RU2430269C2 - Электростатический двигатель - Google Patents
Электростатический двигатель Download PDFInfo
- Publication number
- RU2430269C2 RU2430269C2 RU2008152022/06A RU2008152022A RU2430269C2 RU 2430269 C2 RU2430269 C2 RU 2430269C2 RU 2008152022/06 A RU2008152022/06 A RU 2008152022/06A RU 2008152022 A RU2008152022 A RU 2008152022A RU 2430269 C2 RU2430269 C2 RU 2430269C2
- Authority
- RU
- Russia
- Prior art keywords
- electrodes
- stator
- rotor
- electrostatic motor
- motor according
- Prior art date
Links
- 230000005684 electric field Effects 0.000 claims abstract description 13
- 239000012212 insulator Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000696 magnetic material Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 description 5
- 229910018503 SF6 Inorganic materials 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/002—Electrostatic motors
- H02N1/004—Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path
Abstract
Изобретение относится к электростатическим двигателям, работающим в вакууме. Электростатический двигатель содержит расположенные в вакуумной емкости напротив друг друга дискообразные статор и ротор. Статор и ротор оснащены электрически изолированными первыми и вторыми электродами. Эти электроды прикреплены к опорам с чередованием по окружности. Каждые из первых и вторых электродов статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала. Каждые из первых и вторых электродов ротора расположены на заданном расстоянии от центра вращающегося вала в промежутке между рядами первых и вторых электродов статора. К первым и вторым электродам статора прикладываются предопределенные электрические поля. К первым и вторым электродам ротора прикладываются напряжения различных полярностей. Эти напряжения переключаются согласно заданному распределению во времени. Изобретение позволяет увеличить мощность двигателя. 8 з.п. ф-лы, 12 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к электростатическому двигателю, который осуществляет приведение во вращение с использованием электростатической силы, в частности к электростатическому двигателю, который осуществляет приведение во вращение за счет выработки сильного электрического поля в вакууме.
Уровень техники
В большинстве традиционных электрических двигателей используется электромагнитная сила, создаваемая катушкой и магнитом. Также известны электростатические двигатели, которые обеспечивают приведение во вращение с использованием электростатической силы (см., например, японскую выложенную заявку на выдачу патента за № 8-88984 и работу «Study of Servo Systems using Electrostatic Motors», Akio Yamamoto и др. по электронному адресу: www.intellect.pe.u-tokyo.ac.jp/japanese/dissertationj/yamamoto.html).
Тем не менее, традиционные электрические двигатели, в которых используется электромагнитная сила, создаваемая катушкой и магнитом, производят газ в вакууме, нарушающий вакуум. Кроме того, так как в традиционных электрических двигателях используются обладающие магнитными свойствами материалы, они не могут работать в сильных магнитных полях.
Традиционные электростатические двигатели, подобные описанным выше, также производят газ в вакууме, нарушающий вакуум. В традиционных электростатических двигателях электрическое поле увеличивается за счет расположения большого числа пар электродов на изоляторе таким образом, что электроды расположены близко с промежутком. Тем не менее, при этом способе существует предрасположенность к возникновению пробоя диэлектрика, скользящему разряду, искровому разряду и прочим нежелательным явлениям. Соответственно, не может быть создано сильное электрическое поле и не может быть получена достаточная сила тяги. Следовательно, пока еще не были реализованы практически применимые электростатические двигатели.
Раскрытие изобретения
Настоящее изобретение создано с учетом вышеизложенных недостатков. Соответственно, цель настоящего изобретения состоит в предложении электростатического двигателя, который вырабатывает сильное электрическое поле в вакууме таким образом, что он может осуществлять приведение во вращение с достаточной движущей силой.
Другая цель настоящего изобретения состоит в создании электростатического двигателя, разработанного с возможностью предотвращения пробоя диэлектрика, скользящего разряда, искрового разряда и подобных явлений с целью работы в сильном электрическом поле, а также имеющего меньший вес.
Предлагаемый электростатический двигатель имеет описанные ниже характеристики для того, чтобы разрешить вышеизложенные проблемы.
В первом аспекте настоящего изобретения предлагается электростатический двигатель, отличающийся тем, что содержит дискообразный статор и дискообразный ротор, расположенные в вакуумной емкости противоположно друг другу, причем статор прикреплен к основному корпусу вакуумной емкости, а ротор опирается с возможностью вращения на основной корпус вакуумной емкости для обеспечения свободного вращения посредством вращающегося вала, при этом статор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, и ротор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, причем каждые из первых и вторых электродов на стороне статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала, и каждые из первых и вторых электродов на стороне ротора расположены на заданном расстоянии от центра вращающегося вала и в промежутке между рядами первых и вторых электродов на стороне статора, при этом к первым и вторым электродам на стороне статора прикладываются предопределенные электрические поля, а к первым и вторым электродам на стороне ротора прикладываются с переключением согласно заданному распределению во времени напряжения различных полярностей.
Во втором аспекте изобретения предлагается электростатический двигатель по первому аспекту, отличающийся тем, что каждый из первых и вторых электродов на стороне статора и первых и вторых электродов на стороне ротора выполнен в форме стержня и расположен параллельно осевому направлению вращающегося вала.
В третьем аспекте изобретения предлагается электростатический двигатель по первому или второму аспекту, отличающийся тем, что опоры первых и вторых электродов на стороне статора, а также опоры первых и вторых электродов на стороне ротора поддерживаются изолирующим образом посредством изоляторов с обеспечением достаточной длины пути тока утечки.
В четвертом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по третий, отличающийся тем, что каждый из изоляторов на стороне статора и на стороне ротора имеет один или множество образованных на нем пазов.
В пятом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по четвертый, отличающийся тем, что концы первых и вторых электродов на стороне статора и концы первых и вторых электродов на стороне ротора имеют закругленную форму.
В шестом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по пятый, отличающийся тем, что для металлических компонентов, расположенных в вакуумной емкости, использована нержавеющая сталь, а в качестве изолирующих компонентов используется изолятор неорганического происхождения.
В седьмом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по шестой, отличающийся тем, что в качестве металлических компонентов, расположенных в вакуумной емкости, использован немагнитный материал.
В восьмом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по седьмой, содержащий кодовый датчик положения, имеющий пластину с прорезями и считывающий элемент, который определяет взаимное положение между первыми и вторыми электродами на стороне статора и первыми и вторыми электродами на стороне ротора.
В девятом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по восьмой, отличающийся тем, что на расположенные в вакуумной емкости компоненты нанесено покрытие из газопоглощающего материала.
Согласно изобретению первые и вторые электроды, прикрепленные к опорам электродов статора и ротора, расположены в вакууме. Соответственно, в отличие от традиционного электростатического двигателя, в котором группы электродов поддерживаются изолятором или изоляторами, настоящее изобретение предотвращает пробой диэлектрика, даже если между электродами существует сильное электрическое поле. Это приводит к выходной мощности, такой же высокой или выше, чем та, которая получена электромагнитным двигателем. Соответственно, разработан электростатический двигатель, который создает сильное электрическое поле в вакууме, так что он может осуществлять приведение во вращение с достаточной движущей силой. Электростатический двигатель, который может осуществлять привод в высоком чистом вакууме, может найти применение, например, в устройствах для производства полупроводников. Кроме того, в электростатическом двигателе отсутствуют вентиляционные потери, таким образом он имеет улучшенный КПД. Более того, электростатический двигатель, который осуществляет привод в сильном электрическом поле, созданном между электродами, позволяет практические применения, в том числе малых или крупных двигателей, и в нем достигается высокая выходная мощность и снижение веса.
В настоящем изобретении опоры электродов изолированно поддерживаются изолятором, в котором образованы пазы, обеспечивающие достаточную длину пути тока утечки. Соответственно, электростатический двигатель эффективно предотвращает пробой диэлектрика, скользящий разряд, искровой разряд и другие явления и вырабатывает сильное электрическое поле.
Кроме того, в предлагаемом электростатическом двигателе в качестве компонентов использованы нержавеющая сталь и т.п. или изолятор неорганического происхождения, такой как фарфор или стекло, которые производят меньше остаточного газа. Следовательно, электростатический двигатель может быть использован в чистом вакууме. Кроме того, применение немагнитного материала для металлических компонентов позволяет создать немагнитный двигатель, который может быть использован в сильном магнитном поле.
Кроме того, в предлагаемом электростатическом двигателе для металлических компонентов не используются тяжелые магнитные материалы, и следовательно, он имеет меньший вес, чем традиционные.
Краткое описание чертежей
На фиг.1 проиллюстрирован вертикальный разрез электростатического двигателя согласно первому варианту выполнения настоящего изобретения.
На фиг.2 показан вид в плане статора в первом варианте выполнения.
На фиг.3 показан вид в плане ротора в первом варианте выполнения.
На фиг.4 показано выполненное отчасти подробным схематическое изображение первого и второго электродов статора в первом варианте выполнения.
На фиг.5(A) показано вертикальное частичное изображение конструкции опор электродов, а также первого и второго электродов на стороне статора в первом варианте выполнения.
На фиг.5(B) показано вертикальное частичное изображение конструкции опор электродов, а также первого и второго электродов на стороне ротора в первом варианте выполнения.
На фиг.6 проиллюстрирован принцип действия первого и второго электродов на стороне статора и первого и второго электродов на стороне ротора в первом варианте выполнения.
На фиг.7 показаны временные диаграммы напряжений первого и второго электродов на стороне ротора в первом варианте выполнения.
На фиг.8 показан вертикальный разрез электростатического двигателя согласно второму варианту выполнения настоящего изобретения.
На фиг.9 показан вертикальный разрез электростатического двигателя согласно третьему варианту выполнения настоящего изобретения.
На фиг.10 показан вертикальный разрез электростатического двигателя согласно четвертому варианту выполнения настоящего изобретения, в котором первые и вторые электроды на стороне статора и первые и вторые электроды на стороне ротора расположены радиально по отношению к центру вращающегося вала.
На фиг.11 показано сечение статора в четвертом варианте выполнения.
На фиг.12 показано сечение ротора в четвертом варианте выполнения.
Осуществление изобретения
Далее приведено подробное описание вариантов выполнения предложенного электростатического двигателя.
На фиг.1 проиллюстрирован вертикальный разрез согласно первому варианту выполнения настоящего изобретения. На фиг.2 показан вид в плане статора в первом варианте выполнения, а на фиг.3 показан вид в плане ротора в первом варианте выполнения. На фиг.4 показано выполненное отчасти подробным схематическое изображение первого и второго электродов статора в первом варианте выполнения.
В первом варианте выполнения предложенного электростатического двигателя в вакуумной емкости 11 противоположно друг другу расположены дискообразный статор S и дискообразный ротор R. В первом варианты выполнения электростатический двигатель выполнен с возможностью работать в условиях вакуума при давлении, не превышающем 3 Па.
В электростатическом двигателе согласно этому варианту выполнения первые электроды 34А прикреплены к опорам 31 электродов на стороне статора S. Первые электроды 34А расположены в два ряда на заданном расстоянии от центра вращающегося вала 1 (т.е. центра основания 10 двигателя). Подобным образом вторые электроды 34В прикреплены к другим опорам 32 электродов на стороне статора S. Как показано на фиг.2 и 4, первые электроды 34А и вторые электроды 34В расположены таким образом, что они чередуются. Первые и вторые электроды 34А, 34В расположены с равномерными интервалами вдоль окружностей соответственно опор 31, 32 электродов параллельно вращающемуся валу 1, так что первые и вторые электроды 34А, 34В закреплены в два ряда в радиальном направлении. Опоры 31, 32 электродов с соответственно первыми и вторыми электродами 34А, 34В закреплены на изоляторе 33, который установлен на основании 10 двигателя (т.е. основной корпус вакуумной емкости 11). Изолятор 33 обеспечивает достаточные толщину изоляции и длину пути тока утечки и имеет множество пазов, образованных с целью предотвращения скользящего разряда. Здесь достаточная толщина изоляции должна быть равна или превышать ту, которая соответствует напряжению пробоя изолятора, а достаточная длина пути тока утечки в несколько раз больше, чем эта толщина. Число пазов, форма паза, глубина паза и другие характеристики могут быть установлены такими, как необходимо согласно размеру и применению электростатического двигателя.
С другой стороны, первый электрод 44А прикреплен к каждой из опор 41 электродов на стороне ротора R. Эти первые электроды 44А размещены в один ряд на заданном расстоянии от центра вращающегося вала 1. Также на стороне ротора R на каждой из других опор 42 электродов расположен второй электрод 44В. Как показано на фиг.3, первые электроды 44А и вторые электроды 44В размещены так, чтобы чередоваться подобно электродам на стороне статора S. Первые и вторые электроды 44А, 44В расположены вдоль окружностей соответственно опор 41, 42 электродов с равномерными промежутками параллельно вращающемуся валу 1 так, что первые и вторые электроды 44А, 44В закреплены в один ряд в радиальном направлении. Опоры 41, 42 электродов с соответственно первыми и вторыми электродами 44А, 44В закреплены на изоляторе 43, который установлен на вращающемся валу 1. Как и на стороне статора S, изолятор 43 обеспечивает достаточную толщину изоляции и длину пути тока утечки и имеет множество пазов, образованных с целью предотвращения скользящего разряда. Число пазов, форма паза, глубина паза и другие характеристики могут быть установлены такими, какие необходимы согласно размеру и применению электростатического двигателя.
Как описано выше, первые и вторые электроды 44А, 44В на стороне ротора R закреплены соответственно на опорах 41, 42 с равномерными промежутками параллельно вращающемуся валу 1, как первые и вторые электроды 34А, 34В на стороне статора S. Тем не менее, как показано на фиг.1, положения первых и вторых электродов 44А, 44В на стороне ротора R от центра вращающегося вала 1 находятся посередине между рядами первых и вторых электродов 34А, 34В на стороне статора S, так что ротор R выполнен с возможностью приведения его во вращение. Первый электрод 34А, второй электрод 34В, первый электрод 44А и второй электрод 44В имеют форму стержней. Предпочтительно, чтобы концы электродов были закруглены с целью предотвращения между ними разряда. Однако форма этих электродов не ограничена стержневидной.
Энергия подается к электродам 44А, 44В на стороне ротора R через контактные токосъемные кольца 51, 52 и щетки 61, 62.
Кодовый датчик положения образован из оптической системы (т.е. пластины 7 с прорезями и считывающего элемента 8) или магнитной системы (т.е. магнитного диска и считывающего элемента). В этом варианте выполнения применено первое из указанных. Считывающий элемент 8 определяет моменты времени, соответствующие подаче питания к первым и вторым электродам 44А, 44В на стороне ротора R, и определенный результат подвергается процессу обработки сигнала цепью возбуждения (не показанной). На выходе происходит выдача высокого напряжения (приблизительно от 1 до 100 кВ), и оно подается к первым и вторым электродам 44А, 44В.
Когда электростатический двигатель применяется в воздушной или газовой среде, к основанию 10 двигателя прикрепляют вакуумное уплотнение 9 для поддержания вакуума внутри электростатического двигателя.
Настоящее изобретение использует электростатический двигатель, который работает в вакууме. Излишне говорить о том, что настоящее изобретение функционирует как электростатический двигатель даже в среде изолирующего газа, такого как газ элегаз (газ «SF6» («sulfur hexafluoride»)).
В вышеприведенном описании первые и вторые электроды 34А и 34В, соответственно на стороне статора S, расположены в два ряда, в то время как первые и вторые электроды 44А и 44В соответственно, на стороне ротора R, расположены в один ряд. Тем не менее, как описано ниже, число рядов не ограничено только одним, а также могут быть установлены два или более рядов.
Вдобавок к этому в первом варианте выполнения в качестве металлических компонентов, которые расположены в вакуумной емкости 11 (например, первых и вторых электродов 34А, 34В, опор 31, 32 электродов, первых и вторых электродов 44А, 44В, опор 41, 42 электродов) может быть использована нержавеющая сталь или подобный материал, который производит меньше остаточного газа. Также в качестве изолирующих компонентов может быть использован изолятор неорганического происхождения, такой как фарфор или стекло, который производит меньше остаточного газа. Тем самым может быть обеспечена возможность применения электростатического двигателя в чистом вакууме. Также является эффективным нанесение на компоненты, используемые в вакуумной емкости 11, покрытий из газопоглощающего материала (т.е. вещества, обладающего способностью геттерирования), такого как титан, ванадий, тантал или цирконий,
В первом варианте выполнения применение немагнитного материала в качестве металлических компонентов, используемых в вакуумной емкости 11, дает возможность получения немагнитного двигателя, который может быть использован в сильном магнитном поле. Кроме того, в качестве металлических компонентов не используется никакой тяжелый магнитный материал, за счет чего обеспечивается снижение веса.
Теперь приведем разъяснение принципов функционирования электростатического двигателя согласно первому варианту выполнения, который имеет вышеописанную конфигурацию. Как показано на фиг. 5 (А), за счет приложения высокого напряжения (приблизительно от 1 до 100 кВ) между опорами 31, 32 электродов на стороне статора S, между первыми и вторыми электродами 34А, 34В создается сильное электрическое поле (напряженностью от 1 до 100 кВ/мм или около того).
Так как электростатический двигатель выполнен таким образом, что первые и вторые электроды 44А, 44В на стороне ротора R свободно перемещаются вдоль окружности между первыми и вторыми электродами 34А, 34В на стороне статора S, то первые и вторые электроды 44В, 44А соответственно заряжены положительно и отрицательно за счет приложения к опорам 42 электродов высокого положительного напряжения (от 1 до 100 кВ или около того). Исходя из распределения во времени подачи заряда направление тяги (т.е. вращающей силы), например, определяется тем, где выполненные на стороне ротора R электроды 44В расположены относительно вторых электродов 34В на стороне статора S. Следовательно, величина и время подачи напряжения значительно влияют на величину тяги (вращающей силы).
На фиг.6 проиллюстрирован принцип действия электростатического двигателя путем показа только первых и вторых электродов 34А, 34В на стороне статора S и первых и вторых электродов 44А, 44В на стороне ротора R. Например, когда каждый из вторых электродов 44В на стороне ротора R достиг местоположения (т.е. местоположения Х1), которое слегка смещено вправо от местоположения Х0 второго электрода 34В на стороне статора S, ко второму электроду 44В прикладывается положительный потенциал. Тем самым между вторыми электродами 34В и вторым электродом 44В возникает сила отталкивания, в то время как между первыми электродами 34А и вторым электродом 44В возникает сила притяжения. Следовательно, соединенный с первыми и вторыми электродами 44А, 44В ротор R подвергается действию движущей силы, направленной вправо, и движется соответствующим образом.
К местоположению (т.е. местоположению Х2), которое находится непосредственно перед первыми электродами 34А, происходит переключение напряжения каждого из вторых электродов 44В. Эта операция переключения повторяется для второго электрода 44В каждый раз, когда сигналом от считывающего элемента 8 кодового датчика положения определяется момент времени, соответствующий такому положению второго электрода 44В.
На фиг.7 показаны временные диаграммы напряжения первых и вторых электродов 44А, 44В на стороне ротора R (в которых Т0 представляет момент времени при нахождении в местоположении Х0, а Т1 и Т2 соответственно представляют моменты времени в местоположениях Х1 и Х2).
Далее приведено описание электростатического двигателя согласно второму варианту выполнения настоящего изобретения.
На фиг.8 показан вертикальный разрез предлагаемого электростатического двигателя согласно второму варианту выполнения. На фиг. 8 те элементы, которые одинаковы с показанными в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование описания разъяснения этих элементов не приводится.
Во втором варианте выполнения вдоль окружностей опор 31, 32 электродов на стороне статора S расположены соответственно три ряда первых электродов 34А и три ряда вторых электродов 34В. Аналогичным образом вдоль окружностей опор 41, 42 электродов расположены соответственно два ряда первых электродов 44А и два ряда вторых электродов 44В. Во втором варианте выполнения за счет увеличения числа электродов получен электростатический двигатель с высокой выходной мощностью.
Далее приведено описание электростатического двигателя согласно третьему варианту выполнения настоящего изобретения.
На фиг. 9 показан вертикальный разрез предлагаемого электростатического двигателя в третьем варианте выполнения. На фиг. 9 одинаковые элементы с теми, которые показаны в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование разъяснения этих элементов не приводится. Не показаны кодовый датчик положения, контактные токосъемные кольца и щетки.
В первом и втором вариантах выполнения ограничения, возникающие в результате консольной конструкции, препятствуют какому-либо необязательному увеличению длины электродов. В третьем варианте выполнения первые электроды 44А проходят от обеих сторон каждой из опор 41 электродов на стороне ротора R, а вторые электроды 44В также проходят от обеих сторон каждой из опор 42 электродов на стороне ротора R. Это позволяет получать выходную мощность, которая в два раза выше по сравнению с той, которая получается в электростатическом двигателе с электродами с консольной конструкцией, в первом варианте выполнения. Кроме того, первые и вторые электроды 34А, 34В могут проходить от обеих сторон соответственно опор 31, 32 электродов на стороне статора S, и роторы R и статоры S могут быть установлены стопкой в осевом направлении более, чем в одну ступень.
Далее приведено описание электростатического двигателя согласно четвертому варианту выполнения настоящего изобретения.
На фиг.10 показан вертикальный разрез предлагаемого электростатического двигателя согласно четвертому варианту выполнения, в котором первые и вторые электроды на стороне статора и первые и вторые электроды на стороне ротора расположены радиально по отношению к центру вращающегося вала. На фиг.11,12 показаны соответственно вертикальные разрезы статора и ротора согласно четвертому варианту выполнения. К тому же на фиг.10-12 элементы, одинаковые с теми, которые показаны в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование разъяснения этих элементов не приводится. Не показаны кодовый датчик положения, контактные токосъемные кольца и щетки.
Тем не менее, в четвертом варианте выполнения взаимные расположения между опорами 31, 32 электродов, изолятором 33, первыми и вторыми электродами 34А, 34В на стороне статора S и опорами 41, 42 электродов, изолятором 43 и первыми и вторыми электродами 44А, 44В на стороне ротора R отличаются от таковых в вариантах выполнения с первого по третий.
В четвертом варианте выполнения первые электроды 44А проходят через сравнительно широкие отверстия выполненной в виде трубы опоры 41 электродов, затем плотно вставлены по направлению к оси в выполненную в виде трубы опору 42 электродов, имеющую большое количество отверстий, и таким образом зафиксированы в этом положении. Вторые электроды 44В прикреплены к опоре 41 электродов. Аналогичным образом первые и вторые электроды 34А, 34В прикреплены соответственно к опорам 31, 32 электродов вдоль оси. Опоры 31, 32 электродов прикреплены к основанию 10 двигателя или к корпусу вакуумной емкости 11 посредством изолятора 33. Опоры 41, 42 электродов присоединены к вращающемуся корпусу 12 и вращающемуся валу 1 посредством изолятора 43.
Конфигурация в четвертом варианте выполнения обеспечивает такие же отличные результаты, как те, которые обеспечиваются в вариантах выполнения с первого по третий.
Claims (9)
1. Электростатический двигатель, содержащий дискообразный статор и дискообразный ротор, расположенные в вакуумной емкости противоположно друг другу, причем статор прикреплен к основному корпусу вакуумной емкости, а ротор опирается с возможностью вращения на основной корпус вакуумной емкости для обеспечения свободного вращения посредством вращающегося вала, при этом статор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, и ротор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, причем каждые из первых и вторых электродов на стороне статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала, и каждые из первых и вторых электродов на стороне ротора расположены на заданном расстоянии от центра вращающегося вала и в промежутке между рядами первых и вторых электродов на стороне статора, при этом к первым и вторым электродам на стороне статора прикладываются предопределенные электрические поля, а к первым и вторым электродам на стороне ротора прикладываются с переключением согласно заданному распределению во времени напряжения различных полярностей.
2. Электростатический двигатель по п.1, отличающийся тем, что каждый из первых и вторых электродов на стороне статора и первых и вторых электродов на стороне ротора выполнен в форме стержня и расположен параллельно осевому направлению вращающегося вала.
3. Электростатический двигатель по п.1 или 2, отличающийся тем, что опоры первых и вторых электродов на стороне статора, а также опоры первых и вторых электродов на стороне ротора поддерживаются изолирующим образом посредством изоляторов с обеспечением достаточной длины пути тока утечки.
4. Электростатический двигатель по п.1 или 2, отличающийся тем, что каждый из изоляторов на стороне статора и на стороне ротора имеет один или множество образованных на нем пазов.
5. Электростатический двигатель по п.1 или 2, отличающийся тем, что концы первых и вторых электродов на стороне статора и концы первых и вторых электродов на стороне ротора имеют закругленную форму.
6. Электростатический двигатель по п.1 или 2, отличающийся тем, что для металлических компонентов, расположенных в вакуумной емкости, использована нержавеющая сталь, а в качестве изолирующих компонентов используется изолятор неорганического происхождения.
7. Электростатический двигатель по п.1 или 2, отличающийся тем, что в качестве металлических компонентов, расположенных в вакуумной емкости, использован немагнитный материал.
8. Электростатический двигатель по п.1 или 2, отличающийся тем, что содержит кодовый датчик положения, имеющий пластину с прорезями и считывающий элемент, который определяет взаимное положение между первыми и вторыми электродами на стороне статора и первыми и вторыми электродами на стороне ротора.
9. Электростатический двигатель по п.1 или 2, отличающийся тем, что на расположенные в вакуумной емкости компоненты нанесено покрытие из газопоглощающего материала.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006167247A JP4837449B2 (ja) | 2006-06-16 | 2006-06-16 | 静電モータ |
JP2006-167247 | 2006-06-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2008152022A RU2008152022A (ru) | 2010-08-10 |
RU2430269C2 true RU2430269C2 (ru) | 2011-09-27 |
Family
ID=38831646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008152022/06A RU2430269C2 (ru) | 2006-06-16 | 2007-06-07 | Электростатический двигатель |
Country Status (6)
Country | Link |
---|---|
US (2) | US8278797B2 (ru) |
EP (1) | EP2040366B1 (ru) |
JP (1) | JP4837449B2 (ru) |
CA (1) | CA2656897C (ru) |
RU (1) | RU2430269C2 (ru) |
WO (1) | WO2007145131A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD650Z (ru) * | 2012-10-29 | 2014-01-31 | Институт Прикладной Физики Академии Наук Молдовы | Электростатический двигатель |
RU2703256C1 (ru) * | 2018-12-29 | 2019-10-16 | Николай Иванович Кузин | Электростатический двигатель |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2258041A1 (en) * | 2008-03-19 | 2010-12-08 | Lightway | Device and method for generating force and/or movement |
JP5154303B2 (ja) * | 2008-05-20 | 2013-02-27 | 株式会社新生工業 | 静電モータ用駆動回路 |
JP5661321B2 (ja) * | 2010-04-09 | 2015-01-28 | 株式会社新生工業 | 静電モータ |
JP2011223745A (ja) * | 2010-04-09 | 2011-11-04 | Shinsei Kogyo:Kk | 静電モータ |
JP5505365B2 (ja) * | 2011-04-28 | 2014-05-28 | 信越半導体株式会社 | 誘導加熱コイルにおける放電防止用絶縁部材及びこれを用いた単結晶製造装置並びに単結晶製造方法 |
JP5945102B2 (ja) * | 2011-09-01 | 2016-07-05 | 学校法人 関西大学 | 発電装置 |
JPWO2013153913A1 (ja) * | 2012-04-13 | 2015-12-17 | 株式会社根本杏林堂 | 薬液注入装置 |
US10056848B2 (en) * | 2012-05-04 | 2018-08-21 | Electric Force Motors, LLC | Axially gapped electrostatic machine having drive structure configured to recycle charge |
JP5611311B2 (ja) * | 2012-12-04 | 2014-10-22 | 株式会社新生工業 | 静電モータ用駆動回路、静電モータ、及び駆動方法 |
US9270203B2 (en) * | 2013-03-12 | 2016-02-23 | Lawrence Livermore National Security, Llc | Electrode geometry for electrostatic generators and motors |
US9866148B2 (en) | 2014-10-05 | 2018-01-09 | C-Motive Technologies Inc. | Electrostatic machine system and method of operation |
US9899937B2 (en) | 2015-01-16 | 2018-02-20 | Wisconsin Alumni Research Foundation | Peg-style electrostatic rotating machine |
US10504656B2 (en) | 2015-04-29 | 2019-12-10 | General Electric Company | Electrodes for linear switched capacitive devices |
US9806639B2 (en) | 2015-04-29 | 2017-10-31 | General Electric Company | Dielectric fluids for linear switched capacitive devices |
US10243485B2 (en) | 2015-05-18 | 2019-03-26 | Wisconsin Alumni Research Foundation | Peg-style electrostatic rotating machine employing dielectric sleeves |
US20170033712A1 (en) * | 2015-07-31 | 2017-02-02 | Nathanial Henry Lewis | Motor powered by electrostatic forces |
US9748867B2 (en) | 2015-08-03 | 2017-08-29 | General Electric Company | Control system for linear switched capacitive devices |
US10122301B2 (en) | 2015-08-19 | 2018-11-06 | Lawrence Livermore National Security, Llc | Pulsed start-up system for electrostatic generators |
US10882053B2 (en) | 2016-06-14 | 2021-01-05 | Agentis Air Llc | Electrostatic air filter |
US20170354980A1 (en) | 2016-06-14 | 2017-12-14 | Pacific Air Filtration Holdings, LLC | Collecting electrode |
US11121604B2 (en) | 2016-07-05 | 2021-09-14 | Lawrence Livermore National Security, Llc | Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules |
US10541586B2 (en) | 2016-07-05 | 2020-01-21 | Lawrence Livermore National Security, Llc | Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules |
US10828646B2 (en) | 2016-07-18 | 2020-11-10 | Agentis Air Llc | Electrostatic air filter |
US11114951B2 (en) | 2016-11-08 | 2021-09-07 | C-Motive Technologies Inc. | Electrostatic machine system and method of operation |
US10778119B2 (en) | 2017-09-11 | 2020-09-15 | TransVolt International Energy Corporation | Electric machine with electrodes having modified shapes |
US10958191B2 (en) | 2018-02-15 | 2021-03-23 | The Charles Stark Draper Laboratory, Inc. | Electrostatic motor |
US12113460B2 (en) | 2018-11-13 | 2024-10-08 | C-Motive Technologies, Inc. | Electrostatic machine system and method of operation |
US10792673B2 (en) | 2018-12-13 | 2020-10-06 | Agentis Air Llc | Electrostatic air cleaner |
US10875034B2 (en) | 2018-12-13 | 2020-12-29 | Agentis Air Llc | Electrostatic precipitator |
CN109441851B (zh) * | 2019-01-16 | 2024-07-12 | 北京航空航天大学 | 一种基于静电驱动的扇叶及其混合驱动方法 |
CN114946108A (zh) * | 2019-12-28 | 2022-08-26 | 劳伦斯利弗莫尔国家安全有限公司 | 静电发电机电极定心和隔震系统 |
EP4085520A4 (en) | 2020-01-03 | 2024-02-28 | C-Motive Technologies Inc. | ELECTROSTATIC MOTOR |
US20240195328A1 (en) * | 2022-12-07 | 2024-06-13 | Ion Power Group, Llc | Electrostatic Motor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1112570B (de) | 1953-07-21 | 1961-08-10 | Georg A Holzapfel | Elektrostatischer Drehfeldmotor |
US2843767A (en) * | 1956-03-19 | 1958-07-15 | Heckethorn Mfg & Supply Co | Electrostatic generator |
US3094653A (en) * | 1961-05-22 | 1963-06-18 | Tylan Corp | Electrostatic generator |
NL6605612A (ru) * | 1966-04-27 | 1967-10-30 | ||
NL6605934A (ru) * | 1966-05-03 | 1967-11-06 | ||
JPS6387181A (ja) | 1986-09-27 | 1988-04-18 | Kanichiro Sugano | 静電4相電界回転装置 |
FR2658960A1 (fr) | 1990-02-23 | 1991-08-30 | Asulab Sa | Micromoteur electrostatique a champ radial realise par microfabrication photolithographique et procede de realisation d'un tel micromoteur. |
JP3471380B2 (ja) | 1992-12-28 | 2003-12-02 | 松下電器産業株式会社 | 静電モータ |
JPH0866058A (ja) | 1994-08-11 | 1996-03-08 | Kanichiro Sugano | 静電4相電界回転機並びに電界相制御装置 |
JP3452739B2 (ja) | 1996-11-25 | 2003-09-29 | アスモ株式会社 | 静電アクチュエータ |
US6163098A (en) * | 1999-01-14 | 2000-12-19 | Sharper Image Corporation | Electro-kinetic air refreshener-conditioner with optional night light |
JP2001016874A (ja) | 1999-06-29 | 2001-01-19 | Asmo Co Ltd | 静電アクチュエータ |
CA2284188C (en) * | 1999-09-15 | 2002-01-29 | Daniel Gendron | High efficiency alternating and direct current electrostatic motor |
EP1534525B1 (en) * | 2002-08-06 | 2009-04-01 | Ricoh Company, Ltd. | Electrostatic actuator formed by a semiconductor manufacturing process |
JP3886494B2 (ja) | 2004-01-23 | 2007-02-28 | ファナック株式会社 | 固定子用及び移動子用のフィルム型電極及び静電モータ |
JP4384012B2 (ja) * | 2004-11-08 | 2009-12-16 | 株式会社東芝 | 静電アクチュエータ及びその駆動方法 |
JP2007143299A (ja) * | 2005-11-18 | 2007-06-07 | Alps Electric Co Ltd | 静電モータ |
-
2006
- 2006-06-16 JP JP2006167247A patent/JP4837449B2/ja active Active
-
2007
- 2007-06-07 CA CA2656897A patent/CA2656897C/en active Active
- 2007-06-07 EP EP07744875.1A patent/EP2040366B1/en active Active
- 2007-06-07 RU RU2008152022/06A patent/RU2430269C2/ru active
- 2007-06-07 US US12/308,366 patent/US8278797B2/en active Active
- 2007-06-07 WO PCT/JP2007/061546 patent/WO2007145131A1/ja active Application Filing
-
2012
- 2012-06-25 US US13/531,864 patent/US8779647B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD650Z (ru) * | 2012-10-29 | 2014-01-31 | Институт Прикладной Физики Академии Наук Молдовы | Электростатический двигатель |
RU2703256C1 (ru) * | 2018-12-29 | 2019-10-16 | Николай Иванович Кузин | Электростатический двигатель |
Also Published As
Publication number | Publication date |
---|---|
CA2656897A1 (en) | 2007-12-21 |
US8779647B2 (en) | 2014-07-15 |
EP2040366A1 (en) | 2009-03-25 |
EP2040366A4 (en) | 2012-07-04 |
US8278797B2 (en) | 2012-10-02 |
WO2007145131A1 (ja) | 2007-12-21 |
JP4837449B2 (ja) | 2011-12-14 |
JP2007336735A (ja) | 2007-12-27 |
RU2008152022A (ru) | 2010-08-10 |
EP2040366B1 (en) | 2017-11-08 |
CA2656897C (en) | 2016-06-21 |
US20100164322A1 (en) | 2010-07-01 |
US20120274177A1 (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2430269C2 (ru) | Электростатический двигатель | |
US9571010B2 (en) | Varying capacitance rotating electrical machine | |
KR20080035680A (ko) | 단극 자기장 전동발전기 | |
US6353276B1 (en) | High efficiency alternating and direct current electrostatic motor | |
US8264121B2 (en) | Electrostatic generator/motor configurations | |
US9899937B2 (en) | Peg-style electrostatic rotating machine | |
US20140252914A1 (en) | Electrostatic generator/motor designs capable of operation with the electrodes immersed in a liquid or pressurized gas | |
US10027205B2 (en) | Motor or generator apparatus with ionisable fluid-filled gap | |
JP5154303B2 (ja) | 静電モータ用駆動回路 | |
JP2011223745A (ja) | 静電モータ | |
JP5661321B2 (ja) | 静電モータ | |
KR20230017776A (ko) | 개선된 축방향 플럭스 전기 모터 | |
JP5611311B2 (ja) | 静電モータ用駆動回路、静電モータ、及び駆動方法 | |
CN108322082A (zh) | 一种单相电容可变式静电电机 | |
KR20200089911A (ko) | 이중 고정자 구조를 가진 비엘디시 모터 | |
JP7282365B2 (ja) | 静電誘導型発電素子に使用される電極基板 | |
EP1368888B1 (en) | High efficiency alternating and direct current electrostatic motor | |
RU2353045C1 (ru) | Электрическая машина с постоянными магнитами | |
US20170237326A1 (en) | Synchronous rotation motor or generator provided with diverse rotors and/or stators | |
JPH09503899A (ja) | 高効率静電モータ | |
CN105515322A (zh) | 一种微型扁平式双磁路驱动马达 | |
RU2420850C1 (ru) | Машина постоянного тока с неподвижным коллектором | |
SU1431014A1 (ru) | Ударный генератор |