RU2447031C2 - Способ нанесения покрытия из оксида цинка на изделие (варианты) - Google Patents

Способ нанесения покрытия из оксида цинка на изделие (варианты) Download PDF

Info

Publication number
RU2447031C2
RU2447031C2 RU2009111377/03A RU2009111377A RU2447031C2 RU 2447031 C2 RU2447031 C2 RU 2447031C2 RU 2009111377/03 A RU2009111377/03 A RU 2009111377/03A RU 2009111377 A RU2009111377 A RU 2009111377A RU 2447031 C2 RU2447031 C2 RU 2447031C2
Authority
RU
Russia
Prior art keywords
starting materials
base
mixing zone
zinc
water
Prior art date
Application number
RU2009111377/03A
Other languages
English (en)
Other versions
RU2009111377A (ru
Inventor
Майкл Б. АБРАМС (US)
Майкл Б. АБРАМС
Роман И. КОРОТКОВ (US)
Роман И. КОРОТКОВ
Гэри С. СИЛВЕРМАН (US)
Гэри С. СИЛВЕРМАН
Райан СМИТ (US)
Райан СМИТ
Джеффери Л. СТРИКЕР (US)
Джеффери Л. СТРИКЕР
Original Assignee
Пилкингтон Груп Лимитед
Аркема, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пилкингтон Груп Лимитед, Аркема, Инк. filed Critical Пилкингтон Груп Лимитед
Publication of RU2009111377A publication Critical patent/RU2009111377A/ru
Application granted granted Critical
Publication of RU2447031C2 publication Critical patent/RU2447031C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способу нанесения покрытия из оксида цинка на прозрачную основу. В заявке описан способ химического осаждения из паровой фазы для нанесения покрытия из оксида цинка на основу путем подачи двух потоков газообразных исходных веществ на поверхность основы и смешивания этих потоков газообразных исходных веществ вблизи этой поверхности в течение промежутка времени менее 1 секунды для образования покрытия из оксида цинка со скоростью осаждения более 5 нм/с. Основа перемещается мимо зоны перемешивания газов, при этом поверхность основы находится при атмосферном давлении и имеет температуру, достаточную для начала реакции между цинксодержащим соединением и водой. Технический результат изобретения - обеспечение возможности нанесения пленки оксида цинка путем химического осаждения из паровой фазы при атмосферном давлении с высокими скоростями осаждения в процессе изготовления флоат-стекла. 2 н. и 10 з.п. ф-лы, 7 пр.

Description

Настоящее изобретение относится к способу нанесения покрытия из оксида цинка на прозрачную основу (подложку); в частности, оно касается способа нанесения покрытия из оксида цинка на стекло химическим осаждением из паровой (газовой) фазы.
Способ осаждения металлооксидных покрытий, прореагировавших с Н2О, описан в патентной литературе.
Например, в патенте US 4751149 описан способ химического осаждения из паровой фазы (ХОПФ, англ. CVD) для нанесения пленок оксида цинка, обладающих определенными свойствами, благодаря которым они могут применяться в фоторезистивных приборах (фотоэлементах с внутренним фотоэффектом), таких как солнечные элементы (фотоэлементы) и другие фотоэлектрические (фотогальванические) приборы. Способ осаждения включает введение цинкорганического соединения, оксиданта и инертного газа-носителя в камеру, в которой находится основа, нагретая до температуры в интервале примерно от 60°С до 350°С. Сообщается, что полученные пленки оксида цинка имеют удельное сопротивление в пределах примерно от 10-4 до 10-2 Ом·сантиметр. Такие пленки содержат водород, а при введении в камеру наряду с цинкорганическим соединением и оксидантом летучих соединений элементов III группы могут также содержать элемент III группы.
В патенте US 5698262 описан способ нанесения покрытий из оксида олова с легирующими примесями, используя однородную смесь реагентов в паровой фазе, содержащую оловоорганическое соединение, фтористоводородную кислоту, воду и кислород, и подавая эту смесь реагентов на поверхность горячей ленты стекла, где вышеуказанные соединения вступают в реакцию с образованием покрытия из оксида олова, содержащего фтор. Покрытия из оксида олова, содержащие фтор, нанесенные предлагаемым в изобретении способом, характеризуются низким поверхностным удельным сопротивлением слоя и повышенным постоянством поверхностного удельного сопротивления слоя на поверхности стеклянной основы, имеющей покрытие.
Было бы желательно иметь возможность наносить пленки оксида цинка путем химического осаждения из паровой фазы при атмосферном давлении с высокими скоростями осаждения в процессе изготовления флоат-стекла, используя сравнительно недорогие исходные вещества.
В общем в настоящем изобретении обеспечивается способ химического осаждения из паровой фазы при атмосферном давлении для нанесения покрытия из оксида цинка на горячую стеклянную основу, включающий первый и второй потоки газообразных исходных веществ, причем эти газовые потоки состоят соответственно из цинксодержащего соединения и воды. Первый и второй газовые потоки смешивают при соответствующем регулировании и подают на поверхность горячей стеклянной основы, поверхность которой имеет температуру, достаточную для начала реакции между цинксодержащим соединением и водой. Заданное время перемешивания первого и второго потоков газообразных исходных веществ является достаточно коротким, так что на поверхности стекла со скоростью осаждения более 5 нм/с образуется покрытие из оксида цинка.
Соответственно, в одном из вариантов осуществления настоящего изобретения предлагается способ химического осаждения из паровой фазы для нанесения покрытия из оксида цинка на основу, в котором осуществляют:
формирование первого потока газообразных исходных веществ, включающего цинксодержащее соединение;
формирование второго потока газообразных исходных веществ, включающего воду;
подачу первого и второго потоков газообразных исходных веществ в зону перемешивания газов на заданном расстоянии над поверхностью стеклянной основы, на которую наносится покрытие и которая находится снаружи зоны перемешивания газов; и
смешивание вместе первого и второго потоков газообразных исходных веществ в зоне перемешивания газов с образованием смеси исходных веществ и затем, при выходе из зоны перемешивания газов, взаимодействие этой смеси с поверхностью основы, когда она перемещается мимо зоны перемешивания газов, и при этом поверхность основы находится при атмосферном давлении и имеет температуру, достаточную для начала реакции между указанными цинксодержащим соединением и водой;
причем первый и второй потоки газообразных исходных веществ смешивают вместе в зоне перемешивания газов в течение промежутка времени менее 1 секунды перед контактом смеси исходных веществ с поверхностью подложки, так что покрытие из оксида цинка формируется на этой поверхности при скорости осаждения более 5 нм/с.
В другом варианте осуществления настоящего изобретения предлагается способ химического осаждения из паровой фазы для нанесения покрытия из оксида цинка на основу, в котором осуществляют:
формирование первого потока газообразных исходных веществ, включающего цинксодержащее соединение;
формирование второго потока газообразных исходных веществ, включающего источник кислорода, содержащий воду;
подачу первого и второго потоков газообразных исходных веществ в зону перемешивания газов на заданном расстоянии над поверхностью стеклянной основы, на которую наносится покрытие и которая находится снаружи зоны перемешивания газов и при атмосферном давлении; и
смешивание вместе первого и второго потоков газообразных исходных веществ в зоне перемешивания газов с образованием смеси исходных веществ и затем, при выходе из зоны перемешивания газов, взаимодействие этой смеси с поверхностью основы, когда она перемещается мимо зоны перемешивания газов, и при этом поверхность основы имеет температуру, достаточную для начала реакции между указанными цинксодержащим соединением и водой;
причем первый и второй потоки газообразных исходных веществ смешивают вместе в зоне перемешивания газов в течение промежутка времени менее 1 секунды, так что при контакте с поверхностью подложки покрытие из оксида цинка формируется на этой поверхности при скорости осаждения более 5 нм/с.
Несмотря на то что покрытия из оксида цинка и способы их нанесения известны, экономически эффективные способы нанесения пиролитических покрытий из оксида цинка с подходящей для промышленного производства скоростью образования покрытия в процессе изготовления стекла на линии для производства флоат-стекла ранее известны не были. Настоящее изобретение устраняет прежние трудности в нанесении таких пленок оксида цинка с подходящей для промышленного производства скоростью образования пленки.
Хотя в связи с настоящим изобретением можно использовать любой подходящий способ химического осаждения из паровой фазы при атмосферном давлении, предпочтительным является способ осаждения, раскрытый в патенте US 6268019 (Atofina Chemicals, Inc.). Этот патент целиком включен в данное описание в виде ссылки. Показано, что раскрытым в нем способом можно осаждением получать металлооксидные пленки различного типа с подходящей для промышленного производства скоростью образования пленки, например со скоростью более 5 нм/с. Кроме того, преимущество способа осаждения, раскрытого в этом патенте, заключается в том, что можно изменять продолжительность перемешивания реагирующих веществ, что, в свою очередь, позволяет "регулировать" свойства в данном случае покрытий из оксида цинка. В частности, настоящее изобретение демонстрирует преимущества использования воды для повышения скорости образования пленок оксида цинка, которые здесь будут подробно рассмотрены.
Такие стеклоизделия с покрытиями из оксида цинка используются в виде слоев с низким коэффициентом излучения и (или) солнцезащитных слоев в строительном остеклении. К другим возможным областям применения этой электропроводной оксидной пленки относятся фотоэлектрические (фотогальванические) приборы, твердотельные светоизлучающие устройства и органические светодиоды, устройства для индукционного (высокочастотного) нагрева, индикаторные панели (дисплеи с плоским экраном) и экраны с сенсорной индикаторной панелью, а также светопроницаемые тонкопленочные транзисторы, которые находят применение в электронных метках (микрочипах для радиочастотной идентификации) и интегральных схемах.
Подходящими цинксодержащими соединениями являются, например, соединения, соответствующие общей формуле R1R2Zn или R1R2Zn-[R3R4N(CHR5)n(CH2)m(CHR6)nNR7R8], где R1-8 могут быть одинаковыми или разными алкильными или арильными группами, такими как метил, этил, изопропил, н-пропил, н-бутил, втор-бутил, фенил или замещенный фенил, и могут включать один или несколько фторсодержащих заместителей, R5 и R6 могут представлять собой Н-группу, или алкильную, или арильную группу, n может равняться 0 или 1, a m может равняться 1-6, если n=0, и m может равняться 0-6, если n=1.
Молярная концентрация смеси газообразных исходных веществ может лежать в интервале между 3 и 14 мол.%.
Подходящими кислородсодержащими соединениями являются, например: органические ацетаты, спирты, молекулярный кислород и вода (Н2О), причем, предпочтительно, Н2О или спирты, содержащие регулируемое количество воды (например, спирт 2-бутанол, а заданное количество воды - между 1 и 10 мол.%).
В качестве компонента потока газообразных реагентов, предлагаемого в настоящем изобретении, может также использоваться инертный газ-носитель, такой как азот, гелий или подобный газ.
Установлено, что для протекания требуемых химических реакций температура предпочтительно должна быть не менее 400°С, в частности между 500°С и 700°С.
Установлено, что приемлемая продолжительность перемешивания потоков химических исходных веществ, предлагаемых в изобретении, предпочтительно должна быть менее 1 секунды, в частности, предпочтительно, менее 0,5 секунды, а более предпочтительно, в интервале между 70 и 100 мс.
Соответствующие стеклянные основы предпочтительно изготовлены в широко известном "флоат-процессе", описанном, например, в патентах US 3356474, 3433612, 3531274 и 3790361, которые включены в данное описание в виде ссылок.
Примеры
Представленные ниже не ограничивающие примеры иллюстрируют некоторые особенности настоящего изобретения.
Устройство для АДХОПФ (химическое осаждение из паровой фазы при атмосферном давлении, англ. APCVD), которое использовали в этих экспериментах, аналогично устройству, описанному в патенте US 6268019 B1. Основной особенностью этого устройства является возможность регулировать продолжительность перемешивания газообразных реагентов благодаря раздельной подаче паров в насадку для нанесения покрытий. В представленных ниже сравнительном примере 1 и примере 1 насадка для нанесения покрытий состояла из концентрических трубок - второй трубки диаметром 1/4 дюйма, введенной в первую трубку диаметром 5/8 дюйма с помощью фитинга, уплотняемого вручную, что позволяет изменять длину зоны перемешивания, и внешней трубки диаметром примерно 1 дюйм, соединенной с вытяжным вентилятором для удаления побочных продуктов и непрореагировавших паров. Пленки, получаемые с такой конфигурацией насадки, были круговыми с диаметром приблизительно 3/4 дюйма. В сравнительном примере 2 и примерах 2-7, представленных ниже, насадка для нанесения покрытий состояла из концентрических трубок - второй трубки диаметром 1/4 дюйма, введенной в первую трубку диаметром 3/4 дюйма с помощью фитинга, уплотняемого вручную, что позволяет изменять длину зоны перемешивания, и внешней трубки диаметром примерно 1,25 дюйма, соединенной с вытяжным вентилятором для удаления побочных продуктов и непрореагировавших паров. Пленки, получаемые с такой конфигурацией насадки, были круговыми с диаметром приблизительно 7/8 дюйма.
Сравнительный пример 1
В первую питающую трубку при температуре 170°С подавали газовую смесь с 0,034 мол.% Et2Zn·ТЭЭДА (ТЭЭДА - N,N,N',N'-тетраэтилэтилендиамин, англ. TEEDA) в потоке азота в качестве газа-носителя при расходе 7,5 (стандартных) л/мин. Во вторую питающую трубку при температуре 170°С подавали газовую смесь с 0,60 мол.% О2 очень высокой степени чистоты в потоке азота при расходе 5 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 23 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 114 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось натриево-кальциевое силикатное флоат-стекло толщиной 2,5 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 675°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 650°С. Время осаждения пленок составило 500 секунд, а толщина полученной пленки ZnO - 297 нм при скорости осаждения 0,6 нм/с. Матовость таких пленок, измеренная прибором для измерения уровня видимости BYK HazeGuard Plus, в среднем равнялась 0,84%.
Пример 1
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,096% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 6,92 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 76 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 675°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 650°С. Время осаждения пленок составило 60 секунд, а толщина полученных пленок ZnO - 531 нм при скорости осаждения 8,8 нм/с. Матовость таких пленок, измеренная прибором для измерения уровня видимости BYK HazeGuard Plus, в среднем равнялась 2,65%.
Пример 2
В первую питающую трубку при температуре 170°С подавали газовую смесь с 1,04 мол.% Et2Zn·ТЭЭЦА в потоке азота в качестве газа-носителя при расходе 15 (станд.) л/мин. Во вторую питающую трубку при температуре 170°С подавали газовую смесь с 8,30 мол.% воды в потоке азота при расходе 5 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 71 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 675°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 650°С. Время осаждения пленок составило 3 секунды, а толщина полученных пленок ZnO - 287 нм при скорости осаждения 95,7 нм/с. Матовость таких пленок, измеренная прибором для измерения уровня видимости BYK HazeGuard Plus, в среднем равнялась 4,0%.
Сравнительный пример 2
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,096% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 3,46 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания поступающего материала из первой и второй питающих трубок приблизительно 400 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 675°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 650°С. Время осаждения пленок составило 60 секунд, но при этих условиях осаждение пленки на основу не произошло.
Пример 3
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,29% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 0,58 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 76 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 525°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 500°С. Время осаждения пленок составило 20 секунд, а толщина пленки - 467 нм при скорости осаждения 23,4 нм/с.
Пример 4
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,29% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 1,16 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 76 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 525°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 500°С. Время осаждения пленок составило 20 секунд, а толщина пленки - 502 нм при скорости осаждения 25,1 нм/с.
Пример 5
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,29% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 4,65 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 76 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 525°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 500°С. Время осаждения пленок составило 20 секунд, а толщина пленки - 549 нм при скорости осаждения 27,4 нм/с.
Пример 6
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,29% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 6,92 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 76 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 525°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 500°С. Время осаждения пленок составило 20 секунд, а толщина пленки - 581 нм при скорости осаждения 29 нм/с.
Пример 7
В первую питающую трубку при температуре 160°С подавали газовую смесь с 0,29% Et2Zn·ТЭЭДА в потоке азота в качестве газа-носителя при расходе 12 (станд.) л/мин. Во вторую питающую трубку при температуре 160°С подавали газовую смесь с 13,84 мол.% воды в потоке азота при расходе 3 (станд.) л/мин. Чтобы обеспечить длину зоны перемешивания 18 см, что соответствует продолжительности перемешивания потоков поступающего материала из первой и второй питающих трубок приблизительно 76 мс, была установлена вторая насадка. Основой для нанесения покрытия являлось боросиликатное флоат-стекло толщиной 1,1 мм. Основу нагревали на резистивно нагретом (выделяющем тепло) никелевом блоке с температурой 525°С. Температура основы, зарегистрированная инфракрасным пирометром, была равна 500°С. Время осаждения пленок составило 20 секунд, а толщина пленки - 588 нм при скорости осаждения 29,4 нм/с.
Следует отметить, что в газовой смеси в сравнительном примере 1 для реакции с соединением диэтилцинк·ТЭЭДА используется 0,60 мол.% О2 очень высокой степени чистоты в потоке азота в качестве газа-носителя. Для получения пленки ZnO толщиной 297 нм требовалось время осаждения 500 секунд. Следовательно, зарегистрированная скорость образования пленки составила всего 0,6 нм/с.
В примере 1 в соответствии со способом, предлагаемым в изобретении, О2 заменили водой. При осаждении в течение 60 секунд получили пленку толщиной 531 нм или скорость образования пленки - чуть менее 9 нм/с.
В соответствии со способом, предлагаемым в изобретении, доля воды в газовой смеси в примере 2 была значительно выше, чем в примере 1 (8,30 мол.% в сравнении с 6,92 мол.%); в соответствии со способом, предлагаемым в изобретении, доля исходного вещества, содержащего цинк, мол.%, в примере 2 (1,04 мол.%,) также была больше, чем в сравнительном примере 1 и примере 1 (0,034 мол.% и 0,096 мол.%). При вышеуказанных содержаниях компонентов в газовой смеси в примере 2 всего за 3 секунды образовалась пленка ZnO толщиной 287 нм. Это соответствует скорости образования пленок, равной приблизительно 95,7 нм/с. Пленки в примере 2 были более матовыми, чем пленки в примере 1.
В сравнительном примере 2 основное внимание уделяется повышению влияния длины зоны перемешивания исходных веществ и продолжительности перемешивания исходных веществ (времени пребывания в зоне). В этом примере время пребывания в зоне перемешивания значительно увеличено, в результате чего, после того как предположительно произошла предварительная химическая реакция, пленка не образовалась.
Примеры 3 и 4 в соответствии со способом, предлагаемым в изобретении, показывают, что даже при температурах нанесения покрытия, соответствующих нижнему пределу предпочтительного интервала для осуществления настоящего изобретения, и при минимальных концентрациях исходных веществ пленки оксида цинка хорошего качества можно получить с приемлемой для промышленного производства скоростью.
Кроме того, пример 5, почти аналогичный примерам 3 и 4, но с более высоким содержанием воды, показывает положительное влияние содержания воды на скорость осаждения пленки.
Точно так же примеры 6 и 7 показывают влияние значительного увеличения доли воды на толщину пленки и скорость ее образования.
Очевидно, что сравнительно большая доля Н2О в газовой смеси обеспечивает быстрое и эффективное взаимодействие с соответствующими цинксодержащими исходными веществами с образованием пленок оксида цинка с приемлемой для промышленного производства скоростью.
Хотя описание настоящего изобретения касается различных конкретных примеров и вариантов его осуществления, следует понимать, что данное изобретение этим не ограничивается и что оно может иметь различное применение на практике в пределах его объема, определенного приведенной ниже формулой изобретения.

Claims (12)

1. Способ химического осаждения из паровой фазы для нанесения покрытия из оксида цинка на основу, в котором осуществляют:
формирование первого потока газообразных исходных веществ, включающего цинксодержащее соединение,
формирование второго потока газообразных исходных веществ, включающего воду,
подачу первого и второго потоков газообразных исходных веществ в зону перемешивания газов на заданном расстоянии над поверхностью стеклянной основы, на которую наносится покрытие, и которая находится снаружи зоны перемешивания газов; и
смешивание вместе первого и второго потоков газообразных исходных веществ с образованием смеси исходных веществ и затем при выходе из зоны перемешивания газов взаимодействие этой смеси с поверхностью основы, когда она перемещается мимо зоны перемешивания газов, и при этом поверхность основы находится при атмосферном давлении и имеет температуру, достаточную для начала реакции между указанными цинксодержащим соединением и водой,
причем первый и второй потоки газообразных исходных веществ смешивают вместе в зоне перемешивания газов в течение промежутка времени менее 1 с перед контактом смеси исходных веществ с поверхностью подложки, так что покрытие из оксида цинка формируется на этой поверхности при скорости осаждения более 5 нм/с.
2. Способ по п.1, в котором стеклянную основу нагревают до температуры не менее 400°С.
3. Способ по п.2, в котором стеклянную основу нагревают до температуры 500-700°С.
4. Способ по п.1, в котором цинксодержащее соединение имеет формулу R1R2Zn или R1R2Zn-[R3R4N(CHR5)n(CH2)m(CHR6)nNR7R8], где
R1-8 могут быть одинаковыми или разными алкильными или арильными группами, такими как метил, этил, изопропил, н-пропил, н-бутил, втор-бутил, фенил или замещенный фенил, и могут включать один или несколько фторсодержащих заместителей,
R5 и R6 могут представлять собой Н-группу или алкильную или арильную группы,
n может равняться 0 или 1, а
m может равняться 1-6, если n=0, и m может равняться 0-6, если n=1.
5. Способ по п.1, в котором цинксодержащее соединение и воду смешивают в зоне перемешивания газов в течение менее 0,5 с.
6. Способ по п.5, в котором цинксодержащее соединение и воду смешивают в зоне перемешивания газов в течение 70-100 мс.
7. Способ по п.1, в котором скорость осаждения покрытия из оксида цинка составляет более 20 нм/с.
8. Способ по п.1, в котором молярная концентрация смеси газообразных исходных веществ составляет от 3 до 14 мол.%.
9. Способ по п.4, в котором цинксодержащее соединение выбрано из группы, включающей: Me2Zn или Ме2Zn·ТМПДА (ТМПДА=N,N,N',N'-тетраметил-1,3-пропандиамин), или Ме2Zn·ТЭЭДA (ТЭЭДA=N,N,N',N'-тетраэтилэтилендиамин), или Ме2Zn·ТМЭДА (ТМЭДА=N,N,N',N'-тетраметилэтилендиамин), или Et2Zn, или Et2Zn·ТЭЭДA, или Et2Zn·ТМПДА, или Et2Zn·ТМЭДА.
10. Способ химического осаждения из паровой фазы для нанесения покрытия из оксида цинка на основу, в котором осуществляют: формирование первого потока газообразных исходных веществ, включающего цинксодержащее соединение, формирование второго потока газообразных исходных веществ, включающего источник кислорода, содержащий воду, подачу первого и второго потоков газообразных исходных веществ в зону перемешивания газов на заданном расстоянии над поверхностью стеклянной основы, на которую наносится покрытие, и которая находится снаружи зоны перемешивания газов и при атмосферном давлении; и смешивание вместе первого и второго потоков газообразных исходных веществ с образованием смеси исходных веществ и затем при выходе из зоны перемешивания газов взаимодействие этой смеси с поверхностью основы, когда она перемещается мимо зоны перемешивания газов, и при этом поверхность основы имеет температуру, достаточную для начала реакции между указанными цинксодержащим соединением и водой, причем первый и второй потоки газообразных исходных веществ смешивают вместе в зоне перемешивания газов в течение промежутка времени менее 1 с, так что при контакте с поверхностью подложки покрытие из оксида цинка формируется на этой поверхности при скорости осаждения более 5 нм/с.
11. Способ по п.10, в котором источником кислорода, содержащим воду, является спирт, содержащий заданное количество воды.
12. Способ по п.11, в котором используют спирт 2-бутанол, а заданное количество воды составляет от 1 до 10 мол.%.
RU2009111377/03A 2006-08-29 2007-05-03 Способ нанесения покрытия из оксида цинка на изделие (варианты) RU2447031C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84091406P 2006-08-29 2006-08-29
US60/840,914 2006-08-29

Publications (2)

Publication Number Publication Date
RU2009111377A RU2009111377A (ru) 2010-10-10
RU2447031C2 true RU2447031C2 (ru) 2012-04-10

Family

ID=38577550

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009111377/03A RU2447031C2 (ru) 2006-08-29 2007-05-03 Способ нанесения покрытия из оксида цинка на изделие (варианты)

Country Status (11)

Country Link
US (1) US7732013B2 (ru)
EP (1) EP2059627B1 (ru)
JP (2) JP2010502832A (ru)
KR (1) KR101383946B1 (ru)
CN (1) CN101553601B (ru)
AU (1) AU2007290844B2 (ru)
BR (1) BRPI0716387A2 (ru)
MX (1) MX2009002181A (ru)
MY (1) MY147893A (ru)
RU (1) RU2447031C2 (ru)
WO (1) WO2008027087A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI123645B (fi) * 2010-04-20 2013-08-30 Beneq Oy Aerosoliavusteinen kaasukasvatusjärjestelmä
WO2012129358A1 (en) * 2011-03-23 2012-09-27 Pilkington Group Limited Method of depositing zinc oxide coatings by chemical vapor deposition
KR101225739B1 (ko) * 2011-04-22 2013-01-23 삼성코닝정밀소재 주식회사 광전지용 산화아연계 투명 도전막 및 그 제조방법
EP2825687B1 (en) * 2012-03-16 2020-08-19 Pilkington Group Limited Chemical vapor deposition process for depositing zinc oxide coatings
KR101466842B1 (ko) * 2012-11-28 2014-11-28 코닝정밀소재 주식회사 투명전극용 산화아연계 박막 제조방법
CN115362157A (zh) * 2020-04-01 2022-11-18 株式会社Adeka 锌化合物、薄膜形成用原料、薄膜及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508054A (en) * 1981-03-06 1985-04-02 Battelle Memorial Institute Device for depositing a mineral oxide coating on a substrate
US4751149A (en) * 1985-06-04 1988-06-14 Atlantic Richfield Company Chemical vapor deposition of zinc oxide films and products
RU2274616C2 (ru) * 1999-08-10 2006-04-20 Либби-Оуэнс-Форд Ко. Изделие из стекла с солнцезащитным покрытием

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698262A (en) 1996-05-06 1997-12-16 Libbey-Owens-Ford Co. Method for forming tin oxide coating on glass
US6238738B1 (en) * 1996-08-13 2001-05-29 Libbey-Owens-Ford Co. Method for depositing titanium oxide coatings on flat glass
US6071561A (en) * 1997-08-13 2000-06-06 President And Fellows Of Harvard College Chemical vapor deposition of fluorine-doped zinc oxide
US6268019B1 (en) 1998-06-04 2001-07-31 Atofina Chemicals, Inc. Preparation of fluorine modified, low haze, titanium dioxide films
JP2001023907A (ja) * 1999-07-07 2001-01-26 Mitsubishi Heavy Ind Ltd 成膜装置
WO2005072947A1 (en) * 2004-01-23 2005-08-11 Arkema Inc. Solar control films composed of metal oxide heterostructures, and method of making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508054A (en) * 1981-03-06 1985-04-02 Battelle Memorial Institute Device for depositing a mineral oxide coating on a substrate
US4751149A (en) * 1985-06-04 1988-06-14 Atlantic Richfield Company Chemical vapor deposition of zinc oxide films and products
RU2274616C2 (ru) * 1999-08-10 2006-04-20 Либби-Оуэнс-Форд Ко. Изделие из стекла с солнцезащитным покрытием

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU J et al: Deposition of boron doped zinc oxide films and their electrical and optical properties, JOURNAL OF THE ELECTROCHEMICAL SOCIETY. ELECTROCHEMICAL SOCIETY, MANCHESTER, NEW HAMPSHIRE, US, vol.139, N7, July 1992, p.2014-2022, фиг.4). *
JIANHUA HU et al. Textured fluorine-doped ZnO films by atmospheric pressure chemical vapour deposition and their use in amorphous silicon solar cells, Solar cells, Elsevier sequoia, S.A., Lausanne, CH, v.30, N4, 01.05.1991, p.437-450, фиг.1, фиг.4)-Д1. *

Also Published As

Publication number Publication date
EP2059627A1 (en) 2009-05-20
EP2059627B1 (en) 2015-08-05
BRPI0716387A2 (pt) 2013-01-01
JP2013053066A (ja) 2013-03-21
KR20090061635A (ko) 2009-06-16
CN101553601B (zh) 2012-12-12
WO2008027087A1 (en) 2008-03-06
JP2010502832A (ja) 2010-01-28
AU2007290844A1 (en) 2008-03-06
AU2007290844B2 (en) 2011-08-04
CN101553601A (zh) 2009-10-07
US7732013B2 (en) 2010-06-08
MY147893A (en) 2013-01-31
JP6039402B2 (ja) 2016-12-07
RU2009111377A (ru) 2010-10-10
US20080057200A1 (en) 2008-03-06
MX2009002181A (es) 2009-04-22
KR101383946B1 (ko) 2014-04-10

Similar Documents

Publication Publication Date Title
RU2445281C2 (ru) Способ нанесения содержащих легирующие примеси покрытий из оксида цинка, имеющих низкое удельное сопротивление, и изделие, изготавливаемое этим способом
RU2447030C2 (ru) Способ изготовления стеклоизделия с содержащим легирующие примеси покрытием из оксида цинка, имеющим низкое удельное сопротивление, и стеклоизделие с покрытием, изготовленное этим способом
RU2447031C2 (ru) Способ нанесения покрытия из оксида цинка на изделие (варианты)
EP2074239B1 (en) Low temperature method of making a zinc oxide coated article

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170504