RU2444514C2 - Арильные соединения в качестве лигандов ppar и их применение - Google Patents

Арильные соединения в качестве лигандов ppar и их применение Download PDF

Info

Publication number
RU2444514C2
RU2444514C2 RU2009125232/04A RU2009125232A RU2444514C2 RU 2444514 C2 RU2444514 C2 RU 2444514C2 RU 2009125232/04 A RU2009125232/04 A RU 2009125232/04A RU 2009125232 A RU2009125232 A RU 2009125232A RU 2444514 C2 RU2444514 C2 RU 2444514C2
Authority
RU
Russia
Prior art keywords
formula
alkyl
compound represented
compound
mmol
Prior art date
Application number
RU2009125232/04A
Other languages
English (en)
Other versions
RU2009125232A (ru
Inventor
Хеондзоонг КАНГ (KR)
Хеондзоонг КАНГ
Дзунгвоок ЧИН (KR)
Дзунгвоок ЧИН
Дзаехван ЛИ (KR)
Дзаехван ЛИ
Original Assignee
Сеул Нэшнл Юниверсити Индастри Фаундейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сеул Нэшнл Юниверсити Индастри Фаундейшн filed Critical Сеул Нэшнл Юниверсити Индастри Фаундейшн
Publication of RU2009125232A publication Critical patent/RU2009125232A/ru
Application granted granted Critical
Publication of RU2444514C2 publication Critical patent/RU2444514C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C391/00Compounds containing selenium
    • C07C391/02Compounds containing selenium having selenium atoms bound to carbon atoms of six-membered aromatic rings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/111Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • A61K31/10Sulfides; Sulfoxides; Sulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/18Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/20Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton with singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/32Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/08Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Polymers & Plastics (AREA)
  • Neurology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Neurosurgery (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychology (AREA)
  • Epidemiology (AREA)

Abstract

Изобретение относится к соединению формулы I
Figure 00000099
где А представляет собой S или Se; В представляет собой Н или
Figure 00000100
; R1 представляет собой арил, выбранный из следующих структур:
Figure 00000084
R2 представляет собой Н или
Figure 00000101
; R3 представляет собой Н или С1-С8 алкил; R4 и R5 независимо представляют собой Н или С1-С8 алкил; R6 представляет собой H, С1-С8 алкил, С2-С7 алкенил, щелочной металл или щелочноземельный металл; R11 и R12 независимо представляют собой Н, С1-С8 алкил или галоген; R21 представляет собой Н, галоген или С1-С7 алкил; m и n независимо представляют собой целые числа, имеющие значения 1-4; р представляет собой целое число, имеющее значение 1-5; q представляет собой целое число, имеющее значение 1-4; r представляет собой целое число, имеющее значение 1-3; s представляет собой целое число, имеющее значение 1-5; в качестве активатора рецептора активатора пролиферации пероксисом (PPAR) и его гидрату, сольвату, стереоизомеру и фармацевтически приемлемой соли и к фармацевтической композиции, средству для укрепления мышц, средству для улучшения памяти, терапевтическому средству для лечения деменции и болезни Паркинсона. 6 н. и 9 з.п. ф-лы, 8 табл., 348 пр.

Description

Область изобретения
Настоящее изобретение относится к соединению, представленному формулой (I), в качестве лиганда PPAR (Рецептор Активатора Пролиферации Пероксисом), и его гидрату, сольвату, стереоизомеру и фармацевтически приемлемой соли, которое можно использовать для лечения ожирения, гиперлипидемии, артериосклероза и диабета, и к фармацевтической композиции, косметической композиции, укрепляющему средству, средству для улучшения памяти, терапевтическому средству для лечения деменции и болезни Паркинсона, композиции функционального пищевого и кормового продукта, содержащим такое соединение.
Формула I
Figure 00000001
Предпосылки изобретения
Среди ядерных рецепторов PPAR (рецептор активатора пролиферации пероксисом) известен как имеющий три подтипа, которые представляют собой PPARα, PPARγ и PPARδ (Nature, 1990, 347, p645-650, Proc. Natl. Acad. Sci. USA 1994, 91, p7335-7359). PPARα, PPARγ и PPARδ имеют тканеспецифические функции in vivo и разные области для экспрессии. PPARα в основном экспрессируется в сердце, почках, скелетных мышцах и толстом кишечнике человека (Mol. Pharmacol. 1998, 53, p14-22, Toxicol. Lett. 1999, 110, p119-127, J. Biol. Chem. 1998, 273, p16710-16714), и он участвует в β-окислении пероксисомы и митохондрия (Biol. Cell. 1993, 77, p67-76., J. Biol. Chem. 1997, 272, p27307-27312). PPARγ экспрессируется в скелетных мышцах на низком уровне, но преимущественно экспрессируется в жировой ткани, индуцируя дифференциацию адипоцитов и накопление энергии в форме жира, и участвует в гомеостатической регуляции инсулина и глюкозы (Moll. Cell. 1999, 4, p585-594, p597-609, p611-617). PPARδ эволюционно сохранился у млекопитающих, включая человека и позвоночных, в том числе у грызунов и асцидий. Первый PPARδ, обнаруженный в Xenopus laevis, был известен как PPARβ (Cell 1992, 68, p879-887), а PPARδ, обнаруженный у человека, получил другое название NUC1 (Mol. Endocrinol. 1992, 6, pl634-1641), PPARδ (Proc. Natl. Acad. Sci. USA 1994, 91, p7355-7359), NUC1 (Biochem. Biophys. Res. Commun. 1993, 196, p671-677), FAAR (J. Bio. Chem. 1995, 270, p2367-2371) и т.д., но в настоящее время они переименованы и обозначаются как PPARδ. Известно, что у человека PPARδ существует в хромосоме 6p21.1-p21.2. У крыс мРНК PPARδ обнаружена в различных клетках, но ее уровень ниже, чем уровень мРНК PPARα или PPARγ (Endocrinology 1996, 137, p354-366, J. Bio. Chem. 1995, 270, p2367-2371, Endocrinology 1996, 137, p354-366). Проводимые ранее исследования подтвердили, что PPARδ играет важную роль в репродуктивной клеточной экспрессии (Genes Dev. 1999, 13, pl561-1574) и обладает физиологическими функциями дифференциации нервных клеток (J. Chem. Neuroanat 2000, 19, p225-232) в центральной нервной системе (ЦНС) и заживления ран с противовоспалительным эффектом (Genes Dev. 2001, 15, p3263-3277, Proc. Natl. Acad. Sci. USA 2003, 100, p6295-6296). Проводимые в последнее время исследования также подтвердили, что PPARδ участвует в дифференциации адипоцитов и метаболизме липидов (Proc. Natl. Acad. Sci. USA 2002, 99, p303-308, Mol. Cell. Biol. 2000, 20, p5119-5128). Например, PPARδ активирует экспрессию ключевого гена, участвующего в β-окислении в катаболизме жирных кислот и несвязывающихся белков (UCP), гена, участвующего в энергетическом обмене, что дает эффект при лечении ожирения (Nature 2000, 406, p415-418, Cell 2003, 113, pl59-170, PLoS Biology 2004, 2, p1532-1539). Активация PPARδ повышает уровень ЛПВП, обеспечивает улучшение при диабете типа 2 без изменения веса (Proc. Natl. Acad. Sci. USA 2001, 98, p5306-5311, 2003, 100, p15924-15929, 2006, 103, p3444-3449) и способствует лечению артериосклероза путем ингибирования гена, связанного с артериосклерозом (Science, 2003, 302, p453-457). Поэтому исследования регуляции метаболизма липидов с использованием PPARδ обеспечивают ключ к разработке способа лечения ожирения, диабета, гиперлипидемии и артериосклероза.
PPARδ участвует в образовании митохондрий и преобразовании мышечных волокон в мышцах для повышения выносливости. Мышцы содержат мышечное волокно с катаболизмом жирных кислот (Тип I), которое повышает выносливость, и гликокластное мышечное волокно (Тип II), которое повышает силу. Мышечное волокно с катаболизмом жирных кислот (Тип I), которое ответственно за повышение выносливости, красное, поскольку оно содержит большое количество митохондрий и миоглобин. Тогда как гликокластное мышечное волокно (Type II), которое ответственно за повышение силы, белое. Когда искусственно получали сверхэкспрессию PPARδ в мышцах крысы, наблюдали существенное увеличение мышечного волокна Типа I, в дополнение к повышению миоглобина, ферментов системы электронного транспорта (цитохром c, оксидаза II и IV цитохрома c) и оксидазы β жирных кислот. Поэтому время бега и расстояние увеличивались, соответственно, на 67% и 92% по сравнению с крысами дикого типа (PLoS Biology, 2004, 2:e294).
Синтетические PPARδ лиганды, разработанные к настоящему времени, обладают меньшей селективностью по сравнению с другими PPARα и PPARy лигандами. Одним из первых селективных лигандов был L-631033, разработанный Merk (J. Steroid Biochem. Mol. Biol. 1997, 63, p1-8), который был получен путем введения функциональной группы, способной фиксировать боковую цепь на основании ее природной жирнокислотной морфологии. Та же исследовательская группа позднее представила сообщение о более эффективном лиганде L-165041 (J. Med. Chem. 1996, 39, p2629-2654), где соединение, известное как агонист лейкотриена, обладает действием, направленным на активацию PPARδ человека. Это соединение демонстрировало высокую селективность в отношении hPPARδ, которая в 10 раз превышает селективность в отношении PPARα или PPARγ. И это соединение имело значение EC50 530 нМ. Другие лиганды L-796449 и L-783483 обладают улучшенным сродством (EC50=7,9 нМ), но обладают лишь незначительной селективностью в отношении других подтипов hPPAR.
Селективный лиганд PPARδ, GW501516 ([2-метил-4-[[[4-метил-2-[4-(трифторметил)фенил]-1,3-тиазол-5-ил]метил]сульфанил]фенокси]уксусная кислота), разработанный GlaxoSmithKline, демонстрирует намного лучший физиологический эффект по сравнению с другими лигандами, разработанными ранее (Proc. Natl. Acad. Sci. USA 2001, 98, p5306-5311).
Figure 00000002
GW501516 обладает отличным сродством (1-10 нМ) в отношении PPARδ, а также отличной селективностью в отношении PPARα или PPARγ, которая, по меньшей мере, в 1000 раз выше селективности предшествующих лигандов.
Тиазольное соединение, представленное формулой A, в качестве селективного активатора PPARδ было описано в WO 2001-00603 и WO 2002-62774, заявленных фирмой Glaxo group, и WO 2003-072100, заявленной фирмой Eli Lilly.
Figure 00000003
Формула А
где R' представляет собой CF3 или F, R'' представляет собой H, CH3 или Cl, R''' представляет собой H, CH3 или CH2CH3 и R'''' представляет собой H, алкил или арилалкил.
Однако активность PPARδ, индуцируемая всеми лигандами, которые разработаны на сегодняшний день, является результатом лишь 30-40% от общего количества лигандсвязывающих “карманов”.
Раскрытие изобретения
Техническая задача
Целью настоящего изобретения является обеспечение нового соединения, обладающего высокой селективностью в отношении PPAR, и фармацевтической композиции, косметической композиции, укрепляющего средства, средства для улучшения памяти, терапевтического средства для лечения деменции и болезни Паркинсона, композиции функционального пищевого и кормового продукта, содержащих такое соединение.
Техническое решение
Настоящее изобретение относится к соединению, представленному формулой (I), обладающему активностью в отношении рецептора активатора пролиферации пероксисом PPAR (далее в настоящей заявке указан как “PPAR”), и его гидрату, сольвату, стереоизомеру и фармацевтически приемлемой соли, к способу их получения и к содержащим их фармацевтической композиции, косметической композиции, укрепляющему средству, средству для улучшения памяти, терапевтическому средству для лечения деменции и болезни Паркинсона, композиции функционального пищевого и кормового продукта.
Формула I
Figure 00000004
где A представляет собой S или Se; B представляет собой H или
Figure 00000005
; R1 представляет собой арил, выбранный из следующих структур:
Figure 00000006
R2 представляет собой H, C1-C8 алкил или
Figure 00000007
; R3 представляет собой H, C1-C8 алкил или галоген; R4 и R5 независимо представляют собой H, C1-C8 алкил; R6 представляет собой H, C1-C8 алкил, C2-C7 алкенил, щелочной металл или щелочноземельный металл; R11 и R12 независимо представляют собой H, C1-C8 алкил или галоген; R21 представляет собой H, галоген, C1-C7 алкил, гетероциклическую группу или C1-C7 алкокси; m и n независимо представляют собой целые числа, имеющие значения 1-4; p представляет собой целое число, имеющее значение 1-5; q представляет собой целое число, имеющее значение 1-4; r представляет собой целое число, имеющее значение 1-3; s представляет собой целое число, имеющее значение 1-5; и алкил и алкокси R2, R3, R4, R5, R6, R11, R12 и R21 может быть замещен одним или несколькими атомами галогена или C1-C5 алкиламином. Однако случай, когда R2 представляет собой H и A представляет собой S, исключается.
В частности, R1 арильного соединения, представленного формулой (I), которое обладает активностью в отношении рецептора активатора пролиферации пероксисом (PPAR), предпочтительно представляет собой арил, выбранный из следующих структур:
Figure 00000008
R2 представляет собой C1-C8 алкил, замещенный или не замещенный галогеном или
Figure 00000009
; R3 представляет собой C1-C5 алкил, замещенный или не замещенный галогеном, или галоген; R4 и R5 независимо представляют собой H или C1-C5 алкил, замещенный или не замещенный галогеном; R6 представляет собой H, C1-C7 алкил, щелочной металл или щелочноземельный металл; R11 и R12 независимо представляют собой H, C1-C5 алкил, замещенный одним или несколькими атомами фтора, или фтор; R21 представляет собой H, галоген, C1-C5 алкил, замещенный или не замещенный галогеном, или C1-C5 алкокси, замещенный или не замещенный галогеном; p представляет собой целое число, имеющее значение от 1-5; q представляет собой целое число, имеющее значение от 1-4; и s представляет собой целое число, имеющее значение от 1-5.
R2 соединения, представленного формулой (I), может быть дополнительно замещен метилом, этилом, н-пропилом, изопропилом, н-бутилом, изобутилом или трет-бутилом, и бензил R2 может быть дополнительно замещен фтором, хлором, метилом, этилом, н-пропилом, изопропилом, трет-бутилом, фторметилом, дифторметилом, трифторметилом, 2-фторэтилом, пентафторэтилом, метокси, этокси, пропокси, н-бутокси, трет-бутокси, фторметокси, дифторметокси, трифторметокси, 2-фторэтокси и пентафторэтокси;
R3 представляет собой H, метил, этил, н-пропил, изопропил, н-бутил, трет-бутил, н-пентил, 2-этилгексил, фторметил, дифторметил, трифторметил, 2-фторэтил, пентафторэтил, фтор или хлор;
R4 и R5 независимо представляют собой H, метил, этил, н-пропил, изопропил, н-бутил, трет-бутил, н-пентил, 2-этилгексил, фторметил, дифторметил, трифторметил, 2-фторэтил или пентафторэтил;
R6 представляет собой H, метил, этил, н-пропил, изопропил, н-бутил, трет-бутил, н-пентил, 2-этилгексил, фторметил, дифторметил, трифторметил, 2-фторэтил, пентафторэтил, этенил, 2-пропенил, 2-бутенил, 3-бутенил, Li+, Na+, K+, Ca2+ или Mg2+;
R11 и R12 независимо представляют собой H, метил, этил, н-пропил, изопропил, н-бутил, трет-бутил, н-пентил, 2-этилгексил, фторметил, дифторметил, трифторметил, 2-фторэтил, пентафторэтил, фтор или хлор.
Новое соединение по настоящему изобретению можно получить согласно следующей реакционной формуле.
Реакционная формула 1
Figure 00000010
где A представляет собой S или Se; B представляет собой H или
Figure 00000005
; R1 представляет собой арил, выбранный из следующих структур:
Figure 00000011
R2 представляет собой H, C1-C8 алкил или
Figure 00000012
; R3 представляет собой H, C1-C8 алкил или галоген; R4 и R5 независимо представляют собой H или C1-C8 алкил; R6 представляет собой H, C1-C8 алкил, C2-C7 алкенил, щелочной металл (Li+, Na+, K+) или щелочноземельный металл (Ca2+, Mg2+); R11 и R12 независимо представляют собой H, C1-C8 алкил или галоген; R21 представляет собой H, галоген, C1-C7 алкил, гетероциклическую группу или C1-C7 алкокси.
Prot на представленных схемах означает фенолзащитную группу, которая может представлять собой C1-C4 низший алкил, аллил, алкилсилил, алкиларилсилил или тетрагидропиранил; алкил и алкокси R2, R3, R4, R5, R6, R11, R12 и R21 могут быть замещены одним или несколькими атомами галогена или С1-C5 алкиламином; m и n независимо представляют собой целые числа, имеющие значения 1-4; p представляет собой целое число, имеющее значение 1-5; q представляет собой целое число, имеющее значение 1-4; r представляет собой целое число, имеющее значение 1-3; s представляет собой целое число, имеющее значение 1-5; X1 представляет собой атом брома или атом йода; X2 и X3 независимо представляют собой атом хлора, атом брома, атом йода или удаляемую группу, обладающую реакционной способностью с нуклеофильным замещением. Однако случай, когда R2 представляет собой H и A представляет собой S, исключается.
Далее подробно описан способ получения по настоящему изобретению.
Способ A: Получение соединения, представленного формулой (IV)
Для получения соединения, представленного формулой (IV), соединение, представленное формулой (II), обрабатывали реагентом Гриньяра для защиты фенольной группы, без разделения, и подвергали взаимодействию с металлоорганическим реагентом и S или Se, постадийно, и в конце подвергали взаимодействию с соединением, представленным формулой (III). Этот способ включает 4 подстадии реакций, которые осуществляют последовательно.
Эти подстадии реакций описаны подробно ниже.
Защита фенольной группы реагентом Гриньяра
Безводный растворитель, используемый в этом способе, выбирают из группы, состоящей из таких отдельных растворителей, как простой диэтиловый эфир, тетрагидрофуран, гексан и гептан, и смешанных растворителей, включающих, по меньшей мере, два из таких растворителей. Более предпочтительно, когда выбирают простой диэтиловый эфир, тетрагидрофуран или смешанный растворитель, включающий простой диэтиловый эфир и тетрагидрофуран, в качестве безводного растворителя. И наиболее предпочтительно, когда выбирают полярный растворитель, который может представлять собой тетрагидрофуран.
Реагент Гриньяра, используемый в настоящем изобретении, может быть выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутилмагнийхлорида (R2MgCl) и алкилмагнийбромида (R2MgBr). Из них изопропилмагнийхлорид ((CH3)2CHMgCl) является наиболее предпочтительным.
Температура реакции зависит от растворителя, но, как правило, ее устанавливают в интервале -20~40°C и предпочтительно от 0°C до примерно комнатной температуры (25°C). Время реакции зависит от температуры реакции и растворителя, но, как правило, оно составляет 10-60 минут и предпочтительно 10-30 минут.
Галоген-литий замещение и введение S или Se
Металлоорганический реагент, используемый для галоген-литий замещения, может быть выбран из группы, состоящей из н-бутиллития, втор-бутиллития и трет-бутиллития. Из этих соединений трет-бутиллитий является наиболее предпочтительным.
S или Se является предпочтительным в виде тонкодисперсных частиц, и его добавляют в растворенном виде в безводном тетрагидрофуране или добавляют непосредственно.
Температура реакции зависит от растворителя, но, как правило, ее устанавливают в интервале -78~25°C. Температура реакции для галоген-металл замещения предпочтительно составляет -75°C, а температура для введения S или Se составляет от -75 до примерно комнатной температуры (25°C). Реакция замещения галоген-металл происходит в течение 10-30 минут, а реакция введения S или Se происходит в течение 30-120 минут.
Добавление соединения, представленного формулой (III)
Для получения соединения, представленного формулой (III), используемого в этом способе, индуцируют реакцию сочетания Сузуки с использованием традиционного палладиевого катализатора с последующим галогенированием. Галоген в соединении, представленном формулой (III), выбирают из группы, состоящей из хлора, брома и йода. И из них хлор является наиболее предпочтительным.
Температура реакции зависит от растворителя, но, как правило, ее устанавливают в интервале -78~25°C, более предпочтительно в интервале 0~10°C. Время реакции, как правило, составляет 10-120 минут и предпочтительно 10-60 минут.
Способ B: Получение соединения, представленного формулой (V)
Для получения соединения, представленного формулой (V), соединение, представленное формулой (IV), предпочтительно, подвергают взаимодействию с соединением, обычно используемым в качестве фенолзащитной группы, в присутствии основания.
Примеры фенолзащитной группы включают C1-C4 низший алкил, аллил, алкилсилил, такой как триметилсилил, трет-бутилдифенилсилил, триизопропилсилил и трет-бутилдиметилсилил, алкиларилсилил и тетрагидропиранил. Из этих соединений трет-бутильная группа, тетрагидропиранильная группа и силильная группа являются предпочтительными.
Апротонный полярный растворитель, используемый в этом способе, выбирают из группы, состоящей из N,N-диметилформамида, N,N-диметилацетамида, диметилсульфоксида, ацетонитрила, ацетона, этилацетата, тетрахлорида углерода, хлороформа и дихлорметана. Указанный простой эфир может быть выбран из группы, состоящей из тетрагидрофурана, диоксана, диметоксиэтана, диметилового эфира диэтиленгликоля и диметилового эфира триэтиленгликоля. Примеры ароматического углеводорода включают бензол, толуол и ксилол. В качестве растворителя в настоящем изобретении апротонный полярный растворитель является предпочтительным, и, в частности, N,N-диметилформамид, хлороформ или дихлорметан является более предпочтительным.
Основание в настоящем способе представляет собой амин, включая пиридин, триэтиламин, имидазол, N,N-диметиламинопиридин. Для реакции алкил- или аллил-этерифицированной защитной группы используют такие основания, как гидроксид натрия, гидроксид калия, карбонат натрия и карбонат калия. В частности, имидазол и карбонат калия являются более предпочтительными.
Тетрагидропиранильную защитную группу получают путем каталитической реакции 3,4-дигидро-2H-пирана с алкил- или аллилтрифенилфосфонийбромидом.
Температура реакции зависит от растворителя, но, как правило, ее устанавливают в интервале -10~80°C, более предпочтительно от 0 до примерно комнатной температуры (25°C). Время реакции зависит от температуры реакции и растворителя, но, как правило, оно составляет от одного часа до одного дня. Более предпочтительно, когда реакция завершается в течение 4 часов.
Способ C: Получение соединения, представленного формулой (VII)
Для получения соединения, представленного формулой (VII), α-протон тио- или селеноэфирного соединения, представленного формулой (V), подвергают обработке сильной щелочью с получением нуклеофила, который подвергают взаимодействию с различными электрофилами.
Безводный растворитель, используемый в этом способе, выбирают из группы, состоящей из таких отдельных растворителей, как простой диэтиловый эфир, тетрагидрофуран, гексан и гептан, и смешанных растворителей, включающих, по меньшей мере, два из таких растворителей. Более предпочтительно, когда в качестве безводного растворителя выбирают простой диэтиловый эфир, тетрагидрофуран или смешанный растворитель, включающий простой диэтиловый эфир и тетрагидрофуран.
Сильную щелочь, используемую для экстракции α-протона, выбирают из группы, состоящей из трет-бутоксида калия (t-BuOK), диизопропиламида лития (LDA), н-бутиллития, втор-бутиллития и трет-бутиллития, и из этих соединений диизопропиламид лития (LDA) является наиболее предпочтительным.
Электрофил, взаимодействующий с нуклеофилом тио- или селеноэфира, представляет собой любое соединение, которое может быть легко получено традиционным способом, известным специалистам в данной области, или может быть легко получено в соответствии со способами, описанными в ссылочных документах, и в качестве примеров можно указать соединения, включающие высокореакционноспособную группу галогена, альдегида или кетона, и его либо растворяют в безводном растворителе для добавления, либо добавляют непосредственно для реакции.
Температура реакции зависит от растворителя, но, как правило, составляет -78~25°C. Более предпочтительно, когда реакцию экстракции α-протона осуществляют в присутствии сильной щелочи при температуре -75°C, при которой добавляют электрофил. Затем температуру медленно повышают до комнатной температуры (25°C). Время реакции является разным для каждой реакционной стадии. Например, экстракция α-протона сильной щелочью происходит в течение 10-30 минут, а реакция с электрофилом происходит в течение 30-90 минут.
Способ D: Получение соединения, представленного формулой (VIII)
Соединение, представленное формулой (VIII), получают путем удаления фенолзащитной группы из соединения, представленного формулой (VII).
Полярный растворитель, используемый в этом способе, выбирают из группы, состоящей N,N-диметилформамида, N,N-диметилацетамида, диметилсульфоксида, ацетонитрила, ацетона, этилацетата, тетрахлорида углерода, хлороформа и дихлорметана. Простой эфир в настоящем изобретении может быть выбран из группы, состоящей из тетрагидрофурана, диоксана, диметоксиэтана и диметилового эфира диэтиленгликоля. Спирт может представлять собой метанол или этанол. Примером ароматического углеводорода является бензол, толуол и ксилол. В качестве растворителя предпочтительным в настоящем изобретении является полярный растворитель, и, в частности, тетрагидрофуран является более предпочтительным.
Для удаления фенолзащитной группы, в частности для удаления метил-, этил-, трет-бутил-, бензил- или аллилэфирной защитной группы, используют триметилсилилйодид, натриевую соль этантиоспирта, йодид лития, галогенид алюминия, галогенид бора или кислоту Льюиса, такую как трифторацетат, и для удаления силильной защитной группы, такой как триметилсилил, трет-бутилдифенилсилил, триизопропилсилил и трет-бутилдиметилсилил, используют фторид, такой как тетрабутиламмонийфторид (Bu4N+F-), галогенсодержащую кислоту (фтористоводородную кислоту, хлористоводородную кислоту, бромистоводородную кислоту или йодистоводородную кислоту) или фторид калия.
Для удаления силильной защитной группы предпочтительно использование фторида, и более предпочтительно используют тетрабутиламмонийфторид.
Температура реакции зависит от способа и растворителя, но, как правило, составляет 0~120°C и предпочтительно 10~25°C.
Время реакции зависит от температуры реакции, но, как правило, оно составляет от 30 минут до одного дня. Более предпочтительно, когда реакция завершается в течение 2 часов.
Способ E: Получение соединения, представленного формулой (IX)
Для получения соединения, представленного формулой (IX), соединение, представленное формулой (VIII), предпочтительно подвергали взаимодействию со сложным алкиловым эфиром галогенуксусной кислоты или со сложным алкиловым эфиром алкилгалогенуксусной кислоты в присутствии основания.
Сложный алкиловый эфир галогенуксусной кислоты или сложный алкиловый эфир алкилгалогенуксусной кислоты представляет собой обычно используемое соединение, которое может быть легко получено. Из сложных алкиловых эфиров алкилгалогенуксусной кислоты соединение, которое не может быть легко получено, получают путем бромирования сложного алкилового эфира алкилуксусной кислоты. Галоген в настоящем способе представлен атомом хлора, атомом брома и атомом йода.
Растворитель, используемый в этом способе, может представлять собой растворимый отдельный растворитель, выбранный из группы, состоящей из N,N-диметилформамида, N,N-диметилацетамида, диметилсульфоксида, ацетонитрила, ацетона, этанола и метанола, или смешанный растворитель, полученный путем смешивания этих соединений с 1-10% воды. Наиболее предпочтительный растворитель представляет собой смешанный растворитель, полученный путем смешивания ацетона или диметилсульфоксида с 1-5% воды.
Основание, используемое в этом способе, не ограничено, при условии, что оно не оказывает негативного влияния на реакцию, независимо от того, является оно сильным или слабым, примером которого является гидрид щелочного металла, такой как гидрид натрия и гидрид лития, гидрид щелочноземельного металла, такой как гидрид калия, гидроксид щелочного металла, такой как гидроксид натрия и гидроксид калия, и карбонат щелочного металла, такой как карбонат лития, карбонат калия, бикарбонат калия и карбонат цезия. Из этих соединений карбонат щелочного металла является предпочтительным, и более предпочтительным является карбонат калия.
Температура реакции не ограничивается, вплоть до температуры кипения растворителя. Однако высокая температура не является предпочтительной для ингибирования побочных реакций. Предпочтительная температура реакции составляет 0~90°C. Время реакции меняется в зависимости от температуры реакции, но, как правило, составляет от 30 минут до 1 дня и предпочтительно 30-120 минут.
Способ F-I: Получение соединения, представленного формулой (X)
Для получения соединения, представленного формулой (X), сложный эфир карбоновой кислоты соединения, представленного формулой (IX), гидролизуют в смешанном растворе растворимой неорганической соли и спирта. Или гидролиз сложного эфира осуществляют в смешанном растворе, включающем соединение, представленное формулой (IX), 2,0M гидроксид лития, ТГФ и воду.
Растворитель, используемый в этом способе, представляет собой растворимый растворитель, который можно смешивать с водой, например спирты, такие как метанол и этанол.
Основание, используемое в этом способе, представляет собой водный раствор, полученный путем смешивания гидроксида щелочного металла, такого как гидроксид лития, гидроксид натрия и гидроксид калия, с водой в концентрации 0,1-3 н., учитывая тип соли щелочного металла и карбоновой кислоты. Кислота, используемая для получения соединения, представленного формулой (X), представляет собой карбоновую кислоту, предпочтительно водный раствор уксусной кислоты, водный раствор бисульфата натрия (NaHSO4) или 0,1-3 н. водный раствор хлористоводородной кислоты, и более предпочтительным является 0,5M NaHSO4.
Реакцию предпочтительно осуществляют при низкой температуре для ингибирования побочных реакций, которая, как правило, находится в пределах от 0°C до комнатной температуры. Время реакции зависит от температуры реакции, но, как правило, составляет от 10 минут до 3 часов и более предпочтительно от 30 минут до 1 часа. Когда 2,0M гидроксида лития подвергают взаимодействию в смешанном растворе ТГФ и воды, предпочтительная температура реакции составляет 0°C, а предпочтительное время реакции составляет 1-2 часа.
Способ F-2: Получение соединения, представленного формулой (X)
Соединение, представленное формулой (X), получают путем замещения соли сложного аллилового эфира из соединения, представленного формулой (IX), с использованием соли щелочного металла или соли щелочноземельного металла 2-этилгексаноата и металлического катализатора в органическом растворителе.
Растворитель, используемый в этом способе, представляет собой безводный органический растворитель, выбранный из группы, состоящей из хлороформа, дихлорметана и этилацетата.
Металлический катализатор, используемый в этом способе, представляет собой палладийтетракистрифенилфосфин, и предпочтительное содержание такого катализатора составляет 0,01-0,1 эквивалент.
Реакцию предпочтительно осуществляют при низкой температуре для ингибирования побочных реакций, которая, как правило, находится в пределах от 0°C до комнатной температуры. Время реакции зависит от температуры реакции, но, как правило, составляет от 10 минут до 3 часов и более предпочтительно от 30 минут до 1 часа.
Такое солевое соединение можно легко выделить путем центрифугирования или при помощи ионообменной смолы. Полученное соединение соли металла формулы (X) намного легче выделить, чем солевое соединение, полученное способом F-1 (гидролиз).
Полученное соединение γ-типа формулы (I) представляет собой вещество, имеющее очень важное значение в качестве лиганда PPAR белка. Это соединение содержит хиральный углерод, и это говорит о том, что оно также включает стереоизомер этого соединения. Настоящее изобретение включает арильное соединение, представленное формулой (I), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль.
Арильное соединение, представленное формулой (I), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль по настоящему изобретению можно эффективно использовать в качестве композиции для активатора PPAR. Арильное соединение, представленное формулой (I), и его гидрат, сольват, стереоизомер и фармацевтически приемлемая соль по настоящему изобретению могут активировать PPAR, таким образом, их можно эффективно использовать в качестве фармацевтической композиции для профилактики и лечения артериосклероза, гиперлипидемии, ожирения, диабета, деменции или болезни Паркинсона и для снижения уровня холестерина, для укрепления мышц, для улучшения выносливости и памяти и в качестве композиции для функциональных пищевых продуктов и напитков, пищевых добавок, функциональных косметических средств и корма для животных.
Арильное соединение, представленное формулой (I), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль по настоящему изобретению можно использовать для функциональной косметической композиции для профилактики и улучшения состояния ожирения и для функциональной косметической композиции для укрепления мышц и повышения выносливости. Функциональную косметическую композицию для укрепления мышц и повышения выносливости можно сформулировать в виде мази, лосьона или крема для нанесения на участок тела до/после физических упражнений и ее можно использовать в течение продолжительного периода времени для получения желаемого эффекта. Арильное соединение, представленное формулой (I), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль по настоящему изобретению можно сформулировать в виде мази и наносить на участок тела для профилактики или лечения диабета или диабетической язвы стопы, так называемой диабетической язвы.
Настоящее изобретение обеспечивает фармацевтическую композицию, функциональное вспомогательное вещество для пищевых продуктов, функциональный напиток, пищевую добавку и композицию корма для профилактики и лечения артериосклероза, деменции и болезни Паркинсона, для укрепления мышц, для повышения выносливости или для улучшения памяти, содержащую активатор PPAR в качестве активного ингредиента.
Настоящее изобретение также обеспечивает способ скрининга активатора для профилактики и лечения артериосклероза, деменции и болезни Паркинсона, укрепления мышц, повышения выносливости и улучшения памяти, который включает стадии добавления средства-кандидата, представляющего собой активатор PPAR, к PPAR; и измерение активности PPAR.
Фармацевтически приемлемая соль в настоящем изобретении включает все фармацевтически приемлемые органические соли, которые могут образовывать соль с карбоновой кислотой соединения формулы (I), и неорганические соли, такие как ионы щелочных металлов и ионы щелочноземельных металлов, примеры которых включают Li+, Na+, K+, Ca2+ и Mg2+.
Терапевтически эффективную дозу соединения, представленного формулой (I), и его гидрата, сольвата, стереоизомера и фармацевтически приемлемой соли по настоящему изобретению можно определить в соответствии с типом соединения, способом введения, целевого субъекта и целевого заболевания, но она определяется в соответствии с принятыми в медицине стандартами. Предпочтительная доза соединения, представленного формулой (I), составляет 1-100 мг/кг (массы тела)/день. Частота введения может быть один или несколько раз в день, в рамках допустимой суточной дозы. Композицию по настоящему изобретению можно вводить перорально или парентерально и использовать в форме традиционных фармацевтических препаратов. Например, композицию по настоящему изобретению можно сформулировать в виде таблеток, порошков, сухих сиропов, жевательных таблеток, гранул, капсул, мягких капсул, пилюль, напитков, сублингвальных препаратов и т.д. Таблетки по настоящему изобретению можно вводить субъекту способом или путем доставки эффективной дозы таблетки с биодоступностью, который представляет собой пероральный путь. И способ введения или путь можно определить в соответствии с характеристиками, стадиями целевого заболевания и другими условиями. Когда композицию по настоящему изобретению получают в виде таблеток, она может дополнительно включать фармацевтически приемлемые эксципиенты. Содержание и характеристики эксципиента можно определить в соответствии с растворимостью и химическими свойствами выбранной таблетки, пути введения и стандартной фармацевтической практикой.
Способ осуществления изобретения
Практические и предпочтительные описанные в настоящей заявке варианты воплощения настоящего изобретения являются иллюстративными, как показано в представленных ниже примерах.
Однако должно быть понятно, что специалисты в данной области, при рассмотрении настоящего раскрытия, могут осуществить модификации и улучшения без отступления от сути и объема настоящего изобретения.
Пример 1: Получение соединения S1
Figure 00000013
Способ А
468 мг (2 ммоль) 4-йод-2-метилфенола растворяли в 20 мл безводного тетрагидрофурана в присутствии азота и в этот момент температуру поддерживали на уровне 0°C. К смеси медленно добавляли 1,5 мл изопропилмагнийхлорида (2M), с последующим взаимодействием в течение 10 минут. Реакционный раствор охлаждали до -78°С и медленно добавляли к нему 2,00 мл трет-бутиллития (раствор 1,7M в гексане, 1,0 эквивалент). После перемешивания в течение 10 минут к смеси добавляли 64 мг (2 ммоль, 1,0 эквивалент) S в виде твердого вещества при этой же температуре в один прием. Реакция продолжалась в течение 40 минут при повышении температуры до 15°C. 541 мг (2 ммоль, 1,0 эквивалент) 4-хлорметил-4'-трифторметил-бифенила формулы (III) растворяли в 10 мл безводного ТГФ при медленном добавлении при указанной температуре. После взаимодействия в течение еще одного часа реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 630 мг (выход: 84%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,50 (д, 2H), δ7,28 (т, 2H), δ7,13 (c, 1H), δ7,07 (кв, 1H), δ6,68 (д, 1H), δ5,20 (c, 1H), δ4,02 (c, 2H), δ2,17 (c, 3H).
Пример 2: Получение соединения S2
Figure 00000014
Способ В
748 мг (2 ммоль) соединения S1 и 290 мг (2,0 эквивалента) имидазола полностью растворяли в 20 мл диметилформамида. К смеси добавляли 165 мг (1,1 эквивалент) трет-бутилдиметилсилилхлорида, с последующим перемешиванием при комнатной температуре в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида аммония и этилацетата. Влагу из органического слоя удаляли при помощи сушки над сульфатом магния. Для очистки использовали колонку с силикагелем и растворитель отгоняли при пониженном давлении с получением 928 мг (выход: 95%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,50 (д, 2H), δ7,27 (т, 2H), δ7,13 (c, 1H), δ7,05 (кв, 1H), δ6,66 (д, 1H), δ4,04 (c, 2H), δ2,15 (c, 3H), δ1,01 (c, 9H), δ0,20 (c, 6H).
Пример 3: Получение соединения S3
Figure 00000015
Способ С
977 мг (2 ммоль) соединения S2 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°С. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 274 мкл (2,0 ммоль) бензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток подвергали очистке колоночной хроматографией на силикагеле с получением 961 мг (выход: 83%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,47-7,05 (м, 11H), δ6,63 (д, 1H), δ4,30 (м, 1H), δ3,54 (м, 1H), δ3,24 (м, 1H), δ2,12 (c, 3H), δ1,01 (c, 9H), δ0,21 (c, 6H).
Пример 4: Получение соединения S4
Figure 00000016
Способ С
489 мг (1 ммоль) соединения S2 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 1,8 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 270 мкл (2,0 ммоль) 2-хлор-5-фторбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток подвергали очистке колоночной хроматографией на силикагеле с получением 523 мг (выход: 83%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (c, 4H), δ7,45 (д, 2H), δ7,31 (д, 2H), δ7,08 (м, 4H), δ6,85 (м, 1H), δ6,60 (д, 1H), δ4,50 (т, 1H), δ3,41 (д, 2H), δ2,11 (c, 3H), δ1,01 (c, 9H), δ0,20 (c, 6H).
Пример 5: Получение соединения S5
Figure 00000017
Способ С
489 мг (1 ммоль) соединения S2 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 1,8 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 282 мкл (2,0 ммоль) 3,4,5-трифторбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток подвергали очистке колоночной хроматографией на силикагеле с получением 518 мг (выход: 82%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,74 (кв, 2H), δ7,14 (м, 4H), δ7,03 (д, 1H), δ6,79 (т, 4H), δ6,61 (кв, 1H), δ6,41 (д, 1H), δ4,39 (т, 1H), δ3,26 (д, 2H), δ2,14 (c, 3H), δ1,01 (c, 9H), δ0,20 (c, 6H).
Пример 6: Получение соединения S6
Figure 00000018
Способ С
489 мг (1 ммоль) соединения S2 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 1,8 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 259 мкл (2,0 ммоль) 2,5-дифторбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток подвергали очистке колоночной хроматографией на силикагеле с получением 503 мг (выход: 82%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,30 (д, 2H), δ7,09 (м, 4H), δ6,75 (м, 1H), δ6,54 (м, 1H), δ4,44 (т, 1H), δ3,35 (м, 2H), δ2,19 (c, 3H), 1,01 (c, 9H), δ0,20 (c, 6H).
Пример 7: Получение соединения S7
Figure 00000019
Способ С
489 мг (1 ммоль) соединения S2 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 1,8 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 300 мкл (2,0 ммоль) 2,5-дихлорбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 531 мг (выход: 82%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (c, 4H), δ7,45 (д, 2H), δ7,33 (д, 2H), δ7,08 (м, 2H), δ7,05 (м, 3H), δ6,52 (д, 1H), δ4,61 (кв, 1H), δ3,58 (м, 2H), δ2,19 (c, 3H), 1,01 (c, 9H), δ0,20 (c, 6H).
Пример 8: Получение соединения S8
Figure 00000020
Способ С
489 мг (1 ммоль) соединения S2 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 1,8 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 514 мг (2,0 ммоль) 2-хлор-5-трифторметилбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 538 мг (выход: 81%) целевого соединения (EIMS: 665,2 [M+H]+).
Пример 9: Получение соединения S9
Figure 00000021
Способ С
1131 мг (2 ммоль) соединения S3, полученного в примере 3, полностью растворяли в 20 мл тетрагидрофурана. К смеси медленно добавляли 5 мл (раствор 1M в тетрагидрофуране, 2,5 эквивалента) тетрабутиламмонийфторида (TBAF) при комнатной температуре. После взаимодействия в течение 30 минут органический растворитель экстрагировали с использованием раствора хлорида аммония и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 873 мг (выход: 94%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,47~7,05 (м, 11H), δ6,63 (д, 1H), δ4,30 (м, 1H), δ3,54 (м, 1H), δ3,24 (м, 1H), δ2,14 (c, 3H).
Пример 10: Получение соединения S10
Figure 00000022
Способ Е
465 мг (1 ммоль) соединения S9, полученного в примере 9, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 134 мкл (1,2 ммоль, 1,2 эквивалента) сложного этилового эфира бромуксусной кислоты с последующим интенсивным перемешиванием в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 512 мг (выход: 93%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,22 (м, 5H), δ7,05 (м, 4H), δ6,54 (д, 1H), δ4,59 (c, 2H), δ4,26 (м, 3H), δ3,24 (м, 2H), δ2,18 (c, 3H), δ1,27 (т, 3H).
Пример 11: Получение соединения S1l
Figure 00000023
Способ Е
465 мг (1 ммоль) соединения S9, полученного в примере 9, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 210 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бром-2-метилпропаната. Смесь нагревали при температуре 60~90°С при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 463 мг (выход: 80%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (c, 4H), δ7,43 (д, 2H), δ7,22 (м, 5H), δ7,03 (м, 4H), δ6,50 (д, 1H), δ4,28 (кв, 1H), δ4,19 (м, 2H), δ2,12 (c, 3H), δ1,54 (c, 6H), δ1,19 (т, 3H).
Пример 12: Получение соединения S12
Figure 00000024
Способ E
465 мг (1 ммоль) соединения S9, полученного в примере 9, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 146 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бромбутилата. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 470 мг (выход: 83%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,46 (д, 2H), δ7,23 (м, 5H), δ7,03 (м, 4H), δ6,51 (д, 1H), δ4,53 (т, 1H), δ4,21 (м, 3H), δ3,27 (м, 2H), δ2,19 (c, 3H), δ1,99 (м, 2H), δ1,28 (т, 3H), δ1,09 (т, 3H).
Пример 13: Получение соединения S13
Figure 00000025
Способ Е
465 мг (1 ммоль) соединения S9, полученного в примере 9, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 193 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бром-2-метилбутилата. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 474 мг (выход: 80%) целевого соединения (EIMS: 593,2 [M+H]+).
Пример 14: Получение соединения S14
Figure 00000026
Способ F
550 мг (1 ммоль) соединения S10, полученного в примере 10, тщательно смешивали с 15 мл ТГФ и 10 мл воды, к смеси медленно добавляли 0,6 мл 2,0M раствора гидроксида лития при 0°C. После перемешивания при 0°C в течение 60 минут к смеси добавляли 2,5 мл 0,5M NaHSO4. Органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали при помощи LH-20 колоночной хроматографии с получением 512 мг (выход: 98%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,22 (м, 5H), δ7,05 (м, 4H), δ6,54 (д, 1H), δ4,59 (c, 2H), δ4,24 (м, 1H), δ3,24 (м, 2H), δ2,18 (c, 3H).
Пример 15: Получение соединения S15
Figure 00000027
Способ Е
465 мг (1 ммоль) соединения S9, полученного в примере 9, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 219 мг (1,2 ммоль, 1,1 эквивалента) сложного аллилового эфира бромуксусной кислоты с последующим интенсивным перемешиванием в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 529 мг (выход: 94%) целевого соединения (EIMS: 563,1 [M+H]+).
Пример 16: Получение соединения S16
Figure 00000028
Способ F
504 мг (1 ммоль) соединения S15, полученного в примере 15, и 56 мг (0,05 ммоль, 0,05 эквивалента) тетракистрифенилфосфина палладия растворяли в 20 мл безводного дихлорметана с последующим перемешиванием при комнатной температуре. 174 мг (1 ммоль, 1,0 эквивалент) 2-этилгексаноата калия растворяли в 2 мл безводного дихлорметана и медленно добавляли к реакционному раствору. После перемешивания при комнатной температуре в течение одного часа осуществляли центрифугирование для удаления растворителя. Полученное в результате твердое вещество промывали с использованием 20 мл дихлорметана и 20 мл нормального гексана с последующей сушкой с получением 509 мг (выход: 91%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,22 (м, 5H), δ7,05 (м, 4H), δ6,54 (д, 1H), δ4,59 (c, 2H), δ4,24 (м, 1H), δ3,24 (м, 2H), δ2,18 (c, 3H).
Примеры 17-150
Соединения, представленные в таблице 1, получали способами примеров 1-16, и данные ЯМР для каждого соединения представлены в таблице 2.
Таблица 1
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Таблица 2
Пример 1Н-ЯМР
17 δ 7,66 (c, 4H), 7,45 (д, 2H), 7,31 (д, 2H), 7,08 (м, 4H), 6,55 (д, 1H), 6,85 (м, 1H), 4,58 (c, 2H), 4,52 (т, 1H), 3,41 (кв, 2H), 2,05 (c, 3H).
18 δ 7,74 (кв, 2H), 7,16 (м, 4H), 7,02 (д, 1H), 6,80 (т, 4H), 6,61 (кв, 1H), 6,40 (д, 1H), 4,64 (c, 2H), 4,38 (т, 1H), 3,23 (кв, 2H), 2,14 (c, 3H).
19 δ 7,67 (c, 4H), 7,45 (д, 2H), 7,30 (д, 2H), 7,10 (м, 4H), 6,74 (м, 1H), 4,59 (c, 2H), 4,44 (т, 1H), 3,31 (кв, 2H), 3,41 (кв, 2H), 2,16 (c, 3H).
20 δ 7,66 (c, 4H), 7,45 (д, 2H), 7,33 (д, 2H), 7,08 (м, 2H), 7,05 (м, 3H), 6,50 (д, 1H), 4,61 (т, 1H), 4,56 (c, 2H), 3,56 (м, 2H), 2,16 (c, 3H).
22 δ 7,66 (c, 4H), 7,43 (д, 2H), 7,22 (м, 5H), 7,03 (м, 4H), 6,50 (д, 1H), 4,19 (м, 2H), 2,14 (c, 3H), 1,55 (c, 6H).
23 δ 7,67 (c, 4H), 7,45 (д, 2H), 7,23 (м, 5H), 7,03 (м, 4H), 6,51 (д, 1H), 4,54 (т, 1H), 4,30 (кв, 1H), 3,27 (м, 2H),2,18 (c, 3H), 1,98 (м, 2H), 1,10 (т, 3H).
25 δ 7,67 (c, 4H), 7,45 (д, 2H), 7,22 (м, 5H), 7,05 (м, 4H), 6,54 (д, 1H), 4,59 (c, 2H), 4,24 (м, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
26 δ 7,66 (c, 4H), 7,45 (д, 2H), 7,31 (д, 2H), 7,08 (м, 4H), 6,55 (д, 1H), 6,85 (м, 1H), 4,58 (c, 2H), 4,52 (т, 1H), 3,41 (кв, 2H), 2,05 (c, 3H).
27 δ 7,74 (кв, 2H), 7,16 (м, 4H), 7,02 (д, 1H), 6,80 (т, 4H), 6,61 (кв, 1H), 6,40 (д, 1H), 4,64 (c, 2H), 4,38 (т, 1H), 3,23 (кв, 2H), 2,14 (c, 3H).
28 δ 7,67 (c, 4H), 7,45 (д, 2H), 7,30 (д, 2H), 7,10 (м, 4H), 6,74 (м, 1H), 4,59 (c, 2H), 4,44 (т, 1H), 3,31 (кв, 2H), 3,41 (кв, 2H), 2,16 (c, 3H).
29 δ 7,66 (c, 4H), 7,45 (д, 2H), 7,33 (д, 2H), 7,08 (м, 2H), 7,05 (м, 3H), 6,50 (д, 1H), 4,61 (т, 1H), 4,56 (c, 2H), 3,56 (м, 2H), 2,16 (c, 3H).
31 δ 7,51 (м, 2H), 7,39 (д, 2H), 7,20~7,03 (м, 11H), 6,57 (д, 1H), 4,63 (c, 2H), 3,25 (м, 2H), 2,17 (c, 3H).
32 δ 7,51 (м, 2H), 7,39 (д, 2H), 7,29 (д, 2H), 7,10 (м, 6H), 6,84 (т, 1H), 6,55 (д, 1H), 4,57 (c, 2H), 4,51 (кв, 1H), 3,38 (м, 2H), 2,17 (c, 3H).
33 δ 7,52 (т, 2H), 7,42 (д, 2H), 7,18 (д, 2H), 7,10 (м, 4H), 6,62 (м, 3H), 4,65 (c, 2H), 4,19 (кв, 1H), 3,17 (м, 2H), 2,19 (c, 3H).
34 δ 7,51 (м, 2H), 7,39 (д, 2H), 7,27 (д, 2H), 7,10 (м, 5H), 6,75 (т, 2H), 6,58 (д, 1H), 4,64 (c, 2H), 4,44 (кв, 1H), 3,29 (м, 2H), 2,18 (c, 3H).
36 δ 7,52 (м, 2H), 7,40 (м, 3H), 7,27~7,06 (м, 8H), 6,55 (д, 1H), 6,55 (д, 1H), 4,66 (c, 2H), 4,47 (кв, 1H), 3,44 (м, 2H), 2,17 (c, 3H).
40 δ 7,51 (м, 2H), 7,39 (д, 2H), δ7,20~7,03 (м, 11H), 6,57 (д, 1H), 4,63 (c, 2H), 3,25 (м, 2H), 2,17 (c, 3H).
41 δ 7,51 (м, 2H), 7,39 (д, 2H), 7,29 (д, 2H), 7,10 (м, 6H), 6,84 (т, 1H), 6,55 (д, 1H), 4,57 (c, 2H), 4,51 (кв, 1H), 3,38 (м, 2H), 2,17 (c, 3H).
42 δ 7,52 (т, 2H), 7,42 (д, 2H), 7,18 (д, 2H), 7,10 (м, 4H), 6,62 (м, 3H), 4,65 (c, 2H), 4,19 (кв, 1H), 3,17 (м, 2H), 2,19 (c, 3H).
43 δ 7,51 (м, 2H), 7,39 (д, 2H), 7,27 (д, 2H), 7,10 (м, 5H), 6,75 (т, 2H), 6,58 (д, 1H), 4,64 (c, 2H), 4,44 (кв, 1H), 3,29 (м, 2H), 2,18 (c, 3H).
45 δ 7,52 (м, 2H), 7,40 (м, 3H), 7,27~7,06 (м, 8H), 6,55 (д, 1H), 6,55 (д, 1H), 4,66 (c, 2H), 4,47 (кв, 1H), 3,44 (м, 2H), 2,17 (c, 3H).
46 δ 7,34 (д, 2H), 7,17 (м, 7H), 7,07 (м, 2H), 7,02 (д, 2H), 6,56 (д, 1H), 4,71 (c, 2H), 4,28 (кв, 1H), 3,18 (м, 2H), 2,17 (c, 3H).
47 δ 7,3 (д, 2H), 7,29 (д, 2H), 7,14 (м, 2H), 7,08 (м, 4H), 6,84 (м, 1H), 6,56 (д, 1H), 4,64 (c, 2H), 4,50 (кв, 1H), 3,38 (м, 2H), 2,17 (c, 3H).
49 δ 7,34 (д, 2H), 7,28 (д, 2H), 7,14 (м, 2H), 7,08 (м, 3H), 6,75 (т, 2H), 6,57 (д, 1H), 4,65 (c, 2H), 4,43 (кв, 1H), 3,29 (м, 2H), 2,18 (c, 3H).
50 δ 7,34 (кв, 4H), 7,21 (д, 2H), 7,15 (м, 2H), 7,07 (м, 3H), 6,54 (д, 1H), 4,62 (c, 2H), 4,59 (кв, 1H), 3,54 (м, 2H), 2,16 (c, 3H).
55 δ 7,34 (д, 2H), 7,17 (м, 7H), 7,07 (м, 2H), 7,02 (д, 2H), 6,56 (д, 1H), 4,71 (c, 2H), 4,28 (кв, 1H), 3,18 (м, 2H), 2,17 (c, 3H).
56 δ 7,34 (д, 2H), 7,29 (д, 2H), 7,14 (м, 2H), 7,08 (м, 4H), 6,84 (м, 1H), 6,56 (д, 1H), 4,64 (c, 2H), 4,50 (кв, 1H), 3,38 (м, 2H), 2,17 (c, 3H).
58 δ 7,34 (д, 2H), 7,28 (д, 2H), 7,14 (м, 2H), 7,08 (м, 3H), 6,75 (т, 2H), 6,57 (д, 1H), 4,65 (c, 2H), 4,43 (кв, 1H), 3,29 (м, 2H), 2,18 (c, 3H).
59 δ 7,34 (кв, 4H), 7,21 (д, 2H), 7,15 (м, 2H), 7,07 (м, 3H), 6,54 (д, 1H), 4,62 (c, 2H), 4,59 (кв, 1H), 3,54 (м, 2H), 2,16 (c, 3H).
61 δ 7,55 (кв, 2H), 7,42 (м, 4H), 7,31 (м, 1H), 7,17 (м, 5H), 7,05 (м, 4H), 6,54 (м, 1H), 4,60 (c, 2H), 4,28 (м, 2H), 3,21 (м, 2H), 2,17 (c, 3H).
62 δ 7,55 (кв, 2H), 7,42 (м, 4H), 7,31 (м, 3H), 7,08 (м, 4H), 6,85 (м, 1H), 6,54 (м, 1H), 4,61 (c, 2H), 4,50 (кв, 2H), 3,39 (м, 2H), 2,17 (c, 3H).
63 δ 7,57 (кв, 2H), 7,47 (кв, 2H), 7,43 (м, 2H), 7,34 (м, 1H), 7,18 (д, 2H), 7,09 (м, 2H), 6,63 (м, 3H), 4,65 (c, 2H), 4,19 (кв, 1H), 3,16 (м, 2H), 2,18 (c, 3H).
66 δ 7,56 (кв, 2H), 7,41 (м, 5H), 7,33 (м, 1H), 7,27 (д, 2H), 7,12 (т, 1H), 7,06 (м, 2H), 6,55 (д, 1H), 4,61 (c, 2H), 4,48 (кв, 1H), 3,45 (м, 2H), 2,17 (c, 3H).
70 δ 7,55 (кв, 2H), 7,42 (м, 4H), 7,31 (м, 1H), 7,17 (м, 5H), 7,05 (м, 4H), 6,54 (м, 1H), 4,60 (c, 2H), 4,28 (м, 2H), 3,21 (м, 2H), 2,17 (c, 3H).
71 δ 7,55 (кв, 2H), 7,42 (м, 4H), 7,31 (м, 3H), 7,08 (м, 4H), 6,85 (м, 1H), 6,54 (м, 1H), 4,61 (c, 2H), 4,5 (кв, 2H), 3,39 (м, 2H), 2,17 (c, 3H).
72 δ 7,57 (кв, 2H), 7,47 (кв, 2H), 7,43 (м, 2H), 7,34 (м, 1H), 7,18 (д, 2H), 7,09 (м, 2H), 6,63 (м, 3H), 4,65 (c, 2H), 4,19 (кв, 1H), 3,16 (м, 2H), 2,18 (c, 3H).
75 δ 7,56 (кв, 2H), 7,41 (м, 5H), 7,33 (м, 1H), 7,27 (д, 2H), 7,12 (т, 1H), 7,06 (м, 2H), 6,55 (д, 1H), 4,61 (c, 2H), 4,48 (кв, 1H), 3,45 (м, 2H), 2,17 (c, 3H).
76 δ 7,79 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,52 (т, 1H), 7,45 (д, 2H), 7,24~7,13 (м, 5H), 7,08 (м, 2H), 7,03 (д, 2H), 6,56 (д, 1H), 4,63 (c, 2H), 4,29 (кв, 1H), 3,25 (м, 2H), 2,17 (c, 3H).
77 δ 7,78 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,52 (т, 1H), 7,45 (д, 2H), 7,32 (кв, 2H), 7,09 (м, 4H), 6,84 (м, 1H), 6,54 (м, 1H), 4,63 (c, 2H), 4,52 (кв, 2H), 3,39 (м, 2H), 2,18 (c, 3H).
78 δ 7,79 (c, 1H), 7,72 (д, 1H), 7,58 (д, 1H), 7,54 (т, 1H), 7,47 (д, 2H), 7,21 (д, 2H), 7,09 (д, 2H), 6,63 (м, 2H), 6,59 (д, 1H), 4,65 (c, 2H), 4,20 (кв, 1H), 3,17 (м, 2H), 2,19 (c, 3H).
79 δ 7,78 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,52 (т, 1H), 7,45 (д, 2H), 7,30 (д, 2H), 7,09 (м, 3H), 6,76 (т, 2H), 6,58 (д, 1H), 4,64 (c, 2H), 4,45 (кв, 1H), 3,30 (м, 2H), 2,19 (c, 3H).
81 δ 7,79 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,44 (м, 3H), 7,12 (т, 1H), 7,07 (м, 2H), 6,56 (д, 1H), 4,68 (c, 2H), 4,49 (1, 1H), 3,45 (м, 2H), 2,17 (c, 3H).
85 δ 7,79 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,52 (т, 1H), 7,45 (д, 2H), 7,24~7,13 (м, 5H), 7,08 (м, 2H), 7,03 (д, 2H), 6,56 (д, 1H), 4,63 (c, 2H), 4,29 (кв, 1H), 3,25 (м, 2H), 2,17 (c, 3H).
86 δ 7,78 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,52 (т, 1H), 7,45 (д, 2H), 7,32 (кв, 2H), 7,09 (м, 4H), 6,84 (м, 1H), 6,54 (м, 1H), 4,63 (c, 2H), 4,52 (кв, 2H), 3,39 (м, 2H), 2,18 (c, 3H).
87 δ 7,79 (c, 1H), 7,72 (д, 1H), 7,58 (д, 1H), 7,54 (т, 1H), 7,47 (д, 2H), 7,21 (д, 2H), 7,09 (д, 2H), 6,63 (м, 2H), 6,59 (д, 1H), 4,65 (c, 2H), 4,20 (кв, 1H), 3,17 (м, 2H), 2,19 (3, 3H).
88 δ 7,78 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,52 (т, 1H), 7,45 (д, 2H), 7,30 (д, 2H), 7,09 (м, 3H), 6,76 (т, 2H), 6,58 (д, 1H), 4,64 (c, 2H), 4,45 (кв, 1H), 3,30 (м, 2H), 2,19 (с, 3Н).
90 δ 7,79 (c, 1H), 7,72 (д, 1H), 7,57 (д, 1H), 7,44 (м, 3H), 7,12 (т, 1H), 7,07 (м, 2H), 6,56 (д, 1H), 4,68 (c, 2H), 4,49 (1, 1H), 3,45 (м, 2H), 2,17 (c, 3H).
106 δ 8,15 (д, 1H), 7,94 (д, 2H), 7,74 (кв, 1H), 7,68 (д, 2H), 7,63 (д, 1H), 7,23 (т, 2H), 7,16 (т, 1H), 7,08 (д, 2H), 7,02 (д, 1H), 6,98 (кв, 1H), 6,54 (д, 1H), 4,56 (c, 2H), 4,30 (кв, 1H), 3,37 (м, 1H), 2,15 (c, 3H).
108 δ 8,10 (т, 3H), 7,96 (д, 1H), 7,79 (м, 3H), 7,00 (c, 1H), 6,95 (д, 1H), 6,75 (т, 2H), 6,60 (д, 1H), 4,62 (c, 2H), 4,26 (кв, 1H), 3,31 (м, 1H), 3,15 (м, 1H), 2,15 (c, 3H).
109 δ 8,17 (c, 1H), 8,02 (д, 2H), 7,84 (д, 1H), 7,69 (т, 3H), 7,12 (м, 2H), 7,04 (кв, 1H), 6,78 (т, 1H), 6,57 (д, 1H), 4,61 (c, 2H), 4,41 (кв, 1H), 3,35 (м, 2H), 2,17 (c, 3H).
111 δ 8,18 (c, 1H), 8,01 (д, 2H), 7,90 (д, 1H), 7,70 (кв, 3H), 7,44 (т, 1H), 7,30 (м, 1H), 7,14 (т, 1H), 7,03 (м, 2H), 6,56 (д, 1H), 4,60 (c, 2H), 4,44 (кв, 1H), 3,53 (м, 1H), 3,41 (м, 1H), 2,16 (c, 3H).
115 δ 8,15 (д, 1H), 7,94 (д, 2H), 7,74 (кв, 1H), 7,68 (д, 2H), 7,63 (д, 1H), 7,23 (т, 2H), 7,16 (т, 1H), 7,08 (д, 2H), 7,02 (д, 1H), 6,98 (кв, 1H), 6,54 (д, 1H), 4,56 (c, 2H), 4,30 (кв, 1H), 3,37 (м, 1H), 2,15 (c, 3H).
117 δ 8,10 (т, 3H), 7,96 (д, 1H), 7,79 (м, 3H), 7,00 (c, 1H), 6,95 (д, 1H), 6,75 (т, 2H), 6,60 (д, 1H), 4,62 (c, 2H), 4,26 (кв, 1H), 3,31 (м, 1H), 3,15 (м, 1H), 2,15 (c, 3H).
118 δ 8,17 (c, 1H), 8,02 (д, 2H), 7,84 (д, 1H), 7,69 (т, 3H), 7,12 (м, 2H), 7,04 (кв, 1H), 6,78 (т, 1H), 6,57 (д, 1H), 4,61 (c, 2H), 4,41 (кв, 1H), 3,35 (м, 2H), 2,17 (c, 3H).
120 δ 8,18 (c, 1H), 8,01 (д, 2H), 7,90 (д, 1H), 7,70 (кв, 3H), 7,44 (т, 1H), 7,30 (м, 1H), 7,14 (т, 1H), 7,03 (м, 2H), 6,56 (д, 1H), 4,60 (c, 2H), 4,44 (кв, 1H), 3,53 (м, 1H), 3,41 (м, 1H), 2,16 (c, 3H).
121 δ 7,69 (м, 2H), 7,15 (м, 9H), 6,52 (д, 1H), 6,24 (c, 1H), 4,58 (c, 2H), 4,23 (кв, 1H), 3,39 (м, 2H), 2,16 (c, 3H).
122 δ 7,73 (м, 2H), 7,14 (м, 6H), 6,90 (м, 1H), 6,56 (д, 2H), 4,65 (кв, 1H), 4,59 (c, 2H), 3,42 (м, 2H), 2,17 (c, 3H).
123 δ 7,69 (м, 2H), 7,48 (д, 2H), 7,21 (д, 2H), 7,10 (д, 2H), 6,63 (м, 2H), 4,65 (c, 2H), 4,20 (т, 1H), 3,17 (м, 2H), 2,18 (c, 3H).
124 δ 7,73 (м, 2H), δ7,14 (м, 6H), δ6,90 (м, 1H), δ6,56 (д, 2H), δ4,59 (c, 2H), δ4,26 (кв, 1H), δ3,39 (м, 2H), δ2,17 (c, 3H).
130 δ 7,69 (м, 2H), 7,15 (м, 9H), 6,52 (д, 1H), 6,24 (c, 1H), 4,58 (c, 2H), 4,23 (кв, 1H), 3,39 (м, 2H), 2,16 (c, 3H).
131 δ 7,73 (м, 2H), 7,14 (м, 6H), 6,90 (м, 1H), 6,56 (д, 2H), 4,65 (кв, 1H), 4,59 (c, 2H), 3,42 (м, 2H), 2,17 (c, 3H).
132 δ 7,73 (м, 2H), 7,14 (м, 6H), 6,90 (м, 1H), 6,56 (д, 2H), 4,65 (кв, 1H), 4,59 (c, 2H), 3,42 (м, 2H), 2,17 (c, 3H).
133 δ 7,73 (м, 2H), 7,14 (м, 6H), 6,90 (м, 1H), 6,56 (д, 2H), 4,59 (c, 2H), 4,26 (кв, 1H), 3,39 (м, 2H), 2,17 (c, 3H).
136 δ 7,30~6,57 (м, 16H), 6,55 (д, 1H), 4,59 (c, 2H), 4,18 (кв, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
137 δ 7,30~6,57 (м, 14H), 6,54 (д, 1H), δ4,58 (c, 2H), 4,34 (кв, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
139 δ 7,30~6,55 (м, 14H), 6,54 (д, 1H), 4,59 (c, 2H), 4,34 (кв, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
140 δ 7,29~6,52 (м, 14H), 6,52 (д, 1H), 4,57 (c, 2H), 4,50 (кв, 1H), 3,47 (м, 2H), 2,17 (c, 3H).
145 δ 7,30~6,57 (м, 16H), 6,55 (д, 1H), 4,59 (c, 2H), 4,18 (кв, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
146 δ 7,30~6,57 (м, 14H), 6,54 (д, 1H), 4,58 (c, 2H), 4,34 (кв, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
148 δ 7,30~6,55 (м, 14H), 6,54 (д, 1H), 4,59 (c, 2H), 4,34 (кв, 1H), 3,24 (м, 2H), 2,18 (c, 3H).
149 δ 7,29~6,52 (м, 14H), 6,52 (д, 1H), 4,57 (c, 2H), 4,50 (кв, 1H), 3,47 (м, 2H), 2,17 (c, 3H).
Пример 151 Получение соединения S151
Figure 00000042
Способ А
590 мг 4-йод-2-метилфенола растворяли в 20 мл безводного тетрагидрофурана в присутствии азота и в этот момент температуру поддерживали на уровне 0°C. К смеси медленно добавляли 1,5 мл изопропилмагнийхлорида (2M), с последующим взаимодействием в течение 10 минут. Реакционный раствор охлаждали до -78°C и медленно добавляли 2,00 мл трет-бутиллития (раствор 1,7M в гексане, 1,0 эквивалент). После перемешивания в течение 10 минут к смеси добавляли 158 мг Se в виде твердого вещества (2 ммоль, 1,0 эквивалент) при указанной температуре в один прием. Реакция продолжалась в течение 40 минут при повышении температуры до 15°C. 541 мг (2 ммоль, 1,0 эквивалент) 4-хлорметил-4'-трифторметилбифенила растворяли в 10 мл безводного ТГФ и медленно добавляли к реакционной смеси при указанной температуре. После взаимодействия в течение еще одного часа реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 712 мг (выход: 84%) целевого соединения.
1Н ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,50 (д, 2H), δ7,28 (т, 2H), δ7,13 (c, 1H), δ7,07 (кв, 1H), δ6,68 (д, 1H) δ5,20 (c, 1H), δ4,02 (c, 2H), δ2,17 (c, 3H).
Пример 152: Получение соединения S152
Figure 00000043
Способ В
842 мг (2 ммоль) соединения S151 и 290 мг (2,0 эквивалент) имидазола полностью растворяли в 20 мл диметилформамида. К смеси медленно добавляли 165 мг (1,1 эквивалент) трет-бутилдиметилсилилхлорида с последующим перемешиванием при комнатной температуре в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида аммония и этилацетата. Влагу из органического слоя удаляли при помощи сушки над сульфатом магния. Для очистки использовали колонку с силикагелем и растворитель отгоняли при пониженном давлении с получением 1018 мг (выход: 95%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,50 (д, 2H), δ7,27 (т, 2H), δ7,13 (c, 1H), δ7,05 (кв, 1H), δ6,66 (д, 1H), δ4,04 (c, 2H), δ2,15 (c, 3H), δ1,01 (c, 9H), δ0,20 (c, 6H).
Пример 153: Получение соединения S153
Figure 00000044
Способ С
1071 мг (2 ммоль) соединения S152 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 301 мкл (2,2 ммоль) бензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 938 мг (выход: 75%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,47~7,05 (м, 11H), δ6,63 (д, 1H), δ4,30 (м, 1H), δ3,54 (м, 1H), δ3,24 (м, 1H), δ2,12 (c, 3H), δ1,01 (c, 9H), δ0,21 (c, 6H).
Пример 154: Получение соединения S154
Figure 00000045
Способ С
1071 мг (2 ммоль) соединения S152 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 297 мкл (2,2 ммоль) 2-хлор-5-фторбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 1017 мг (выход: 75%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (c, 4H), δ7,45 (д, 2H), δ7,31 (д, 2H), δ7,08 (м, 4H), δ6,85 (м, 1H), δ6,60 (д, 1H), δ4,50 (т, 1H), δ3,41 (д, 2H), δ2,11 (c, 3H), δ1,01 (c, 9H), δ0,20 (c, 6H).
Пример 155: Получение соединения S155
Figure 00000046
Способ С
1071 мг (2 ммоль) соединения S152 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 310 мкл (2,2 ммоль) 3,4,5-трифторбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 1020 мг (выход: 75%) целевого соединения (EIMS: 681,1 [M+H]+).
Пример 156: Получение соединения S156
Figure 00000047
Способ С
1071 мг (2 ммоль) соединения S152 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 285 мкл (2,2 ммоль) 2,5-дифторбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 992 мг (выход: 75%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,30 (д, 2H), δ7,09 (м, 4H), δ6,75 (м, 1H), δ6,54 (м, 1H), δ4,44 (т, 1H), δ3,35 (м, 2H), δ2,19 (c, 3H), 1,01 (c, 9H), δ0,20 (c, 6H).
Пример 157: Получение соединения S157
Figure 00000048
Способ С
1071 мг (2 ммоль) соединения S152 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 330 мкл (2,2 ммоль) 2, 5-дихлорбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 1042 мг (выход: 75%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (c, 4H), δ7,45 (д, 2H), δ7,33 (д, 2H), δ7,08 (м, 2H), δ7,05 (м, 3H), δ6,52 (д, 1H), δ4,61 (кв, 1H), δ3,58 (м, 2H), δ2,19 (c, 3H), 1,01 (c, 9H), δ0,20 (c, 6H).
Пример 158: Получение соединения S158
Figure 00000049
Способ С
1071 мг (2 ммоль) соединения S152 растворяли в 20 мл безводного тетрагидрофурана и температуру понижали до -78°C. К смеси медленно добавляли 3,6 мл (1,8M, 2,0 эквивалента) диизопропиламида лития (LDA). Затем к реакционному раствору добавляли 561 мг (2,2 ммоль) 2-хлор-5-трифторметилбензилбромида и температуру медленно повышали до комнатной температуры. После взаимодействия еще в течение 30 минут реакцию останавливали при помощи раствора хлорида аммония и органический растворитель экстрагировали с использованием этилацетата и раствора хлорида натрия и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 1068 мг (выход: 75%) целевого соединения (EIMS: 713,1 [M+H]+).
Пример 159: Получение соединения S159
Figure 00000050
Способ D
1251 мг (2 ммоль) соединения S153, полученного в примере 153, полностью растворяли в 20 мл тетрагидрофурана. К смеси медленно добавляли 5 мл (раствор 1M в тетрагидрофуране, 2,5 эквивалента) тетрабутиламмонийфторида (TBAF) при комнатной температуре. После взаимодействия еще в течение 30 минут органический растворитель экстрагировали с использованием раствора хлорида аммония и этилацетата, затем сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с получением 940 мг (выход: 92%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,47~7,05 (м, 11H), δ6,63 (д, 1H), δ4,30 (м, 1H), δ3,54 (м, 1H), δ3,24 (м, 1H), δ2,14 (c, 3H).
Пример 160: Получение соединения S160
Figure 00000051
Способ В
511 мг (1 ммоль) соединения S159, полученного в примере 159, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 134 мкл (1,2 ммоль, 1,2 эквивалента) сложного этилового эфира бромуксусной кислоты с последующим интенсивным перемешиванием в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 556 мг (выход: 93%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,22 (м, 5H), δ7,05 (м, 4H), δ6,54 (д, 1H), δ4,59 (c, 2H), δ4,26 (м, 3H), δ3,24 (м, 2H), δ2,18 (c, 3H), δ1,27 (т, 3H).
Пример 161: Получение соединения S161
Figure 00000052
Способ Е
511 мг (1 ммоль) соединения S159, полученного в примере 159, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 210 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бром-2-метилпропаната. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 500 мг (выход: 80%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (c, 4H), δ7,43 (д, 2H), δ7,22 (м, 5H), δ7,03 (м, 4H), δ6,50 (д, 1H), δ4,28 (кв, 1H), δ4,19 (м, 2H), δ2,12 (c, 3H), δ1,54 (c, 6H), δ1,19 (т, 3H).
Пример 162: Получение соединения S162
Figure 00000053
Способ Е
511 мг (1 ммоль) соединения S159, полученного в примере 159, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 146 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бромбутилата. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 519 мг (выход: 83%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,46 (д, 2H), δ7,23 (м, 5H), δ7,03 (м, 4H), δ6,51 (д, 1H), δ4,53 (т, 1H), δ4,21 (м, 3H), δ3,27 (м, 2H), δ2,19 (c, 3H), δ1,99 (м, 2H), δ1,28 (т, 3H), δ1,09 (т, 3H).
Пример 163: Получение соединения S163
Figure 00000054
Способ Е
511 мг (1 ммоль) соединения S159, полученного в примере 159, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 193 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бром-2-метилбутилата. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении, и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 512 мг (выход: 80%) целевого соединения (EIMS: 641,1 [M+H]+).
Пример 164: Получение соединения S164
Figure 00000055
Способ F
597 мг (1 ммоль) соединения S160, полученного в примере 160, тщательно смешивали с 15 мл ТГФ и 10 мл воды, затем медленно добавляли 0,6 мл 2,0M раствора гидроксида лития при 0°C После перемешивания при 0°C в течение 60 минут к смеси добавляли 2,5 мл раствора 0,5M NaHSO4. Органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали при помощи LH-20 колоночной хроматографии с получением 517 мг (выход: 93%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,22 (м, 5H), δ7,05 (м, 4H), δ6,54 (д, 1H), δ4,59 (c, 2H), δ4,24 (м, 1H), δ3,24 (м, 2H), δ2,18 (c, 3H).
Пример 165: Получение соединения S165
Figure 00000056
Способ Е
511 мг (1 ммоль) соединения S159, полученного в примере 159, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 219 мг (1,2 ммоль, 1,1 эквивалента) сложного аллилового эфира бромуксусной кислоты с последующим интенсивным перемешиванием в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении, и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 572 мг (выход: 94%) целевого соединения (EIMS: 611,1 [M+H]+).
Пример 166: Получение соединения S166
Figure 00000057
Способ F
504 мг (1 ммоль) соединения S165, полученного в примере 165, и 56 мг (0,05 ммоль, 0,05 эквивалента) тетракистрифенилфосфина палладия растворяли в 20 мл безводного дихлорметана с последующим перемешиванием при комнатной температуре. 174 мг (1 ммоль, 1,0 эквивалент) 2-этилгексаноата калия растворяли в 2 мл безводного дихлорметана и медленно добавляли к реакционному раствору. После перемешивания при комнатной температуре в течение одного часа осуществляли центрифугирование для удаления растворителя. Полученное в результате твердое вещество промывали с использованием 20 мл дихлорметана и 20 мл нормального гексана с последующей сушкой с получением 547 мг (выход: 90%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,67 (c, 4H), δ7,45 (д, 2H), δ7,22 (м, 5H), δ7,05 (м, 4H), δ6,54 (д, 1H), δ4,59 (c, 2H), δ4,24 (м, 1H), δ3,24 (м, 2H), δ2,18 (c, 3H).
Примеры 167-301
Соединения, представленные в таблице 3, получали способами примеров 151-166, и данные ЯМР соединений аналогичны соединениям примеров 17-149.
Таблица 3
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Пример 302: Получение соединения S302
Figure 00000071
Способ Е
421 мг (1 ммоль) соединения S151, полученного в примере 151, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 134 мкл (1,2 ммоль, 1,2 эквивалента) сложного этилового эфира бромуксусной кислоты с последующим интенсивным перемешиванием в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 472 мг (выход: 93%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (д, 4H), δ7,46 (д, 2H), δ7,23 (м, 4H), δ6,57 (д, 1H), δ4,61 (c, 2H), δ4,25 (кв, 2H), δ4,04 (c, 2H), δ2,23 (c, 3H), δ1,28 (c, 3H).
Пример 303: Получение соединения S303
Figure 00000072
Способ Е
421 мг (1 ммоль) соединения S151, полученного в примере 151, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 210 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бром-2-метилпропаната. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 428 мг (выход: 80%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (д, 4H), δ7,46 (д, 2H), δ7,23 (м, 4H), δ6,57 (д, 1H), δ4,25 (кв, 2H), δ4,04 (c, 2H), δ2,23 (c, 3H), δ1,56 (c, 6H), δ1,28 (c, 3H).
Пример 304: Получение соединения S304
Figure 00000073
Способ Е
421 мг (1 ммоль) соединения S151, полученного в примере 151, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 146 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бромбутилата. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 444 мг (выход: 83%) целевого соединения.
1H ЯМР (300 МГц, CDCl3) δ7,66 (д, 4H), δ7,46 (д, 2H), δ7,23 (м, 4H), δ6,57 (д, 1H), δ4,33 (т, 1H), δ4,25 (кв, 2H), δ4,04 (c, 2H), δ2,23 (c, 3H), δ2,00 (м, 2H), δ1,56 (c, 6H), δ1,28 (c, 3H), δ1,25 (м, 3H).
Пример 305: Получение соединения S305
Figure 00000074
Способ Е
421 мг (1 ммоль) соединения S151, полученного в примере 151, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 193 мкл (1,2 ммоль, 1,2 эквивалента) этил-2-бром-2-метилбутилата. Смесь нагревали при температуре 60~90°C при добавлении дополнительного количества ацетона в течение 4 часов при интенсивном перемешивании. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 440 мг (выход: 80%) целевого соединения (EIMS: 551,1 [M+H]+).
Пример 306: Получение соединения S306
Figure 00000075
Способ F
460 мг (1 ммоль) соединения S302, полученного в примере 302, тщательно смешивали с 15 мл ТГФ и 10 мл воды, к смеси медленно добавляли 0,6 мл 2,0M раствора гидроксида лития при 0°C. После перемешивания при 0°C в течение 60 минут к смеси добавляли 2,5 мл раствора 0,5M NaHSO4. Органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали при помощи LH-20 колоночной хроматографии с получением 472 мг (выход: 93%) целевого соединения.
1Н ЯМР (300 МГц, CDCl3) δ7,66 (д, 4H), δ7,46 (д, 2H), δ7,23 (м, 4H), δ6,57 (д, 1H), δ4,61 (c, 2H), δ4,04 (c, 2H), δ2,22 (c, 3H).
Пример 307: Получение соединения S307
Figure 00000076
Способ Е
421 мг (1 ммоль) соединения S151, полученного в примере 151, тщательно смешивали с 10 мл ацетона, содержащего 5% воды, и 346 мг (2,5 ммоль, 2,5 эквивалента) карбоната калия при комнатной температуре. К смеси добавляли 219 мг (1,2 ммоль, 1,2 эквивалента) сложного аллилового эфира бромуксусной кислоты с последующим интенсивным перемешиванием в течение 4 часов. После завершения реакции органический растворитель экстрагировали с использованием раствора хлорида натрия и этилацетата и сушили над сульфатом магния для удаления влаги из органического слоя. После фильтрования растворитель отгоняли при пониженном давлении и остаток очищали колоночной хроматографией на силикагеле с использованием гексана/этилацетата (об./об. = 5:1) с получением 467 мг (выход: 90%) целевого соединения (EIMS: 521,1 [M+H]+).
Пример 308: Получение соединения S308
Figure 00000077
Способ F
519 мг (1 ммоль) соединения S307, полученного в примере 307, и 56 мг (0,05 ммоль, 0,05 эквивалента) тетракистрифенилфосфина палладия растворяли в 20 мл безводного дихлорметана с последующим перемешиванием при комнатной температуре. 174 мг (1 ммоль, 1,0 эквивалент) 2-этилгексаноата калия растворяли в 2 мл безводного дихлорметана и медленно добавляли к реакционному раствору. После перемешивания при комнатной температуре в течение одного часа осуществляли центрифугирование для удаления растворителя. Полученное в результате твердое вещество промывали с использованием 20 мл дихлорметана и 20 мл нормального гексана с последующей сушкой с получением 471 мг (выход: 91%) целевого соединения.
1Н ЯМР (300 МГц, CDCl3) δ7,66 (д, 4H), δ7,46 (д, 2H), δ7,23 (м, 4H), δ6,57 (д, 1H), δ4,61 (c, 2H), δ4,04 (c, 2H), δ2,22 (c, 3H).
Примеры 309-348
Соединения, представленные в Таблице 4, получали способами примеров 302-308, и данные ЯМР для каждого соединения представлены в таблице 5.
Таблица 4
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Таблица 5
Пр. 1H-ЯМР
309 δ 7,52 (м, 2H), 7,40 (д, 2H), 7,24 (д, 2H), 7,18 (д, 2H), 7,09 (т, 2H), 6,57 (д, 1H), 4,61 (c, 2H), 4,04 (c, 2H), 2,22 (c, 3H).
313 δ 7,52 (м, 2H), 7,40 (д, 2H), 7,24 (д, 2H), 7,18 (д, 2H), 7,09 (т, 2H), 6,57 (д, 1H), 4,61 (c, 2H), 4,04 (c, 2H), 2,22 (c, 3H).
314 δ 7,34 (д, 2H), 7,24~7,13 (м, 6H), 6,57 (д, 1H), 4,61 (c, 2H), 4,02 (c, 2H), 2,23 (c, 3H).
318 δ 7,34 (д, 2H), 7,24~7,13 (м, 6H), 6,57 (д, 1H), 4,61 (c, 2H), 4,02 (c, 2H), 2,23 (c, 3H).
319 δ 7,56 (д, 2H), 7,43 (м, 4H), 7,32 (т, 1H), 7,22 (м, 4H), 6,56 (д, 1H), 4,61 (c, 2H), 4,04 (c, 2H), 2,23 (c, 3H).
323 δ 7,56 (д, 2H), 7,43 (м, 4H), 7,32 (т, 1H), 7,22 (м, 4H), 6,56 (д, 1H), 4,61 (c, 2H), 4,04 (c, 2H), 2,23 (c, 3H).
324 δ 7,72 (м, 2H), 7,59~7,42 (м, 7H), 7,21 (д, 1H), 6,59 (д, 1H), 4,61 (c, 2H), 4,04 (c, 2H), 2,23 (c, 3H).
328 δ 7,72 (м, 2H), 7,59~7,42 (м, 7H), 7,21 (д, 1H), 6,59 (д, 1H), 4,61 (c, 2H), 4,04 (c, 2H), 2,23 (c, 3H).
329 δ 8,94 (c, 1H), 8,04 (кв, 1H), 7,77 (д, 1H), 7,59 (д, 2H), 7,25 (д, 1H), 7,08 (д, 1H), 6,69 (кв, 1H), 6,34 (д, 1H), 4,64 (c, 2H), 3,97 (c, 2H), 2,24 (c, 3H).
333 δ 8,94 (c, 1H), 8,04 (кв, 1H), 7,77 (д, 1H), 7,59 (д, 2H), 7,25 (д, 1H), 7,08 (д, 1H), 6,69 (кв, 1H), 6,34 (д, 1H), 4,64 (c, 2H), 3,97 (c, 2H), 2,24 (c, 3H).
339 δ 7,71 (м, 2H), 7,34 (c, 1H), 7,27 (м, 1H), 7,13 (т, 2H), 6,59 (д, 1H), 6,28 (c, 1H), 4,62 (c, 2H), 3,97 (c, 2H), 2,25 (c, 3H).
343 δ 7,71 (м, 2H), 7,34 (c, 1H), 7,27 (м, 1H), 7,13 (т, 2H), 6,59 (д, 1H), 6,28 (c, 1H), 4,62 (c, 2H), 3,97 (c, 2H), 2,25 (c, 3H).
344 δ 7,31 (т, 2H), 7,24 (д, 2H), 7,18 (м, 2H), 7,08 (т, 1H), 6,93 (д, 2H), 6,89 (д, 1H), 6,82 (кв, 1H), 6,76 (c, 1H), 6,54 (д, 1H), 4,60 (c, 2H), 3,95 (c, 2H), 2,22 (c, 3H).
348 δ 7,31 (т, 2H), 7,24 (д, 2H), 7,18 (м, 2H), 7,08 (т, 1H), 6,93 (д, 2H), 6,89 (д, 1H), 6,82 (кв, 1H), 6,76 (c, 1H), 6,54 (д, 1H), 4,60 (c, 2H), δ3,95 (c, 2H), 2,22 (c, 3H).
Экспериментальный пример 1
Испытание активности и цитотоксичности
Активность соединения, представленного формулой (I), по настоящему изобретению в отношении PPARδ подтверждали при помощи анализа трансфекции. Кроме того, исследовали селективность в отношении подтипов PPAR, таких как PPARα и PPARγ. Цитотоксичность испытывали при помощи MTT анализа и in vivo активность исследовали в эксперименте на животных.
Анализ трансфекции
В этом анализе использовали CV-1 клетки. Клетки высевали в 96-луночный планшет, содержащий DMEM, дополненную 10% FBS, DBS (делипидированная) и 1% пенициллина/стрептомицина, и культивировали в 37°C 5% CO2 инкубаторе. Эксперимент осуществляли в соответствии со стадиями инокуляции, трансфекции, обработки образца и подтверждения. В частности, CV-1 клетки высевали в 96-луночный планшет (5000 клеток/лунка) с последующей трансфекцией через 24 часа. Для трансфекции использовали полноразмерную плазмидную ДНК PPAR, репортерную ДНК, подтверждающую активность PPAR, благодаря ее люциферазной активности, ДНК β-галактозидазы, обеспечивающую информацию об эффективности трансфекциии, и реагент для трансфекции. Образцы растворяли в диметилсульфоксиде (DMSO) и этим раствором обрабатывали клетки через среду при различных концентрациях. После культивирования клеток в инкубаторе в течение 24 часов клетки лизировали с использованием лизисного буфера. Активность люцифераз и активность β-галактозидазы измеряли при помощи люминометра и считывающего устройства для микропланшетов. Полученные значения для люциферазы модифицировали при помощи значений для β-галактозидазы. Эти значения использовали для построения графика и рассчитывали значения EC50.
Таблица 6
Данные EC50
Соединение № hPPARδ hPPARα hPPARγ
S14 2,6 нМ ia ia
S22 9,3 нМ ia ia
S23 12 нМ ia ia
S46 3,7 нМ ia ia
S66 33 нМ ia ia
S106 3,2 нМ ia ia
S164 4,5 нМ ia ia
S306 53 нМ ia ia
ia = не активен
Как показано в таблице 6, соединения по настоящему изобретению являются высокоселективными в отношении PPARδ. Активность соединения по настоящему изобретению в отношении PPARδ была 2 нМ-200 нМ.
MTT анализ
MTT анализ осуществляли для испытания цитотоксичности соединения, представленного формулой (I), по настоящему изобретению. MTT представляет собой желтое вещество, растворимое в воде, но, когда его вводят в живую клетку, оно превращается в нерастворимый кристалл пурпурного цвета под действием дегидрогеназы в митохондриях. Цитотоксичность можно подтвердить путем измерения OD550 после растворения MTT в диметилсульфоксиде. Эксперимент осуществляли следующим образом.
CV-1 клетки высевали в 96-луночный планшет (5000 клеток/лунка). Клетки культивировали в 37°C 5% CO2 инкубаторе в течение 24 часов и обрабатывали образцами при различных концентрациях. Затем клетки снова культивировали в течение 24 часов и добавляли MTT реагент. После культивирования в течение 15 минут образовавшиеся пурпурные кристаллы растворяли в диметилсульфоксиде. Оптическую плотность измеряли с использованием считывающего устройства для микропланшетов для подтверждения цитотоксичности.
Как результат, было подтверждено, что соединение, представленное формулой (I), не обладает цитотоксичностью даже при концентрации в 100-1000 раз выше значения EC50 в отношении PPAR.
Испытание на животных
Эффект ингибирования ожирения
Испытание на животных с использованием мышей осуществляли для подтверждения in vivo эффекта соединения по настоящему изобретению. Использовали C57BL/6 (SLC Co.) мышей возраста 8 недель. Чтобы вызвать ожирение, животным давали корм, содержащий 35% жира. При кормлении животных таким кормом с высоким содержанием жира в течение 60 дней им перорально вводили носитель, S14, S46 и S106 (10 мг/кг/день). В результате только 31% из группы мышей, которых обрабатывали S14, показали прибавку веса, по сравнению с группой обработки носителем, и 43% и 37% из группы обработки S46 и группы обработки S106, соответственно, показали прибавку веса.
Эффект улучшения при диабете
GTT (проба на переносимость глюкозы) осуществляли для подтверждения улучшающего эффекта соединения по настоящему изобретению на диабет. Глюкозу (1,5 г/кг) интраабдоминально вводили мышам, которых предварительно обрабатывали в течение 57 дней путем перорального введения образцов. Уровень глюкозы в крови измеряли каждый час. Уровень глюкозы натощак был ниже в группах обработки S14, S46 и S106 (10 мг/кг/день) по сравнению с контрольной группой. Группа, которую обрабатывали соединением по настоящему изобретению, показала быстрое снижение уровня глюкозы в крови через 20-40 минут и клиренс глюкозы через 100 минут. В то же время в группе обработки носителем уровень глюкозы в крови не восстанавливался до нормального даже через 120 минут. Представленные результаты показывают, что соединения S14, S46 и S106 обладают эффектом улучшения при диабете.
Эффект усиления мышечной выносливости и повышения мышечной функции
Испытание на животных осуществляли для подтверждения такого эффекта композиции по настоящему изобретению, как усиление мышечной выносливости и повышение мышечной функции. Большая часть мышц образуется в стадии развития. Таким образом, соединениями S14, S46 и S106 (10 мг/кг/день) обрабатывали беременных мышей в период либо их беременности, либо лактации, или и в период беременности и в период лактации. Прибавка в весе и скорость роста существенно не отличались у плодов контрольной группы и группы обработки. Мышцы визуально исследовали после удаления кожи. В результате мышцы в группе обработки были красными, в отличие от контрольной группы. Осуществляли АТФазное окрашивание и иммуноокрашивание. В результате в группе обработки наблюдали увеличение мышечного волокна типа I. Роль изменений мышечного волокна в усилении мышечной выносливости и мышечной функции исследовали в испытании на бегущей дорожке. В результате время бегания животных в группе обработки было намного больше по сравнению с контрольной группой.
Таблица 7
Результаты испытания мышечной выносливости
Показатель увеличения (группа обработки/контрольная группа) Беременность Лактация Беременность + лактация
Время Длина Время Длина Время Длина
S14 2,4 раза 2,5 раза 2,1 раза 2,2
раза
3,6 раза 3,9 раза
S46 1,9 раза 1,9 раза 1,5 раза 1,5 раза 2,8 раза 3,0 раза
S106 2,1 раза 2,2 раза 1,8 раза 1,8 раза 3,2 раза 3,4 раза
Когда соединением по настоящему изобретению обрабатывали взрослых особей, мышечная выносливость и мышечная функция также повышались. В частности, S14, S46 и S106 перорально вводили мышам C57BL/6 возраста 10 недель в концентрации 10 мг/кг, в период введения мышей принудительно заставляли двигаться. Испытание осуществляли с использованием бегущей дорожки в течение 30 минут раз в день в течение 30 дней, конкретно со скоростью 2 м/мин в течение первых 5 минут, 5 м/мин в течение 5 минут, 8 м/мин в течение 5 минут и 20 м/мин в течение последних 5 минут. В конце испытания эффект повышения мышечной выносливости и мышечной функции испытывали на бегущей дорожке. В результате время движения (увеличение в группе обработки соединением S14: в 1,5 раза, в группе обработки соединением S46: в 1,3 раза, в группе обработки соединением S106: в 1,4 раза) и расстояние (увеличение в группе обработки соединением S14: в 1,5 раза, в группе обработки соединением S46: в 1,3 раза, в группе обработки соединением S106: в 1,4 раза) увеличивались в группе обработки по сравнению с контрольной группой.
Улучшение памяти
Испытание на животных осуществляли для исследования терапевтического эффекта соединения по настоящему изобретению на деменцию и болезнь Паркинсона, основанного на действии этого соединения, направленного на улучшение памяти. Для подтверждения эффекта соединения по настоящему изобретению в период развития головного мозга соединение перорально вводили беременным мышам в концентрации 10 мг/кг в периоды беременности и лактации. Осуществляли испытание по методу Морриса с использованием водного лабиринта для определения каких-либо изменений функции головного мозга в группе обработки и в контрольной группе. В этом испытании исследуют усвоение пространственных навыков и память, в основном зависящие от гиппокампа в головном мозге. Как результат, среднее время, затраченное на обнаружение платформы, было намного короче в группе обработки по сравнению с контрольной группой; конкретно, группе обработки потребовалось 5,2 сек, чтобы найти платформу (группа обработки соединением S14: 5,2 сек, группа обработки S46: 7,8 сек, группа обработки S106: 6,1 сек), а контрольной группе потребовалось в среднем 24,2 сек, что говорит о значительном улучшении памяти в группе обработки.
Терапевтический эффект соединения по настоящему изобретению на деменцию и болезнь Паркинсона, основанный на действии этого соединения, направленном на улучшение памяти, исследовали с использованием модели заболевания головного мозга у животного (мыши C57BL/6 возраста 10 недель). Сначала в головной мозг мыши инъецировали LPS для создания модели заболевания головного мозга у животного. Мышей разделяли на четыре группы в соответствии с введением и упражнениями. Для упражнений использовали бегущую дорожку при скорости 2 м/мин в течение первых 5 минут, 5 м/мин в течение 5 минут, 8 м/мин в течение 5 минут и 20 м/мин в течение последних 5 минут. По окончании осуществляли испытание по методу Морриса с использованием водного лабиринта, и результаты представлены в таблице 8. Как результат, был подтвержден терапевтический эффект соединения по настоящему изобретению на деменцию и болезнь Паркинсона, достигаемый посредством улучшения памяти при помощи соединения и упражнений.
Таблица 8
Экспериментальная группа Результаты испытания с использованием водного лабиринта
Носитель Упражнение (Х) 32 секунды
Упражнение (О) 24 секунды
S14 Упражнение (Х) 21 секунда
Упражнение (О) 12 секунд
S46 Упражнение (Х) 27 секунд
Упражнение (О) 18 секунд
S106 Упражнение (Х) 23 секунды
Упражнение (О) 15 секунд
Промышленная применимость
Новое соединение по настоящему изобретению действует как лиганд активиратора PPAR, и, таким образом, является высокоперспективным кандидатом для фармацевтической композиции для профилактики и лечения сердечно-сосудистого заболевания, диабета, ожирения, деменции и болезни Паркинсона, для снижения уровня холестерина, для укрепления мышц или для улучшения памяти; функционального пищевого адъюванта, функционального напитка, пищевой добавки, функциональной косметической композиции и композиции корма.

Claims (15)

1. Арильное соединение, представленное формулой (I), или его гидрат, сольват, стереоизомер или фармацевтически приемлемая соль:
Figure 00000082

где А представляет собой S или Se; В представляет собой Н или
Figure 00000083
; R1 представляет собой арил, выбранный из следующих структур:
Figure 00000084

R2 представляет собой Н или
Figure 00000085

R3 представляет собой Н или С1-С8 алкил;
R4 и R5 независимо представляют собой Н или С1-С8 алкил;
R6 представляет собой Н, С1-С8 алкил, С2-С7 алкенил, щелочной металл или щелочноземельный металл;
R11 и R12 независимо представляют собой Н, С1-С8 алкил или галоген;
R21 представляет собой Н, галоген или С1-С7 алкил;
m и n независимо представляют собой целые числа, имеющие значения 1-4;
р представляет собой целое число, имеющее значение 1-5;
q представляет собой целое число, имеющее значение 1-4;
r представляет собой целое число, имеющее значение 1-3;
s представляет собой целое число, имеющее значение 1-5; и алкильная группа радикалов R2, R3, R4, R5, R6, R11, R12 и R21 может быть замещена одним или несколькими атомами галогена при условии, что случай, когда R2 представляет собой Н и А, представляющий собой S, исключается.
2. Арильное соединение или его гидрат, сольват, стереоизомер или фармацевтически приемлемая соль по п.1, где R1 представляет собой арил, выбранный из следующих структур:
Figure 00000086

R2 представляет собой
Figure 00000087
; R3 представляет собой С1-С5 алкил, замещенный или не замещенный галогеном; R4 и R5 независимо представляют собой Н или С1-С5 алкил, замещенный или не замещенный галогеном; R6 представляет собой Н, С1-С7 алкил, щелочной металл или щелочноземельный металл; R11 и R12 независимо представляют собой Н, С1-С5 алкил, замещенный одним или несколькими атомами фтора, или фтор; R21 представляет собой Н, галоген или С1-С5 алкил, замещенный или не замещенный атомами галогена; р представляет собой целое число, имеющее значение от 1-5; q представляет собой целое число, имеющее значение от 1-4; и s представляет собой целое число, имеющее значение от 1-5.
3. Арильное соединение или его гидрат, сольват, стереоизомер или фармацевтически приемлемая соль по п.1, где арильное соединение представляет собой соединение, представленное формулой (IV), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль:
Figure 00000088

где A, R1, R3 и m имеют значения, определенные для формулы 1 в п.1.
4. Арильное соединение или его гидрат, сольват, стереоизомер или фармацевтически приемлемая соль по п.1, где арильное соединение представляет собой соединение, представленное формулой (VIII), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль:
Figure 00000089

где A, R1, R3, R21, m и s имеют значения, определенные для формулы 1 в п.1.
5. Способ получения арильного соединения, представленного формулой (I) в п.1, включающий следующие стадии:
a) взаимодействие соединения, представленного формулой (II), с реагентом Гриньяра и затем взаимодействие с органическим соединением лития, постадийно;
b) добавление S или Se в виде порошка к смеси со стадии а); и
c) взаимодействие смеси с соединением, представленным формулой (III), с получением соединения, представленного формулой (IV):
Figure 00000090

где А, R1, R3 и m имеют значения, определенные для формулы 1 в п.1, X1 представляет собой атом брома или атом йода, и Х2 представляет собой атом хлора, атом брома, атом йода или удаляемую группу, обладающую реакционной способностью с нуклеофильным замещением.
6. Способ получения арильного соединения по п.5, включающий дополнительную стадию, в которой соединение, представленное формулой (IV), подвергают взаимодействию с алкилгалогенацетатом или сложным алкиловым эфиром алкилгалогенуксусной кислоты с получением сложноэфирного соединения, представленного формулой (XI):
Figure 00000091

где A, R1, R3, R4, R5 и m имеют значения, определенные для формулы 1 в п.1, и R представляет собой защитную группу карбоновой кислоты, содержащую С1-С4 алкил или аллил.
7. Способ получения арильного соединения по п.6, включающий дополнительную стадию, в которой соединение, представленное формулой (XI), гидролизуют с получением соединения, представленного формулой (XII):
Figure 00000092

Figure 00000093

где A, R1, R3, R4, R5 и m имеют значения, определенные для формулы 1 в п.1, R представляет собой защитную группу карбоновой кислоты, содержащую С1-С4 алкил или аллил, и R6b, представляет собой Н, щелочной металл или щелочноземельный металл.
8. Способ получения арильного соединения по п.5, включающий дополнительную стадию, в которой альфа-водород тио- или селеноэфирного соединения, представленного формулой (IV), подвергают обработке сильной щелочью и затем подвергают взаимодействию с соединением, представленным формулой (VI), с получением соединения, представленного формулой (VIII):
Figure 00000094

где А, R1, R3, R21, m и s имеют значения, определенные для формулы 1 в п.1, и Х3 представляет собой атом хлора, атом брома, атом йода или удаляемую группу.
9. Способ получения арильного соединения по п.8, где фенольную группу соединения, представленного формулой (IV), защищают алкилсилильной группой и затем обрабатывают сильной щелочью и добавляют соединение, представленное формулой (VI), и затем фенол-защитную группу удаляют:
Figure 00000095

где A, R1, R3, R21, m и s имеют значения, определенные для формулы 1 в п.1, и Х3 представляет собой атом хлора, атом брома, атом йода или удаляемую группу.
10. Способ получения арильного соединения по п.8, включающий дополнительную стадию, в которой соединение, представленное формулой (VIII), подвергают взаимодействию с алкилгалогенацетатом или сложным алкиловым эфиром алкилгалогенуксусной кислоты с получением сложноэфирного соединения, представленного формулой (IX):
Figure 00000096

Figure 00000097

где A, R1, R3, R4, R5, R21, m и s имеют значения, определенные для формулы 1 в п.1, и R представляет собой защитную группу карбоновой кислоты, содержащую С1-С4 алкил или аллил.
11. Способ получения арильного соединения по п.10, включающий дополнительную стадию, в которой сложноэфирное соединение, представленное формулой (IX), гидролизуют с получением соединения, представленного формулой (X):
Figure 00000098

где А, R1, R3, R4, R5, R21, m и s имеют значения, определенные для формулы 1 в п.1, R6a представляет собой защитную группу карбоновой кислоты, содержащую С1-С4 алкил или аллил, и R6b, представляет собой Н, щелочной металл или щелочноземельный металл.
12. Фармацевтическая композиция для профилактики и лечения артериосклероза, гиперлипидемии, диабета, ожирения, деменции и болезни Паркинсона, для снижения уровня холестерина, для укрепления мышц, для повышения выносливости или для улучшения памяти, содержащая арильное соединение, представленное формулой (I), или его гидрат, сольват, стереоизомер или фармацевтически приемлемую соль по п.1 в качестве активных ингредиентов и фармацевтически приемлемые экципиенты.
13. Композиция активатора рецептора, активируемого пролифератором пероксисом (PPAR), содержащая арильное соединение, представленное формулой (I), и его гидрат, сольват, стереоизомер и фармацевтически приемлемую соль по п.1 в качестве активных ингредиентов.
14. Фармацевтическая композиция для профилактики и лечения артериосклероза, деменции и болезни Паркинсона, для укрепления мышц, для повышения выносливости или для улучшения памяти, содержащая активатор рецептора, активируемого пролифератором пероксисом (PPAR), содержащий арильное соединение, представленное формулой (I), или его гидрат, сольват, стереоизомер или фармацевтически приемлемую соль по п.1 в качестве активного ингредиента.
15. Способ изучения влияния соединений по любому из пп.1-4 на рецептор, активируемый пролифератором пероксисом, предназначенный для профилактики и лечения артериосклероза, деменции и болезни Паркинсона, для укрепления мышц, для повышения выносливости или для улучшения памяти, который включает стадии добавления средства-кандидата, представляющего собой активатор PPAR, к PPAR; и измерения активности PPAR.
RU2009125232/04A 2006-12-02 2007-12-01 Арильные соединения в качестве лигандов ppar и их применение RU2444514C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060121074 2006-12-02
KR10-2006-0121074 2006-12-02

Publications (2)

Publication Number Publication Date
RU2009125232A RU2009125232A (ru) 2011-01-10
RU2444514C2 true RU2444514C2 (ru) 2012-03-10

Family

ID=39468091

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009125232/04A RU2444514C2 (ru) 2006-12-02 2007-12-01 Арильные соединения в качестве лигандов ppar и их применение

Country Status (10)

Country Link
US (1) US8519145B2 (ru)
EP (1) EP2102155A4 (ru)
JP (1) JP5455636B2 (ru)
KR (1) KR100951653B1 (ru)
CN (4) CN102584685A (ru)
AU (1) AU2007326114B2 (ru)
BR (1) BRPI0716272A2 (ru)
CA (1) CA2669639A1 (ru)
RU (1) RU2444514C2 (ru)
WO (1) WO2008066356A1 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007341981A1 (en) * 2006-12-29 2008-07-10 The Salk Institute For Biological Studies Methods for enhancing exercise performance
AU2008212816B2 (en) 2007-02-09 2014-08-07 Metabasis Therapeutics, Inc. Novel antagonists of the glucagon receptor
ES2423793T3 (es) 2008-05-26 2013-09-24 Genfit Compuestos agonistas de PPAR, preparación y usos para el tratamiento de la diabetes y/o dislipidemias
EP2326618B1 (en) 2008-08-13 2014-10-15 Metabasis Therapeutics, Inc. Glucagon antagonists
KR101326932B1 (ko) * 2009-11-26 2013-11-11 (주)아모레퍼시픽 퍼옥시좀 증식체 활성화 수용체 델타의 활성촉진 조성물
WO2011107494A1 (de) 2010-03-03 2011-09-09 Sanofi Neue aromatische glykosidderivate, diese verbindungen enthaltende arzneimittel und deren verwendung
DE102010015123A1 (de) 2010-04-16 2011-10-20 Sanofi-Aventis Deutschland Gmbh Benzylamidische Diphenylazetidinone, diese Verbindungen enthaltende Arzneimittel und deren Verwendung
EP2582709B1 (de) 2010-06-18 2018-01-24 Sanofi Azolopyridin-3-on-derivate als inhibitoren von lipasen und phospholipasen
US8530413B2 (en) 2010-06-21 2013-09-10 Sanofi Heterocyclically substituted methoxyphenyl derivatives with an oxo group, processes for preparation thereof and use thereof as medicaments
TW201215388A (en) 2010-07-05 2012-04-16 Sanofi Sa (2-aryloxyacetylamino)phenylpropionic acid derivatives, processes for preparation thereof and use thereof as medicaments
TW201221505A (en) 2010-07-05 2012-06-01 Sanofi Sa Aryloxyalkylene-substituted hydroxyphenylhexynoic acids, process for preparation thereof and use thereof as a medicament
TW201215387A (en) 2010-07-05 2012-04-16 Sanofi Aventis Spirocyclically substituted 1,3-propane dioxide derivatives, processes for preparation thereof and use thereof as a medicament
KR101898610B1 (ko) * 2010-08-31 2018-09-14 서울대학교산학협력단 PPARδ 활성물질의 태자 재프로그래밍 용도
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013068486A1 (en) 2011-11-08 2013-05-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the diagnosis and treatment of male infertility
CN104001449B (zh) * 2013-02-26 2016-12-28 华东理工大学 含有联苯基团的季铵盐型Gemini表面活性剂及其制备方法
WO2015191900A1 (en) 2014-06-12 2015-12-17 Ligand Pharmaceuticals, Inc. Glucagon antagonists

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2196141C2 (ru) * 1997-10-08 2003-01-10 Санкио Компани, Лимитед Замещенное конденсированное гетероциклическое соединение, способ фармакологического воздействия, способ ингибирования 5-липоксигеназы, ингибирования продукции липидных пероксидов или снижения уровня сахара в крови

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9914977D0 (en) 1999-06-25 1999-08-25 Glaxo Group Ltd Chemical compounds
GB0031107D0 (en) 2000-12-20 2001-01-31 Glaxo Group Ltd Chemical compounds
DE60315603T2 (de) * 2002-02-25 2008-05-21 Eli Lilly And Co., Indianapolis Modulatoren von peroxisome proliferator-aktivierten rezeptoren
US6875780B2 (en) * 2002-04-05 2005-04-05 Warner-Lambert Company Compounds that modulate PPAR activity and methods for their preparation
GB0214149D0 (en) * 2002-06-19 2002-07-31 Glaxo Group Ltd Chemical compounds
MXPA06004641A (es) * 2003-11-05 2006-06-27 Hoffmann La Roche Derivados de fenilo como agonistas para.
JP2005179281A (ja) * 2003-12-19 2005-07-07 Sumitomo Pharmaceut Co Ltd ビフェニル化合物
RU2371437C2 (ru) * 2004-12-31 2009-10-27 Сеул Нэшнл Юниверсити Индастри Фаундейшн Селенорганические соединения и их применение
EP1856072A4 (en) * 2005-02-25 2009-10-21 Seoul Nat Univ Ind Foundation THIAZONE DERIVATIVES AS PPAR DELTA LIGANDS AND METHOD FOR THEIR PREPARATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2196141C2 (ru) * 1997-10-08 2003-01-10 Санкио Компани, Лимитед Замещенное конденсированное гетероциклическое соединение, способ фармакологического воздействия, способ ингибирования 5-липоксигеназы, ингибирования продукции липидных пероксидов или снижения уровня сахара в крови

Also Published As

Publication number Publication date
WO2008066356A1 (en) 2008-06-05
JP2010511604A (ja) 2010-04-15
KR100951653B1 (ko) 2010-04-07
CN102584685A (zh) 2012-07-18
RU2009125232A (ru) 2011-01-10
BRPI0716272A2 (pt) 2015-01-20
EP2102155A1 (en) 2009-09-23
CN102863362A (zh) 2013-01-09
JP5455636B2 (ja) 2014-03-26
AU2007326114A1 (en) 2008-06-05
CN103086936A (zh) 2013-05-08
CN101595089A (zh) 2009-12-02
KR20080050348A (ko) 2008-06-05
AU2007326114B2 (en) 2011-08-25
US20120271055A1 (en) 2012-10-25
CA2669639A1 (en) 2008-06-05
US8519145B2 (en) 2013-08-27
EP2102155A4 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
RU2444514C2 (ru) Арильные соединения в качестве лигандов ppar и их применение
RU2444518C2 (ru) ПРОИЗВОДНОЕ ТИАЗОЛА КАК PPARδ ЛИГАНД И ФАРМАЦЕВТИЧЕСКИЙ, КОСМЕТИЧЕСКИЙ И ДИЕТИЧЕСКИЙ ПИЩЕВОЙ ПРОДУКТ, СОДЕРЖАЩИЙ ЕГО
RU2510394C1 (ru) Производное селеназола, имеющее лиганд, который активирует рецептор, активируемый пролифератором пероксисом ( ppar ), способ его получения и применение химических соединений
RU2392274C2 (ru) Тиазольные производные в качестве лигандов ppar-дельта и способ их получения
CA2599281C (en) Thiazole derivatives as ppar delta ligands and their manufacturing process
EP1841748B1 (en) Organoselenium containing compounds and their use
KR100753860B1 (ko) 유기 셀레늄 함유 화합물 및 이들 화합물의 용도
KR101141556B1 (ko) 퍼록시솜 증식자 활성화 수용체 리간드 셀레나졸 유도체, 이의 제조방법 및 이들 화합물의 용도

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141202