RU2434187C2 - Холодильный аппарат с ледогенератором и способ приготовления льда - Google Patents

Холодильный аппарат с ледогенератором и способ приготовления льда Download PDF

Info

Publication number
RU2434187C2
RU2434187C2 RU2009125472/21A RU2009125472A RU2434187C2 RU 2434187 C2 RU2434187 C2 RU 2434187C2 RU 2009125472/21 A RU2009125472/21 A RU 2009125472/21A RU 2009125472 A RU2009125472 A RU 2009125472A RU 2434187 C2 RU2434187 C2 RU 2434187C2
Authority
RU
Russia
Prior art keywords
ice
water
container
air
molding
Prior art date
Application number
RU2009125472/21A
Other languages
English (en)
Other versions
RU2009125472A (ru
Inventor
Стефан ХОЛЬЦЕР (DE)
Стефан ХОЛЬЦЕР
Йоахим ДАМРАТ (DE)
Йоахим ДАМРАТ
Андреас РЕННЕР (DE)
Андреас РЕННЕР
Маркус ШПИЛЬМАННЛЯЙТНЕР (DE)
Маркус Шпильманнляйтнер
Герхард ВЕТЦЛЬ (DE)
Герхард ВЕТЦЛЬ
Original Assignee
Бсх Бош Унд Сименс Хаусгерете Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бсх Бош Унд Сименс Хаусгерете Гмбх filed Critical Бсх Бош Унд Сименс Хаусгерете Гмбх
Publication of RU2009125472A publication Critical patent/RU2009125472A/ru
Application granted granted Critical
Publication of RU2434187C2 publication Critical patent/RU2434187C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/04Level of water

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

Льдогенератор имеет контейнер, заполняемый водой, и граничащее с поверхностью воды в контейнере для формовки воздушное пространство. Льдогенератор содержит устройство увлажнения воздуха для насыщения воздуха над поверхностью воды влагой, холодильный аппарат с ледогенератором, который имеет контейнер, заполняемый водой, и граничащее с поверхностью воды в контейнере для формовки воздушное пространство. Льдогенератор содержит устройство увлажнения воздуха для насыщения воздуха над поверхностью воды влагой. Способ изготовления кусков льда состоит из этапов, которые включают дозирование воды в контейнере, заполнение испарителя, охлаждение воды, подачу в воду кристаллов льда, когда достигнута предварительно заданная температура кристаллизации воды ниже 0°С. Использование данной группы изобретений позволяет осуществлять эффективное функционирование льдогенератора и холодильника при низком расходе энергии. 3 н. и 22 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к ледогенератору с наполняемым водой контейнером для формовки, который для производства льда может охлаждаться до температуры ниже 0°C, к оснащенному подобным ледогенератором холодильному аппарату и к осуществляемому с помощью подобного ледогенератора способу изготовления льда.
Уровень техники
В большинстве обычных ледогенераторов используется контейнер для формовки, в котором сформировано множество отсеков, соединенных между собой в заполненном состоянии. Примеры таких ледогенераторов описаны в DE 4113767 C2 и DE 2429392 A1.
Существует две важные причины для того, чтобы предусмотреть соединение между отсеками контейнера для формовки. Во-первых, соединение упрощает автоматическое заполнение контейнера для формовки, так как вода может подаваться в одно единственное место контейнера для формовки и оттуда распространяться между соединенными друг с другом отсеками. Другая причина заключается в механизме образования льда. Фактически образование льда из-за так называемой гетерогенной нуклеации происходит не при 0°C, а лишь при температурах на несколько градусов ниже 0°C. Оно предполагает наличие гетерогенных, т.е. неводянистых зародышей нуклеации, если они отсутствуют, воду можно охлаждать до -40°C без замерзания. Этот эффект является помехой для автоматической работы ледогенератора по различным причинам. Во-первых, при несоединенных отсеках существует опасность, что в отдельных отсеках будут отсутствовать зародыши нуклеации, так что вода в них останется в жидком состоянии, в то время как в других отсеках уже давно будет заморожена. Когда содержимое ячеек выгружается в емкость для сбора льда, а в отсеке еще имеется вода, то она замерзает в емкости для сбора льда, причем находящиеся там готовые куски льда смерзаются в прочный блок, который больше не пригоден для использования. Для минимизации вероятности этого нужно или перед опорожнением отсеков закладывать длительное время ожидания, чтобы и в отсеках без зародышей нуклеации была возможность для замораживания, что чувствительно ограничивает производительность ледогенератора, или ледогенератор должен эксплуатироваться только при очень низких температурах, сопряженных с высоким расходом энергии. Обычно эту проблему решают, выполняя отсеки контейнера для формовки при замерзании соединенными друг с другом, так, чтобы процесс образования льда от отсека, в котором благодаря наличию эффективного зародыша нуклеации обеспечивается возможность раннего замерзания, распространялся во все остальные отсеки. Однако, таким образом, возможно получать только соединенные друг с другом куски льда, которые при изъятии из формы ненадежно разламываются и поэтому в емкости для сбора занимают много места, а также с трудом могут использоваться в автоматических диспенсерах для льда.
Раскрытие изобретения
Целью настоящего изобретения является создание ледогенератора, оснащенного им холодильного аппарата и способа изготовления льда, которые быстро и эффективно функционируют при низком расходе энергии.
Эта цель, во-первых, достигается с помощью ледогенератора с наполняемым водой контейнером для формовки и граничащего с поверхностью воды в контейнере для формовки воздушного пространства, у которого предусмотрено устройство увлажнения воздуха для насыщения воздуха над поверхностью воды влагой. В то время как эта влага конденсируется в форме мельчайших снежинок, возникают высокоэффективные зародыши конденсации, которые осаждаются на поверхности воды и оттуда могут запускать образование льда уже при температурах чуть ниже 0°C.
В самом простом случае в роли устройства увлажнения воздуха выступает испаритель.
Для обеспечения быстрого и эффективного нагревания воды в испарителе водный резервуар испарителя предпочтительно имеет, по меньшей мере, частично выполненную из токопроводящей пластмассы стенку, на которую может подаваться напряжение для обогрева.
Для предотвращения выпадения известкового осадка в испарителе он предпочтительно рассчитан для нагрева содержащейся в нем воды максимально до 60°C.
Испаритель имеет объем предпочтительно не более 2 см3, чтобы, с одной стороны, обеспечить возможность быстрого нагрева находящейся внутри воды, с другой стороны, чтобы поддерживать на низком уровне количество тепла, отдаваемого воде в испарителе, и через нее в конечном счета всему ледогенератору.
Предпочтительно предусмотрено управляющее устройство для временного приведения в действие устройства увлажнения воздуха во время каждого процесса изготовления льда.
Управляющее устройство может быть подключено к таймеру, чтобы запускать устройство увлажнения воздуха соответственно с предварительно заданной временной задержкой после заполнения контейнера для формовки; в качестве альтернативы или дополнительно оно может быть подключено к датчику температуры, чтобы запускать устройство увлажнения воздуха, если температура опустится ниже заданной.
Контейнер для формовки и устройство увлажнения воздуха целесообразно подключены к одному и тому же трубопроводу водоснабжения.
При этом устройство увлажнения воздуха может быть расположено так, чтобы при превышении заданного уровня отдавать воду в контейнер для формовки. Таким образом, отпадает необходимость точного дозирования подаваемого в устройство увлажнения воздуха количество воды.
Особенно целесообразно, если устройство увлажнения воздуха расположено в трубопроводе водоснабжения вверх по потоку от контейнера для формовки.
Так как с помощью кристаллов снега создается большое количество зародышей нуклеации, контейнер для формовки может иметь множество не соединенных между собой отсеков для льда без риска, что вода не замерзнет в отдельных отсеках. Из несоединенных отсеков для льда получаются не соединенные друг с другом куски льда, которые просто и надежно могут использоваться в расположенном далее диспенсере для льда.
Целесообразно в воздушном пространстве предусмотрен вентилятор для приведения в действие циркуляции воздуха, чтобы обеспечить распределение кристаллов снега по всей поверхности воды.
Ледогенератор может быть снабжен собственной холодильной установкой; предпочтительно он установлен в холодильный аппарат и охлаждается от его холодильной установки.
При этом упомянутый выше вентилятор может быть частью холодильного аппарата, прежде всего, он может служить для приведения в действие циркуляции воздуха между воздушным пространством и испарителем хладагента.
Такая циркуляция воздуха в этом случае обеспечивает охлаждение воды в контейнере для формовки или, по меньшей мере, вносит существенный вклад в его охлаждение. Для предотвращения замерзания воды в устройстве увлажнения воздуха раньше, чем в контейнере для формовки, циркуляция воздуха над поверхностью воды устройства увлажнения воздуха предпочтительно слабее, чем над поверхностью воды контейнера для формовки.
Далее цель изобретения достигается с помощью способа изготовления кусков льда, прежде всего, в ледогенераторе или холодильном аппарате, как определено выше, посредством следующих этапов:
а) дозирование воды в контейнер для формовки,
б) заполнение испарителя,
в) охлаждение воды,
г) Подача в воду кристаллов льда, когда достигнута предварительно заданная температура кристаллизации воды ниже 0°С.
Целесообразно поочередное выполнение этапов а)-г) процесса, начиная с этапа а). Также возможно одновременное выполнение этапов а) и б) процесса и последующее поочередное выполнение этапов в) и г) процесса, начиная с этапа в).
Кристаллы льда образуются предпочтительно за счет испарения воды и охлаждения получающегося при этом пара ниже 0°С. Испарение воды может быть реализовано в течение временного промежутка от 0,5 минут до 2,5 минут, но предпочтительно в течение временного промежутка от 1 минуты до 2 минут. Затравливание воды кристаллами льда предпочтительно происходит при температуре воды между -2 и
-7°С, причем в случае приготовления льда в управляемой термостатом холодильной камере температура кристаллизации может выбираться тем выше, чем ниже заданная температура термостатической регулировки. Температура воздуха в ледогенераторе ко времени затравки в общем будет ниже, здесь предпочитается температура ниже -10°С.
Краткое описание чертежей
Другие признаки и преимущества изобретения приведены в описании примеров вариантов реализации со ссылкой на прилагаемые фигуры, на которых изображены:
фиг.1 - схематическое сечение через холодильный аппарат с ледогенератором согласно настоящему изобретению;
фиг.2 - перспективная проекция примера реализации соответствующего изобретению ледогенератора; и
фиг.3 - графическое представление временной характеристики температуры и влажности воздуха во время цикла приготовления льда.
Осуществление изобретения
Схематически изображенный на фиг.1 холодильный аппарат имеет теплоизолирующий корпус 1 и дверь 2, ограничивающую внутреннее пространство 3. Во внутреннем пространстве 3 с помощью испарителя, расположенного в выделенной в верхней области корпуса 1 испарительной камере 4, поддерживается температура ниже 0°C. Автоматический ледогенератор 5, который далее будет подробнее описан со ссылкой на фиг.2, расположен в непосредственной близости от испарительной камеры 4 во внутреннем пространстве 3, и на него может эффективно подаваться холодный воздух от испарительной камеры 4.
Под ледогенератором 5 расположена сборная емкость 6 диспенсера для льда, в которой собираются выбрасываемые ледогенератором 5 готовые куски льда. Сборная емкость 6 занимает большую часть глубины внутреннего пространства 3. В задней нише 7 сборной емкости 6 расположен электродвигатель для привода пролегающей в продольном направлении относительно сборной емкости 6 мешалки 8. Направленный от ниши 7 конец мешалки 8 пролегает в цилиндрической раздаточной камере 10. Ножи 9 дробильного механизма закреплены на расположенной на одном из концов мешалки 8 втулке, и с помощью муфты 11 на них передается вращение мешалки 8. Вторая группа ножей 12 может фиксироваться на цилиндрической внешней стенке раздаточной камеры 10, так что ножи 9, когда на них передается вращение мешалки 8, входят в промежутки между ножами 12 и при этом измельчают подаваемые из сборной емкости 8 в раздаточную камеру 10 куски льда, прежде чем они выпадут из раздаточного отверстия 13 в нижней области раздаточной камеры 10. Блокировка ножей 12 на стенке раздаточной камеры 10 может сниматься, так что ножи 12 вращаются от ножей 9, вследствие чего из раздаточного отверстия 13 могут подаваться целые куски льда. Когда муфта 11 разомкнута, ни ножи 9, ни ножи 12 не получают вращение от мешалки 8. В то время как мешалка 8 время от времени вращается при разомкнутой муфте 11, возможно предотвратить смерзание кусков льда в сборной емкости 6 и поддерживать движение последних, так что при необходимости они могут надежно подаваться через раздаточное отверстие 13.
Напротив раздаточного отверстия 13 расположен канал 14, который проходит сквозь слой изоляционного материала двери 2 и примыкает к открытой в направлении внешней стороны двери 2 нише 15. Заслонка 16 удерживает канал 14 закрытым, пока не приведен в действие диспенсер, что означает вращение мешалки 8 при замкнутой муфте 11, чтобы подать лед через раздаточное отверстие 13 и канал 14 в помещенную в нише 15 емкость.
Бак 17 для воды вделан на задней стенке ниши 14 в изоляционный материал двери 2. Бак 17 для воды как и ледогенератор 5, с одной стороны, через трубопровод 18 водоснабжения и запорный вентиль 19 подключен к водопроводу с питьевой водой, а с другой стороны, к месту 20 заправки в нише 15.
Теперь подробное описание ледогенератора 5 приводится со ссылкой на фиг.2.
На фигуре видно сформованную литьем под давлением из пластмассы четырехугольную рамку 21, в которой подвешен контейнер 22 для формовки, в данном случае с семью отсеками 23, с возможностью вращения вокруг продольной оси 24. В двух полых участках 25, 26 стенок рамки 21 расположены соответственно электродвигатель и редуктор для обеспечения вращательного движения контейнера 22 для формовки вокруг продольной оси 24. В показанной ориентации перегородки 27 между отсеками 23 контейнера для формовки имеют наклон в сторону.
Над контейнером 22 для формовки на участке 26 стены закреплен небольшой плоский лоток 28. На дне лотка предусмотрена полая перемычка 29, предназначенная для оснащения электронагревательным стержнем 30 со стороны участка 26 стены. В качестве альтернативы сам лоток 28 или его часть может быть изготовлена из пластмассы с подходящей токопроводящей добавкой, которая может нагреваться путем подключения электрического тока. Питающий провод 18 выходит в лоток 28. В боковых стенках лотка 28 выполнено множество широких выемок 31, 32. Предусмотрены расположенные между выемками 31, 32 стойки 33, служащие опорой для крышки 34. На имеющей обозначение 32 самой глубокой выемке сформирована сточная кромка 35, по которой вода из лотка 28 может стекать в контейнер 22 для формовки. Объем лотка 28, составляя несколько см3, предпочтительно менее 1 см3, существенно меньше объема контейнера 22 для формовки.
В начале цикла приготовления льда снабжающий ледогенератор 5 запорный вентиль 19 временно открывается для впуска воды. Вода проходит через лоток 28 и по сточной кромке 35 попадает в контейнер 22 для формовки. Подаваемое количество воды дозируется так, чтобы ее только-только хватало для перетекания перегородок 27 на их более глубоко расположенном конце. Так будет обеспечен единый уровень во всех отсеках 23 контейнера 22 для формовки. Затем контейнер 22 для формовки немного поворачивается вокруг оси 24 по часовой стрелке, пока верхние кромки перегородок 27 не будут стоять горизонтально и располагаться выше уровня воды в отсеках 23, так что порции воды в отсеках 23 будут отделены друг от друга.
В этом положении вода в отсеках 23 охлаждается. Предусмотрен не показанный датчик температуры, служащий для контроля температуры воды и подачи сигнала на также не изображенное управляющее устройство. Датчик температуры может быть расположен непосредственно на контейнере для формовки, чтобы регистрировать фактическую температуру воды в отсеках 23; также возможно расположение в другом месте, например на рамке 21, так что он будет регистрировать температуру воздуха в ледогенераторе, причем тогда управляющее устройство рассчитано на то, чтобы оценивать температуру воды на основании измеренной температуры воздуха и времени охлаждения. Управляющим устройством может быть центральное управляющее устройство холодильного аппарата, которое также отвечает за регулировку температуры во внутреннем пространстве 3, или может применяться специальное управляющее устройство ледогенератора 5.
Во время охлаждения воды в отсеках 23 нагревательный стержень 30 уже можно запустить в работу на низкой мощности, которой будет достаточно, чтобы не допустить замерзания воды в лотке 28. Когда зарегистрированная датчиком или рассчитанная управляющим устройством температура воды в отсеках 23 будет ниже заданного предельного значения, управляющее устройство увеличивает мощность нагревательного стержня 30, чтобы нагреть воду в лотке 28. Предельное значение обычно выбирается в диапазоне от -6°C до -3°C; прежде всего, если одно и тоже управляющее устройство отвечает за управление ледогенератором 5 и регулировку температуры во внутреннем пространстве 3, предельное значение целесообразно задать как функцию от заданной температуры во внутреннем пространстве 3.
За счет нагревания часть воды в лотке 28 испаряется, и водяной пар выходит через выемки 31, 32. Мощность нагревательного стержня 30 управляется так, чтобы вода в лотке 28 не нагревалась выше 60°C, чтобы предотвратить осаждение извести на стенках лотка 28. Этот водяной пар создает мелкий туман кристаллов снега или льда, который распределяется над контейнером 22 для формовки благодаря имеющейся в ледогенераторе 5 из-за воздухообмена с испарительной камерой 4 воздушной тяге. Так кристаллы, служащие зародышами нуклеации, надежно попадают в каждый отдельный отсек 23 и запускают там процесс образования льда.
В результате образования льда освобождается тепло. Чтобы это тепло не привело к повторному таянию уже сформированного льда в отсеках 23, целесообразна упомянутая выше зависимость предельного значения температуры от заданной температуры во внутреннем пространстве 3: При низкой заданной температуре и соответственно низкой температуре подводимого из испарительной камеры 4 воздуха освобождающееся в результате образовании льда тепло может быстро отводиться, так что температура в отсеках 23 не достигнет снова 0°C, даже если затравка кристаллами снега проводится уже при относительно высокой температуре воды в отсеках 23, составляющей -3°C. В случае относительно высокой заданной температуры во внутреннем пространстве, например -14°C, тепло от образования льда не может отводиться так быстро, так что целесообразно проводить затравливание при более низкой температуре воды в отсеках 23 ок. -6°C.
Поскольку с уверенностью можно предположить, что после затравливания кристаллами снега образование льда началось в каждом отдельном отсеке 23, время между затравливанием и последующим опорожнением отсеков 23 можно установить относительно коротким, так что отсеки быстро снова будут готовы для нового заполнения.
Чтобы облегчить опорожнение, контейнер 22 для формовки с невидимой на фиг.2 стороны днища снабжен электронагревательным элементом. После того, как после затравливания истекло достаточное для полного замерзания время, управляющее устройство активизирует этот нагревательный элемент, чтобы растопить поверхности кусков льда в отсеках 23, и затем приводит в действие электродвигатель, чтобы перевернуть контейнер 22 для формовки верх ногами вокруг продольной оси 24, так чтобы куски льда упали из отсеков 23 в расположенную под ним сборную емкость 26.
Последующим вращением контейнера 22 для формовки в том же направлении снова занимается показанное на фиг.2 положение, и новый цикл изготовления льда может начинаться с заполнения отсеков 23.
На фиг.3 примерно изображена характеристика температуры воды в отсеках 23, температуры воды в лотке 28 и влажности воздуха в ледогенераторе во время одного цикла приготовления льда. При этом температура в отсеках 23 представлена в виде сплошной кривой 36, соответствующая шкала температуры нанесена с левой стороны диаграммы, в то время как выраженная в процентах влажность воздуха представлена штриховой кривой 37, а температура лотка 28 штрихпунктирной кривой 38, шкала для этих двух показателей (в процентах или градусах Цельсия) размещена на правом краю диаграммы. Примерно в 18:30 начинается рабочий цикл с заполнения контейнер 22 для формовки. К этому моменту времени его температура составляет примерно 9°C, потому что он перед этим был нагрет, чтобы выбросить куски льда от предыдущего цикла. Лоток 28 нагревается за счет подачи свежей воды примерно до 0°C. Из-за нагревания контейнера 22 для формовки влажность воздуха находится на временном максимуме.
В течение следующих 12 минут контейнер 22 для формовки охлаждается существенно быстрее, чем лоток 28 и достигает температуры -4°C. Более быстрое охлаждение контейнера 22 для формовки, во-первых, обусловлено прохождением воздуха в ледогенераторе 5. За счет подходящего расположения воздушных проходов, отклоняющих пластин и т.п. обеспечивается то, что большая часть протекающего через ледогенератор 5 холодного воздуха протекает вдоль контейнера 22 для формовки и охлаждает его, в то время как скорость потока в окружении лотка 28 удерживается значительно ниже. Кроме того, использование хорошо проводящих тепло материалов, таких как алюминий, и размещение охлаждающих ребер на не изображенной на фиг.2 нижней стороне контейнера 22 для формовки способствуют быстрому теплообмену, в то время как лоток 28, напротив, предпочтительно изготовлен из плохо проводящей тепло пластмассы, а надетая на него крышка 34 обеспечивает лишь слабый поток воздуха через выемки 31, скользящий по поверхности воды в лотке 28. Дополнительно, как указано выше, можно предусмотреть, что нагревательный стержень 30 лотка 28 и во время фазы охлаждения будет работать с малой мощностью, которой хватает лишь на то, чтобы не допустить замерзания воды в лотке 28.
С регистрацией предельной температуры примерно в 18:41 управляющее устройств включает нагревательный стержень 30 на работу с высокой мощностью, так что в течение одной минуты лоток 28 нагревается до 50°C. Водяной пар, образующийся в защищенном пространстве между поверхностью воды лотка 28 и крышкой 34, выходит из выемок 31, 32 и распределяется в воздушном пространстве над контейнером 22 для формовки. Кривая 37 влажности воздуха снова достигает максимума. Образующиеся при этом кристаллы снега запускают процесс образования льда, что ведет к явному росту температуры контейнера 22 для формовки примерно до -1°C. Следует почти получасовая фаза охлаждения, пока в 19:15 не включается нагрев контейнера 22 для формовки, и он переворачивается, чтобы выбросить готовые куски льда.
Так как лоток 28 только очень короткое время нагревается с высокой мощностью, необходимая для этого энергия мала. При предположительных 25 циклах приготовления льда в день мощности нагрева 50 Вт и продолжительности нагрева соответственно 70 секунд ежедневный расход энергии составляет 0,024 кВтч. Достигаемая с помощью этих мер производительность ледогенератора при температуре во внутреннем пространстве 3 - -14°C выше, чем у обычного ледогенератора без затравки, который эксплуатируется при -18°C. Достигаемая за счет этого экономия энергии превосходит расход энергии на образование водяного пара на много порядков.

Claims (25)

1. Ледогенератор с заполняемым водой контейнером (22) для формовки и граничащим с поверхностью воды в контейнере (22) для формовки воздушным пространством (3), отличающийся тем, что содержит устройство (28-35) увлажнения воздуха для насыщения воздуха над поверхностью воды влагой.
2. Ледогенератор по п.1, отличающийся тем, что устройство (28-35) увлажнения воздуха реализовано в виде испарителя.
3. Ледогенератор по п.2, отличающийся тем, что испаритель (28-35) оснащен нагреваемым лотком (28) для воды.
4. Ледогенератор по п.2, отличающийся тем, что нагреваемый лоток (28) для воды содержит стенку, по меньшей мере частично, изготовленную из токопроводящей пластмассы.
5. Ледогенератор по п.2, отличающийся тем, что конструкция испарителя (28-35) рассчитана на нагревание содержащейся в нем воды максимально до 60°С.
6. Ледогенератор по п.2, отличающийся тем, что испаритель (28-35) оснащен, по меньшей мере, одним выходным воздушным отверстием, через которое реализована возможность выхода создаваемого пара и его подача к контейнеру (22) для формовки.
7. Ледогенератор по п.2, отличающийся тем, что объем испарителя (28-35) не превышает 2 см3.
8. Ледогенератор по п.1, отличающийся тем, что содержит управляющее устройство для временного приведения в действие устройства (28-35) увлажнения воздуха во время каждого процесса приготовления льда.
9. Ледогенератор по п.8, отличающийся тем, что управляющее устройство подключено к таймеру для включения устройства (28-35) увлажнения воздуха с предварительно заданной задержкой после заполнения контейнера (22) для формовки.
10. Ледогенератор по п.8 или 9, отличающийся тем, что управляющее устройство подключено к датчику температуры для включения устройства (28-35) увлажнения воздуха после понижения температуры в воздушном пространстве (3) ниже заданного значения.
11. Ледогенератор по п.1, отличающийся тем, что контейнер (22) для формовки и устройство (28-35) увлажнения воздуха подключены к одному и тому же трубопроводу (18) водоснабжения.
12. Ледогенератор по п.1, отличающийся тем, что устройство (28-35) расположено так, чтобы при превышении заданного уровня заполнения была реализована возможность передачи воды в контейнер (22) для формовки.
13. Ледогенератор по п.11, отличающийся тем, устройство (28-35) увлажнения воздуха в линии (18) водоснабжения расположено вверх по потоку относительно контейнера (22) для формовки.
14. Ледогенератор по п.1, отличающийся тем, что контейнер (22) для формовки оснащен множеством не соединенных друг с другом отсеков (23) для льда.
15. Ледогенератор по п.1, отличающийся тем, что содержит вентилятор для приведения в действие циркуляции воздуха в воздушном пространстве (3).
16. Ледогенератор по п.15, отличающийся тем, что предусмотрены направляющие потока воздуха, с помощью которых реализована возможность направления подаваемого вентилятором воздушного потока, по меньшей мере частично, над поверхностью жидкости наполненного водой контейнера (22) для формовки.
17. Холодильный аппарат с ледогенератором по одному из предыдущих пунктов.
18. Холодильный аппарат с ледогенератором по п.17, отличающийся тем, что с помощью вентилятора реализована циркуляция воздуха между воздушным пространством (3) и испарителем (4) хладагента, и тем самым охлаждение воздушного пространства (3).
19. Холодильный аппарат по п.18, отличающийся тем, что циркуляция воздуха над поверхностью воды устройства (28-35) увлажнения воздуха реализована слабее, чем над поверхностью воды контейнера (22) для формовки.
20. Способ изготовления кусков льда, состоящий из следующих этапов:
а) дозирование воды в контейнер (22) для формовки;
б) заполнение испарителя (28-35);
в) охлаждение воды;
г) подача в воду кристаллов льда, когда достигнута предварительно заданная температура кристаллизации воды ниже 0°С.
21. Способ по п.20, отличающийся тем, что реализована возможность одновременного выполнения этапов а) и б) процесса и поочередного выполнения этапов в) и г) процесса, начиная с этапа в).
22. Способ по п.20, отличающийся тем, что реализована возможность поочередного выполнения этапов а)-г) процесса, начиная с этапа а).
23. Способ по п.20, отличающийся тем, что реализована возможность получения кристаллов льда путем испарения воды и охлаждения полученного пара ниже 0°С.
24. Способ по п.20, отличающийся тем, что температура затравки лежит в диапазоне от -2 до -7°С.
25. Способ по одному из пп.23 или 24, отличающийся тем, что реализовано испарение воды в течение временного промежутка от 0,5 до 2,5 мин, но предпочтительно в течение временного промежутка от 1 до 2 мин.
RU2009125472/21A 2006-12-22 2007-11-30 Холодильный аппарат с ледогенератором и способ приготовления льда RU2434187C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061100.4 2006-12-22
DE102006061100A DE102006061100A1 (de) 2006-12-22 2006-12-22 Eisbereiter, damit ausgestattes Kältegerät und Eisbereitungsverfahren

Publications (2)

Publication Number Publication Date
RU2009125472A RU2009125472A (ru) 2011-02-10
RU2434187C2 true RU2434187C2 (ru) 2011-11-20

Family

ID=39431663

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009125472/21A RU2434187C2 (ru) 2006-12-22 2007-11-30 Холодильный аппарат с ледогенератором и способ приготовления льда

Country Status (6)

Country Link
US (1) US20100024442A1 (ru)
EP (1) EP2126487A2 (ru)
CN (1) CN101573570B (ru)
DE (1) DE102006061100A1 (ru)
RU (1) RU2434187C2 (ru)
WO (1) WO2008077716A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555822C2 (ru) * 2010-04-27 2015-07-10 Электролюкс Хоум Продактс, Инк. Устройство для изготовления льда с вращающейся формой для льда и вращающимся в противоположную сторону выбрасывающим узлом

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000664A1 (de) 2009-02-06 2010-08-12 BSH Bosch und Siemens Hausgeräte GmbH Eisbereiter
KR101584805B1 (ko) * 2009-04-23 2016-01-12 엘지전자 주식회사 냉장고
DE102010039562A1 (de) 2010-08-20 2012-02-23 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit einem Eisbereiter
US10627147B2 (en) * 2016-04-21 2020-04-21 Electrolux Home Products, Inc. Fill section heater for a refrigeration appliance
CN109642764B (zh) * 2016-07-15 2021-03-30 真实制造有限公司 制冰机及用于立式喷射型制冰机的排冰装置
CN107421226A (zh) * 2017-04-19 2017-12-01 窦琪瑛 具有制冰构件的冰箱
CN107036356A (zh) * 2017-04-19 2017-08-11 窦琪瑛 制冰机
CN107166834A (zh) * 2017-04-19 2017-09-15 窦琪瑛 制造冰块均一的制冰机
CN108286855A (zh) * 2017-12-22 2018-07-17 青岛海尔股份有限公司 冰箱
JP7016731B2 (ja) * 2018-03-09 2022-02-07 日本電産サンキョー株式会社 製氷機
AU2019352419B2 (en) * 2018-10-02 2023-03-30 Lg Electronics Inc. Refrigerator and method for controlling same
CN111829227B (zh) * 2019-04-15 2022-01-21 青岛海尔电冰箱有限公司 制冰模块

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2515294A (en) * 1947-06-18 1950-07-18 Us Rubber Co Freezing unit defroster
US3643454A (en) * 1970-05-22 1972-02-22 Whirlpool Co Water system for an icemaking apparatus
US3826102A (en) 1973-06-21 1974-07-30 Gen Electric Refrigerator including automatic ice maker and water reservoir
JPH0776659B2 (ja) * 1989-10-24 1995-08-16 株式会社東芝 冷蔵庫
JP2609741B2 (ja) * 1990-04-26 1997-05-14 株式会社東芝 自動製氷装置付冷蔵庫
US6282909B1 (en) * 1995-09-01 2001-09-04 Nartron Corporation Ice making system, method, and component apparatus
US7100379B2 (en) * 2003-08-14 2006-09-05 Samsung Electronics Co., Ltd. Water supply control apparatus and method for ice maker
EP1580504B1 (en) 2004-03-24 2017-03-29 LG Electronics, Inc. Cold air guide structure for ice-making chamber in cold chamber door
KR20050096336A (ko) * 2004-03-30 2005-10-06 삼성전자주식회사 냉장고 및 그 제어방법
KR20070042020A (ko) * 2005-10-17 2007-04-20 삼성전자주식회사 냉장고

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555822C2 (ru) * 2010-04-27 2015-07-10 Электролюкс Хоум Продактс, Инк. Устройство для изготовления льда с вращающейся формой для льда и вращающимся в противоположную сторону выбрасывающим узлом

Also Published As

Publication number Publication date
CN101573570A (zh) 2009-11-04
EP2126487A2 (de) 2009-12-02
CN101573570B (zh) 2012-01-11
WO2008077716A2 (de) 2008-07-03
US20100024442A1 (en) 2010-02-04
RU2009125472A (ru) 2011-02-10
WO2008077716A3 (de) 2009-01-15
DE102006061100A1 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
RU2434187C2 (ru) Холодильный аппарат с ледогенератором и способ приготовления льда
US6951113B1 (en) Variable rate and clarity ice making apparatus
RU2419044C2 (ru) Льдогенератор для холодильного устройства
CN105042984B (zh) 制冰机控制系统及方法
US20080092567A1 (en) Ice maker with ice bin level control
KR100772214B1 (ko) 투명빙 제조 장치 및 방법
CA2544486A1 (en) Ice-dispensing assembly mounted within a refrigerator compartment
CN101688718A (zh) 制冰机运转方法
AU2004200206A1 (en) Ice supplying device of refrigerator
KR20070119271A (ko) 냉장고와 이를 이용한 제빙방법
JPH0532668B2 (ru)
US5931003A (en) Method and system for electronically controlling the location of the formation of ice within a closed loop water circulating unit
US5207761A (en) Refrigerator/water purifier with common evaporator
JP2003279210A (ja) 製氷装置及びこの製氷装置を備えた冷蔵庫
JPH0544586B2 (ru)
US3803862A (en) Refrigerator including automatic ice maker
CA2778577C (en) Ice making assembly with optimized harvesting and related refrigeration appliance
KR101507037B1 (ko) 제빙기의 함체
JP2008275223A (ja) 冷蔵庫
JP3920653B2 (ja) 冷蔵庫
RU2447375C2 (ru) Холодильный аппарат с льдогенератором
KR200416643Y1 (ko) 제빙기의 살균장치.
JP2009036416A (ja) 冷蔵庫
JP2006078107A (ja) 冷凍冷蔵庫
JP2001133092A (ja) 製氷清水機

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121201