количеством перекиси и малеинового ангидрида, как показано в таблице 2, растворяют в толуоле (50 мл) вместе с 1/3 эквивалента трис(2-аминоэтил)амина по отношению к содержанию привитого ангидрида. Раствор нагревают до температуры около 100°С в течение 30 минут и полимер выделяют осаждением из ацетона, и сушат в вакууме.
Как показано выше, результатом обработки ИИК МАн и ДКП или L130 является прививка МАн в главную цепь полимера ИИК. В примере 8 ИИК-g-МАн обрабатывают аминопропилтриметоксисиланом, что дает производное имида. Продукт содержит функциональные группы триметоксисилана, которые могут взаимодействовать с поверхностью двуокиси кремния. При обработке этого продукта двуокисью кремния содержание связанного полимера составляет 89 мас.%. Содержание связанного полимера определяют экстрагированием в аппарате Сокслета прореагировавшего с двуокисью кремния продукта в кипящем с обратным холодильником гексане в течение 1 часа.
Результаты, представленные в таблице 2, показывают, что связывание с двуокисью кремния в примере 8 делает нерастворимым очень значительную часть модифицированного полимера, что позволяет предположить, что распределение композиции привитого компонента сополимера в цепях является относительно однородным.
Таблица 2
Пример Темп., °С Привитой МАн, мас.% Связанный полимер, мас.% Поперечно-сшитый полимер
8 ИИК/МАн 5% мас. / ДКП 0,50% мас. 200 0,25 89 **
9 ИИК/МАн 5% мас. / L130 1% мас. 200 0,91 ** 83
10 ИИК/МАн 5% мас. / L130 1% мас. 160 0,64 ** 99
** не измерено
Примеры показывают возможность одновременно разлагать и малеинизировать коммерчески доступный ИИК (RB 301), продаваемого в брикетах, и производить жидкий аналог ИИК (ИИК-g-МАн), который может быть вулканизирован в присутствии мультифункциональных аминов. Данное изобретение позволяет превратить брикетированный ИИК каучук в свободнотекучий малеинированный жидкий аналог.
Хотя данное изобретение подробно описано в целях иллюстрации, должно быть понятно, что указанные подробности представлены только для этой цели, и что специалист в данной области техники может сделать изменения, не выходящие за рамки сути и объема данного изобретения, за исключением случаев, которые могут быть ограничены формулой изобретения.

Claims (16)

1. Привитой жидкий полимер, полученный способом, включающим взаимодействие полимера C4-C7 моноолефинового мономера и C4-C14 мультиолефинового мономера, включающего бутилкаучук, в присутствии материала для проведения привитой сополимеризации, включающего малеиновый ангидрид, и инициатора свободнорадикальной полимеризации, включающего органический пероксид, причем привитой жидкий полимер имеет среднечисленную молекулярную массу (Mn) от 150000 до 30000.
2. Привитой жидкий полимер по п.1, где C4-C7 моноолефиновый мономер включает изобутилен.
3. Привитой жидкий полимер по п.1, где C4-C14 мультиолефиновый мономер включает изопрен.
4. Привитой жидкий полимер по п.1, где привитой жидкий полимер имеет коэффициент полидисперсности (КПД) от 1 до 3.
5. Привитой жидкий полимер по п.1, где материалом для проведения привитой сополимеризации является малеиновый ангидрид.
6. Привитой жидкий полимер по п.1, где инициатор свободнорадикальной полимеризации выбирают из группы, включающей перекись дилауроила, 2,5-диметил-2,5-ди(трет-бутилперокси)гексин-3,2,5-диметил-2,5-ди(трет-бутилперокси)-гексан, перекись ди-третичного бутила и перекись дикумила.
7. Вулканизированное соединение, содержащее привитой жидкий полимер по п.1 и вулканизирующий агент на основе мультифункционального амина.
8. Вулканизированное соединение по п.7, где вулканизирующий агент на основе мультифункционального амина имеет формулу:
Figure 00000001
,
где Х является целым числом 2 или более, Y является целым числом 2 или более и R является линейным, циклическим или разветвленным органическим или неорганическим разделителем.
9. Способ получения жидкого полимера, модифицированного прививкой, включающий взаимодействие бутилового полимера С47 моноолефинового мономера и C4-C14 мультиолефинового мономера, включающего бутилкаучук, в присутствии материала для проведения привитой сополимеризации, включающего малеиновый ангидрид, и инициатора свободнорадикальной полимеризации, включающего перекись дикумила, причем привитой жидкий полимер имеет среднечисленную молекулярную массу (Mn) от 150000 до 30000.
10. Способ по п.9, где C4-C7 моноолефиновый мономер включает изобутилен.
11. Способ по п.9, где C4-C14 мультиолефиновый мономер включает изопрен.
12. Способ по п.9, где привитой жидкий полимер имеет коэффициент полидисперсности (КПД) от 1 до 3.
13. Способ по п.9, где материалом для проведения привитой сополимеризации является малеиновый ангидрид.
14. Способ разложения не жидкого бутилового полимера до привитого жидкого бутилового полимера, где способ включает взаимодействие не жидкого бутилового полимера С4-C7 моноолефинового мономера и C4-C14 мультиолефинового мономера, включающего бутилкаучук, в присутствии материала для проведения привитой сополимеризации, включающего малеиновый ангидрид, и инициатора свободнорадикальной полимеризации, включающего перекись дикумила, причем привитой жидкий полимер имеет среднечисленную молекулярную массу (Mn) от 150000 до 30000.
15. Способ получения вулканизированного соединения, включающий взаимодействие полимера С47 моноолефинового мономера и C4-C14 мультиолефинового мономера, включающего бутилкаучук, в присутствии материала для проведения привитой сополимеризации, включающего малеиновый ангидрид, и инициатора свободнорадикальной полимеризации, включающего органический пероксид, с получением привитого жидкого полимера, имеющего среднечисленную молекулярную массу (Mn) от 150000 до 30000, и последующую вулканизацию привитого жидкого полимера в присутствии вулканизирующего агента на основе мультифункционального амина.
16. Способ по п.15, где вулканизирующий агент на основе мультифункционального амина имеет формулу:
Figure 00000001
,
где Х является целым числом 2 или более, Y является целым числом 2 или более и R является линейным, циклическим или разветвленным органическим или неорганическим разделителем.
RU2008104320/04A 2005-07-11 2006-07-06 Жидкий малеинированный бутилкаучук RU2460738C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69825205P 2005-07-11 2005-07-11
US60/698,252 2005-07-11

Publications (2)

Publication Number Publication Date
RU2008104320A RU2008104320A (ru) 2009-08-20
RU2460738C2 true RU2460738C2 (ru) 2012-09-10

Family

ID=37636700

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008104320/04A RU2460738C2 (ru) 2005-07-11 2006-07-06 Жидкий малеинированный бутилкаучук

Country Status (8)

Country Link
US (1) US20090189118A1 (ru)
EP (1) EP1904542A4 (ru)
JP (1) JP2009500501A (ru)
KR (1) KR20080039409A (ru)
CN (2) CN101223201A (ru)
CA (1) CA2610293A1 (ru)
RU (1) RU2460738C2 (ru)
WO (1) WO2007006138A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2593510A1 (en) * 2006-08-24 2008-02-24 Lanxess Inc. Butyl adhesive containing maleic anhydride and optional nanoclay
CN101805427A (zh) * 2010-04-23 2010-08-18 华东理工大学 马来酸酐改性丁基橡胶的方法
CN102432952B (zh) * 2010-09-29 2013-10-30 中国石油化工股份有限公司 一种快速硫化丁基橡胶及其制备方法和应用
US20120122359A1 (en) * 2010-11-16 2012-05-17 3M Innovative Properties Company Ionically crosslinkable poly(isobutylene) adhesive polymers
EP2574635A1 (en) * 2011-09-28 2013-04-03 Lanxess Inc. Process for continuous production of halogen-free thermoplastic elastomer compositions
CN102634304B (zh) * 2012-04-28 2013-07-31 江苏宝力泰新材料科技有限公司 一种低温高性能3pe干膜胶黏剂及其制备方法
EP3028719A1 (en) 2014-12-01 2016-06-08 Lanxess Inc. Polymer-drug conjugate based on a polyisoolefin-based copolymer
KR101904585B1 (ko) * 2015-02-17 2018-10-08 주식회사 엘지화학 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
CN105801759A (zh) * 2016-04-05 2016-07-27 山东玉皇化工有限公司 一种羧基化聚异戊二烯橡胶的制备方法
CN114752008B (zh) * 2022-05-20 2024-06-07 青岛玄道科技有限公司 一种本体法顺酐化高乙烯基液体聚丁二烯的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862265A (en) * 1971-04-09 1975-01-21 Exxon Research Engineering Co Polymers with improved properties and process therefor
SU475784A3 (ru) * 1970-12-22 1975-06-30 Ажанс Насьональ Де Валоризасьон Де Ля Решершанвар (Фирма) Способ получени привитых сополимеров
US5578682A (en) * 1995-05-25 1996-11-26 Exxon Chemical Patents Inc. Bimodalization of polymer molecular weight distribution
WO2001098387A2 (en) * 2000-06-22 2001-12-27 The Lubrizol Corporation Functionalized isobutylene-polyene copolymers and derivatives thereof
WO2004005388A1 (en) * 2002-07-05 2004-01-15 Exxonmobil Chemical Patents Inc. Functionalized elastomer nanocomposite
RU2254348C2 (ru) * 1999-07-29 2005-06-20 Байер Инк. Резиновая композиция

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2402675A2 (fr) * 1977-09-07 1979-04-06 Kleber Colombes Procede de fabrication d'articles en un polymere reticule
JPH0284453A (ja) * 1988-09-20 1990-03-26 Japan Synthetic Rubber Co Ltd 熱可塑性エラストマー組成物および冷凍機用ゴム部材
JP3068232B2 (ja) * 1991-03-27 2000-07-24 第一工業製薬株式会社 アミノ基を有する共重合体及びその製造方法
DE69217666T3 (de) * 1991-12-13 2001-09-06 Exxon Chemical Patents Inc., Linden Mehrfachreaktionsverfahren in einer schmelzprocessvorrichtung
JPH1135810A (ja) * 1997-07-18 1999-02-09 Mitsui Chem Inc α−オレフィン/共役ジエン系共重合体組成物
CA2558966A1 (en) * 2004-03-10 2005-09-22 The Lubrizol Corporation Dispersant viscosity modifiers based on diene-containing polymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU475784A3 (ru) * 1970-12-22 1975-06-30 Ажанс Насьональ Де Валоризасьон Де Ля Решершанвар (Фирма) Способ получени привитых сополимеров
US3862265A (en) * 1971-04-09 1975-01-21 Exxon Research Engineering Co Polymers with improved properties and process therefor
US5578682A (en) * 1995-05-25 1996-11-26 Exxon Chemical Patents Inc. Bimodalization of polymer molecular weight distribution
RU2254348C2 (ru) * 1999-07-29 2005-06-20 Байер Инк. Резиновая композиция
WO2001098387A2 (en) * 2000-06-22 2001-12-27 The Lubrizol Corporation Functionalized isobutylene-polyene copolymers and derivatives thereof
WO2004005388A1 (en) * 2002-07-05 2004-01-15 Exxonmobil Chemical Patents Inc. Functionalized elastomer nanocomposite

Also Published As

Publication number Publication date
RU2008104320A (ru) 2009-08-20
CN103172791A (zh) 2013-06-26
JP2009500501A (ja) 2009-01-08
US20090189118A1 (en) 2009-07-30
EP1904542A4 (en) 2009-06-17
CN101223201A (zh) 2008-07-16
EP1904542A1 (en) 2008-04-02
WO2007006138A1 (en) 2007-01-18
CA2610293A1 (en) 2007-01-18
KR20080039409A (ko) 2008-05-07

Similar Documents

Publication Publication Date Title
RU2460738C2 (ru) Жидкий малеинированный бутилкаучук
US3236917A (en) Elastomer of an ethylene copolymer cross-linked with an unsaturated acid or anhydride
US8962761B2 (en) Long chain branched EPDM compositions and processes for production thereof
EP0828761B1 (en) Bimodalization of polymer molecular weight distribution
KR101483609B1 (ko) 개선된 표면 부착성을 갖는 부틸 이오노머
RU2429254C2 (ru) Вулканизуемая пероксидами резиновая смесь, содержащая галобутиловые иономеры с высоким содержанием мультиолефина
EP2643361B1 (en) Phosphonium ionomers comprising pendant vinyl groups and processes for preparing same
JPH09500163A (ja) 高純度フルオロエラストマー配合物
EP0391744B1 (en) Method of producing modified polypropylene
JPH08504842A (ja) α−オレフィン(コ)ポリマーの改質方法
CN1590446B (zh) 过氧化物可硫化的丁基合成橡胶配制物
US20060155079A1 (en) Modification method of polymer
UA113294C2 (xx) Спосіб безперервного одержання термопластичних еластомерних композицій, вільних від галогену
WO2010017553A1 (en) Triallyl phosphate enabled grafting of compatible monomers to chain scissionable polyolefins
CN113248836B (zh) 一种三元乙丙橡胶组合物及其制备方法
US7750086B2 (en) Solid state modification of propylene polymers
US3711454A (en) Synergistic peroxide/oxime/isocyanate curing system
Van der Mee et al. Thermoreversible crosslinking of maleated ethylene/propylene rubber using ionic interactions, hydrogen bonding and a combination thereof
Chao et al. Peroxide curable elastomer processing of brominated isobutylene-co-p-methylstyrene in the presence of a coagent
KR100874818B1 (ko) 아크릴산 에스테르 공중합체의 가교 방법
US10676598B2 (en) Activated isobutylene-isoprene rubber and thermoset rubber therefrom
Hagting An investigation on the effect of clusters in thermo-reversible cross-linked rubbers
TW200416251A (en) Peroxide curable compounds based on butyl-like polymer without conjugated aliphatic dienes in its composition
SU283573A1 (ru) Способ получени привитых сополимеров

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140707