RU2451369C1 - Способ получения катодного материала для литий-ионных аккумуляторов - Google Patents

Способ получения катодного материала для литий-ионных аккумуляторов Download PDF

Info

Publication number
RU2451369C1
RU2451369C1 RU2010152641/07A RU2010152641A RU2451369C1 RU 2451369 C1 RU2451369 C1 RU 2451369C1 RU 2010152641/07 A RU2010152641/07 A RU 2010152641/07A RU 2010152641 A RU2010152641 A RU 2010152641A RU 2451369 C1 RU2451369 C1 RU 2451369C1
Authority
RU
Russia
Prior art keywords
lithium
nitrates
heating
initial mixture
cathode material
Prior art date
Application number
RU2010152641/07A
Other languages
English (en)
Inventor
Виктор Дмитриевич Журавлев (RU)
Виктор Дмитриевич Журавлев
Сергей Иванович Щеколдин (RU)
Сергей Иванович Щеколдин
Ксения Валерьевна Нефедова (RU)
Ксения Валерьевна Нефедова
Original Assignee
Открытое акционерное общество "Сатурн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Сатурн" filed Critical Открытое акционерное общество "Сатурн"
Priority to RU2010152641/07A priority Critical patent/RU2451369C1/ru
Application granted granted Critical
Publication of RU2451369C1 publication Critical patent/RU2451369C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Изобретение относится к области активных материалов, используемых в качестве катода в литиевых батареях, более конкретно к способам получения катодных материалов, имеющих состав LiNi1/3Co1/3Mn1/3O2. Техническим результатом изобретения является возможность регулирования размера частиц активного материала в нужном рабочем диапазоне наряду с сохранением овальной формы частиц и нормального их распределения. Согласно изобретению способ получения катодного материала, имеющего состав LiNi1/3Co1/3Mn1/3O2, для литий-ионных аккумуляторов включает нагревание исходной смеси нитратов соответствующих металлов и гелирующего агента с последующим сушкой и кальцинированием полученного после нагревания исходной смеси порошка, при этом, в качестве гелирующего агента используют глицин в количестве 280-500 г на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2:Со+2:Ni+2, равном 1:1:1; а нитрат лития вводят путем пропитки им порошка, полученного после нагревания и сушки исходной смеси. 2 пр.

Description

Изобретение относится к области катодно-активных материалов, используемых в качестве катода в литиевых батареях, более конкретно к способам получения катодных материалов, имеющих состав LiNi1/3Co1/3Mn1/3O2.
Известен способ получения активного катодного материала для литиевых батарей, состоящего из смеси двух сложных оксидов, одним из которых является сложный оксид лития, никеля, кобальта и марганца, содержащий в качестве дополнительного элемента металл, выбранный из группы: Мо, W, Nb, Та, Re. Сложный оксид получают путем ультразвукового распыления суспензии и последующего кальцинирования при температуре 1000°С в атмосфере воздуха. Известным способом получают катодный материал, имеющий размер частиц в диапазоне 2,6-11,7 мкм (патент JP 2009004310, МКИ Н01М 4/50, 2009 г.).
Общим признаком с заявляемым способом является термообработка при температуре 1000°С в атмосфере воздуха.
К недостатком известного способа относятся сложность технологического процесса, обусловленная сложностью используемого оборудования, а также сложный состав известного материала, включающий смесь сложного оксида лития, никеля, кобальта и марганца, содержащего в качестве дополнительного элемента металл, выбранный из группы: Мо, W, Nb, Та, Re; и сложного оксида со структурой шпинели.
Известен способ получения катодного материала для литиевых батарей, в котором водный раствор смеси сульфатов марганца, никеля и кобальта с добавлением кислого углекислого аммония нагревают при температуре 75-90°С в течение 12 часов, а затем полученный порошок сложного карбоната сушат при температуре 110°С в течение 10 часов. После чего добавляют гидроксид лития в количестве, превышающем стехиометрию, и кальцинируют в атмосфере воздуха при 500°С и 1000°С, соответственно (Ping He, Haoran Wang, Lu Qi, Tetsuya Osaka "Electrochemical characteristics of layered LiNi1/3Co1/3Mn1/3O2 and with different synthesis conditions", J of Power Sources 160, 2006, p.627-632). Способ позволяет получить сложный оксид с равномерным распределением частиц с размером порядка 10 мкм.
Общими признаками с заявляемым способом являются сушка водного раствора смеси соединений марганца, никеля и кобальта с добавлением гелирующего агента с последующим добавлением гидроксида лития и термообработкой смеси.
Недостатками способа являются, во-первых, выделение при отжиге кислых солей газа SO3, что создает "кислотный эффект" в атмосфере, способствующий разъеданию металлических частей оборудования; во-вторых, возможное неполное удаление сульфат-иона из готового продукта, и, как следствие, снижение его качества.
Наиболее близким техническим решением к предлагаемому (принятым за прототип) является способ получения катодного материала, имеющего состав LiNi1/3Co1/3Mn1/3O2, для литий-ионных аккумуляторов, включающий получение исходного раствора нитратов лития, кобальта, марганца и никеля, добавление в раствор желатина с последующим упариванием раствора до вязкого состояния (гелирование), высушиванием массы прекурсора при 120°С в течение 12 часов и отжигом при 750°С в течение 12-24 часов. В результате получается стабильный к воздействию внешней атмосферы и влаги продукт. Морфология такого материала - дискретный (неагломерированный) порошок шарообразных частиц диаметром 1 мкм (P.Periasamy, N.Kalaiselvi, H.S.Kim, ”High voltage and high capacity characteristics of LiNi1/3Co1/3Mn1/3O2 cathode for lithium Battery applications", Int.J.Electrochem.Sci., 2007, V.2, P.689-699).
Признаки прототипа, общие с заявляемым способом, следующие: нагревание исходной смеси нитратов соответствующих металлов и гелирующего агента с последующими сушкой и кальцинированием, полученного после нагревания исходной смеси, порошка.
Недостатками прототипа являются: использование в качестве гелирующего агента трудно сгорающего желатина, что создает опасность появления в продукте остаточного углерода; длительность процессов сушки и отжига (12-24 часов); невозможность регулирования размера частиц.
Технический результат, достигаемый в предлагаемом способе получения катодного материала для литий-ионных аккумуляторов, заключается в возможности регулирования размера частиц материала в нужном рабочем диапазоне наряду с сохранением овальной формы частиц и нормальным их распределением.
Достигается вышеуказанный технический результат тем, что в предлагаемом способе получения катодного материала, имеющего состав LiNi1/3Co1/3Mn1/3O2, для литий-ионных аккумуляторов, включающем нагревание исходного водного раствора нитратов соответствующих металлов и гелирующего агента с последующими сушкой и кальцинированием (термообработкой) полученного после нагревания исходной смеси порошка, в качестве гелирующего агента используют глицин в количестве 280-500 г на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1, а нитрат лития вводят путем пропитки им порошка, полученного после нагревания и сушки исходной смеси.
Отличительные признаки предлагаемого способа получения катодного материала для литий-ионных аккумуляторов, обеспечивающие соответствие его критерию «новизна», следующие: использование в качестве гелирующего агента глицина в количестве 280-500 г на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1, и введении нитрата лития путем пропитки им осадка, полученного после нагревания и сушки исходной смеси.
Для обоснования соответствия предлагаемого способа получения катодного материала для литий-ионного аккумулятора критерию «изобретательский уровень» был проведен анализ известных решений по литературным источникам, в результате которого не обнаружено технических решений, содержащих совокупность известных и отличительных признаков предлагаемого способа, дающих вышеуказанный технический результат. Поэтому, по мнению авторов, предлагаемый способ получения катодного материала для литий-ионного аккумулятора соответствует критерию «изобретательский уровень».
Исследования, проведенные авторами, позволили установить целесообразность использования глицина состава H2NCH2COOH в качестве гелирующего агента при получении катодного материала на основе сложного оксида, способствующего процессу горения. Используемый в известном способе желатин служит для получения гелеобразной массы исходных нитратов и способствует процессу горения. Использование в предлагаемом способе в качестве органической добавки глицина, который является более высококалорийным топливом, чем желатин, и вступает во взаимодействие с нитратами металлов при температурах 150-200°С, инициирует самораспространяющийся синтез, в течение которого температура в зоне реакции возрастает до 600-800°С. В результате прекурсор приобретает кристаллическую структуру в течение 2-5 минут (в зависимости от содержания глицина) с субмикронными слабо агрегированными частицами овальной формы, равномерно распределенными. Введение глицина в количестве, превышающем 500 г, на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1, способствует протеканию реакции с неприемлемо большой потерей промежуточного сложного оксида. Введение глицина в количестве меньше 280 г на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1, обусловливает спорадическое протекание реакции и ее затухание. При этом, в связи с высокой температурой в процессе самораспространяющегося синтеза, существует опасность частичного испарения лития и, как следствие, отклонения от стехиометрии. Для исключения такой возможности нитрат лития вводят путем пропитки порошка, полученного после нагревания исходной смеси. При этом использование нитрата лития является предпочтительным, поскольку он хорошо растворим в воде.
Получение сложного стехиометрического оксида протекает при двухстадийном отжиге, причем первая стадия (500°С) необходима для разложения нитрата лития и формирования конечного продукта, а вторая (800-1000°С) наряду с обеспечением полного удаления свободного оксида лития позволяет (в зависимости от температуры) регулировать размер частиц в пределах 1-3- мкм. Как показали исследования, той же цели служит помол, который проводят после первой стадии отжига и вторично после второй стадии для улучшения равномерности распределения и уменьшения агрегации порошка.
Предлагаемый способ может быть осуществлен следующим образом. Готовят рабочий раствор нитратов марганца, никеля и кобальта, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1. В раствор добавляют глицин в количестве 280-500 г на 1000 г безводных нитратов кобальта, марганца и никеля. После чего помещают в резервуар из алюминиевого сплава и нагревают до температуры 150-200°С и выдерживают до полного высыхания массы и последующего ее сгорания до получения черного объемного порошка, который переносят в эмалированный реактор и пропитывают раствором нитрата лития с концентрацией 50-70 г/л лития для получения соотношения Li+1:Mn+2:Co+2:Ni+2, равного 3: 1:1:1. Смесь перемешивают и сушат при температуре 200-250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 4 часов при температуре 500°С. Отожженный продукт подвергают помолу в мельнице из оргстекла при нагрузке 1:3 в течение 2 часов. После помола снова помещают в тигли и проводят отжиг при 800-1000°С в течение 5 часов. Готовый продукт помещают в мельницу и проводят помол при нагрузке 1:1 в течение 1 часа, после чего фасуют. Содержание основного вещества 100%. Выход 99%. По данным рентгеноструктурного анализа получают порошок состава LiNi1/3Co1/3Mn1/3O2 с нормальным распределением частиц овальной формы с размерами в диапазоне 5-30 мкм, который может быть использован в качестве катодного материала для литий-ионных аккумуляторов.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Готовят рабочий раствор 1,3 л нитрата марганца (концентрация 206,2 г/л); 2,11 л нитрата никеля (с концентрацией 136,4 г/л) и 2,34 л нитрата кобальта (с концентрацией 123,4 г/л), взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1. В раствор добавляют глицин в количестве 280 г на 1000 г безводных нитратов кобальта, марганца и никеля. После чего помещают в реактор из алюминиевого сплава и нагревают до температуры 150°С и выдерживают до полного высыхания и последующего сгорания до получения черного объемного порошка, который переносят в эмалированный реактор и пропитывают 1,88 л раствора нитрата лития с концентрацией 50 г/л лития для получения соотношения Li+1:Mn+2:Co+2:Ni+2, равного 3:1:1:1. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 4 часов при температуре 500°С. Отожженный продукт подвергают помолу в мельнице из оргстекла при нагрузке 1:3 в течение 2 часов. После помола снова помещают в тигли и проводят отжиг при 800°С в течение 5 часов. Готовый продукт помещают в мельницу и проводят помол при нагрузке 1:1 в течение 1 часа, после чего фасуют. Содержание основного вещества 100%. Выход 99%. По данным рентгено-структурного анализа получают порошок состава LiNi1/3Co1/3Mn1/3O2 с нормальным распределением частиц овальной формы с размерами в диапазоне 3-15 мкм.
Пример 2. Готовят рабочий раствор нитратов марганца, никеля и кобальта, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1, как описано в примере 1. В раствор добавляют глицин в количестве 500 г на 1000 г безводных нитратов кобальта, марганца и никеля. После чего помещают в реактор из алюминиевого сплава и нагревают до температуры 200°С и выдерживают до полного высыхания и последующего сгорания до получения черного объемного порошка, который переносят в эмалированный реактор и пропитывают 1,34 л раствора нитрата лития с концентрацией 70 г/л лития для получения соотношения Li+1:Мn+2:Со+2:Ni+2, равного 3: 1:1:1. Смесь перемешивают и сушат при температуре 250°С до сухого состояния. Затем помещают в корундовые тигли и отжигают в течение 4 часов при температуре 500°С. Отожженный продукт подвергают помолу в мельнице из оргстекла при нагрузке 1:3 в течение 2 часов. После помола снова помещают в тигли и проводят отжиг при 1000°С в течение 5 часов. Готовый продукт помещают в мельницу и проводят помол при нагрузке 1:1 в течение 1 часа, после чего фасуют. Содержание основного вещества 100%. Выход 99%. По данным рентгеноструктурного анализа получают порошок состава LiNi1/3Co1/3Mn1/3O2 с нормальным распределением частиц овальной формы с размерами в диапазоне 15-30 мкм.

Claims (1)

  1. Способ получения катодного материала, имеющего состав LiNi1/3Co1/3Mn1/3O2, для литий-ионных аккумуляторов, включающий нагревание исходной смеси нитратов соответствующих металлов и гелирующего агента с последующими сушкой и кальцинированием полученного после нагревания исходной смеси порошка, отличающийся тем, что в качестве гелирующего агента используют глицин в количестве 280-500 г на 1000 г безводных нитратов кобальта, марганца и никеля, взятых в соотношении Mn+2:Co+2:Ni+2, равном 1:1:1; а нитрат лития вводят путем пропитки им порошка, полученного после нагревания и сушки исходной смеси.
RU2010152641/07A 2010-12-22 2010-12-22 Способ получения катодного материала для литий-ионных аккумуляторов RU2451369C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010152641/07A RU2451369C1 (ru) 2010-12-22 2010-12-22 Способ получения катодного материала для литий-ионных аккумуляторов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010152641/07A RU2451369C1 (ru) 2010-12-22 2010-12-22 Способ получения катодного материала для литий-ионных аккумуляторов

Publications (1)

Publication Number Publication Date
RU2451369C1 true RU2451369C1 (ru) 2012-05-20

Family

ID=46230889

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010152641/07A RU2451369C1 (ru) 2010-12-22 2010-12-22 Способ получения катодного материала для литий-ионных аккумуляторов

Country Status (1)

Country Link
RU (1) RU2451369C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638316C1 (ru) * 2016-07-25 2017-12-13 Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" Способ получения катодного материала для литий-ионных аккумуляторов
RU2643164C1 (ru) * 2017-01-09 2018-01-31 Публичное акционерное общество "Сатурн" (ПАО "Сатурн") Способ получения катодного материала для литий-ионных аккумуляторов
RU2723638C1 (ru) * 2019-02-05 2020-06-17 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Способ создания однородного углеродного покрытия с контролируемой толщиной на поверхности катодного материала для металл-ионных аккумуляторов и катодный материал, полученный указанным способом
RU2776156C1 (ru) * 2021-12-07 2022-07-14 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Катодный материал с высокой объемной плотностью энергии для литий-ионных аккумуляторов

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2307429C1 (ru) * 2006-04-20 2007-09-27 Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2307429C1 (ru) * 2006-04-20 2007-09-27 Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INT.J.ELECTROCHEM.SCI. - 2 (2007), р.689-699. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638316C1 (ru) * 2016-07-25 2017-12-13 Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" Способ получения катодного материала для литий-ионных аккумуляторов
RU2643164C1 (ru) * 2017-01-09 2018-01-31 Публичное акционерное общество "Сатурн" (ПАО "Сатурн") Способ получения катодного материала для литий-ионных аккумуляторов
RU2723638C1 (ru) * 2019-02-05 2020-06-17 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Способ создания однородного углеродного покрытия с контролируемой толщиной на поверхности катодного материала для металл-ионных аккумуляторов и катодный материал, полученный указанным способом
RU2776156C1 (ru) * 2021-12-07 2022-07-14 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Катодный материал с высокой объемной плотностью энергии для литий-ионных аккумуляторов

Similar Documents

Publication Publication Date Title
JP6991184B2 (ja) リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP6986883B2 (ja) リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
CN106816600B (zh) 一种磷酸锰铁锂类材料及其制备方法以及电池浆料和正极与锂电池
JP2019108264A (ja) Li−Ni複合酸化物粒子粉末、並びに非水電解質二次電池
KR101369658B1 (ko) 비수전해질 이차 전지용 Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP4546937B2 (ja) 非水電解質リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
Marincaş et al. Review on synthesis methods to obtain LiMn 2 O 4-based cathode materials for Li-ion batteries
WO2016190419A1 (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2018014326A (ja) リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
KR20170107976A (ko) 리튬 풍부 망간 기반의 캐소드 물질, 이의 제조 방법 및 리튬-이온 배터리
KR20150073969A (ko) Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JPWO2015053357A1 (ja) リチウム過剰型層状リチウム金属複合酸化物の製造方法
JP6471693B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
JPH10247497A (ja) リチウム2次電池用陽極活物質の製造方法
JP6090661B2 (ja) リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池
TW201424100A (zh) Li-Ni複合氧化物粒子粉末以及非水電解質蓄電池
WO2017104736A1 (ja) 遷移金属水酸化物粒子の製造方法
JP6583662B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JPWO2016148096A1 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
KR101608733B1 (ko) 리튬이차전지용 양극 활물질의 제조방법
JP6274536B2 (ja) リチウム二次電池用混合活物質の製造方法、リチウム二次電池用電極の製造方法及びリチウム二次電池の製造方法
RU2451369C1 (ru) Способ получения катодного материала для литий-ионных аккумуляторов
JP2022545945A (ja) 発熱的に製造されたジルコニウム含有酸化物でコーティングされた混合リチウム遷移金属酸化物
TW201803803A (zh) 磷酸釩鋰的製造方法
JP7205114B2 (ja) 遷移金属複合水酸化物の製造方法、および、リチウムイオン二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161223