RU2432490C2 - Погружная гидроэнергетическая турбина с камерами плавучести - Google Patents

Погружная гидроэнергетическая турбина с камерами плавучести Download PDF

Info

Publication number
RU2432490C2
RU2432490C2 RU2009104161/06A RU2009104161A RU2432490C2 RU 2432490 C2 RU2432490 C2 RU 2432490C2 RU 2009104161/06 A RU2009104161/06 A RU 2009104161/06A RU 2009104161 A RU2009104161 A RU 2009104161A RU 2432490 C2 RU2432490 C2 RU 2432490C2
Authority
RU
Russia
Prior art keywords
rotor
turbine according
housing
chambers
buoyancy
Prior art date
Application number
RU2009104161/06A
Other languages
English (en)
Other versions
RU2009104161A (ru
Inventor
Герберт УИЛЬЯМС (US)
Герберт УИЛЬЯМС
Original Assignee
Оупенхайдроу Груп Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Оупенхайдроу Груп Лимитед filed Critical Оупенхайдроу Груп Лимитед
Publication of RU2009104161A publication Critical patent/RU2009104161A/ru
Application granted granted Critical
Publication of RU2432490C2 publication Critical patent/RU2432490C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/126Rotors for essentially axial flow, e.g. for propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6014Filler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/18Filler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

Изобретение относится в целом к турбине или электрогенератору, производящему электричество из энергии потока воды. Гидравлическая турбина погружного типа содержит ротор 20, корпус-статор, в который заключен ротор 20, и средства для выработки электричества. Ротор 20 имеет внешний обод 22, охватывающий лопасти 21. Во внешнем ободе расположены одна или более камер 60 плавучести. Изобретение направлено на уменьшение веса ротора 20 для обретения плавучести. 9 з.п.ф-лы, 6 ил.

Description

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение относится в целом к турбине или электрогенератору, производящему электричество из энергии потока воды, независимо от того, является ли поток однонаправленным, как в речных и океанических течениях, или же двунаправленным, как в приливных течениях, и относится, в частности, к такому устройству, в котором поток жидкости приводит во вращение большой ротор пропеллерного типа с внешним кольцевым ободом, расположенным в большом кольцевом корпусе. Более конкретно изобретение относится к такому устройству, в котором турбина полностью погружена в воду.
Получение электричества с помощью гидротурбин хорошо известно. Обычно турбины устанавливают в плотинах так, что управляемый поток жидкости приводит во вращение ротор пропеллерного типа или крыльчатку. Такие условия с относительно быстрым потоком воды называются высоконапорными. Существует также практика применения турбин в низконапорных условиях, которые создаются приливным течением в заливе, при установке в устье реки или в открытом море.
Хотя в большинстве турбин имеется центральный вращающийся вал, на который устанавливают лопасти или лопатки, известны также турбины с полым центром, иначе называемые турбинами с кольцевым подвесом. Такие турбины, в которых лопасти установлены между внутренним и внешним кольцевыми ободами, а энергия передается кольцевому корпусу, удерживающему ротор, через внешний обод, могут быть особенно эффективны в условиях низкого напора, т.е. в сравнительно медленных течениях.
Примеры турбин с полым центром и кольцевым подвесом лопастей имеются в патенте США №5592816, выданном 14.01.1997 и перевыданном под номером RE 38336 от 02.12.2003, в патенте США №6648589 от 18.11.2003, в патенте США №6729840 от 04.05.2004 и в заявке на патент США US 2005/0031442, опубликованной 10.02.2005 (серийный номер 10/633865). Примеры гидроэнергетических турбин, используемых при низком напоре (для приливных течений), имеются в патенте США №4421990, выданном Хойссу и др. (Heuss et al.), в патентах США №6168373 и №6406251, выданных Вотье (Vauthier), в заявке на патент Великобритании № GB 2408294, зарегистрированной Сасменом и др. (Susman et al.), и в Международной публикации ВОИС WO 03/025385, зарегистрированной Дэвисом и др. (Davis et al.).
Гидротурбины рассматриваются как экологически чистая замена электрогенераторам, использующим ископаемое топливо или атомную энергию. При использовании энергии ветра или воды в крупных масштабах, когда производимого при этом электричества должно быть достаточно для снабжения промышленных комплексов, больших и малых городов и т.п., требуется множество турбин, причем как можно большего размера, чтобы максимизировать количество электричества, производимого каждой турбиной. Длина лопастей на крыльчатках этих турбин достигает нескольких метров, в некоторых экспериментальных конструкциях предусмотрены лопасти длиной более 50 метров.
С ростом длины лопастей появляются проблемы конструирования и производства, которые не встречались при меньших размерах турбин и генераторов. Для турбин с осевым подвесом трудно добиться, чтобы длинные лопасти были одновременно прочными и легкими. Эта проблема решается в случае турбин с кольцевым подвесом, поскольку там оба конца лопастей крепятся к кольцевым опорам, причем внешний обод удерживается в корпусе, имеющем кольцевую канавку или канал. Для выработки электроэнергии по периметру внешнего обода располагается большое количество магнитов, а по поверхности канала в корпусе (играющем роль статора) располагается большое количество обмоток. Магнитное поле, образованное системой полей ротора, перекрывает зазор между ротором и статором. При вращении ротора переменное магнитное поле действует на обмотки, что создает в обмотках электродвижущую силу.
В турбинах с кольцевым подвесом вес ротора воспринимается нижней частью корпуса, поскольку отсутствует центральный вал, который мог бы служить опорой. Для больших турбин эта нагрузка и результирующее трение могут быть значительными как в момент запуска ротора, так и с точки зрения общей эффективности турбины после выхода на рабочий режим. Больший вес ротора влечет повышенное сопротивления вращению, то есть для преодоления сил инерции и трения требуется больший поток жидкости. Эта проблема особенно остро стоит для турбин, работающих при низком напоре.
Цель настоящего изобретения - предложить усовершенствованную конструкцию гидроэнергетической турбины, в которой вес ротора уменьшен так, что он обретает плавучесть. Еще одна цель состоит в том, чтобы предложить турбину, в которой снижение веса достигается за счет наличия в роторе камер плавучести, благодаря чему у турбин, погруженных в воду, отрицательный эффект, обусловленный большим весом ротора, уменьшается или преодолевается за счет увеличенной плавучести ротора.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Изобретение представляет собой усовершенствование гидротурбины такого типа, в котором лопасти ротора опираются на внешний обод, а обод заключен в корпусе с кольцевым каналом, в который помещен этот внешний обод. В типичном исполнении турбина представляет собой генератор, в котором на внешнем ободе ротора располагаются магниты, а в канале на внутренней поверхности корпуса или статора располагаются обмотки, и при вращении ротора внутри статора вырабатывается электричество. Турбина, в частности, такого типа, который погружается в воду.
Усовершенствование предлагает размещение в корпусе плавучего ротора. В предпочтительной реализации ротор турбины снабжен одной или более камерами плавучести, которые расположены во внешнем и/или внутреннем кольцевом ободе и/или лопастях, благодаря чему общий вес ротора уменьшается и, кроме того, плавучесть ротора увеличивается. Камеры могут быть заполнены воздухом, другими газами, жидкостями, пеной, твердым или любым иным материалом с удельным весом не более 1. Для большей конструкционной целостности и жесткости рабочего колеса камеры плавучести могут быть заполнены полимерной пеной.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1 в осевой проекции показана типичная турбина с полым центром и кольцевым подвесом лопастей, включающая ротор с внешним ободом и корпус-статор с каналом, в который помещен внешний обод ротора.
На Фиг.2 представлен вид корпуса-статора в аксонометрии.
На Фиг.3 представлен вид ротора в аксонометрии.
На Фиг.4 представлен частичный разрез внешнего кольцевого обода ротора.
На Фиг.5 представлен частичный разрез корпуса-статора.
На Фиг.6 представлен частичный разрез внутреннего кольцевого обода ротора.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Ниже изобретение в его оптимальном варианте и предпочтительной реализации будет описано подробно с обращением к чертежам. В самом общем смысле изобретение представляет собой гидроэнергетическую турбину погружного типа с ротором, размещенным в корпусе, выполняющем функцию статора, причем ротор имеет внешний кольцевой обод, который помещен и удерживается в кольцевом канале или канавке в корпусе, а конструкция рабочего колеса обеспечивает ему плавучесть. Представленный здесь генератор содержит совокупность большого количества магнитов на кольцевом ободе ротора и большого количества обмоток на внутренней поверхности корпуса-статора, предпочтительно внутри канала, в который помещен кольцевой обод рабочего колеса, хотя могут использоваться и другие генерирующие устройства. В иллюстративных целях турбина на чертежах изображена с ротором кольцевого подвеса и полым центром, так что вес ротора полностью воспринимается корпусом, но подразумевается, что изобретение относится также к турбинам с ротором осевого подвеса с внешним кольцевым ободом. В данном документе термин «плавучесть» означает, что соответствующий объект не тонет в той воде, в которую он погружен, что может относиться к пресной или морской воде. Упомянутое в данном документе научное определение плавучести, которое соотносит это понятие с удельным весом, не превышающим единицу, следует понимать расширительно, включая ситуации, когда фактическая плотность воды отличается от плотности чистой воды.
Как в целом показано на Фиг.1-3, изобретение представляет собой турбину или электрогенератор 10, который содержит имеющий в общем случае форму кольца корпус 30, выполняющий функцию статора. Конфигурация корпуса 30 не ограничивается показанной здесь, то есть возможны и иные конфигурации при условии, что корпус 30 выполняет, среди прочих, функции удержания вращающейся сборки ротора 20 от нежелательного смещения в обоих направлениях по оси и обеспечивает вращение ротора 20 относительно своей оси. Корпус 30 имеет пару установочных фланцев 31, которые образуют канал 32 корпуса, где помещен и удерживается ротор 20.
Вращающаяся сборка или ротор 20 имеет внутренний кольцевой обод 23 и внешний кольцевой обод 22. Между внутренним ободом 23 и внешним ободом 22 находится совокупность стоек, лопаток или лопастей 21, причем лопасти 21, согласно известным решениям, расположены под таким углом или изогнуты таким образом, что движение жидкости через корпус 30 в осевом направлении вызывает вращение ротора 20. Количество, конфигурация и материал лопастей 21 могут быть различными, но желательно, чтобы лопасти 21 были настолько легкими, насколько это возможно без угрозы структурной целостности конструкции.
Корпус 30 и ротор 20, вместе взятые, составляют электрогенератор. Это может быть достигнуто помещением совокупности магнитов 41 на внешней поверхности внешнего обода 22 и совокупности обмоток 42 на внутренней поверхности 34 корпуса 30 или канала 32 в корпусе, так что корпус 30 превратится в статор генератора. При вращении ротора 20 магниты 41 движутся мимо обмоток 42, что приводит к вырабатыванию электричества известным способом.
Из-за больших размеров турбины 10 желательно, чтобы она была изготовлена из относительно легких, но прочных материалов. С этой точки зрения целесообразно при изготовлении турбины использовать в качестве первичных структурных компонентов ротора 20 и корпуса 30 полимеры, эпоксидные смолы, смолы, армирующие волокна или аналогичные материалы. В типичном случае ротор 20 может быть в основном изготовлен из легких материалов, перечисленных выше, так что в них могут быть встроены магниты 41 и другие компоненты. При изготовлении ротора 20 следует обеспечить его плавучесть при погружении в воду.
В одной из реализаций в роторе 20, например, внутри внешнего кольцевого обода 22 выполнены одна или более камер 60 плавучести, как показано на Фиг.4. В предпочтительной реализации по всему внешнему кольцевому ободу 22 проходит одна кольцевая камера 60, но может также использоваться несколько камер 60, располагающихся друг за другом в осевом или радиальном направлении. Если используется несколько камер, их расположение по окружности должно быть сбалансировано, чтобы не оказывать неблагоприятное влияние на вращение ротора 20. Внутри камер 60 плавучести для увеличения жесткости внешнего кольцевого обода 22 могут быть расположены не показанные здесь структурные элементы, например ребра жесткости. Камеры 60 плавучести могут быть заполнены воздухом или другим газом, жидкостью или легкими жесткими элементами из материала, имеющего удельный вес, не превышающий единицу, но наиболее предпочтительно заполнять камеры 60 плавучим материалом 61, обладающим полезными конструкционными характеристиками, например, пенополимером. Пенополимеры, например полиуретановые, предварительно формуют и помещают в камеру 60 плавучести или же инжектируют в камеру 60, причем предпочтительно этот материал должен сцепляться с внутренней поверхностью камеры 60 после отверждения. Жесткость пеноматериала и сила его сцепления со стенками камеры 60 плавучести положительно влияют на общую жесткость и структурную целостность ротора 20. Размеры камер 60 плавучести и плавучесть материала 61 выбирают так, чтобы обеспечить желаемую степень плавучести в данных конкретных условиях. Например, при определенных обстоятельствах может быть желательным просто уменьшить вес ротора 20, тогда как при других обстоятельствах может быть предпочтительным уменьшить вес ротора 20 до такой степени, чтобы он приобрел нулевую плавучесть, а при совершенно иных обстоятельствах может быть предпочтительным уменьшить вес ротора 20 до такой степени, чтобы он обладал положительной плавучестью в воде, причем он будет всплывать в канале 32 статора и все трение будет происходить в верхней части канала 32.
Вместо камер 60 плавучести в кольцевом внешнем ободе 22 или наряду с ними аналогичные камеры 60 плавучести могут располагаться во внутреннем кольцевом ободе 23 и/или лопастях 21, как показано на Фиг.6. Как указывалось выше, камеры 60 плавучести внутреннего кольцевого обода 23 и лопастей 21 могут быть заполнены воздухом или другим газом, жидкостью или легкими жесткими элементами из материала с удельным весом, не превышающим единицу, но наиболее предпочтительно заполнять камеры 60 плавучим материалом 61, обладающим положительными структурными характеристиками, например пенополимером.
Благодаря этому отрицательный эффект трения, наблюдающегося между ротором 20 и корпусом 30 вследствие значительного веса ротора 20, уменьшается или устраняется, так что запуск ротора выполняется с меньшими усилиями и повышается эффективность вращения.
При определенных обстоятельствах может быть также желательным уменьшить вес корпуса 30, например, когда турбина должна быть плавучей. Как показано на Фиг.5, в корпусе 30 может размещаться одна или более камер 60 плавучести, которые заполняются плавучим материалом-заполнителем 61, например, отверждаемым в месте нанесения пенополимером или любым другим материалом из описанных выше, предпочтительно таким, который обеспечивает жесткость и структурную целостность корпуса 60. Поскольку корпус-статор 30 является неподвижным элементом турбины 10, камеры плавучести 60 наиболее предпочтительно располагать в верхней части корпуса-статора 30, чтобы повысить устойчивость турбины 10 в воде.
Следует иметь в виду, что специалисты в данной области техники могут легко подобрать эквиваленты и заменители для некоторых элементов, перечисленных выше, а потому действительные объем и формула изобретения таковы, какими они изложены в нижеследующих пунктах.

Claims (10)

1. Гидравлическая турбина погружного типа, содержащая ротор, корпус-статор, в который заключен указанный ротор, и средства для выработки электричества, причем указанный ротор имеет внешний обод, охватывающий лопасти, отличающаяся тем, что в указанном внешнем ободе расположены одна или более камер плавучести.
2. Турбина по п.1, отличающаяся тем, что в указанных лопастях расположены одна или более камер плавучести.
3. Турбина по п.1, отличающаяся тем, что указанный ротор включает внутренний обод, расположенный на указанных лопастях, и причем в указанном внутреннем ободе расположены одна или более камер плавучести.
4. Турбина по п.1, содержащая также плавучий материал-заполнитель, который располагается в указанных одной или более камерах плавучести.
5. Турбина по п.4, отличающаяся тем, что указанный плавучий материал-заполнитель имеет удельный вес, не превышающий единицу.
6. Турбина по п.4, отличающаяся тем, что указанный плавучий материал-заполнитель содержит газ, предпочтительно воздух.
7. Турбина по п.4, отличающаяся тем, что указанный плавучий материал-заполнитель содержит пенополимер.
8. Турбина по п.1, отличающаяся тем, что указанные одна или более камер плавучести проходят по всему указанному ротору.
9. Турбина по п.1, отличающаяся тем, что указанные одна или более камер плавучести включают несколько камер, расположенных сторона к стороне.
10. Турбина по любому из пп.1-8, отличающаяся тем, что указанные одна или более камер плавучести включают несколько камер, расположенных торец к торцу.
RU2009104161/06A 2006-07-14 2007-07-13 Погружная гидроэнергетическая турбина с камерами плавучести RU2432490C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06014668A EP1878912B1 (en) 2006-07-14 2006-07-14 Submerged hydroelectric turbines having buoyancy chambers
EP06014668.5 2006-07-14

Publications (2)

Publication Number Publication Date
RU2009104161A RU2009104161A (ru) 2010-08-27
RU2432490C2 true RU2432490C2 (ru) 2011-10-27

Family

ID=37459538

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009104161/06A RU2432490C2 (ru) 2006-07-14 2007-07-13 Погружная гидроэнергетическая турбина с камерами плавучести

Country Status (13)

Country Link
US (1) US8308422B2 (ru)
EP (1) EP1878912B1 (ru)
JP (1) JP4972166B2 (ru)
KR (1) KR101432758B1 (ru)
CN (1) CN101529086B (ru)
AT (1) ATE538304T1 (ru)
AU (1) AU2007271894B2 (ru)
CA (1) CA2657556C (ru)
MY (1) MY151591A (ru)
NO (1) NO339029B1 (ru)
NZ (1) NZ574056A (ru)
RU (1) RU2432490C2 (ru)
WO (1) WO2008006601A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742012C2 (ru) * 2015-02-12 2021-02-01 Хайдроукайнетик Энерджи Корп Однонаправленная гидрокинетическая турбина (варианты) и ограждение для такой турбины

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE538304T1 (de) 2006-07-14 2012-01-15 Openhydro Group Ltd Unter wasser gesetzte hydroelektrische turbinen mit schwimmern
EP1878911B1 (en) 2006-07-14 2008-09-24 OpenHydro Group Limited Turbines having a debris release chute
EP1879280B1 (en) 2006-07-14 2014-03-05 OpenHydro Group Limited A hydroelectric turbine
EP1878913B1 (en) 2006-07-14 2013-03-13 OpenHydro Group Limited Bi-directional tidal flow hydroelectric turbine
GB0700128D0 (en) 2007-01-04 2007-02-14 Power Ltd C Tidal electricity generating apparatus
DE602007007294D1 (de) 2007-04-11 2010-08-05 Openhydro Group Ltd Verfahren zum Installieren von hydroelektrischen Turbinen
EP2071709B1 (en) * 2007-12-12 2010-09-01 OpenHydro Group Limited A hydroelectric turbine generator component
DE102007061185B4 (de) * 2007-12-17 2010-11-11 Voith Patent Gmbh Tauchende Energieerzeugungsanlage, angetrieben durch eine Wasserströmung
EP2088311B1 (en) * 2008-02-05 2015-10-14 OpenHydro Group Limited A hydroelectric turbine with floating rotor
EP2110910A1 (en) 2008-04-17 2009-10-21 OpenHydro Group Limited An improved turbine installation method
EP2199598B1 (en) 2008-12-18 2012-05-02 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
EP2209175B1 (en) 2008-12-19 2010-09-15 OpenHydro IP Limited A method of installing a hydroelectric turbine generator
EP2241749B1 (en) 2009-04-17 2012-03-07 OpenHydro IP Limited An enhanced method of controlling the output of a hydroelectric turbine generator
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
EP2302204A1 (en) 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system
CN102269096B (zh) * 2010-06-07 2016-05-04 黄滕溢 水流发电系统及其设置及维修方法
EP2450562B1 (en) 2010-11-09 2015-06-24 Openhydro IP Limited A hydroelectric turbine recovery system and a method therefore
US8487468B2 (en) 2010-11-12 2013-07-16 Verterra Energy Inc. Turbine system and method
JP5681459B2 (ja) 2010-11-25 2015-03-11 川崎重工業株式会社 水流発電装置
CN102230442B (zh) * 2010-12-09 2013-03-27 胡彬 无轴海流涡轮发电机
EP2469257B1 (en) 2010-12-23 2014-02-26 Openhydro IP Limited A hydroelectric turbine testing method
EP2557662B1 (en) * 2011-08-10 2017-05-31 Openhydro IP Limited A hydroelectric turbine coil arrangement
KR101489731B1 (ko) * 2012-09-14 2015-02-04 주식회사 이잰 방수 구조를 갖는 수중 전기 회전체 및 이를 이용한 수중 발전기
JP6443913B2 (ja) * 2013-09-09 2018-12-26 株式会社New Act 羽根構造体及び発電システム
US9334847B2 (en) 2013-12-23 2016-05-10 Grover Curtis Harris Bi-rotational generator
GB201416944D0 (en) * 2014-09-25 2014-11-12 Benson Viscometers Ltd An Apparatus for monitoring blood coagulation
USD867991S1 (en) * 2015-01-24 2019-11-26 Aquakin Gmbh Micro-hydropower plant
CA2983605A1 (en) * 2015-04-23 2016-10-27 Robert B. Lomerson Rotary aided conjunctive energy system
WO2016173602A1 (de) * 2015-04-27 2016-11-03 Ingenieurbüro Kurt Stähle Wasserkraftwerk mit freistehender drehachse
US9874197B2 (en) 2015-10-28 2018-01-23 Verterra Energy Inc. Turbine system and method
US10734912B2 (en) * 2016-08-24 2020-08-04 Beckhoff Automation Gmbh Stator device for a linear motor, linear drive system, and method for operating a stator device
DK179738B1 (en) 2017-10-11 2019-04-30 Ravn Niels Wind-Driven Energy Converting Device
CN109083799A (zh) * 2018-06-28 2018-12-25 上海拾浪银机电科技有限公司 一种翻板、翻板拾能单元及翻板式垂直轴海流发电机
RU2761326C1 (ru) * 2021-07-26 2021-12-07 Федеральное государственное казенное образовательное учреждение высшего образования "Московский пограничный институт Федеральной службы безопасности Российской Федерации" Аэростатная система наблюдения

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054142A (en) * 1936-09-15 Scalable adjustable blade hydraulic
GB204505A (en) 1922-09-07 1923-10-04 Thomas Mccormac Adair Improvements in connection with turbines for utilizing tides or currents for producing electricity and for other purposes
CH146935A (de) 1930-06-28 1931-05-15 Schuetz Alois Vorrichtung an Turbinen und Pumpen mit Laufrädern ohne Aussenkranz zum Entfernen von zwischen dem Gehäuse und dem äussern Rand der Schaufeln sich einklemmenden Fremdkörpern.
US2563279A (en) * 1946-01-11 1951-08-07 Wallace E Rushing Wind turbine
US2501696A (en) * 1946-01-12 1950-03-28 Wolfgang Kmentt Stream turbine
US2470797A (en) * 1946-04-19 1949-05-24 Percy H Thomas Aerogenerator
CH260699A (fr) 1946-11-14 1949-03-31 Alsthom Cgee Groupe électrogène hydraulique à axe vertical du type en parapluie.
US2658453A (en) * 1950-07-22 1953-11-10 Pacific Pumps Inc Nonclogging pumping device
US2782321A (en) * 1952-04-30 1957-02-19 Fischer Arno Turbine for driving a generator
US2792505A (en) * 1956-01-27 1957-05-14 Westinghouse Electric Corp Water wheel generator assembly
DE1147674B (de) 1961-02-23 1963-04-25 Licentia Gmbh Verfahren zur Fertigung von Magnetstaendern fuer Gleichstromkleinstmotoren
US3209156A (en) * 1962-04-03 1965-09-28 Jr Arthur D Struble Underwater generator
DK102285C (da) 1962-11-30 1965-08-02 Morten Lassen-Nielsen Fremgangsmåde til nedbringning af store bygværker gennem dybt vand til nedlægning på bunden.
US3355998A (en) * 1964-07-24 1967-12-05 Allen V Roemisch Highway marker device
GB1099346A (en) * 1964-10-30 1968-01-17 English Electric Co Ltd Improvements in or relating to water turbines pumps and reversible pump turbines
US3342444A (en) * 1965-07-12 1967-09-19 Allen W Key Post stabilizer
GB1131352A (en) 1966-04-05 1968-10-23 Clevedon Electronics Ltd Improvements relating to motor control circuits
US3487805A (en) * 1966-12-22 1970-01-06 Satterthwaite James G Peripheral journal propeller drive
NL6908353A (ru) * 1968-07-01 1970-01-05
US3477236A (en) * 1968-11-12 1969-11-11 Combustion Eng Surface to subsea guidance system
DE2163256A1 (de) 1971-12-20 1973-07-26 Maschf Augsburg Nuernberg Ag Stroemungsmaschine, insbesondere turbopumpe, oder durchstroemmengemesseinrichtung fuer ein aggressives, radioaktives oder reinzuhaltendes stroemungsmittel
US3986787A (en) * 1974-05-07 1976-10-19 Mouton Jr William J River turbine
US3987638A (en) * 1974-10-09 1976-10-26 Exxon Production Research Company Subsea structure and method for installing the structure and recovering the structure from the sea floor
US4095918A (en) * 1975-10-15 1978-06-20 Mouton Jr William J Turbine wheel with catenary blades
US4163904A (en) * 1976-03-04 1979-08-07 Lawrence Skendrovic Understream turbine plant
US4219303A (en) * 1977-10-27 1980-08-26 Mouton William J Jr Submarine turbine power plant
US4541367A (en) * 1980-09-25 1985-09-17 Owen, Wickersham & Erickson, P.C. Combustion and pollution control system
DE3116740A1 (de) 1981-04-28 1982-11-11 Eugen 7000 Stuttgart Gravemeyer Wellenkraftwerk.
US4523878A (en) * 1981-08-27 1985-06-18 Exxon Production Research Co. Remotely replaceable guidepost method and apparatus
CH655529B (ru) * 1981-09-29 1986-04-30
US4427897A (en) * 1982-01-18 1984-01-24 John Midyette, III Fixed pitch wind turbine system utilizing aerodynamic stall
US4613762A (en) * 1984-12-11 1986-09-23 The United States Of America As Represented By The Secretary Of Agriculture Output responsive field control for wind-driven alternators and generators
US4720640A (en) * 1985-09-23 1988-01-19 Turbostar, Inc. Fluid powered electrical generator
US4740711A (en) * 1985-11-29 1988-04-26 Fuji Electric Co., Ltd. Pipeline built-in electric power generating set
DE3638129A1 (de) 1986-11-08 1988-05-11 Licentia Gmbh Generatorturbine mit grossem durchmesser zur erzeugung elektrischer energie grosser leistung
DE3718954A1 (de) 1987-06-05 1988-12-22 Uwe Gartmann Propeller-anordnung, insbesondere fuer schiffsantriebe
US4868408A (en) * 1988-09-12 1989-09-19 Frank Hesh Portable water-powered electric generator
US5592816A (en) * 1995-02-03 1997-01-14 Williams; Herbert L. Hydroelectric powerplant
US6367399B1 (en) * 1995-03-15 2002-04-09 Jon E. Khachaturian Method and apparatus for modifying new or existing marine platforms
NO302786B1 (no) 1996-08-14 1998-04-20 Alcatel Kabel Norge As Böyebegrenser
US6300689B1 (en) * 1998-05-04 2001-10-09 Ocean Power Technologies, Inc Electric power generating system
FR2780220A1 (fr) * 1998-06-22 1999-12-24 Sgs Thomson Microelectronics Transmission de donnees numeriques sur une ligne d'alimentation alternative
US6109863A (en) * 1998-11-16 2000-08-29 Milliken; Larry D. Submersible appartus for generating electricity and associated method
GB2344843B (en) 1998-12-18 2002-07-17 Neven Joseph Sidor Gravity securing system for offshore generating equipment
US6168373B1 (en) * 1999-04-07 2001-01-02 Philippe Vauthier Dual hydroturbine unit
JP3248519B2 (ja) 1999-05-25 2002-01-21 日本電気株式会社 海底ケーブル用放電回路
US6139255A (en) * 1999-05-26 2000-10-31 Vauthier; Philippe Bi-directional hydroturbine assembly for tidal deployment
DE19948198B4 (de) 1999-10-06 2005-06-30 Wobben, Aloys, Dipl.-Ing. Transportables Meeresstrom-Kraftwerk
US6806586B2 (en) 1999-10-06 2004-10-19 Aloys Wobben Apparatus and method to convert marine current into electrical power
US6409466B1 (en) * 2000-08-25 2002-06-25 John S. Lamont Hydro turbine
US6648589B2 (en) * 2000-09-19 2003-11-18 Herbert Lehman Williams Hydroelectric turbine for producing electricity from a water current
DE10101405A1 (de) 2001-01-13 2002-07-18 Remmer Briese Off-Shore-Windkraftanlage
US6729840B2 (en) * 2001-02-06 2004-05-04 Herbert L. Williams Hydroelectric powerplant
FR2823177B1 (fr) 2001-04-10 2004-01-30 Technicatome Systeme de refrigeration pour le propulseur immerge de navire, externe a la coque
CA2352673A1 (en) 2001-07-05 2003-01-05 Florencio Neto Palma Inline-pipeline electric motor-generator propeller module
US7465153B2 (en) * 2001-08-08 2008-12-16 Addie Graeme R Diverter for reducing wear in a slurry pump
KR101033544B1 (ko) * 2001-09-17 2011-05-11 클린 커런트 리미티드 파트너쉽 수중 덕트 터빈
GB2408294B (en) 2001-10-04 2006-07-05 Rotech Holdings Ltd Power generator and turbine unit
US6836028B2 (en) * 2001-10-29 2004-12-28 Frontier Engineer Products Segmented arc generator
EP1318299A1 (en) 2001-12-07 2003-06-11 VA TECH HYDRO GmbH & Co. Bulb turbine-generator unit
WO2003076800A2 (en) * 2002-03-08 2003-09-18 Ocean Wind Energy Systems Offshore wind turbine
US20030218338A1 (en) * 2002-05-23 2003-11-27 O'sullivan George A. Apparatus and method for extracting maximum power from flowing water
US20040021437A1 (en) * 2002-07-31 2004-02-05 Maslov Boris A. Adaptive electric motors and generators providing improved performance and efficiency
NO316980B1 (no) 2002-08-13 2004-07-12 Hammerfest Strom As Anordning for innstyring av moduler til et anlegg for produksjon av energi fra strommer i vannmasser, en forankring, samt fremgangsmate for installasjon av anordningen.
GB0221896D0 (en) 2002-09-20 2002-10-30 Soil Machine Dynamics Ltd Apparatus for generating electrical power from tidal water movement
DE10244038A1 (de) 2002-09-21 2004-04-01 Mtu Aero Engines Gmbh Einlaufbelag für Axialverdichter von Gasturbinen, insbesondere von Gasturbinentriebwerken
US7234409B2 (en) * 2003-04-04 2007-06-26 Logima V/Svend Erik Hansen Vessel for transporting wind turbines, methods of moving a wind turbine, and a wind turbine for an off-shore wind farm
JP2004328989A (ja) * 2003-04-09 2004-11-18 Kokusan Denki Co Ltd フライホイール磁石発電機及びフライホイール磁石発電機用回転子の製造方法
US6838865B2 (en) * 2003-05-14 2005-01-04 Northrop Grumman Corporation Method and apparatus for branching a single wire power distribution system
GB0312378D0 (en) 2003-05-30 2003-07-02 Owen Michael Electro-mechanical rotary power converter
DE20308901U1 (de) 2003-06-06 2003-08-14 Tuerk & Hillinger Gmbh Bremswiderstand für Elektromotoren
NO321755B1 (no) 2003-06-25 2006-07-03 Sinvent As Fremgangsmate og anordning for omforming av energi fra/til vann under trykk.
US20050005592A1 (en) * 2003-07-07 2005-01-13 Fielder William Sheridan Hollow turbine
US6957947B2 (en) * 2003-08-05 2005-10-25 Herbert Lehman Williams Hydroelectric turbine
JP4401703B2 (ja) 2003-08-27 2010-01-20 三井造船株式会社 洋上風力発電装置の設置方法
FR2859495B1 (fr) 2003-09-09 2005-10-07 Technip France Methode d'installation et de connexion d'une conduite sous-marine montante
GB0325433D0 (en) 2003-10-31 2003-12-03 Embley Energy Ltd A mechanism to increase the efficiency of machines designed to abstract energy from oscillating fluids
GB0329589D0 (en) 2003-12-20 2004-01-28 Marine Current Turbines Ltd Articulated false sea bed
FR2865012B1 (fr) 2004-01-12 2006-03-17 Snecma Moteurs Dispositif d'etancheite pour turbine haute-pression de turbomachine
CA2586063C (en) * 2004-01-21 2012-09-04 Herbert Lehman William A hydroelectric powerplant
NO323785B1 (no) 2004-02-18 2007-07-09 Fmc Kongsberg Subsea As Kraftgenereringssystem
JP4566583B2 (ja) 2004-03-04 2010-10-20 株式会社日立産機システム 発電機一体形水車
US7258523B2 (en) 2004-05-25 2007-08-21 Openhydro Group Limited Means to regulate water velocity through a hydro electric turbine
CA2481820C (en) * 2004-09-17 2009-09-01 Clean Current Power Systems Incorporated Flow enhancement for underwater turbine generator
JP2006094645A (ja) 2004-09-24 2006-04-06 Univ Kansai 永久磁石を用いた回転界磁型の同期発電機および風力発電装置
NO321088B1 (no) 2005-02-11 2006-03-13 Nexans Undervanns umbilical og fremgangsmate for dens fremstilling
WO2006108901A1 (es) * 2005-04-11 2006-10-19 Maria Elena Novo Vidal Sistema de generación de energía eléctrica utilizando generadores en forma de anillo
US7352078B2 (en) * 2005-05-19 2008-04-01 Donald Hollis Gehring Offshore power generator with current, wave or alternative generators
US7190087B2 (en) * 2005-07-20 2007-03-13 Williams Herbert L Hydroelectric turbine and method for producing electricity from tidal flow
US7604241B2 (en) * 2005-09-22 2009-10-20 General Electric Company Seals for turbines and turbo machinery
NO20054704D0 (no) 2005-10-13 2005-10-13 Sway As Fremgangsmate og metode for vindkraftverk og fremdriftssystem med magnetisk stabilt hovedlager og lastkontrollsystem
GB2431628B (en) 2005-10-31 2009-01-28 Tidal Generation Ltd A deployment and retrieval apparatus for submerged power generating devices
NO323150B1 (no) 2005-11-08 2007-01-08 Elinova As Integrert vannturbin og generator uten nav
GB0600942D0 (en) 2006-01-18 2006-02-22 Marine Current Turbines Ltd Improvements in gravity foundations for tidal stream turbines
UA84707C2 (ru) 2006-01-30 2008-11-25 Станислав Иванович Гусак Электрическая машина для энергоустановки с потоком среды через трубу
JP2007255614A (ja) 2006-03-24 2007-10-04 Hitachi Engineering & Services Co Ltd 水潤滑ガイド軸受装置及びそれを搭載した水車
JP2007291882A (ja) 2006-04-21 2007-11-08 Toshiba Corp 水力機械及び水力機械運転方法
EP2013474A2 (en) 2006-04-28 2009-01-14 Swanturbines Limited Tidal current turbine
US7479756B2 (en) * 2006-06-19 2009-01-20 Rockwell Automation Technologies, Inc. System and method for protecting a motor drive unit from motor back EMF under fault conditions
NO325031B1 (no) 2006-07-04 2008-01-21 Ge Energy Norway As Vannturbin
US7348764B2 (en) * 2006-07-13 2008-03-25 Ocean Power Technologies, Inc. Coil switching of an electric generator
EP1879280B1 (en) 2006-07-14 2014-03-05 OpenHydro Group Limited A hydroelectric turbine
EP1878911B1 (en) 2006-07-14 2008-09-24 OpenHydro Group Limited Turbines having a debris release chute
ATE538304T1 (de) 2006-07-14 2012-01-15 Openhydro Group Ltd Unter wasser gesetzte hydroelektrische turbinen mit schwimmern
EP1878913B1 (en) * 2006-07-14 2013-03-13 OpenHydro Group Limited Bi-directional tidal flow hydroelectric turbine
ATE419671T1 (de) 2006-07-31 2009-01-15 Fiat Ricerche Durch eine fluidströmung betätigbarer elektrischer generator
USD543495S1 (en) * 2006-08-01 2007-05-29 Williams Herbert L Open center turbine
GB0621381D0 (en) 2006-10-27 2006-12-06 Neptune Renewable Energy Ltd Tidal power apparatus
GB0700128D0 (en) 2007-01-04 2007-02-14 Power Ltd C Tidal electricity generating apparatus
GB0704897D0 (en) 2007-03-14 2007-04-18 Rotech Holdings Ltd Power generator and turbine unit
DE102007016380A1 (de) * 2007-04-03 2008-10-09 Voith Patent Gmbh Tauchende Energieerzeugungsanlage
DE602007007294D1 (de) 2007-04-11 2010-08-05 Openhydro Group Ltd Verfahren zum Installieren von hydroelektrischen Turbinen
DE602007001582D1 (de) * 2007-04-11 2009-08-27 Openhydro Group Ltd Verfahren zum Einsetzen einer hydroelektrischen Turbine
EP2071709B1 (en) * 2007-12-12 2010-09-01 OpenHydro Group Limited A hydroelectric turbine generator component
EP2088311B1 (en) 2008-02-05 2015-10-14 OpenHydro Group Limited A hydroelectric turbine with floating rotor
EP2110910A1 (en) 2008-04-17 2009-10-21 OpenHydro Group Limited An improved turbine installation method
EP2112370B1 (en) * 2008-04-22 2016-08-31 OpenHydro Group Limited A hydro-electric turbine having a magnetic bearing
EP2199601B1 (en) * 2008-12-18 2013-11-06 OpenHydro IP Limited A method of deployment of hydroelectric turbine with aligning means
ATE536304T1 (de) * 2008-12-18 2011-12-15 Openhydro Ip Ltd Stützsystem für eine hydroelektrische turbine
EP2199599A1 (en) 2008-12-18 2010-06-23 OpenHydro IP Limited A hydroelectric turbine with a debris expeller
EP2199602A1 (en) 2008-12-18 2010-06-23 OpenHydro IP Limited A method of securing a hydroelectric turbine at a deployment site and hydroelectric turbine
EP2199598B1 (en) 2008-12-18 2012-05-02 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
EP2200170A1 (en) 2008-12-19 2010-06-23 OpenHydro IP Limited A system for braking and isolation of a hydroelectric turbine generator
EP2199603A1 (en) 2008-12-19 2010-06-23 OpenHydro IP Limited A method of controlling the output of a hydroelectric turbine generator
EP2209175B1 (en) 2008-12-19 2010-09-15 OpenHydro IP Limited A method of installing a hydroelectric turbine generator
EP2241749B1 (en) 2009-04-17 2012-03-07 OpenHydro IP Limited An enhanced method of controlling the output of a hydroelectric turbine generator
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
EP2302204A1 (en) 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742012C2 (ru) * 2015-02-12 2021-02-01 Хайдроукайнетик Энерджи Корп Однонаправленная гидрокинетическая турбина (варианты) и ограждение для такой турбины

Also Published As

Publication number Publication date
CN101529086B (zh) 2012-09-05
KR101432758B1 (ko) 2014-08-21
CA2657556C (en) 2015-05-19
US20100025998A1 (en) 2010-02-04
RU2009104161A (ru) 2010-08-27
EP1878912A1 (en) 2008-01-16
EP1878912B1 (en) 2011-12-21
US8308422B2 (en) 2012-11-13
KR20090045918A (ko) 2009-05-08
NO20090689L (no) 2009-02-27
CN101529086A (zh) 2009-09-09
MY151591A (en) 2014-06-13
ATE538304T1 (de) 2012-01-15
CA2657556A1 (en) 2008-01-17
JP2009543970A (ja) 2009-12-10
WO2008006601A1 (en) 2008-01-17
AU2007271894B2 (en) 2012-08-23
AU2007271894A1 (en) 2008-01-17
NZ574056A (en) 2010-11-26
JP4972166B2 (ja) 2012-07-11
NO339029B1 (no) 2016-11-07

Similar Documents

Publication Publication Date Title
RU2432490C2 (ru) Погружная гидроэнергетическая турбина с камерами плавучести
EP2876299B1 (en) Ocean current power generating apparatus using a dual-duct
US20060273594A1 (en) Ocean wave generation
US20130043685A1 (en) Unidirectional hydro turbine with enhanced duct, blades and generator
US20090047131A1 (en) Electrical Generation Device - Turbine Rotor Shape For Electrical Power Generation From Moving Fluid
CN106460773B (zh) 水电透平、锚固结构和相关的组装方法
WO2008093037A1 (en) Apparatus for generating electrical power
JP6726740B2 (ja) 水力発電エネルギーシステム
JP2018531346A6 (ja) 水力発電エネルギーシステム、及び関連する構成要素及び方法
KR101310877B1 (ko) 에너지 샤프트, 이를 이용한 수력 발전장치 및 풍력 발전장치
KR101611857B1 (ko) 수중 설치형 소수력 발전장치
JP2013032773A (ja) 自然エネルギー取出装置
KR102622014B1 (ko) 림 결합형 블레이드를 갖는 선박용 풍력발전기
KR20100100564A (ko) 부유식 수력 발전 장치
JP2022173666A (ja) 波力エネルギー変換装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180714