RU2417210C2 - Способ получения фторированных органических соединений - Google Patents

Способ получения фторированных органических соединений Download PDF

Info

Publication number
RU2417210C2
RU2417210C2 RU2007145955/04A RU2007145955A RU2417210C2 RU 2417210 C2 RU2417210 C2 RU 2417210C2 RU 2007145955/04 A RU2007145955/04 A RU 2007145955/04A RU 2007145955 A RU2007145955 A RU 2007145955A RU 2417210 C2 RU2417210 C2 RU 2417210C2
Authority
RU
Russia
Prior art keywords
fluorinated
catalyst
activated carbon
reaction
organic compounds
Prior art date
Application number
RU2007145955/04A
Other languages
English (en)
Other versions
RU2007145955A (ru
Inventor
Судип МУХОПАДХАЙИ (US)
Судип МУХОПАДХАЙИ
Ма ДЖИНГДЖИ (US)
Ма ДЖИНГДЖИ
Харидейсан К. НЕИР (US)
Харидейсан К. НЕИР
Тунг ХСУЕХСУНГ (US)
Тунг ХСУЕХСУНГ
Original Assignee
Хонейвелл Интернэшнл Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хонейвелл Интернэшнл Инк. filed Critical Хонейвелл Интернэшнл Инк.
Publication of RU2007145955A publication Critical patent/RU2007145955A/ru
Application granted granted Critical
Publication of RU2417210C2 publication Critical patent/RU2417210C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способу получения фторированных органических соединений, включающему взаимодействие метилфторида с по меньшей мере одним фторированным олефином, имеющим структурную формулу
Figure 00000006
,
где R означает F, Cl, C1-C2 фторированный алкил или фторированный алкенил, содержащий 2 атома углерода, с получением по меньшей мере одного продукта, содержащего по меньшей мере 3 атома углерода, при этом указанное взаимодействие происходит в газовой фазе и в присутствии в качестве катализатора кислоты Льюиса, которой пропитывают активированный углерод. Технический результат - экономичный способ получения фторированных органических соединений. 9 з.п. ф-лы, 2 табл.

Description

Область техники
Данное изобретение относится к новым способам получения фторированных органических соединений газофазным методом. В частности, данное изобретение относится к способам получения фторированных алканов, фторированных алкенов и фторуглеводородных полимеров газофазным методом.
Уровень техники
Фторированные углеводороды (HFC's), в частности фторированные алкены, такие как 2,2,3,3-тетрафтор-1-пропен (R-1234yf), и фторированные алканы, такие как 1,1,1,2,2-пентафторпропан (R-245cb), известны в качестве эффективных охладителей, средств для тушения огня, среды для передачи тепла, пропеллентов, вспенивающих агентов, раздувающих агентов, газообразных диэлектриков, стерильных носителей, среды для полимеризации, жидкостей для удаления частиц, жидких носителей, полированных абразивных составов, вытесняющих осушающих агентов и рабочих жидкостей для гидравлических приводов. В отличие от хлорфторуглеводородов (CFC's) и хлорфторуглеводородов, содержащих водород (HCFCs), которые могут наносить вред озоновому слою земли, HFCs не содержат хлора и поэтому не представляют угрозы озоновому слою.
Некоторые методы получения фторированных углеводородов известны. Например, в патенте США №6184426 (Belen'Kill) описан способ получения R-245cb путем реакции в жидкой фазе тетрафторэтилена (TFE) и метилфторида в присутствии пентафторида сурьмы в качестве катализатора. Другие способы получения фторированных алканов, содержащих водород, включают способы, описанные в WO 97/02227 (DuPont), когда четырехфтористый углерод или хлортрифторметан реагирует с фторированным этиленовым соединением в жидкой фазе с получением фторированного пропана или хлорфторпропана.
Способы получения водородсодержащих фторалкенов также известны. Например, описано получение R-1234yf из трифторацетилацетона и тетрафторида серы. См. Banks et al., Journal of Fluorine Chemistry, vol.82, Iss.2, p.171-174 (1997). Кроме того, в патенте США №5162594 (Krespan) описан способ взаимодействия тетрафторэтилена с другим фторированным этиленовым соединением в жидкой фазе с получением полифторолефина.
Однако упомянутые выше способы имеют серьезные недостатки, заключающиеся в том, что они являются реакциями сольватации, то есть для облегчения протекания реакции необходим растворитель. Реакции сольватации обладают рядом недостатков. Например, некоторые растворители представляют опасность для здоровья и вредны для окружающей среды. Кроме того, их применение может резко увеличить расходы, связанные с синтезом фторуглеводородов, из-за высокой стоимости самого растворителя, а также дополнительных расходов на его регенерацию. Дополнительным недостатком является то, что продукт получается в жидкой фазе, а не в газовой. Процессы разделения жидких фаз затруднены и требуют больших расходов, чем разделение газовых фаз.
Следовательно, продолжает существовать необходимость в создании способов эффективного получения некоторых фторированных углеводородов, таких как R-1234yf и R-245cb в газовой фазе. Эти и другие цели достигаются данным изобретением.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Заявители разработали экономичный способ получения фторированных органических соединений, включая фторводородсодержащие пропаны и фторводородсодержащие пропены, включающий взаимодействие фторированного олефина с метилфторидом в газовой фазе. Обычно сольватирующие агенты применяют для получения фторводородсодержащих пропанов. Считали, что эти сольватирующие агенты, которые применяются для осуществления физического контакта между реагентами, необходимы для облегчения реакции синтеза. Применение сольватирующих агентов требовало осуществления этих реакций в жидкой фазе. Заявители установили, однако, что реакция синтеза может также протекать в отсутствие сольватирующих агентов и поэтому ее можно проводить в газовой фазе. Кроме того, заявители обнаружили также, что такой способ осуществления реакции в газовой фазе приводит к получению не только фторуглеводорода, но также фторсодержащего пропена.
Таким образом, согласно некоторым предпочтительным вариантам данного изобретения предложены способы получения фторированных органических соединений путем взаимодействия в газовой фазе и в присутствии кислоты Льюиса в качестве катализатора метилфторида с по меньшей мере одним фторированным олефином, имеющим формулу
Figure 00000001
где R означает F, Cl, C1-C2 фторированный алкил или фторированный алкенил, содержащий 2 атома углерода, с получением по меньшей мере одного продукта, содержащего по меньшей мере 3 атома углерода. Предпочтительно проводить эту реакцию практически в отсутствие агентов сольватирования.
Не опираясь на какую-либо конкретную теорию, полагают, что в соответствии с некоторыми вариантами метилфторид реагирует с катализатором с образованием иона карбония. Этот ион карбония, в свою очередь, реагирует с фторированным олефином с образованием галогенированного алкана. Кроме того, часть галогенированного алкана может реагировать с катализатором с образованием галогенированного алкена. Таким образом, способы синтеза по изобретению обладают заметным преимуществом, они не требуют агента сольватирования, и так как продукт получается в газовой фазе, выделение этого продукта и его очистка являются экономичными способами.
Согласно особенно предпочтительным вариантам метилфторид реагирует с тетрафторэтиленом, хлортрифторэтиленом или их смесью в присутствии активированного угля в качестве катализатора, пропитанного пентафторидом сурьмы, с получением R-1234yf, R-245cb или их сочетания.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Данное изобретение предусматривает каталитическую реакцию присоединения в газовой фазе, при этом по меньшей мере один фторированный олефин соединяется с метилфторидом с получением продукта, содержащего по меньшей мере три атома углерода. Согласно некоторым предпочтительным вариантам реакция может быть представлена следующим образом:
Figure 00000002
где R обозначает F, Cl, C12 фторированный алкил или фторированный алкенил, содержащий 2 атома углерода,
Х обозначает целое число от 3 до 5,
Y обозначает целое число от 2 до 3 и
Z обозначает целое число от 4 до 9.
Используемый здесь термин "фторированный" относится к органическому соединению, содержащему по меньшей мере один атом фтора. Таким образом, фторированные соединения включают водородсодержащие фторуглеводороды, фторуглеводороды, хлорфторуглеводороды и т.п.
Предпочтительные фторированные олефиновые реагенты включают CCIF=CF2, CF2=CF2, CF3CF=CF2, CF3CF2CF=CF2 и CF2=CF-CF=CF2, при этом особенно предпочтительными являются тетрафторэтилен (TFE) и хлортрифторэтилен (CTFE). Каждое из этих соединений является доступным в целом ряде коммерческих источников. Согласно некоторым предпочтительным вариантам фторированные олефиновые реагенты включают комбинацию по меньшей мере двух из упомянутых выше фторированных олефинов.
Катализатор кислота Льюиса согласно данному изобретению является галогенидом металла или металлоида, который способен принимать пару электронов от координирующей ковалентной связи. Такие катализаторы включают, без ограничения, соединения, содержащие по меньшей мере один атом, выбранный из группы, состоящей из Sb и Al, и по меньшей мере один атом, выбранный из группы, состоящей из F, Cl, Br и I. Примеры хлоридных катализаторов, подходящих для применения согласно данному изобретению, включают, но без ограничения, SbCl5 и AlCl3 и частично фторированные соединения таких хлоридов. Примеры фторидных катализаторов, пригодных для применения по изобретению, включают, но без ограничения, SbF5, SbF3 и частично хлорированные соединения таких фторидов. Предпочтительные кислоты Льюиса включают SbF5, SbF3 и SbCl5, при этом SbF5 является особенно предпочтительным соединением. Согласно некоторым предпочтительным вариантам может быть применена комбинация по меньшей мере двух из упомянутых выше катализаторов.
По некоторым предпочтительным вариантам катализаторами кислотами Льюиса пропитывают активированный углеродный субстрат. Пропитанные активированные углеродные субстраты согласно данному изобретению представляют собой углеродистые материалы, которые содержат каталитические соединения, распределенные тонким слоем на их внутренней поверхности. Активированные углеродные материалы обычно имеют пористую структуру и большую площадь внутренней поверхности. Объем пор активированных углеродных материалов обычно больше 0,2 мл/г, а площадь внутренней поверхности обычно больше 400 м2/г. Ширина пор колеблется от 0,3 нм до нескольких тысяч нм.
При пропитке используются физические свойства активированного углерода для повышения активности катализатора. Например, активированный углерод применяется частично как инертный пористый носитель для распределения катализаторов на большой внутренней поверхности материала, тем самым делая их более доступными для реагентов.
Согласно предпочтительным вариантам пропитка протекает путем осаждения катализатора на высушенном активированном углероде в атмосфере азота при 0-5°С.
Фторуглеводороды согласно данному изобретению предпочтительно имеют формулу
CxHyFz
где Х обозначает целое число от 3 до 5,
Y обозначает целое число от 2 до 3 и
Z обозначает целое число от 4 до 9.
Предпочтительные фторуглеводородные продукты, полученные по изобретению, включают фторированные алканы и фторированные алкены. Если данное изобретение предусматривает непрерывный способ, поток продукта будет включать или один, или оба этих продукта. Предпочтительные фторуглеводороды будут содержать по меньшей мере 3 атома углерода и могут, в случае когда R обозначает фторированный алкенил, представлять собой полимерные продукты. Примеры предпочтительных фторуглеводородов включают, но без ограничения, CH3CF2CF3, CH3CF2CF3, CH3CF2CF2CF3, CH3CF2CF2CF2CF3, CH2=CFCF3, CH2=CFCF2CF3, а также СН2=CFCF2CF2CF3. Наиболее предпочтительные фторуглеводороды включают тетрафторпропены, особенно 2,3,3,3-тетрафтор-1-пропен, и пентафторпропаны, особенно 1,1,1,2,2-пентафторпропан.
Согласно наиболее предпочтительному варианту данного изобретения метилфторид реагирует с хлортрифторэтиленом в газовой фазе и в присутствии катализатора, включающего активированный углерод, пропитанный пентафторидом сурьмы. Можно ожидать, что основным продуктом такой реакции будет 1-хлор-2,2,3,3-тетрафторпропан. Неожиданно заявители установили, что действительным продуктом этой реакции является в основном смесь 2,3,3,3-тетрафтор-1-пропен и 1,1,1,2,2-пентафторпропан. Не ограничиваясь какой-либо конкретной теорией, заявители полагают, что этот вариант протекает по следующей схеме реакции:
Figure 00000003
Figure 00000004
Figure 00000005
Реакция согласно данному изобретению проводится в газовой фазе, предпочтительно при температуре от примерно 40°С до примерно 150°С и при давлении от примерно 0,5 ф/дюйм2 (34,47 кПа) до примерно 150 ф/дюйм2 (1034,2 кПа). Наиболее предпочтительно проводить реакции при температуре от примерно 50°С до примерно 70°С и при давлении от примерно 10 ф/дюйм2 (68,94 кПа) до примерно 20 ф/дюйм2 (137,89 кПа).
Оптимальные температура и давление для конкретной реакции будут зависеть отчасти от желательного конечного продукта. Хотя обычно конверсия реагентов возрастает с повышением температуры и давления, относительно высокое давление паров SbF5 сдерживает рост температуры реакции и давления. Специалист в данной области с учетом данного описания сможет легко определить оптимальные величины температуры и давления для данной реакции без необходимости проведения ненужных экспериментов.
Способ по данному изобретению может проводиться периодически или более предпочтительно непрерывно. По некоторым предпочтительным вариантам в случае непрерывного процесса реагенты смешивают вместе, нагревают, затем пропускают через слой катализатора с целью получения потока продукта. Желательный выход продукта обычно получается при одном проходе смеси реагентов через слой катализатора. Однако данное изобретение не ограничено такими операциями, а может включать осуществление множества проходов. Согласно некоторым предпочтительным вариантам кислоты в потоке продукта нейтрализуют в скруббере. Поток продукта можно фракционировать (например, путем перегонки) для выделения индивидуальных продуктов.
ПРИМЕРЫ
Дополнительные признаки данного изобретения раскрыты в следующих примерах, которые никоим образом не ограничивают данное изобретение.
Примеры 1-5
Эти примеры показывают активность разных катализаторов.
Получение катализаторов
Катализатор А
Катализатор, включающий активированный уголь, пропитанный SbF5, получают путем сушки 100 г активированного угля в печке при температуре, равной 180°С, под вакуумом в течение 72 ч.
После сушки на углерод наносят покрытие из алюминиевой фольги и затем постепенно охлаждают до комнатной температуры под вакуумом.
Бутылку из HDPE (ПЭВД) объемом 250 мл промывают безводным N2 для удаления воздуха. Затем в бутылку в перчаточной камере помещают примерно 50 г высушенного активированного угля в атмосфере азота. В перчаточной камере медленно добавляют 50 г SbF5 (примерно 2 г/мин) к активированному углю при вращении бутылки. Содержимое в бутылке перемешивают прутком из пластика до тех пор, пока не адсорбируется в порах угля вся жидкость, или до тех пор, пока не перестанут выделяться пары SbF5.
Катализатор В
Повторяют процедуру, описанную для катализатора А, за исключением того, что (1) бутылку погружают в баню с температурой 0-5°С для облегчения адсорбции SbF5 в поры активированного угля и (2) SbF5 добавляют в бутылку со скоростью 5 г/мин.
Катализатор С
Процедуру, описанную для катализатора В, повторяют, за исключением того, что к 50 г активированного угля добавляют только 20 г SbF5.
Катализатор D
Повторяют процедуру, описанную для катализатора В, за исключением того, что пропитывают 30 г SbF5 50 г активированного угля и затем фторируют в реакторе Монеля (1/2 дюйма), пропуская 30 г/ч HF при температуре 70°С в течение 20 ч под давлением 50 ф/дюйм2 (344,7 кПа). После фторирования пропускают 50 стандартных см3 в мин (SCCM) N2 через слой катализатора при температуре 30°С в течение 30 ч для удаления HF из слоя катализатора.
Катализатор Е
Повторяют процедуру, описанную для катализатора В, за исключением того, что 50 г высушенного активированного угля пропитывают 50 г SbF3 и затем фторируют в реакторе Монеля (1/2 дюйма) 10 г/ч F2 (смесь 50 вес.% N2 и 50 вес.% F2) при температуре 70°С в течение 30 ч под давлением 50 ф/дюйм2 (344,7 кПа). После фторирования через слой пропускают 50 SCCM 100 вес.% N2 при температуре 30°С в течение 2 ч для удаления свободного F2 из слоя.
Активность катализаторов
Активность каждого из описанных выше катализаторов определяют следующим образом.
В проточный реактор Монеля (1/2 дюйма) загружают 50 г свежеприготовленного катализатора и затем равномерно нагревают до 50°С. Газообразную смесь CTFE и CH3F при давлении 20 ф/дюйм2 (137,89 кПа) нагревают до 40°С в нагревателе, который связан с реактором. Нагретую смесь реагентов пропускают в реактор со скоростью 20 SCCM. Линия выхода из реактора соединена on-line с GC (ГХ) и GCMS (ГХ-МС) для анализа. Используют 15% раствор КОН для промывки при температуре 50°С для нейтрализации кислот, выходящих из реактора. Поток газов, выходящий из раствора для промывки, затем конденсируют в цилиндре в атмосфере жидкого N2 и затем фракционируют (перегоняют) для выделения продуктов. Результаты для каждого катализатора показаны ниже.
Пример Катализатор % конверсии CTFE % конверсии в CF3CF=СН2 % конверсии в CF3CF2CH3
1 А 15 52 34
2 В 22 54 37
3 С 20 53 37
4 D 2 2 6
5 Е 12 27 39
Из этих данных видно, что катализатор В является самым активным катализатором в указанных реакционных условиях.
Примеры 6-14
Эти примеры показывают величины степени конверсии хлортрифторэтилена (CTFE) и тетрафторэтилена (TFE) в присутствии катализатора на основе Sb. В проточный реактор Монеля (1/2 дюйма) загружают 50 г свежеприготовленного катализатора В и равномерно нагревают до температуры, указанной ниже в таблице. Газообразную смесь CTFE или TFE и CH3F нагревают до температуры на 10°С ниже температуры реактора. Нагретая смесь реагентов затем пропускается в реактор со скоростью 20 SCCM и при давлении, указанном ниже в таблице. Линия выхода из реактора соединена on-line с GC (ГХ) и GCMS (ГХ-МС) для анализа. Используют 15% раствор КОН для промывки при температуре 50°С для нейтрализации кислот, выходящих из реактора. Поток газов, выходящий из раствора для промывки, затем конденсируют в цилиндре в атмосфере жидкого N2 и затем фракционируют (перегоняют) для выделения продуктов. Результаты для каждого опыта показаны ниже.
Опыт № Т (°С) Р (ф/дюйм2) Олефин % конверсии CTFE/TFE % конверсии в CF3CF=СН2 % конверсии в CF3CF2CH3
6 50 1,2 CTFE 15 48 45
7 50 5 CTFE 17 52 40
8 50 20 CTFE 22 54 37
9 60 2,1 CTFE 24 50 40
10 70 3,5 CTFE 21 42 42
11 50 3,2 TFE 35 20 74
12 60 3,2 TFE 37 22 72
13 60 20 TFE 38 26 68
14 50 100 TFE 39 18 64
Видно, что реакция является более селективной по отношению к TFE, а не к CTFE, но подача CTFE приводит к большей степени конверсии в CF3CF=СН2.
Выше описаны несколько конкретных примеров изобретения, но специалистам ясно, что возможны различные изменения, модификации и усовершенствования. Такие изменения, модификации и усовершенствования очевидны из этого описания, они являются его частью, хотя явно в нем не описаны. Соответственно, приведенное выше описание является только примером и не ограничивает данное изобретение. Изобретение ограничено только формулой изобретения с учетом эквивалентов.

Claims (10)

1. Способ получения фторированных органических соединений, включающий взаимодействие метилфторида с по меньшей мере одним фторированным олефином, имеющим структурную формулу
Figure 00000001

где R означает F, Cl, C1-C2 фторированный алкил или фторированный алкенил, содержащий 2 атома углерода, с получением по меньшей мере одного продукта, содержащего по меньшей мере 3 атома углерода, при этом указанное взаимодействие происходит в газовой фазе и в присутствии в качестве катализатора кислоты Льюиса, которой пропитывают активированный углерод.
2. Способ по п.1, отличающийся тем, что фторированный олефин выбирают из группы, состоящей из тетрафторэтилена, хлортрифторэтилена и их сочетаний.
3. Способ по п.1, отличающийся тем, что указанный продукт включает фторутлеводород.
4. Способ по п.1, отличающийся тем, что указанный продукт включает полимер фторуглеводорода.
5. Способ по п.3, отличающийся тем, что фторуглеводород представляет собой фторированный С35-алкан, фторированный С35-алкен или некоторые их смеси.
6. Способ по п.3, отличающийся тем, что фторуглеводород представляет собой 2,3,3,3-тетрафтор-1-пропен.
7. Способ по п.3, отличающийся тем, что фторуглеводород представляет собой 1,1,1,2,2-пентафторпропан.
8. Способ по п.1, отличающийся тем, что катализатор кислота Льюиса представляет собой галоидид металла или металлоида, нанесенный пропиткой на активированный уголь.
9. Способ по п.9, отличающийся тем, что катализатор содержит по меньшей мере один атом, выбранный из группы, состоящей из Sb и А1.
10. Способ по п.1, отличающийся тем, что реакцию проводят практически в отсутствие сольватирующего агента.
RU2007145955/04A 2005-05-12 2006-05-05 Способ получения фторированных органических соединений RU2417210C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/127,892 US7396965B2 (en) 2005-05-12 2005-05-12 Method for producing fluorinated organic compounds
US11/127,892 2005-05-12

Publications (2)

Publication Number Publication Date
RU2007145955A RU2007145955A (ru) 2009-06-20
RU2417210C2 true RU2417210C2 (ru) 2011-04-27

Family

ID=36917414

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007145955/04A RU2417210C2 (ru) 2005-05-12 2006-05-05 Способ получения фторированных органических соединений

Country Status (10)

Country Link
US (2) US7396965B2 (ru)
EP (1) EP1879841B1 (ru)
JP (1) JP5376940B2 (ru)
KR (1) KR101283951B1 (ru)
CN (1) CN101213162B (ru)
CA (1) CA2608166A1 (ru)
ES (1) ES2387038T3 (ru)
MX (1) MX2007014136A (ru)
RU (1) RU2417210C2 (ru)
WO (1) WO2006124335A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636015C2 (ru) * 2012-08-29 2017-11-17 Судаль Улучшенная оконная изоляция

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383867B2 (en) 2004-04-29 2013-02-26 Honeywell International Inc. Method for producing fluorinated organic compounds
JP5592607B2 (ja) * 2005-11-03 2014-09-17 ハネウェル・インターナショナル・インコーポレーテッド フッ素化有機化合物の製造方法
WO2007056127A1 (en) * 2005-11-03 2007-05-18 Honeywell International Inc. Method for producing fluorinated organic compounds
EP2041053A1 (en) * 2006-07-07 2009-04-01 E.I. Du Pont De Nemours And Company Catalytic addition of hydrofluorocarbons to fluoroolefins
RU2418782C2 (ru) * 2006-07-24 2011-05-20 Е.И.Дюпон Де Немур Энд Компани Способ каталитического получения частично галогенированных пропанов и частично фторированных бутанов (варианты)
RU2006139128A (ru) * 2006-11-07 2008-05-20 Е.И.Дюпон де Немур энд Компани (US) Способ получения фторированных олефинов
GB0625214D0 (en) * 2006-12-19 2007-01-24 Ineos Fluor Holdings Ltd Process
JP5056946B2 (ja) * 2007-09-11 2012-10-24 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
US8071826B2 (en) * 2008-04-04 2011-12-06 Honeywell International Inc. Process for the preparation of 2,3,3,3-tetrafluoropropene (HFO-1234yf)
WO2010001768A1 (en) * 2008-07-01 2010-01-07 Daikin Industries, Ltd. Process for producing fluorine-containing propene compounds
JP5137726B2 (ja) * 2008-07-29 2013-02-06 三菱電機株式会社 空気調和装置
EP2318339B1 (en) * 2008-07-30 2012-09-05 Daikin Industries, Ltd. Process for preparing 2,3,3,3-tetrafluoropropene
CN102105422B (zh) * 2008-08-06 2013-10-30 大金工业株式会社 制备2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法
CA2736216A1 (en) * 2008-10-10 2010-04-15 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoro-propyl acetate or zinc (2-chloro-2,3,3,3-tetrafluoropropoxy)chloride
JP6022770B2 (ja) * 2008-10-13 2016-11-09 ブルー キューブ アイピー エルエルシー 塩素化及び/又はフッ素化プロペンの製造方法
WO2010050373A2 (en) * 2008-10-29 2010-05-06 Daikin Industries, Ltd. Process for preparing 2,3,3,3-tetrafluoropropene
WO2010055146A2 (en) * 2008-11-13 2010-05-20 Solvay Fluor Gmbh Hydrofluoroolefins, manufacture of hydrofluoroolefins and methods of using hydrofluoroolefins
WO2010101198A1 (en) 2009-03-04 2010-09-10 Daikin Industries, Ltd. Process for preparing fluorine-containing propenes containing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene
KR101374000B1 (ko) * 2009-04-23 2014-03-12 다이킨 고교 가부시키가이샤 2,3,3,3-테트라플루오로프로펜의 제조 방법
US20120065436A1 (en) * 2009-05-12 2012-03-15 Daikin Industries, Ltd. Process for preparing fluorine-containing propane
EP2485832B1 (en) * 2009-10-09 2016-11-23 Blue Cube IP LLC Process for producing a chlorinated and/or fluorinated propene in an isothermal multitube reactors and
KR20120084729A (ko) * 2009-10-09 2012-07-30 다우 글로벌 테크놀로지스 엘엘씨 염화 및/또는 불화 프로펜 및 고급 알켄의 제조 방법
KR20120093202A (ko) * 2009-10-09 2012-08-22 다우 글로벌 테크놀로지스 엘엘씨 단열식 플러그 흐름 반응기 및 염화 및/또는 불화 프로펜 및 고급 알켄의 제조 방법
US8581011B2 (en) * 2009-10-09 2013-11-12 Dow Global Technologies, Llc Process for the production of chlorinated and/or fluorinated propenes
WO2012166393A1 (en) 2011-05-31 2012-12-06 Dow Global Technologies, Llc Process for the production of chlorinated propenes
CA2837292C (en) 2011-05-31 2020-01-28 Max Markus Tirtowidjojo Process for the production of chlorinated propenes
KR102007722B1 (ko) 2011-06-08 2019-08-07 다우 글로벌 테크놀로지스 엘엘씨 염화 및/또는 불화 프로펜의 제조 방법
WO2013022676A1 (en) 2011-08-07 2013-02-14 Dow Global Technologies, Llc Process for the production of chlorinated propenes
EP2739595B1 (en) 2011-08-07 2018-12-12 Blue Cube IP LLC Process for the production of chlorinated propenes
CN102442880B (zh) * 2011-10-22 2014-05-21 山东东岳高分子材料有限公司 一种2,3,3,3-四氟丙烯的制备方法
EP2782889B1 (en) 2011-11-21 2016-12-21 Blue Cube IP LLC Process for the production of chlorinated alkanes
US9284239B2 (en) 2011-12-02 2016-03-15 Blue Cube Ip Llc Process for the production of chlorinated alkanes
EP2785670B1 (en) 2011-12-02 2017-10-25 Blue Cube IP LLC Process for the production of chlorinated alkanes
US9334205B2 (en) 2011-12-13 2016-05-10 Blue Cube Ip Llc Process for the production of chlorinated propanes and propenes
JP2015503523A (ja) 2011-12-22 2015-02-02 ダウ グローバル テクノロジーズ エルエルシー テトラクロロメタンの製造方法
EP2794521B1 (en) 2011-12-23 2016-09-21 Dow Global Technologies LLC Process for the production of alkenes and/or aromatic compounds
WO2014046970A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US9598334B2 (en) 2012-09-20 2017-03-21 Blue Cube Ip Llc Process for the production of chlorinated propenes
EP2900364B1 (en) 2012-09-30 2018-06-13 Blue Cube IP LLC Weir quench and processes incorporating the same
EP2911773B1 (en) 2012-10-26 2017-10-04 Blue Cube IP LLC Mixer and reactor and process incorporating the same
WO2014100066A1 (en) 2012-12-18 2014-06-26 Dow Global Technologies, Llc Process for the production of chlorinated propenes
JP6251286B2 (ja) 2012-12-19 2017-12-20 ブルー キューブ アイピー エルエルシー 塩素化プロペン生成のための方法
WO2014134233A2 (en) 2013-02-27 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propenes
EP2964597B1 (en) 2013-03-09 2017-10-04 Blue Cube IP LLC Process for the production of chlorinated alkanes
CN104496746B (zh) * 2014-12-18 2018-10-16 浙江衢化氟化学有限公司 一种同时制备1,1,1,2,2-五氯丙烷和2,3,3,3-四氯丙烯的方法
CN105111038B (zh) 2015-08-18 2017-11-21 巨化集团技术中心 一种用甲基氯化镁制备2,3,3,3‑四氟丙烯的方法
CN112194557B (zh) * 2020-06-09 2022-05-24 浙江省化工研究院有限公司 1,1-二氯-3,3,3-三氟丙烯和1,2-二氯-3,3,3-三氟丙烯的制备工艺
CN112094627B (zh) * 2020-11-03 2021-03-16 北京宇极科技发展有限公司 环骨架含氟传热流体、制备方法及其应用
CN114634395B (zh) * 2022-03-25 2024-05-28 浙江工业大学 一种由四氟乙烯制备2,3,3,3-四氟丙烯的方法
CN115417745A (zh) * 2022-11-04 2022-12-02 北京宇极科技发展有限公司 一种合成氢氟烯烃的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462402A (en) * 1945-06-30 1949-02-22 Du Pont Fluorinated hydrocarbons
JPS6052133B2 (ja) * 1982-05-10 1985-11-18 ダイキン工業株式会社 ヘキサフルオロイソブテンおよび/またはヘキサフルオロブテンの製法
US5157171A (en) * 1989-10-16 1992-10-20 E. I. Du Pont De Nemours And Company Process for chlorofluoropropanes
US5227547A (en) * 1989-12-05 1993-07-13 Asahi Glass Company Ltd. Method for producing dichloropentafluoropropanes
JPH04110388A (ja) * 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
US5162594A (en) * 1990-10-11 1992-11-10 E. I. Du Pont De Nemours And Company Process for production of polyfluoroolefins
CA2070924C (en) * 1991-06-14 2002-08-13 Hirokazu Aoyama Process for preparing fluorinated compound
JPH0753420A (ja) * 1993-08-13 1995-02-28 Central Glass Co Ltd 塩素化フッ素化エタンの二量化方法
US5416246A (en) * 1994-10-14 1995-05-16 E. I. Du Pont De Nemours And Company Chlorofluorocarbon isomerization
FR2730729B1 (fr) * 1995-02-17 1997-04-30 Atochem Elf Sa Procede de coproduction de difluoromethane et de 1,1,1,2-tetrafluoroethane
WO1997002227A1 (en) 1995-06-30 1997-01-23 E.I. Du Pont De Nemours And Company Addition of trifluoromethanes to fluoroolefins and isomerization of monohaloperfluoro alkanes
US5929293A (en) * 1995-06-30 1999-07-27 E. I. Du Pont De Nemours And Company Process for the preparation of fluoroolefins
US5714651A (en) * 1995-12-28 1998-02-03 Elf Atochem North America, Inc. Use of polymerization inhibitor to prolong the life of a Lewis acid catalyst
RU2181114C2 (ru) * 1997-03-24 2002-04-10 И.Ай.Дю Пон Де Немурс Энд Кампани Способ получения аддуктов фторсодержащих углеводородов и олефинов
JP3154702B2 (ja) * 1998-02-26 2001-04-09 セントラル硝子株式会社 1,1,1,3,3−ペンタフルオロプロパンの製造方法
US6074985A (en) * 1999-08-03 2000-06-13 Elf Atochem North America, Inc. Fluorination catalysts
US6806396B2 (en) * 2001-12-18 2004-10-19 E. I. Du Pont De Nemours And Company Disposal of fluoroform (HFC-23)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BELEN'KII G et al. Electrophilic, catalytic alkylation of polyfluoroolefins by some fluoroalkanes, Journal of fluorine chemistry, vol.108, no.1, 2001, pages 15-20. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636015C2 (ru) * 2012-08-29 2017-11-17 Судаль Улучшенная оконная изоляция

Also Published As

Publication number Publication date
KR101283951B1 (ko) 2013-07-09
WO2006124335A1 (en) 2006-11-23
EP1879841A1 (en) 2008-01-23
US7396965B2 (en) 2008-07-08
KR20080009746A (ko) 2008-01-29
CA2608166A1 (en) 2006-11-23
JP5376940B2 (ja) 2013-12-25
CN101213162A (zh) 2008-07-02
US20080242901A1 (en) 2008-10-02
ES2387038T3 (es) 2012-09-12
JP2008544958A (ja) 2008-12-11
US7557254B2 (en) 2009-07-07
CN101213162B (zh) 2012-07-11
US20060258891A1 (en) 2006-11-16
EP1879841B1 (en) 2012-05-16
MX2007014136A (es) 2008-01-11
RU2007145955A (ru) 2009-06-20

Similar Documents

Publication Publication Date Title
RU2417210C2 (ru) Способ получения фторированных органических соединений
EP2203402B2 (en) Processes for synthesis of fluorinated olefins
EP1943203B1 (en) Method for producing fluorinated organic compounds
EP2178814B1 (en) Method for producing fluorinated olefins
US8395000B2 (en) Method for producing fluorinated organic compounds
US7880040B2 (en) Method for producing fluorinated organic compounds
JP5498381B2 (ja) フッ素化有機化合物を製造する方法
JP5389446B2 (ja) フッ素化有機化合物の製造方法
JP5715177B2 (ja) フッ素化有機化合物の製造方法
JP2018516268A (ja) フッ素化オレフィンを生成させるための方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180506