RU2433148C2 - Способ обработки изделия, содержащего пластический материал, покрытый силиконовым материалом - Google Patents

Способ обработки изделия, содержащего пластический материал, покрытый силиконовым материалом Download PDF

Info

Publication number
RU2433148C2
RU2433148C2 RU2008150473A RU2008150473A RU2433148C2 RU 2433148 C2 RU2433148 C2 RU 2433148C2 RU 2008150473 A RU2008150473 A RU 2008150473A RU 2008150473 A RU2008150473 A RU 2008150473A RU 2433148 C2 RU2433148 C2 RU 2433148C2
Authority
RU
Russia
Prior art keywords
plastic material
aqueous solution
coated
phase transfer
tetramethylphosphonium
Prior art date
Application number
RU2008150473A
Other languages
English (en)
Other versions
RU2008150473A (ru
Inventor
Жерар МИНЬЯНИ (FR)
Жерар МИНЬЯНИ
Original Assignee
Родиа Операсьон
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Родиа Операсьон filed Critical Родиа Операсьон
Publication of RU2008150473A publication Critical patent/RU2008150473A/ru
Application granted granted Critical
Publication of RU2433148C2 publication Critical patent/RU2433148C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/22Removing surface-material, e.g. by engraving, by etching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • B29B2017/0296Dissolving the materials in aqueous alkaline solutions, e.g. NaOH or KOH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/02Inflatable articles
    • B29L2022/027Air bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Изобретение относится к области обработки пластических материалов для повторного использования и касается способа обработки изделия, содержащего пластический материал, покрытый силиконовым материалом. Способ включает обработку водным раствором, содержащим гидроокись щелочного или щелочноземельного металла и катализатор фазового переноса, чтобы силиконовый материал полностью или частично растворить или перевести в суспензию в водном растворе и отделяют пластический материал от раствора. Изобретение обеспечивает разработку простого способа, дающего возможность повторно использовать изделия без ухудшения или разрушения пластической матрицы. 12 з.п. ф-лы.

Description

Настоящее изобретение относится к способу обработки изделия, содержащего пластический материал, покрытый силиконовым материалом, в данном способе используется водный раствор, содержащий гидроокись щелочного или щелочноземельного металла и катализатор фазового переноса. Более конкретно, изобретение относится к текстильным материалам, покрытым тонким слоем силиконового эластомера, таким как, в частности, надувные подушки безопасности, используемые для защиты пассажиров автомобиля, типа воздушных подушек.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Существуют многочисленные изделия на основе термопластичных материалов, в частности полиамидов или полиэфиров, например, такие как текстильные изделия, пленки или литьевые изделия, покрытые силиконовым материалом для придания им некоторых свойств, а именно непроницаемости и/или стойкости к абразивному износу. Эти изделия, в основном, изготовлены путем нанесения силиконовой композиции с сетчатой структурой для образования тонкого слоя силиконового эластомера.
Однако возникает проблема повторного использования компонентов названных изделий, в частности регенерации пластического материала. В самом деле, очень трудно механически разъединить силиконовый и пластический материал. Чтобы это осуществить, существуют химические способы, но они имеют недостатки при их осуществлении и приводят к изменению свойств термопластичного материала.
Таким образом, существует необходимость разработать простой способ, дающий возможность повторно использовать названные изделия, в частности, без ухудшения или разрушения пластической матрицы.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Заявителем разработан способ для повторного использования изделия, содержащего, по меньшей мере, один пластический материал, покрытый одним силиконовым материалом, при котором используется водный раствор, содержащий гидроокись щелочного или щелочноземельного металла и катализатор фазового переноса, и при котором исключены вышеуказанные недостатки. В самом деле, совместное использование гидроокиси щелочного или щелочноземельного металла и катализатора фазового переноса позволяет осуществить эффективное разделение силиконового и пластического материалов, не изменяя структуры пластмассы, такой как полиамид или сложный полиэфир, в частности, не снижая их молекулярного веса.
Таким образом, настоящее изобретение относится к способу обработки изделия, состоящего, по меньшей мере, из одного пластического материала, покрытого силиконовым материалом, который включает, по меньшей мере, следующие стадии:
а) названное изделие обрабатывают водным раствором, содержащим гидроокись щелочного или щелочноземельного металла и катализатор фазового переноса, возможно при нагревании, для того, чтобы растворить или перевести в суспензию в водном растворе полностью или частично силиконовый материал; и
b) пластический материал выделяют из раствора.
На стадии а) способа по изобретению силиконовый материал отделяется от пластического материала и находится в водном растворе в растворенном виде или в виде суспензии.
Катализаторы фазового переноса хорошо известны и обычно используются для проведения реакции между анионом (например, ионом гидроксила), находящимся в водной фазе, и органическим субстратом. Под катализатором фазового переноса подразумевают катализатор, способный перевести анион из водной фазы в органическую фазу.
Согласно изобретению, более конкретно, под термином «катализатор фазового переноса» подразумевают амфифильную молекулу, позволяющую переносить гидроксильные ионы реактивов из водной фазы раствора в органическую фазу силикона. Этот катализатор имеет, в частности, положительный противоион, который распределяет свое сродство между водной и органической фазами. Эти ионы транспортеры рециклируют по мере протекания реакции, поэтому говорят о катализе фазового переноса.
В данном способе гидроксильные ионы реагируют с силиконовыми цепями силиконового материала, образуя силанолаты. Производные силанолаты обнаруживаются в растворенном виде или в виде суспензии в водном растворе.
В данном способе по изобретению можно использовать известные катализаторы фазового переноса, в частности, описанные в работе Jerry MARCH-Advance Organic Chemistry, 3-rd edition, John Wiley & Sons, 1985, с.320 и следующие.
Катализаторы фазового переноса, используемые в способе по изобретению, представляют собой предпочтительно ониевые соли, в которых ониевые ионы образованы, в частности, азотом, фосфором, мышьяком, серой, селеном, кислородом, углеродом или йодом и образуют координационную связь с углеводородными остатками. Ониевые ионы, образованные азотом, фосфором или мышьяком, являются четырехкоординационными. Ониевые ионы, образованные серой, селеном, кислородом, углеродом или S=O, являются трехкоординационными, в то время как ониевые ионы, образованные йодом, являются двухкоординационными. Углеводородные остатки, связанные с этими различными элементами координационной связью, представляют собой алкилы, алкенилы, арилы, циклоалкилы, аралкилы, возможно замещенные, два углеводородных остатка с координационной связью вместе могут образовывать единую двухвалентную группу.
Катализаторы, предпочтительно используемые в способе по изобретению, представляют собой соли аммония, фосфония, пиридиния и/или сульфония.
В качестве примеров ониевых ионов можно назвать катионы: тетраметиламмоний, триэтилметиламмоний, трибутилметиламмоний, триметилпропиламмоний, тетраэтиламмоний, тетрабутиламмоний, тетраметилфосфоний, тетрабутилфосфоний, этилтриметилфосфоний, триметилпентилфосфоний, октилтриметилфосфоний, тетрафенилфосфоний, цетилтриметилфосфоний, цетилтрифенилфосфоний, алкилтрис(гидроксиметил)фосфоний, н-бутилтрифенилфосфоний, трифенилфосфоний с углеводородной цепью, содержащей 10-16 атомов углерода, N-метилпиридиний, N-этилпиридиний, триметилсульфоний, триэтилсульфоний и трифенилсульфоний.
Природа анионов, связанных с этими органическими катионами, не имеет критического значения. Все основания, «жесткие» или «промежуточные», подходят в качестве аниона. Под термином «жесткий» или «промежуточный» подразумевают любой анион, отвечающий классическому определению, данному R. PEARSON в Journal of Chem. Ed. 45, страницы 581-587 (1968), причем термины «жесткий» и «промежуточный» соответствуют значениям терминов «hard» и «borderline», использованных в этой ссылке. Среди «жестких» и «промежуточных» оснований, которые могут составить анион упомянутых ониевых солей, можно назвать ионы: F-, Cl-, Br-, I-, PO43-, HPO42-, H2PO4-, SO42-, HSO4- и NO3-. Предпочитают, в частности, ионы хлоридов и бромидов.
Особенно хорошо подходят ионы аммония, четыре группы которых представляют собой группы алкила, содержащие 1-5 атомов углерода, или бензила. Что касается выбора аниона, предпочитают ионы хлоридов и бромидов.
В качестве катализатора особенно предпочитают тетрабутиламмонийхлорид, цетилтриметилфосфонийбромид, цетилтрифенилфосфонийхлорид, алкилтри(гидроксиметил)фосфонийхлорид или бромид, трифенилфосфонийбромид, содержащий углеводородную цепь с 10-16 атомами углерода, н-бутилтрифенилфосфонийхлорид.
Ониевая соль может быть введена в водный раствор в твердом состоянии или в виде раствора в одном из растворителей, чаще всего в воде.
В качестве гидроокиси щелочного металла можно, в частности, назвать LiOH, NaOH и KOH.
В основном используют 1-60 мас.% гидроокиси щелочного или щелочноземельного металла в водном растворе, предпочтительно от 5 до 50 мас.%, более предпочтительно от 10 до 40 мас.%. Водный раствор может содержать от 0,1 до 10% (молярных) катализатора фазового переноса по отношению к числу молей гидроксильного иона, предпочтительно от 1 до 3% (молярных).
Пластический материал может иметь различные формы, на которые можно нанести силиконовый материал; он может быть представлен в виде нитей, волокон, текстильных изделий, литьевых изделий, экструдированных изделий или пленок. Текстильные изделия могут быть ткаными, неткаными или трикотажными, например.
В качестве примеров можно назвать надувные подушки безопасности, используемые для защиты пассажиров автомобиля (air bag), конвейерные ленты, огнестойкие ткани, теплоизоляционные материалы, компенсаторы, такие как гибкая муфта для герметичности трубопроводов, трубы, пленки, одежда или же также мягкие материалы, которые могут быть использованы в конструкциях из ткани, внутренних или внешних, таких как парники, тенты, стенды и шапито.
Пластический материал предпочтительно является термопластичным материалом, в частности, на основе полиамида, полиэфира и/или полиолефина.
Как пример полиамидов можно назвать, например, полукристаллические или аморфные полиамиды, такие как алифатические или полуароматические полиамиды. Можно, в частности, назвать (со)полиамиды 6; 6.6; 4.6; 6.10; 6.12; 11, 12 и/или смеси, такие как полиамиды 6/6.6.
Как пример полиэфиров можно назвать полиэтилентерефталат (РЕТ), который называется также гомополимером, получаемым только из терефталевой кислоты - мономеров или ее сложных эфиров, таких как диметилтерфталат и этиленгликоль и сополимеры.
Как пример полиолефинов можно назвать полиэтилены и полипропилены.
Существуют многочисленные жидкие силиконовые композиции с сетчатой структурой, которые могут быть использованы для образования покрытия, позволяющего придать функциональные свойства большому количеству пластических материалов. Возможно использование большого разнообразия полиорганосилоксановых (POS) композиций, многокомпонентных, двухкомпонентных или монокомпонентных, образующих сетчатую структуру при комнатной температуре и нагревании в реакциях полиприсоединения, радикального гидросилилирования, или поликонденсации. Следует отметить, что силиконовые композиции в достаточном объеме описаны в литературе и, в частности, в работе Walter NOLL «Chemistry and Technology of Silicones», Academic Press, 1968, 2-nd edition, а именно на стр.386-409.
Силиконовое покрытие пластического материала может состоять из масла или силиконовой смолы, например.
Способ по изобретению особенно подходит для восстановления пластического материала, покрытого силиконовым материалом, полученным путем сшивания поликонденсацией под действием влаги, в присутствии, как правило, катализатора, известного в данной области (см, например, заявку FR 2865223).
Стадию обработки а) способа по изобретению можно осуществлять в такой емкости, как бак или ванна, например. На этой стадии возможно нагревание реакционной смеси при температуре, равной 20-100°С. На этой стадии изделие может находиться в контакте с раствором от одного часа до нескольких часов, например от 1 часа до 3 часов, или даже до 24 часов, в зависимости от количества силиконового материала, покрывающего упомянутый пластический материал. Реакционную массу можно перемешивать.
Можно, в частности, на стадии обработки а) вводить изделие, содержащее, по меньшей мере, один пластический материал, покрытый силиконовым материалом, в измельченном или разрезанном виде.
Выделение пластического материала из раствора на стадии b) способа по изобретению может быть осуществлено удалением пластического материала или истечением водного раствора. Пластический материал может быть в случае необходимости промыт водой и/или высушен с помощью подходящих средств.
К способу по изобретению можно также добавить стадию с), на которой пластический материал обрабатывают кислотой, в частности, для нейтрализации гидроксильных ионов, остающихся в названном пластическом материале. Для этого можно использовать водный раствор, содержащий кислоту, а именно уксусную кислоту, муравьиную кислоту, фосфорную кислоту или стеариновую кислоту или адипиновую кислоту. Материал может быть в случае необходимости промыт водой и/или высушен с помощью подходящих средств.
Восстановленный пластический материал далее может быть превращен в гранулы.
В описании использована специфическая терминология с целью облегчить понимание сути изобретения. Однако необходимо понять, что использование такой специфической терминологии не предусматривает никакого ограничения сферы действия изобретения. Термин «и/или» включает значения «и», «или», а также и другие возможные комбинации элементов, связанные этим термином.
Другие детали или преимущества изобретения будут более понятны из примеров, приведенных ниже исключительно для иллюстрации.
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Пример 1
100 г куска воздушной подушки безопасности из полиамида 66, покрытого силиконовой смолой с сетчатой структурой, образованной путем поликонденсации, погружают в 20 г водного раствора NaOH в концентрации 50 мас.%, содержащего 1 мас.% тетрабутиламмонийхлорида. Через 3 часа контакта при температуре 60°С кусок вынимают из раствора. Промывают его водой, затем водным раствором уксусной кислоты в концентрации 5 мас.%. Далее снова промывают водой до нейтрального значения рН воды.
Анализ с помощью рентгеновской флюоресценции позволяет наблюдать полное отсутствие кремнийсодержащего производного на поверхности куска после обработки. Наблюдение с помощью дифференциальной сканирующей калориметрии (DSC) позволяет подтвердить, что молекулярный вес полиамида не был изменен в конце обработки.
Пример 2 (сравнительный)
100 г куска воздушной подушки безопасности из полиамида 66, покрытого силиконовой смолой с сетчатой структурой, образованной поликонденсацией-полиприсоединением, погружают в 20 г водного раствора NaOH в концентрации 50 мас.%. Через 3 часа контакта при температуре 60°С кусок вынимают из раствора. Промывают его водой и затем водным раствором уксусной кислоты в концентрации 5 мас.%. Далее снова промывают водой до нейтрального значения рН воды.
Анализ с помощью рентгеновской флюоресценции позволяет наблюдать наличие кремнийсодержащего производного на поверхности куска после обработки. Снова берут эти куски из полиамида и оставляют при температуре 100°С на 24 часа. Анализ с помощью рентгеновской флюоресценции позволяет наблюдать наличие большой части кремнийсодержащего производного на поверхности куска.
Пример 3
100 г куска воздушной подушки безопасности из полиамида 66, покрытого силиконовой смолой с сетчатой структурой, образованной поликонденсацией-полиприсоединением, погружают в 20 г водного раствора NaOH в концентрации 50 мас.%, содержащего 0,5 мас.% тетрабутилфосфонийхлорида. Через 16 часов контакта при температуре 100°С кусок вынимают из раствора. Промывают его водой и далее водным раствором уксусной кислоты в концентрации 5 мас.%. Далее кусок снова промывают водой до нейтрального значения рН воды.
Анализ с помощью рентгеновской флюоресценции позволяет наблюдать полное отсутствие кремнийсодержащего производного на поверхности куска после обработки. Наблюдение с помощью DSC позволяет подтвердить, что молекулярный вес полиамида не был изменен в конце обработки.
Пример 4
100 г куска воздушной подушки безопасности из полиамида 66, покрытого силиконовой смолой с сетчатой структурой, образованной поликонденсацией-полиприсоединением, погружают в 20 г водного раствора NaOH в концентрации 50 мас.%, содержащего 0,5 мас.% триметилдодецилфосфонийхлорида. Через 16 часов контакта при температуре 100°С кусок вынимают из раствора. Промывают его водой и затем водным раствором уксусной кислоты в концентрации 5 мас.%. Далее кусок снова промывают водой до нейтрального значения рН воды.
Анализ с помощью рентгеновской флюоресценции позволяет наблюдать полное отсутствие кремнийсодержащего производного на поверхности куска после обработки. Наблюдение с помощью DSC позволяет подтвердить, что молекулярный вес полиамида не был изменен в конце обработки.

Claims (13)

1. Способ обработки изделия, содержащего, по меньшей мере, один пластический материал, покрытый силиконовым материалом, включающий, по меньшей мере, следующие стадии:
a) названное изделие обрабатывают водным раствором, содержащим гидроокись щелочного или щелочноземельного металла и катализатор фазового переноса, необязательно, при нагревании, таким образом, чтобы силиконовый материал полностью или частично растворить или перевести в суспензию в водном растворе; и
b) отделяют пластический материал от раствора.
2. Способ по п.1, отличающийся тем, что катализаторы фазового переноса выбраны из группы, состоящей из ониевых солей, в которых ониевые ионы включают азот, фосфор, мышьяк, серу, селен, кислород, углерод или йод, связанные координационной связью с углеводородными остатками.
3. Способ по п.1 или 2, отличающийся тем, что катализаторы фазового переноса выбраны из группы, состоящей из солей аммония, фосфония, пиридиния и/или сульфония.
4. Способ по любому из пп.1 или 2, отличающийся тем, что катализатор фазового переноса выбран из группы, состоящей из солей тетраметиламмония, триэтилметиламмония, трибутилметиламмония, триметилпропиламмония, тетраэтиламмония, тетрабутиламмония, тетраметилфосфония, тетрабутилфосфония, этилтриметилфосфония, триметилпентилфосфония, октилтриметилфосфония, тетрафенилфосфония, цетилтриметилфосфония, цетилтрифенилфосфония, алкилтрис(гидроксиметил)фосфония, n-бутилтрифенилфосфония, трифенилфосфония с углеводородной цепью, содержащей 10-16 атомов углерода, N-метилпиридиния, N-этилпиридиния, триметилсульфония, триэтилсульфония и трифенилсульфония.
5. Способ по любому из пп.1 или 2, отличающийся тем, что гидроокись щелочного или щелочноземельного металла выбрана из группы, включающей LiOH, NaOH и КОН.
6. Способ по любому из пп.1 или 2, отличающийся тем, что водный раствор содержит от 0,1 до 10 мол.% катализатора фазового переноса по отношению к числу молей гидроксильных ионов.
7. Способ по любому из пп.1 или 2, отличающийся тем, что пластический материал представлен в виде нитей, волокон, текстильных изделий, литьевых изделий, экструдированных изделий или пленок.
8. Способ по любому из пп.1 или 2, отличающийся тем, что пластический материал изготовлен на основе полиамида, полиэфира и/или полиолефина.
9. Способ по любому из пп.1 или 2, отличающийся тем, что пластический материал покрыт силиконовым материалом, полученным из многокомпонентной, двухкомпонентной или однокомпонентной полиорганосилоксановой композиции с сетчатой структурой, образованной в результате реакций полиприсоединения, радикального гидросилилирования, или поликонденсации при комнатной температуре или нагревании.
10. Способ по любому из пп.1 или 2, отличающийся тем, что пластический материал покрыт силиконовым материалом с сетчатой структурой, образованной в результате реакции поликонденсации под действием влаги, в присутствии катализатора.
11. Способ по любому из пп.1 или 2, отличающийся тем, что на стадии а) реакционную смесь нагревают при температуре 20-100°С.
12. Способ по любому из пп.1 или 2, отличающийся тем, что на стадии b) пластический материал промывают водой и/или высушивают.
13. Способ по любому из пп.1 или 2, отличающийся тем, что он содержит дополнительную стадию с) обработки пластического материала кислотой и, возможно, промывания водой и/или сушки.
RU2008150473A 2006-05-22 2007-05-22 Способ обработки изделия, содержащего пластический материал, покрытый силиконовым материалом RU2433148C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0604544 2006-05-22
FR0604544A FR2901278B1 (fr) 2006-05-22 2006-05-22 Procede de traitement d'un article comprenant un materiau plastique recouvert par un materiau silicone

Publications (2)

Publication Number Publication Date
RU2008150473A RU2008150473A (ru) 2010-06-27
RU2433148C2 true RU2433148C2 (ru) 2011-11-10

Family

ID=37086223

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008150473A RU2433148C2 (ru) 2006-05-22 2007-05-22 Способ обработки изделия, содержащего пластический материал, покрытый силиконовым материалом

Country Status (13)

Country Link
US (1) US9115261B2 (ru)
EP (1) EP2027197B1 (ru)
JP (1) JP4690483B2 (ru)
KR (1) KR101411686B1 (ru)
CN (1) CN101460556B (ru)
AT (1) ATE458778T1 (ru)
BR (1) BRPI0711000B1 (ru)
DE (1) DE602007004980D1 (ru)
FR (1) FR2901278B1 (ru)
MX (1) MX2008014764A (ru)
RU (1) RU2433148C2 (ru)
TN (1) TNSN08480A1 (ru)
WO (1) WO2007135140A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2671690C (en) 2006-12-06 2015-01-06 Dow Corning Corporation Airbag and process for its assembly
FR2964108B1 (fr) 2010-08-26 2013-10-04 Rhodia Operations Recyclage de coussins gonflables de securite a base de polyamide
WO2012035673A1 (ja) * 2010-09-17 2012-03-22 ユニチカ株式会社 ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法、および該ポリアミド樹脂組成物を成形して得られた成形体
BE1019650A5 (fr) * 2010-11-22 2012-09-04 Comet Traitements Sa Procede d'elimination de derives a base de silicium d'une phase organique, en particulier dans des residus de craquage catalytique.
FR2973274B1 (fr) * 2011-03-31 2016-05-06 Rhodia Operations Procede de traitement de textiles techniques
WO2016049898A1 (zh) * 2014-09-30 2016-04-07 华为技术有限公司 身份认证的方法、装置及用户设备
ES2977903T3 (es) 2020-03-27 2024-09-02 Evonik Operations Gmbh Reciclaje de materiales de estructuras planas siliconizadas
US11732092B2 (en) 2020-10-19 2023-08-22 Evonik Operations Gmbh Upcycling process for processing silicone wastes
US12060460B2 (en) 2021-04-29 2024-08-13 Evonik Operations Gmbh Process for producing endcapped, liquid siloxanes from silicone wastes
JP7422944B2 (ja) * 2021-09-24 2024-01-26 リンテック株式会社 基材の分離方法
JP7118485B1 (ja) 2022-02-28 2022-08-16 リファインバース株式会社 エアバッグの処理システムおよびエアバッグの処理方法
CN114573982A (zh) * 2022-03-09 2022-06-03 广东沃府实业有限公司 一种基于再生pa66气囊料改性的汽车扎带材料及其制备方法
JP7383093B1 (ja) 2022-08-02 2023-11-17 信越化学工業株式会社 シリコーンコーティング樹脂基材のリサイクル方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1229210A (ru) * 1968-03-13 1971-04-21
US4161464A (en) * 1978-03-24 1979-07-17 The B. F. Goodrich Company Devulcanized rubber composition and process for preparing same
JP3004415B2 (ja) * 1991-09-12 2000-01-31 アサヒビール株式会社 プラスチック製容器、その再利用化方法及び表面処理剤
EP0589642A1 (en) * 1992-09-24 1994-03-30 General Electric Company Salvaging organic thermoplastics
US5384159A (en) * 1993-09-22 1995-01-24 General Electric Company Process for restoring discharded silicone-polycarbonate parts
US6428738B1 (en) * 1995-11-01 2002-08-06 Patent Holding Company Method of manufacturing an in-mold laminate component
US5817183A (en) * 1996-08-12 1998-10-06 General Electric Company Method for removing coatings from thermoplastic substrates
JPH10310888A (ja) * 1997-05-12 1998-11-24 Mitsubishi Chem Corp 基材上の樹脂塗膜を剥離する方法
DE19817160C2 (de) * 1998-04-17 2001-05-17 Rueb F A Holding Gmbh Verfahren zur Wiederaufbereitung von siliconharzhaltigem Polyamidmaterial
JP3533332B2 (ja) * 1998-05-20 2004-05-31 Tdk株式会社 電子部品の製造方法および水処理装置
JP3879348B2 (ja) * 1999-12-24 2007-02-14 タカタ株式会社 エアバッグスクラップ布のシリコン除去方法
US6875516B2 (en) * 2002-04-18 2005-04-05 Rhodia Chimie Silicone composition crosslinkable by dehydrogenating condensation in the presence of a metal catalyst
JP3956202B2 (ja) * 2002-05-30 2007-08-08 関西電力株式会社 シリコーン化合物の解重合法
US20050066995A1 (en) * 2003-09-30 2005-03-31 International Business Machines Corporation Non-hermetic encapsulant removal for module rework
US20050230347A1 (en) * 2004-04-14 2005-10-20 Gallas James M Methods for tinting plastic films and sheets with melanin
US7248061B2 (en) * 2004-09-14 2007-07-24 Denso Corporation Transmission device for transmitting a signal through a transmission line between circuits blocks having different power supply systems
US7315042B2 (en) * 2004-11-18 2008-01-01 3M Innovative Properties Company Semiconductors containing trans-1,2-bis(acenyl)ethylene compounds

Also Published As

Publication number Publication date
US20100012623A1 (en) 2010-01-21
CN101460556A (zh) 2009-06-17
EP2027197A1 (fr) 2009-02-25
DE602007004980D1 (de) 2010-04-08
JP4690483B2 (ja) 2011-06-01
KR101411686B1 (ko) 2014-06-25
BRPI0711000A2 (pt) 2011-08-23
CN101460556B (zh) 2012-05-23
FR2901278B1 (fr) 2008-07-04
RU2008150473A (ru) 2010-06-27
TNSN08480A1 (fr) 2010-04-14
MX2008014764A (es) 2009-01-27
KR20090018908A (ko) 2009-02-24
US9115261B2 (en) 2015-08-25
JP2009537686A (ja) 2009-10-29
EP2027197B1 (fr) 2010-02-24
WO2007135140A1 (fr) 2007-11-29
ATE458778T1 (de) 2010-03-15
BRPI0711000B1 (pt) 2017-12-05
FR2901278A1 (fr) 2007-11-23

Similar Documents

Publication Publication Date Title
RU2433148C2 (ru) Способ обработки изделия, содержащего пластический материал, покрытый силиконовым материалом
Xu et al. Novel high-efficiency casein-based P–N-containing flame retardants with multiple reactive groups for cotton fabrics
Malucelli et al. Biomacromolecules as novel green flame retardant systems for textiles: an overview
JP5553825B2 (ja) 繊維強化ポリマーをベースとする物品のリサイクル方法
JP6768056B2 (ja) リンを安定剤として含む3−フェニル−ベンゾフラン−2−オン誘導体
US8221507B2 (en) Removing the silicone coating from coated fabrics and airbags
WO2012035673A1 (ja) ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法、および該ポリアミド樹脂組成物を成形して得られた成形体
JP2018536735A (ja) ナノセルロースおよびその誘導体を調製するための環境に優しいプロセス
SE468481B (sv) Saett att aatervinna enskilda bestaandsdelar fraan ett foerpackningsmaterialavfall
DE69922533T2 (de) Verfahren zur Reinigung und Dekontaminierung von Polyester
Malucelli Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy
Mao et al. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation
CZ176397A3 (cs) Způsob získání kaprolaktamu z polymeru obsuhujících kaprolaktam a zařízení k provádění tohoto způsobu
JP6925285B2 (ja) プラスチック基材のためのコーティング
DE4323558C2 (de) Verfahren zur Isolierung und Wiederverwertung von Textilmaterialien aus polyurethanverklebten Textilverbundlaminaten
CN112638996A (zh) 具有降低的voc的热成型汽车产品
Setiaji et al. Study mechanical properties of polyurethane foam coated by chitosan reinforced calcium carbonate with temperature curing variation
JP2024523242A (ja) 廃棄ポリマー加工品からのポリエステルおよびポリアミドの回収および利用のためのプロセス
JPS5883077A (ja) 接着剤組成物
DE102013006016A1 (de) Verfahren zum Modifizieren der Oberfläche von textilen Materialien
PL48970B1 (ru)
PL186715B1 (pl) Sposób chemicznej degradacji politereftalanu etylenu
MXPA01003251A (en) Method for cleaning and decontaminating polyesters

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20200323