RU2408916C2 - Усовершенствованное получение электроэнергии для технологических устройств - Google Patents

Усовершенствованное получение электроэнергии для технологических устройств Download PDF

Info

Publication number
RU2408916C2
RU2408916C2 RU2008116682/07A RU2008116682A RU2408916C2 RU 2408916 C2 RU2408916 C2 RU 2408916C2 RU 2008116682/07 A RU2008116682/07 A RU 2008116682/07A RU 2008116682 A RU2008116682 A RU 2008116682A RU 2408916 C2 RU2408916 C2 RU 2408916C2
Authority
RU
Russia
Prior art keywords
wind
controller
wireless
energy
power
Prior art date
Application number
RU2008116682/07A
Other languages
English (en)
Other versions
RU2008116682A (ru
Inventor
Грегори С. БРАУН (US)
Грегори С. БРАУН
Эндрю Дж. КЛОСИНСКИ (US)
Эндрю Дж. КЛОСИНСКИ
Стивен Р. ТРИМБЛ (US)
Стивен Р. ТРИМБЛ
Марк К. ФАНДРИ (US)
Марк К. ФАНДРИ
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Publication of RU2008116682A publication Critical patent/RU2008116682A/ru
Application granted granted Critical
Publication of RU2408916C2 publication Critical patent/RU2408916C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31121Fielddevice, field controller, interface connected to fieldbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33192Radio link, wireless
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)

Abstract

Использование: в системах контроля и управления технологическими процессами. Технический результат заключается в повышении надежности электроснабжения. Технологическое устройство (34, 360, 500, 600) содержит контроллер (36, 362) и модуль (32, 366, 506) беспроводной связи. Модуль (32, 366, 506) беспроводной связи подключен к контроллеру (36, 362). Предусмотрен модуль (38, 365, 508, 602, 604, 620) выработки электроэнергии, вырабатывающий электричество для технологического устройства. Модуль (38, 365, 508, 602, 604, 620) выработки электроэнергии может находиться внутри технологического устройства или быть отдельным блоком, присоединенным к нему. 2 н. и 1 з.п. ф-лы, 10 ил.

Description

Предшествующий уровень техники
Область техники
Настоящее изобретение относится к промышленным системам контроля и регулирования технологического процесса. Более конкретно - настоящее изобретение относится к получению электроэнергии для полевых устройств.
В сфере промышленности системы регулирования используются для контроля и регулирования материально-производственных аспектов промышленных и химических процессов и т.п. Обычно эти функции системы контроля реализуются с помощью полевых устройств, рассредоточенных по ключевым участкам промышленного процесса и подключенных к схеме управления, находящейся в диспетчерской, посредством контура регулирования технологического процесса. Термин "полевое устройство" относится к любому устройству, которое выполняет какую-либо функцию в распределенной системе контроля или регулирования, включая все устройства, используемые для измерения, контроля и регулирования в промышленных процессах.
Полевые устройства, также именуемые в данном контексте "технологическими устройствами", используются в области контрольно-измерительной техники для множества целей. Обычно такие устройства имеют упрочненный для полевых условий корпус, позволяющий устанавливать их на открытом воздухе в относительно жестких условиях и способный выдерживать экстремальные климатические показатели температуры, влажности, вибрации, механических ударов и т.п. Эти устройства типично работают на относительно небольшой мощности. Например, современные полевые устройства получают всю свою рабочую мощность из известного токового контура 4-20 мА. Эти устройства могут не только работать на таком контуре, но также обмениваться информацией по этому контуру с помощью аналоговых сигналов (обычно путем модуляции 4-20 мА сигнала) и цифровым методом.
Некоторые полевые устройства содержат датчик. Под датчиком подразумевается устройство, которое либо формирует выходной сигнал на основании физического ввода, либо формирует физический выход на основании входного сигнала. Обычно датчик преобразует какой-либо ввод в выход другой формы. Виды датчиков включают в себя различные аналитические приборы, датчики давления, термисторы, термопары, датчики деформаций, датчики потока, позиционеры, пускатели, соленоиды, контрольные лампы и прочее.
Обычно каждое полевое устройство также содержит коммуникационную схему, которая используется для осуществления связи с диспетчерской или другой схемой по контуру регулирования технологического процесса. В некоторых системах контур регулирования процесса также используется для передачи регулируемого тока и/или напряжения в полевое устройство для его питания.
Аналоговые полевые устройства традиционно соединяются с диспетчерской посредством двухпроводных токовых контуров регулирования процесса, причем каждое устройство связано с диспетчерской одним двухпроводным контуром регулирования. Обычно между этими двумя проводами поддерживается разность напряжений в интервале 12-45 вольт для аналогового режима и 9-50 вольт для цифрового режима. Некоторые аналоговые полевые устройства передают сигнал в диспетчерскую посредством модуляции тока, проходящего по контуру, в ток, пропорциональный контролируемому технологическому параметру. Другие аналоговые полевые устройства могут выполнять какое-либо действие под управлением диспетчерской посредством регулирования величины тока, проходящего по контуру. Кроме этого или альтернативно, контур регулирования процесса может нести цифровые сигналы, используемые для связи с полевыми устройствами. Цифровая связь позволяет обеспечить более высокую степень коммуникации, чем аналоговая связь. Полевые устройства, осуществляющие связь цифровым методом, способны реагировать и осуществлять избирательную связь с диспетчерской и/или другими полевыми устройствами. Кроме того, такие устройства способны обеспечивать дополнительную сигнализацию, например передачу диагностических сигналов и/или сигналы тревоги.
В некоторых системах для связи с полевыми устройствами стали применяться беспроводные методы. Беспроводная работа упрощает формирование соединений и настройку полевых устройств. В настоящее время используются беспроводные системы, в которых полевое устройство может содержать внутренний аккумулятор, возможно заряжаемый солнечным элементом, и обходиться без какой-либо проводной связи. Проблема использования внутреннего аккумулятора состоит в том, что энергопотребности беспроводных устройств могут сильно колебаться в зависимости от множества факторов, таких как частота передачи сообщений устройством, компоненты устройства и т.д.
Также существуют проблемы в тех системах, которые не имеют надежного поступления солнечной энергии. Например, проблематично использовать солнечную энергию в областях, полностью затененных ежедневно в течение суток, или в областях с очень малым числом дней с незаходящим Солнцем, например за Северным полярным кругом. Соответственно, в таких системах энергообеспечение беспроводного технологического устройства за счет солнечной энергии ненадежно. Поэтому существует большая потребность в беспроводных технологических устройствах, которые могли бы работать с использованием возобновляемого изобильного источника электроэнергии, независимого от Солнца.
Краткое изложение сущности изобретения
Технологическое устройство содержит контроллер, модуль беспроводной связи. Модуль беспроводной связи подключен к контроллеру. Предусмотрен модуль выработки электроэнергии, вырабатывающий электричество для технологического устройства. Модуль выработки электроэнергии может быть расположен внутри технологического устройства или быть отдельным элементом, подсоединенным к технологическому устройству.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов его воплощения со ссылками на сопровождающие чертежи, на которых:
Фиг.1 изображает схематически примерное (известное) полевое устройство, с которым можно успешно использовать беспроводный блок энергообеспечения и связи, согласно настоящему изобретению;
Фиг.2 - структурную схему полевого устройства, показанного на фиг.1;
Фиг.3 - структурную схему полевого устройства, содержащего схему беспроводной связи для осуществления связи с удаленным устройством, таким как дисплей или ручной прибор, согласно изобретению;
Фиг.4 - вид спереди беспроводного блока энергообеспечения и связи, установленного на полевом устройстве, согласно вариантам настоящего изобретения;
Фиг.5А - структурную схему беспроводного блока энергообеспечения и связи согласно изобретению;
Фиг.5В - структурную схему модуля преобразования энергии согласно изобретению;
Фиг.6 - общий вид системы выработки электроэнергии для технологического устройства согласно изобретению;
Фиг.7 - схему системы выработки электроэнергии для технологических устройств согласно изобретению;
Фиг.8 - схему беспроводного технологического устройства согласно изобретению;
Фиг.9А и 9В - соответственно вид спереди и вид сбоку технологического устройства согласно изобретению;
Фиг.10А и 10В - соответственно вид спереди и вид сбоку технологического устройства согласно изобретению.
Подробное описание предпочтительных вариантов осуществления изобретения
Настоящее изобретение обеспечивает выработку электроэнергии для полевых устройств с использованием источников энергии, находящихся вблизи полевого устройства. Кроме того, эти источники энергии не основаны на солнечной энергии. Варианты осуществления настоящего изобретения предусматривают наличие беспроводного блока энергообеспечения и связи, позволяющего полевым устройствам, которые выполнены с возможностью проводной связи, работать без проводов. Кроме того, варианты настоящего изобретения включают в себя выработку электроэнергии для полевого устройства с использованием несолнечного источника энергии, расположенного вблизи полевого устройства.
В вариантах настоящего изобретения используется источник несолнечной энергии вблизи полевого устройства для выработки электроэнергии, используемой полевым устройством. В данном контексте термин "несолнечный" подразумевает любой источник энергии, вырабатываемой молекулами, физически расположенный вблизи полевого устройства. Таким образом, несолнечная энергия может включать в себя энергию ветра, технологию топливных элементов, в которых используется кислород вблизи полевого устройства, и/или топливных элементов, в которых используются молекулы в самой технологической среде, для получения электроэнергии. Каждый из этих вариантов будет описан более подробно ниже.
На фиг.1 и 2 представлены схематический и структурный виды примерного (известного) полевого устройства, с которым можно использовать предложенный беспроводный блок энергообеспечения и связи. Система 10 контроля или регулирования технологического процесса содержит диспетчерскую или систему 12 управления, соединенную с одним или более полевыми устройствами 14 по двухпроводному контуру 16 регулирования процесса. Примеры контура 16 регулирования процесса включают в себя аналоговую 4-20 мА связь, гибридные протоколы, которые включают в себя как аналоговую, так и цифровую связь, такие как стандарт Hughway Addressable Remote Transducer (HART®), а также полностью цифровые протоколы, такие как стандарт FOUNDATIONTM Fieldbus. Обычно протоколы контура регулирования процесса могут обеспечивать как энергообеспечение полевого устройства, так и связь между полевыми устройствами и другими устройствами.
В данном примере полевое устройство 14 содержит схему 18, подключенную к пускателю/датчику 20 и контуру 16 регулирования через выходной щиток 21 в корпусе 23. Полевое устройство 14 показано как генератор контролируемого технологического параметра (ТП), который подключен к процессу и определяет какой-то его аспект, например температуру, давление, рН, поток или другие физические свойства процесса, и обеспечивает его индикацию. Другие примеры полевых устройств включают в себя клапаны, пускатели, контроллеры и дисплеи.
Обычно полевые устройства характеризуются способностью работать в "поле", в котором они могут подвергаться воздействиям окружающей среды, таким как температура, влажность и давление. Кроме воздействия окружающих условий полевые устройства часто должны также выдерживать воздействие агрессивных, опасных и/или даже взрывчатых атмосфер. Кроме того, такие устройства часто должны работать в присутствии вибрации и/или электромагнитных помех. Полевые устройства такого типа, как показано на фиг.1, представляют относительно большой спектр существующих устройств, предназначенных для работы, полностью основанной на проводной связи.
На фиг.3 представлена структурная схема беспроводного полевого устройства согласно изобретению. Полевое устройство 34 содержит модуль 38 выработки электроэнергии, контроллер 35, модуль 32 беспроводной связи и пускатель/датчик 20. Модуль 38 может содержать внутренний энергозапасающий блок и предназначен для энергообеспечения полевого устройства 34. Модуль 38 выработки электроэнергии вырабатывает электричество для устройства 34. Способ выработки электроэнергии этим модулем может иметь множество форм, и ниже будут описаны конкретные примеры, такие как топливный элемент и ветровые генераторы. Электроэнергия из модуля 38 приводит в действие контроллер 35 для взаимодействия с пускателем/датчиком 20 и модулем 32 беспроводной связи. Модуль 32 беспроводной связи, в свою очередь, взаимодействует с другими устройствами 24 через антенну 26. На фиг.4 показан вид спереди беспроводного блока 100 энергообеспечения и связи, присоединенного к полевому устройству 14, показанному пунктиром. Блок 100 предпочтительно подсоединен к устройству 14 через стандартную трубку 102 полевого устройства. Примеры подходящих трубчатых соединений включают в себя Ѕ-14 NPT, M20×1,5, G1/2 и 3/8-18 NPT. Блок 100 может содержать шарнир, обеспечивающий поворот 104 вокруг оси 106 и поворот 108 вокруг оси 110. Кроме того, соединительный элемент 112 блока 100 предпочтительно выполнен полым, чтобы можно было подсоединять блок 100 к устройству 14 проводами. В тех вариантах, где не требуется регулировка положения корпуса, соединительный элемент 112 может быть отрезком трубы.
Блок 100 содержит корпус 114, который установлен на соединительном элементе 112. Корпус 114 содержит схему (описанную в связи с фиг.8), которая позволяет блоку 100 осуществлять энергообеспечение и связь с устройством 14 согласно стандартному протоколу, такому как 4-20 мА, Hart®, FOUNDATIONTM Fieldbus, Profibus-PA, Modbus или CAN. Предпочтительно этот протокол реализует цифровую связь, чтобы повысить уровень взаимодействия между блоком 100 и устройством 14.
Так как блок 100 находится снаружи устройства 14, можно предусмотреть множество вариантов блока 100 с различными модулями внутренней выработки электроэнергии в зависимости от конкретной энергопотребности устройства, к которому подсоединен этот блок. Блок 100 также предпочтительно содержит схему беспроводной связи (на фиг.4 не показана), которая подсоединена к антенне 120. Наличие внешней антенны 120 облегчает беспроводную связь по сравнению с внутренними антеннами, так как многие корпуса, упрочненные для полевых условий, выполнены из металла и, вероятно, будут ослаблять беспроводной сигнал. Однако можно также реализовать варианты с внутренней антенной вблизи радиопрозрачной части корпуса 114 и/или элементом(ами) 116. Но варианты с внешней антенной являются особенно предпочтительными, когда блок 100 упрочнен для полевых условий, чтобы выдержать воздействие условий, подобных тем, для которых предназначены полевые устройства.
Блок 100 может также содержать локальный пользовательский интерфейс. Соответственно блок 100 может содержать дисплей, такой как жидкокристаллический дисплей (ЖКД) 122, который может быть установлен вблизи одного из элементов 116. Для приема локального пользовательского ввода блок 100 может содержать один или более элементов локального ввода, например кнопку 124. Локальный пользовательский интерфейс важен, так как при полностью беспроводной работе комбинированной системы блок/полевое устройство технику будет удобнее работать с локальным пользовательским интерфейсом, чем пытаться осуществить беспроводной доступ к устройству через ручной электронный прибор или т.п. Локальный интерфейс можно использовать для доступа к блоку, полевому устройству или к ним обоим. В данном контексте "локальный пользовательский интерфейс" подразумевает наличие элемента локального пользовательского ввода (вводов) (например, кнопки), элемента локального пользовательского вывода (например, ЖКД) или их комбинации. Как показано на фиг.4, ЖКД можно разместить вместе с элементом(ами) 116.
На фиг.5 показана структурная схема беспроводного блока 360 энергообеспечения и связи согласно настоящему изобретению. Блок 360 содержит контроллер 362, энергозапасающее устройство 364 (показанное как аккумулятор), преобразователь 365 энергии, коммуникатор 368 контура и модуль 366 интерфейса беспроводной связи.
Контроллер 362 предпочтительно содержит маломощный микропроцессор и соответствующую зарядную схему для передачи соответствующего количества энергии из элемента(ов) 116 и/или энергозапасающего устройства 364 для питания блока 360 и любых полевых устройств, подсоединенных к соединительному элементу 112. Кроме того, контроллер 362 также направляет избыточную энергию из элемента(ов) 116 и/или преобразователя 365 в энергозапасающее устройство 364. Контроллер 362 может быть также подключен к факультативной схеме измерения температуры, чтобы контроллер 362 мог уменьшить подачу зарядного тока в энергозапасающее устройство 364, если оно начинает перегреваться. Например, схема измерения температуры может содержать подходящий термочувствительный элемент, такой как термопар, подсоединенный к энергозапасающему устройству 364. Затем аналого-цифровой преобразователь преобразует сигнал от термопара в цифровую форму и передает этот цифровой сигнал контроллеру 362.
Контроллер 362 может быть выполнен с возможностью осуществлять посредством аппаратных или программных средств активное управление энергообеспечением как самого себя, так и присоединенных полевых устройств. Для этого контроллер 362 может переводить самого себя или любое полевое устройство в маломощный дежурный режим. Дежурный режим - это любой рабочий режим, в котором уменьшено потребление электроэнергии. Для полевых устройств дежурный режим можно вызвать передаваемой полевому устройству командой, чтобы установить рабочий ток на минимальную имеющуюся шину питания. События, которые могут побудить переход в маломощный режим, могут включать в себя истечение периода активности, ввод из одного или более локальных пользовательских вводов, передачу из одного или более присоединенных полевых устройств или беспроводную передачу. Эти события можно также использовать для вывода блока 360 и/или любого присоединенного полевого устройства из дежурного режима. Кроме того, контроллер 362 может избирательно переводить любое полевое устройство в дежурный режим на основании любой логики или правил, содержащихся в программных инструкциях в контроллере 362 и/или в беспроводной передаче, принятой через модуль 366 беспроводной связи. Предпочтительно, локальные вводы, такие как кнопка 124, также могут конфигурироваться пользователем. Следовательно, одна и та же кнопка может использоваться для активизации полевого устройства на выбранный пользователем период времени, и в случае такой конфигурации повторный нажим вызывает возвращение полевого устройства в дежурный режим. В одном варианте в конфигурируемой кнопке локального ввода используется перемычка или переключатель для задания следующих функций:
Время нажатия кнопки для активизации - выбрать 1, 1,5, 2 или 3 секунды. Полевое устройство игнорирует нажатие кнопки, которое имеет длительность менее установленной.
Время включения блока - выбрать 10, 15, 30 секунд или 5, 15, 30, 60 минут.
Если кнопку нажать дважды без интервала, то полевое устройство остается включенным в течение заданного периода (например, 60 минут), после которого оно возвратится в дежурный режим.
Если кнопку нажать второй раз после заранее определенного интервала (например, 5 секунд), то полевое устройство возвратится в дежурный режим.
Контроллер 362 может также предпочтительно переводить в дежурный режим части схемы внутри блока 360 или присоединенные полевые устройства. Например, модуль 366 беспроводной связи может быть серийным радиотелефоном системы пакетной радиосвязи общего пользования (GPRS), который имеет нормальный рабочий режим и дежурный режим. Сигнал контроллера 362 может перевести модуль 366 в дежурный режим в том случае, если значимая беспроводная связь не гарантирована.
Преобразователь 365 энергии может быть любым устройством, которое способно вырабатывать электроэнергию для использования технологическим устройством. Преобразователь 365 может предпочтительно содержать генератор (612), подключенный к подвижному элементу, чтобы движение внешней среды, например волны или ветер, вырабатывало электричество. Кроме того, преобразователь 365 может содержать топливный элемент 408. В преобразователе 365 могут также использоваться термобатареи 702 (фиг.5В) для выработки электричества из разности температур за счет эффекта Пельтье. Также сам процесс может обеспечить (предоставить) источник энергии в виде сжатого газа или т.п., которую можно преобразовать в электричество с помощью генератора 704 на основе сжатого газа (фиг.5В). И, наконец, в тех вариантах, где энергозапасающее устройство имеет относительно большую емкость по сравнению с энергопотребностью конкретного применения, преобразователь 365 может отсутствовать. Также подразумевается, что можно использовать комбинации различных модулей преобразования, показанных на фиг.5В.
Модуль 366 беспроводной связи подключен к контроллеру 362 и взаимодействует с внешними беспроводными устройствами через антенну 120 по командам и/или данным из контроллера 362. В зависимости от применения модуль 366 беспроводной связи может быть адаптирован для осуществления связи в соответствии с любым подходящим протоколом, включая, без ограничения, технологии беспроводных сетей (такие, как беспроводные точки доступа IEEE 802.11b и беспроводные сетевые устройства компании Linksys of Invine, California), сотовые или цифровые сетевые технологии (такие, как Microburst®, Aeris Communications Inc. Of San Jose, California), ультраширокую полосу, оптику свободного пространства, глобальную систему мобильной связи (GSM), пакетную радиосвязь общего пользования (GPRS), многостанционный доступ с кодовым разделением каналов (CDMA), методы с расширением спектра, методы инфракрасной связи, службу передачи коротких сообщений/текстовых сообщений (SMS) или любой другой подходящий способ беспроводной связи. Кроме того, можно использовать известный метод предотвращения конфликта данных для сосуществования множества блоков в рабочем диапазоне беспроводной связи. Такое предотвращение конфликтов может включать в себя использование нескольких различных радиочастотных каналов и/или методов расширения спектра.
Модуль 366 беспроводной связи также может содержать преобразователи для нескольких способов беспроводной связи. Например, первичную беспроводную связь можно осуществлять с помощью способов связи для относительно большого расстояния, таких как GSM или GPRS, а вторичный или дополнительный способ связи можно использовать для техников или операторов, находящихся вблизи блока, с использованием, например, IEEE 802.11b или Bluetooth.
Некоторые модули беспроводной связи могут содержать схему, взаимодействующую с глобальной системой определения местоположения (GPS). GPS может успешно применяться в блоке 360 для мобильных устройств для обнаружения индивидуального блока 360 в удаленном месте. Однако можно также использовать определение местоположения на основе других способов.
Память 370 на фиг.5 отделена от контроллера 362, но она фактически может быть частью контроллера 362. Память 370 может быть любого подходящего типа, включая энергозависимую память (такую, как оперативное запоминающее устройство), энергонезависимую память (такую, как флэш-память, электрически стираемое программируемое постоянное запоминающее устройство и т.п.) и любые их комбинации. Память 370 может содержать программные команды для контроллера 362, а также любые подходящие административные служебные данные для блока 360. Память 370 может содержать уникальный идентификатор для блока 360, чтобы он мог отличать беспроводные передачи, предназначенные для него, от других беспроводных передач. Примеры таких идентификаторов могут включать в себя адрес контроллера доступа к среде (МАС), электронный серийный номер, глобальный телефонный номер, адрес интернет-протокола (IP) или любой другой подходящий идентификатор. Кроме того, память 370 может содержать информацию о присоединенных полевых устройствах, например их уникальные идентификаторы, конфигурации и возможности. И, наконец, контроллер 362 с помощью памяти 370 может обеспечить выход блока 360 в любой подходящей форме. Например, конфигурация и взаимодействие с блоком 360 и/или одним или более связанными полевыми устройствами могут обеспечиваться в виде HTML веб-страниц.
Часы 372 показаны как подключенные к контроллеру 362, однако они могут быть его частью. Часы 372 позволяют контроллеру 372 расширить рабочие возможности. Например, часы 372 можно использовать для хронирования периодов, установленных выше для конфигурируемой кнопки 125. Кроме того, контроллер 362 может хранить информацию из одного или более присоединенных полевых устройств и коррелировать эту информацию со временем, чтобы определять тенденции. Также, контроллер 362 может дополнять информацию, полученную из одного или более полевых устройств, информацией времени перед ее передачей через модуль 366 беспроводной связи. Часы 372 можно также использовать для автоматической генерации периодических команд перехода в дежурный/активный режим для блока 360 и/или полевых устройств. Другая форма периодического использования часов 372 заключается в том, чтобы побудить контроллер 362 выдавать через модуль 366 сигнал подтверждения работоспособности для периодической индикации приемлемого состояния внешнему устройству беспроводной связи.
Коммуникатор 368 контура подключен к контроллеру 362 и обеспечивает сопряжение контроллера 362 с одним или более полевыми устройствами, подключенными к одному или более соединительным элементам 112. Коммуникатором 368 контура может служить известная схема, генерирующая соответствующие сигналы для передачи в соответствии с отраслевым протоколом, таким как перечисленные выше. В тех вариантах, где блок 360 подключен к множеству полевых устройств, сообщающихся на основании различных протоколов, предполагается использование нескольких коммуникаторов, чтобы позволить контроллеру 362 взаимодействовать с различными полевыми устройствами. Физическое соединение(я) через соединительный элемент 112 позволяет блоку 360 обеспечивать энергообеспечение и связь с полевыми устройствами. В некоторых вариантах это можно реализовать посредством передачи электроэнергии по тем же самым проводам, которые используются для связи, например по двухпроводному контуру. Однако также подразумевается, что можно реализовать варианты изобретения, в которых электроэнергия подается в полевое устройство по другим проводам, а не по проводам, которые используются для связи. Для облегчения доступа обслуживающего персонала блок 360 может содержать два или более контактов рядом с коммуникатором 368 или соединительным элементом 112, чтобы облегчить подсоединение ручного конфигурационного устройства, такого как Model 375 Handheld компании Rosemount, Inc. Of Eden Prairie, Minnesota.
На фиг.5 пунктиром показаны факультативный блок 374 кнопки оператора и блок 376 ЖКД, подключенные к контроллеру 362. Эта иллюстрация предназначена для того, чтобы показать, что все локальные вводы, будь они расположены на отдельных полевых устройствах, беспроводном блоке 360 энергообеспечения и связи или на них обоих, подключены к контроллеру 362. Кроме того, локальные пользовательские дисплеи на каждом полевом устройстве, беспроводном блоке 360 энергообеспечения и связи или на обоих, также подключены к контроллеру 362. Это позволяет контроллеру 362 взаимодействовать с каждым локальным дисплеем отдельно на основании вводов полевого устройства, конфигурируемой кнопки, связанной с полевым устройством, одной или более кнопок или вводов, расположенных вблизи блока 360 или беспроводной передачи.
На фиг.6 представлен общий вид (схематично) системы выработки электроэнергии для технологического устройства согласно настоящему изобретению. Система 360 показана как внешний модуль относительно технологического устройства, но она может быть встроена в технологическое устройство. Модуль содержит корпус 400, который можно присоединить к технологическому устройству. Корпус 400 имеет два отсека 402, 404, разделенных тепловым барьером 406. В отсеке 402 размещается метанольный топливный элемент 408 с небольшим форм-фактором. Электронная система 410 контроля и регулирования энергообеспечения содержит ряд элементов и схем регулирования энергообеспечения и расположена в отсеке 404. Электронный модуль 410 может содержать конденсатор ультравысокой емкости и/или аккумулятор для удовлетворения потребности пиковой передачи мощности. Дополнительные детали реальной схемы, использованной в модуле 410, будут описаны со ссылкой на фиг.7. Электронный модуль 450 также предпочтительно инкапсулирован, чтобы обеспечить дополнительную тепловую изоляцию электроники в модуле 410 от тепла, вырабатываемого при экзотермической реакции топливного элемента 408. Источник 412 жидкого метана может храниться в отсеке 404 сверху модуля 410. Система 412 хранения жидкого метана может соединяться с метанольным топливным элементом 408 через выемку 414.
Первые топливные элементы были основаны на реакции H2+O2→H2O+2e'. Ввиду опасности хранения Н2 и работы с ним были изучены стратегии альтернативных топливных элементов. Привлекательной оказалась технология метанольного топливного элемента. Метанольные топливные элементы известны и могут быть реализованы на практике. Метанол каталитически разлагается на H2+|побочные продукты|+|тепло. Атмосферный воздух используется в качестве источника кислорода (О2). Очень важное преимущество топливного элемента такого типа заключается в его компактности. Можно создать небольшие метанольные топливные элементы на основе микроэлектромеханических систем (MEMS), которые способны обеспечить адекватную мощность для беспроводного передатчика контролируемого технологического параметра. Современное состояние уровня техники в области метанольных топливных элементов свидетельствует о том, что устройство размером приблизительно с колоду карт может обеспечить адекватное хранение топлива и выработку электроэнергии для беспроводного полевого устройства.
Так как при каталитическом разложении метанола выделяется тепло, элемент 408 термически изолирован от электроники 410 и резервуара 412 хранения жидкости. Кроме того, теплорассеивающая крышка 416 расположена сверху корпуса 400 для отвода тепла, выработанного элементом 408. Важно обеспечить рассеяние тепла, образующегося при каталитическом разложении метанола, чтобы оно не нагревало электронику 410 выше ее безопасной рабочей температуры. В тех вариантах, где корпус 400 системы энергообеспечения выполнен из металла, образуется тепло, которое рассеивается за счет конвекции и излучения. Кроме того, защитить электронику помогает тепловой барьер 406. Корпус 400 также содержит вентиляционное отверстие 418, чтобы атмосферный воздух мог взаимодействовать с элементом 408. В тех вариантах, где вентиляция противопоказана, можно предусмотреть миниатюрный вентилятор в маленькой герметичной трубке в качестве альтернативного варианта.
На фиг.7 показана схема системы выработки электроэнергии для технологических устройств согласно настоящему изобретению. Электронный модуль 410 электрически подключен к метанольному топливному элементу 408 и получает от него электроэнергию по линии 420. Метанольный топливный элемент расположен внутри отсека 402, который термически изолирован от электронного модуля 410 тепловым барьером 406. Резервуар 412 с метанолом подсоединен к метанольному топливному элементу 408 через электрически управляемый клапан 422. Клапан 422 принимает сигнал управления из выходной линии 424 пуска топлива из модуля 410. Электричество, генерируемое в топливном элементе 408, подается по линии 420 в схему 426 зарядки и управления. Схема 426 зарядки и управления выдает выходной сигнал 428 через диод 430, препятствующий возвращению электроэнергии обратно через топливный элемент 408. Если предусмотрен дополнительный энергозапасающий блок, то он подключен к линии 432 Vout. Напряжение блока 434 сравнивается, предпочтительно с помощью компаратора, с минимальным пороговым напряжением. Если напряжение блока 434 меньше, чем минимальное пороговое напряжение, то включается зарядка по линии 436. Однако, если напряжение блока 434 больше, чем минимальный порог, подается сигнал по линии 438 на обеспечение питания для передатчика технологического параметра, а также для беспроводного коммуникатора. Соответственно, если метанольный топливный элемент не обеспечивает достаточное энергообеспечение для работы передатчика технологического параметра и/или беспроводного передатчика, то схема энергообеспечения фокусируется на накоплении достаточного количества электроэнергии для работы передатчика технологического параметра или беспроводного передатчика в некоторое более позднее время. На фиг.7 также показан контроллер блока и таймер 438 дежурного режима, который генерирует сигнал включения, посылаемый в передатчик технологического параметра, и беспроводной коммуникатор. Таким образом, контроллер блока и таймер 438 дежурного режима могут вынудить передатчик технологического параметра, беспроводной коммуникатор или оба этих устройства перейти в дежурный режим, когда одно или оба этих устройства получают чрезвычайно низкую мощность, при этом топливный элемент 408 может заряжать энергозапасающее устройство. Соответственно, энергозапасающие элементы перезаряжаются метанольным топливным элементом, когда их выходное напряжение падает ниже заранее определенного значения (Vmin), чтобы обеспечить успешную работу; мощность для проверки контролируемого технологического параметра или для беспроводной передачи обеспечивается только в том случае, когда энергозапасающий элемент не находится в разряженном состоянии. Заранее определенный уровень напряжения (Vmin) выбирается таким образом, чтобы при любом напряжении выше этого уровня накопленной энергии было достаточно для полной проверки технологического параметра или для беспроводной передачи. Перед тем как инициировать дополнительные проверки технологического параметра или беспроводные передачи, напряжение предпочтительно перепроверяется, чтобы убедиться, что оно все еще выше порогового значения. При необходимости электроника 410 может выполнять и другие операции управления и связи.
Одно явное преимущество использования метанольного топливного элемента в качестве источника питания для технологического устройства заключается в тех периодах обслуживания, которые он может обеспечить. Согласно расчетам метанольные топливные элементы производят приблизительно 1000 ватт-часов на литр метанола. Соответственно, 0,5 литра метанола достаточно для работы передатчика технологического параметра в течение приблизительно 10 лет. Десятилетний срок работы представляется очень выигрышным по сравнению с ожидаемыми 5 годами оптимального срока службы серийных гелевых аккумуляторов, которые сейчас являются стандартным источником питания беспроводных технологических устройств.
Наличие энергозапасающего устройства, такого как аккумулятор или суперконденсатор, в том же самом физическом корпусе, что и топливный элемент, обеспечивает синергический эффект, заключающийся в том, что тепло, вырабатываемое топливным элементом, можно использовать для поддержки рабочей температуры энергозапасающего устройства в более эффективном интервале. В тех вариантах, где используются перезаряжаемые аккумуляторы для покрытия пиковых потребностей в электроэнергии, можно использовать никель-металл-гидридные аккумуляторы (NiMH) в применениях на открытом воздухе в совокупности с метанольными топливными элементами. Это обусловлено тем, что метанольные топливные элементы вырабатывают тепло, которое можно использовать для поддержания достаточно высокой температуры аккумуляторов для зарядки.
Хотя в вариантах на фиг.4-8 показана антенна и связанная с нею беспроводная схема, расположенная вместе со схемой регулирования энергообеспечения, подразумевается, что антенна и беспроводная схема могут быть расположены дистанционно, если возле корпуса системы питания находятся объекты, вызывающие помехи для беспроводного сигнала. Таким образом, варианты изобретения включают размещение всех схем выработки электроэнергии и беспроводной связи внутри одного и того же корпуса, который может быть частью технологического устройства или находиться снаружи него. Кроме того, либо схема выработки электроэнергии, либо беспроводная схема может находиться в отдельном отсеке, любой из которых может быть внутри самого устройства.
На фиг.8 изображено схематично беспроводное технологическое устройство согласно варианту настоящего изобретения. Технологическое устройство 500 подсоединено к трубе 502, в которой находится технологическая углеводородная среда 504. Устройство 500 подсоединено к модулю 506 беспроводной связи и модулю 508 топливного элемента. В отличие от варианта, описанного со ссылками на фиг.6 и 7, топливный элемент 508 не имеет резервуара для хранения топлива. Вместо этого топливный элемент 508 получает топливо из самого процесса за счет его подсоединения к процессу через патрубок 510. Таким образом, некоторая часть технологической среды 508 передается в топливный элемент 508 по трубе 512. Для повышения эффективности топливный элемент 508 предпочтительно выполнен с возможностью работы с определенным типом технологической углеводородной среды. Например, если технологической средой 508 является жидкий метанол, то элемент 508 может быть идентичен топливному элементу, описанному со ссылкой на фиг.6. Хотя этот вариант отличается от предыдущего варианта, они подобны в том, что в обоих вариантах для энергообеспечения не используются молекулы (элементы) солнечного происхождения, которые являются внешними относительно топливного устройства и находятся вблизи. В варианте на фиг.6 и 7 используются по меньшей мере молекулы кислорода, а в варианте на фиг.8 используются по меньшей мере молекулы технологической среды и, возможно также, молекулы кислорода в соответствии с известными технологиями топливных элементов.
При использовании самой технологической среды для энергообеспечения топливного элемента 508 технологический процесс может обеспечить практически неограниченный источник электроэнергии. Соответственно, электричество можно также передавать другим локальным устройствам, которые могут быть подключены к устройству 500 проводными соединениями. Такие проводные соединения могут быть реализованы в форме контуров регулирования процесса или других проводных систем в зависимости от потребности. В некоторых ситуациях технологическое устройство может быть выполнено так, чтобы технологическая среда преобразовывалась в электроэнергию со скоростью, пропорциональной количеству технологической среды, проходящей по трубе 502. Следовательно, электрическую производительность топливного элемента 508 можно измерять и корректировать таким образом, чтобы она отражала действительный поток технологической среды в трубе 502. Еще одним важным применением существенных возможностей выработки электроэнергии топливным элементом 508 является энергообеспечение нагревателей, чтобы поддерживать датчик при постоянной температуре для уменьшения температурных погрешностей при передаче и т.п.
На фиг.9А, 9В, 10А и 10В представлены варианты воплощения настоящего изобретения, в которых используются молекулы вблизи технологического устройства для выработки электричества для этого технологического устройства. Более конкретно - в этих вариантах кинетическая энергия молекул (в форме ветра) преобразуется в электрическую энергию.
На фиг.9А и 9В показаны соответственно вид спереди и вид сбоку технологического устройства 600 с устройством 602, которое преобразует энергию ветра в электрическую энергию. Предпочтительно, чтобы эти варианты также включали в себя систему 604 преобразования солнечной энергии для получения дополнительной электроэнергии. Преобразователь 602 энергии ветра содержит опору 606, смонтированную на технологическом устройстве 600, предпочтительно через обычную трубную муфту. Установленный сверху опоры 606 движимый ветром элемент 608 предпочтительно содержит по меньшей мере две части. Во-первых, флюгарка 610 обеспечивает расположение площади поверхности так, что ветер вынуждает флюгарку 610 расположиться ниже потока, тем самым размещая пропеллер/лопасть 612 прямо навстречу ветру. При этом подвижная часть 608 может разворачиваться относительно опоры 606, как показано стрелками 614. Вращающаяся лопасть/пропеллер 612 механически присоединена к электрогенератору 615, который обеспечивает электроэнергию для технологического устройства 600. Электрогенератор может быть любым подходящим устройством, которое существует в настоящее время или будет создано в будущем.
На фиг.10А и 10В представлены соответственно вид спереди и вид сбоку устройства 600, подсоединенного к преобразователю 620 энергии ветра в электричество согласно другому варианту воплощения настоящего изобретения. Преобразователь 610 содержит опору 622, установленную вблизи дополнительного преобразователя 604 солнечной электроэнергии. Движимый ветром элемент 623 содержит флюгарку 610 и перемещаемые ветром элементы 624, 628 и 630, присоединенные к опоре 622 через балку 632. Как и в предыдущем варианте, давление ветра действует на флюгарку 610 и вызывает поворот элемента 624 вокруг опоры 622, располагая, тем самым, крылья 624, 628 и 630 прямо навстречу ветру. Когда ветер проходит через крылья 624, 628 и 630, они перемещаются в направлении, показанном стрелками 634, вдоль балки 632. Пьезоэлектрический преобразователь 655, расположенный на балке 632 или на соединении балки 632 с опорой 622, преобразует перемещение балки 632 в электрическую энергию, которая затем передается технологическому устройству 600.
Оба варианта, показанные на фиг.9А, 9В и 10А, 10В, можно также снабдить укрытием или колпаком для защиты от засорения в жестких условиях.
Можно также использовать другие типы вращающихся преобразователей энергии ветра, такие как анемометр. Это устройство в виде вращающейся чаши часто используется для измерения скорости ветра. Хотя такие устройства значительно менее эффективны, чем пропеллер, для извлечения энергии ветра, их преимуществом является наличие направленности. Поэтому не требуется использовать вращающуюся флюгарку. Поскольку технологические устройства имеют относительно низкое энергопотребление, более низкая эффективность таких действующих по всем направлениям вращающихся преобразователей энергии ветра не представляет проблемы.
В вариантах настоящего изобретения используются дополнительные источники потенциальной или кинетической энергии, содержащейся в молекулах вблизи технологического устройства. Поэтому данным вариантам не требуется солнечная энергия, и они лишены недостатков технологических устройств, питающихся только от внутренних аккумуляторов. Более того, как было описано в связи с некоторыми вариантами, степень генерации электроэнергии может быть настолько большой, что к технологическому устройству, работающему в соответствии с вариантами настоящего изобретения, можно подсоединить проводами другие устройства.
Хотя настоящее изобретение было описано со ссылками на предпочтительные варианты его осуществления, специалистам будет понятно, что можно внести изменения в его форму и детали, не выходя за рамки формулы изобретения.

Claims (3)

1. Технологическое устройство, содержащее контроллер, конфигурированный для перехода в энергосберегающий дежурный режим работы или перевода любого требуемого полевого устройства в режим с низким энергопотреблением, модуль беспроводной связи, подключенный к контроллеру, и ветросиловой модуль выработки электроэнергии, расположенный внутри технологического устройства и подключенный к контроллеру и модулю беспроводной связи, причем ветросиловой модуль выработки электроэнергии конфигурирован для преобразования энергии ветра вблизи технологического устройства для получения электричества, ветросиловой модуль выработки электроэнергии содержит, по меньшей мере, один движимый ветром элемент, имеющий аэродинамический профиль, содержащий флюгарку и перемещаемый ветром элемент и подсоединенный к опоре через балку, опора установлена вблизи дополнительного преобразователя солнечной энергии, при этом флюгарка адаптирована для размещения, по меньшей мере, одного крыла непосредственно навстречу ветру, и пьезоэлектрический элемент сконфигурирован для трансформирования перемещения балки в электрическую энергию, при этом флюгарка имеет поверхность, адаптированную для размещения флюгарки ниже по потоку по направлению ветра.
2. Технологическое устройство по п.1, отличающееся тем, что дополнительно содержит датчик, подключенный к контроллеру и подключаемый к технологическому устройству.
3. Беспроводный блок энергообеспечения и связи для обеспечения беспроводной работы технологического устройства, содержащий корпус, соединительный элемент, присоединенный к корпусу и подсоединяемый к технологическому устройству, коммуникатор контура, выполненный с возможностью присоединения к технологическому устройству через соединительный элемент, контроллер, подключенный к источнику электроэнергии и коммуникатору контура и конфигурированный для взаимодействия с технологическим устройством с помощью коммуникатора контура, при этом контроллер конфигурирован для перехода в энергосберегающий дежурный режим работы (режим ожидания) или перевода любого требуемого полевого устройства в режим с низким энергопотреблением, модуль беспроводной связи, подключенный к контроллеру и предназначенный для осуществления беспроводной связи, и ветросиловой модуль выработки электроэнергии содержит, по меньшей мере, один движимый ветром элемент, имеющий аэродинамический профиль, содержащий флюгарку и перемещаемый ветром элемент и подсоединенный к опоре через балку, опора установлена вблизи дополнительного преобразователя солнечной энергии, при этом флюгарка адаптирована для размещения, по меньшей мере, одного крыла непосредственно навстречу ветру, и пьезоэлектрический элемент сконфигурирован для трансформирования перемещения балки в электрическую энергию, при этом флюгарка имеет поверхность, адаптированную для размещения флюгарки ниже по потоку по направлению ветра.
RU2008116682/07A 2005-09-27 2006-09-13 Усовершенствованное получение электроэнергии для технологических устройств RU2408916C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/236,317 2005-09-27
US11/236,317 US8145180B2 (en) 2004-05-21 2005-09-27 Power generation for process devices

Publications (2)

Publication Number Publication Date
RU2008116682A RU2008116682A (ru) 2009-11-10
RU2408916C2 true RU2408916C2 (ru) 2011-01-10

Family

ID=37398881

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008116682/07A RU2408916C2 (ru) 2005-09-27 2006-09-13 Усовершенствованное получение электроэнергии для технологических устройств

Country Status (7)

Country Link
US (1) US8145180B2 (ru)
EP (1) EP1929386B1 (ru)
JP (2) JP4779018B2 (ru)
CN (1) CN101273313B (ru)
CA (1) CA2616802C (ru)
RU (1) RU2408916C2 (ru)
WO (1) WO2007037988A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680929C2 (ru) * 2013-03-15 2019-02-28 Росемоунт Инк. Способ оптимизации потребляемых ресурсов в полевом устройстве

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452255B2 (en) * 2005-06-27 2013-05-28 Rosemount Inc. Field device with dynamically adjustable power consumption radio frequency communication
DE102005043771A1 (de) * 2005-09-13 2007-03-15 Endress + Hauser Flowtec Ag Verfahren zur Energieversorgung eines Feldgerätes der Automatisierungstechnik
CN2888449Y (zh) * 2006-04-07 2007-04-11 广州钒浦电子科技有限公司 具有太阳能发光装置的风向标
US7894848B2 (en) * 2006-08-31 2011-02-22 Research In Motion Limited System and method for providing a standby mode in a handheld electronic device
US7732974B1 (en) 2006-11-15 2010-06-08 Justin Boland Electrostatic power generator cell and method of manufacture
DE102006062479A1 (de) * 2006-12-28 2008-07-03 Endress + Hauser Process Solutions Ag Verfahren zum Betreiben eines autonomen Feldgerätes der Prozessmesstechnik
US7787921B2 (en) * 2007-06-12 2010-08-31 Rosemount Inc. Link coupled antenna system on a field device having a grounded housing
JP5023836B2 (ja) * 2007-06-25 2012-09-12 横河電機株式会社 2線式フィールド機器
DE102007045884A1 (de) * 2007-09-25 2009-04-09 Endress + Hauser Process Solutions Ag Verfahren zum Betreiben eines Feldgerätes in einem leistungsangepassten Modus
DE102007048476A1 (de) * 2007-10-09 2009-04-16 Endress + Hauser Process Solutions Ag Energiesparender Betrieb einer drahtgebundenen Kommunikationsschnittstelle eines Feldgerätes
DE102007051672A1 (de) 2007-10-26 2009-04-30 Abb Research Ltd. Verfahren und Einrichtung zur Energieversorgung von Mess- und Sendeeinrichtungen
JP5439716B2 (ja) * 2007-11-30 2014-03-12 横河電機株式会社 フィールド機器
US9645564B2 (en) * 2008-06-05 2017-05-09 Siemens Aktiengesellschaft Method for operating a modular automation device
CN102084307B (zh) 2008-06-17 2014-10-29 罗斯蒙特公司 用于具有低压本质安全钳的现场设备的rf适配器
US8694060B2 (en) * 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
WO2009154756A1 (en) * 2008-06-17 2009-12-23 Rosemount Inc. Rf adapter for field device with variable voltage drop
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
CN101893866B (zh) * 2009-05-20 2014-12-24 Vega格里沙贝两合公司 用于现场设备的控制设备、现场设备及控制现场设备的方法
US8160725B2 (en) * 2009-05-20 2012-04-17 Vega Grieshaber Kg Energy saving control for a field device
EP2256566B1 (de) * 2009-05-20 2012-08-08 VEGA Grieshaber KG Stromsparende Steuereinrichtung für ein Feldgerät
US9674976B2 (en) * 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
DE102009047544A1 (de) * 2009-12-04 2011-06-09 Endress + Hauser Process Solutions Ag Verfahren zum Einstellen von Prametern eines Feldgerät-Stromversorgungsmoduls
US9735570B2 (en) * 2010-03-24 2017-08-15 Pepperl + Fuchs Gmbh Power management circuit for wireless communication device and process control system using same
TW201134386A (en) * 2010-04-09 2011-10-16 Tung-Teh Lee Automatic water-supply control device
WO2012007033A1 (de) * 2010-07-13 2012-01-19 Siemens Aktiengesellschaft Automatisierungsnetzwerk sowie feldgerät und netzwerkkomponente für ein automatisierungsnetzwerk
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
DE102011076706A1 (de) * 2011-05-30 2012-12-06 Endress + Hauser Process Solutions Ag Elektrische und/oder elektronische Versorgungsschaltung und Verfahren zum Bereitstellen einer Versorgungsspannung
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
DE102012204446A1 (de) * 2012-03-20 2013-09-26 Wobben Properties Gmbh Verfahren zum Konfigurieren einer Windenergieanlage, sowie Windenergieanlage
US9490649B2 (en) * 2012-06-13 2016-11-08 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for wireless charging
US8970395B2 (en) * 2012-06-29 2015-03-03 Rosemount Tank Radar Ab Battery-powered level gauge system adapted for wireless communication
TWI580771B (zh) 2012-07-25 2017-05-01 奈寇公司 以控制系統及演算法爲基礎之分析器之設計開發與實施
DE102013103454A1 (de) * 2013-04-08 2014-10-09 Endress + Hauser Gmbh + Co. Kg Messumformerspeisegerät, System zum Einsatz in der Automatisierungstechnik, sowie Verfahren zum Bedienen eines solchen Systems
JP2014209278A (ja) * 2013-04-16 2014-11-06 横河電機株式会社 フィールド機器
JP2016536708A (ja) * 2013-09-06 2016-11-24 ローズマウント インコーポレイテッド 障害検知機能を有するハイブリッド電力モジュール
US20150280461A1 (en) * 2014-03-26 2015-10-01 International Business Machines Corporation Adjusting charge voltage on cells in multi-cell battery
US20150276886A1 (en) * 2014-03-26 2015-10-01 International Business Machines Corporation Adjusting charge voltage on cells in multi-cell battery
JP6120098B2 (ja) * 2014-04-25 2017-04-26 東洋紡株式会社 遠隔計測装置
US10110279B2 (en) * 2014-10-07 2018-10-23 Endress + Hauser Process Solutions Ag Apparatus for supplying power to a field device
DE102015117010A1 (de) * 2015-10-06 2017-04-06 Vega Grieshaber Kg Modular aufgebautes Feldgerät
CN105182861A (zh) * 2015-10-10 2015-12-23 重庆凯比科技有限公司 用于发电机的监测控制装置
CN105245143A (zh) * 2015-10-10 2016-01-13 重庆凯比科技有限公司 发电机工作状态的监测控制装置
GB2545743A (en) * 2015-12-24 2017-06-28 Moog Unna Gmbh A wind turbine pitch cabinet temperature control system
USD829119S1 (en) * 2017-03-09 2018-09-25 Tatsuno Corporation Flowmeter
US10925222B2 (en) 2017-11-02 2021-02-23 Larry C. Sarver Wireless self-powered flow sensor system and ethernet decoder
US11513018B2 (en) * 2020-09-30 2022-11-29 Rosemount Inc. Field device housing assembly

Family Cites Families (360)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533339A (en) 1946-06-22 1950-12-12 Jabez Burns & Sons Inc Flammable vapor protection
US2883489A (en) 1954-12-06 1959-04-21 Daystrom Inc Encased electrical instrument
US3012432A (en) 1957-09-23 1961-12-12 Richard H Moore Leak tester
GB1023042A (en) 1962-05-07 1966-03-16 Wayne Kerr Lab Ltd Improvements in or relating to pressure responsive apparatus
US3232712A (en) 1962-08-16 1966-02-01 Continental Lab Inc Gas detector and analyzer
GB1027719A (ru) 1963-12-02
US3374112A (en) 1964-03-05 1968-03-19 Yeda Res & Dev Method and apparatus for controlled deposition of a thin conductive layer
US3249833A (en) 1964-11-16 1966-05-03 Robert E Vosteen Capacitor transducer
US3568762A (en) 1967-05-23 1971-03-09 Rca Corp Heat pipe
US3557621A (en) 1969-07-07 1971-01-26 C G S Scient Corp Inc Variable capacitance detecting devices
US3631264A (en) 1970-02-11 1971-12-28 Sybron Corp Intrinsically safe electrical barrier system and improvements therein
US3612851A (en) 1970-04-17 1971-10-12 Lewis Eng Co Rotatably adjustable indicator instrument
GB1354025A (en) 1970-05-25 1974-06-05 Medicor Muevek Capacitive pressure transducer
US3633053A (en) 1970-06-18 1972-01-04 Systron Donner Corp Vibration transducer
US3742450A (en) 1971-05-12 1973-06-26 Bell Telephone Labor Inc Isolating power supply for communication loop
US3881962A (en) 1971-07-29 1975-05-06 Gen Atomic Co Thermoelectric generator including catalytic burner and cylindrical jacket containing heat exchange fluid
US3924219A (en) 1971-12-22 1975-12-02 Minnesota Mining & Mfg Gas detection device
US3885432A (en) 1972-03-06 1975-05-27 Fischer & Porter Co Vortex-type mass flowmeters
GB1397435A (en) 1972-08-25 1975-06-11 Hull F R Regenerative vapour power plant
US3808480A (en) 1973-04-16 1974-04-30 Bunker Ramo Capacitive pressure transducer
US4005319A (en) 1973-04-23 1977-01-25 Saab-Scania Aktiebolag Piezoelectric generator operated by fluid flow
US3931532A (en) 1974-03-19 1976-01-06 The United States Of America As Represented By The United States National Aeronautics And Space Administration Thermoelectric power system
GB1525709A (en) 1975-04-10 1978-09-20 Chloride Silent Power Ltd Thermo-electric generators
US4125122A (en) 1975-08-11 1978-11-14 Stachurski John Z O Direct energy conversion device
US4008619A (en) 1975-11-17 1977-02-22 Mks Instruments, Inc. Vacuum monitoring
US4177496A (en) 1976-03-12 1979-12-04 Kavlico Corporation Capacitive pressure transducer
US4084155A (en) 1976-10-05 1978-04-11 Fischer & Porter Co. Two-wire transmitter with totalizing counter
US4063349A (en) 1976-12-02 1977-12-20 Honeywell Information Systems Inc. Method of protecting micropackages from their environment
US4158217A (en) 1976-12-02 1979-06-12 Kaylico Corporation Capacitive pressure transducer with improved electrode
SE7713507L (sv) 1976-12-02 1978-06-03 Garrett Corp Sett och anordning for bestemning av ett massaflode
DE2710211A1 (de) 1977-03-09 1978-09-14 Licentia Gmbh Verfahren zur herstellung von vergossenen elektrischen schaltungen mit zugaenglichen bauteilen
US4168518A (en) 1977-05-10 1979-09-18 Lee Shih Y Capacitor transducer
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
GR67600B (ru) 1979-06-29 1981-08-31 Payot Jocelyne
US4322775A (en) 1979-10-29 1982-03-30 Delatorre Leroy C Capacitive pressure sensor
US4434451A (en) 1979-10-29 1984-02-28 Delatorre Leroy C Pressure sensors
US4287553A (en) 1980-06-06 1981-09-01 The Bendix Corporation Capacitive pressure transducer
US4336567A (en) 1980-06-30 1982-06-22 The Bendix Corporation Differential pressure transducer
US4361045A (en) 1980-08-29 1982-11-30 Aisin Seiki Company, Limited Vibration sensor
US4370890A (en) 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4390321A (en) 1980-10-14 1983-06-28 American Davidson, Inc. Control apparatus and method for an oil-well pump assembly
US4358814A (en) 1980-10-27 1982-11-09 Setra Systems, Inc. Capacitive pressure sensor
US4485670A (en) 1981-02-13 1984-12-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat pipe cooled probe
US4383801A (en) 1981-03-02 1983-05-17 Pryor Dale H Wind turbine with adjustable air foils
US4422335A (en) 1981-03-25 1983-12-27 The Bendix Corporation Pressure transducer
US4458537A (en) 1981-05-11 1984-07-10 Combustion Engineering, Inc. High accuracy differential pressure capacitive transducer
US4389895A (en) 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4455874A (en) 1981-12-28 1984-06-26 Paroscientific, Inc. Digital pressure transducer
US4570217A (en) 1982-03-29 1986-02-11 Allen Bruce S Man machine interface
US4475047A (en) 1982-04-29 1984-10-02 At&T Bell Laboratories Uninterruptible power supplies
US4422125A (en) 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
SE445389B (sv) 1982-06-28 1986-06-16 Geotronics Ab Forfarande och anordning for att erhalla metdata fran en kemisk process
US4510400A (en) 1982-08-12 1985-04-09 Zenith Electronics Corporation Switching regulator power supply
US4476853A (en) 1982-09-28 1984-10-16 Arbogast Clayton C Solar energy recovery system
US4637020A (en) * 1983-08-01 1987-01-13 Fairchild Semiconductor Corporation Method and apparatus for monitoring automated testing of electronic circuits
GB2145876A (en) 1983-08-24 1985-04-03 Shlomo Beitner DC power generation for telemetry and like equipment from geothermal energy
DE3340834A1 (de) 1983-11-11 1985-05-23 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zur konstanthaltung der temperaturabhaengigen empfindlichkeit eines differenzdruckmessgeraetes
US4490773A (en) 1983-12-19 1984-12-25 United Technologies Corporation Capacitive pressure transducer
US4542436A (en) 1984-04-10 1985-09-17 Johnson Service Company Linearized capacitive pressure transducer
US4639542A (en) 1984-06-11 1987-01-27 Ga Technologies Inc. Modular thermoelectric conversion system
US4562742A (en) 1984-08-07 1986-01-07 Bell Microcomponents, Inc. Capacitive pressure transducer
GB8426964D0 (en) 1984-10-25 1984-11-28 Sieger Ltd Adjusting circuit parameter
US4701938A (en) 1984-11-03 1987-10-20 Keystone International, Inc. Data system
DE3503347A1 (de) 1985-02-01 1986-08-14 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Vorrichtung zur drahtlosen messsignaluebertragung
US4670733A (en) 1985-07-01 1987-06-02 Bell Microsensors, Inc. Differential pressure transducer
US5060295A (en) 1985-11-15 1991-10-22 Motorola, Inc. Radio device with controlled port and method of port control
US4860232A (en) 1987-04-22 1989-08-22 Massachusetts Institute Of Technology Digital technique for precise measurement of variable capacitance
US4785669A (en) 1987-05-18 1988-11-22 Mks Instruments, Inc. Absolute capacitance manometers
CH672368A5 (en) 1987-08-20 1989-11-15 Rudolf Staempfli Solar thermal power plant with expansive heat engine - utilises pressure increase of working fluid in thermal storage heater transmitting energy between two closed circuits
US4875369A (en) 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
US4878012A (en) 1988-06-10 1989-10-31 Rosemount Inc. Charge balanced feedback transmitter
US4977480A (en) 1988-09-14 1990-12-11 Fuji Koki Mfg. Co., Ltd. Variable-capacitance type sensor and variable-capacitance type sensor system using the same
US4926674A (en) 1988-11-03 1990-05-22 Innovex Inc. Self-zeroing pressure signal generator
US5023746A (en) 1988-12-05 1991-06-11 Epstein Barry M Suppression of transients by current sharing
DE3842379A1 (de) 1988-12-16 1990-06-21 Heinrichs Messgeraete Josef Elektromagnetanordnung an einem messgeraet in explosionsgeschuetzter ausfuehrung
US4951174A (en) 1988-12-30 1990-08-21 United Technologies Corporation Capacitive pressure sensor with third encircling plate
US5014176A (en) 1989-02-21 1991-05-07 Raytheon Company Switching converter with spike limiting circuit
US4982412A (en) 1989-03-13 1991-01-01 Moore Push-Pin Company Apparatus and method for counting a plurality of similar articles
JPH0769750B2 (ja) 1989-09-08 1995-07-31 三菱電機株式会社 太陽電池電源系
SU1746056A1 (ru) 1990-02-21 1992-07-07 Рижский технический университет Ветроэнергетическа установка
EP0518916B1 (en) 1990-02-21 1997-07-30 Rosemount Inc. Multifunction isolation transformer
US5009311A (en) 1990-06-11 1991-04-23 Schenk Robert J Removable rigid support structure for circuit cards
US5194819A (en) 1990-08-10 1993-03-16 Setra Systems, Inc. Linearized capacitance sensor system
USD331370S (en) 1990-11-15 1992-12-01 Titan Industries, Inc. Programmable additive controller
JP2753389B2 (ja) 1990-11-28 1998-05-20 株式会社日立製作所 フィールドバス・システム
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
US5223763A (en) 1991-02-28 1993-06-29 Hughes Aircraft Company Wind power generator and velocimeter
US5168419A (en) 1991-07-16 1992-12-01 Panex Corporation Capacitor and pressure transducer
DE4124662A1 (de) 1991-07-25 1993-01-28 Fibronix Sensoren Gmbh Relativdrucksensor
US5230250A (en) 1991-09-03 1993-07-27 Delatorre Leroy C Capacitor and pressure transducer
US5170671A (en) 1991-09-12 1992-12-15 National Science Council Disk-type vortex flowmeter and method for measuring flow rate using disk-type vortex shedder
US5233875A (en) 1992-05-04 1993-08-10 Kavlico Corporation Stable capacitive pressure transducer system
US5329818A (en) 1992-05-28 1994-07-19 Rosemount Inc. Correction of a pressure indication in a pressure transducer due to variations of an environmental condition
USD345107S (en) 1992-06-01 1994-03-15 Titan Industries, Inc. Programmable additive controller
US5492016A (en) 1992-06-15 1996-02-20 Industrial Sensors, Inc. Capacitive melt pressure measurement with center-mounted electrode post
US5506757A (en) 1993-06-14 1996-04-09 Macsema, Inc. Compact electronic data module with nonvolatile memory
US5412535A (en) 1993-08-24 1995-05-02 Convex Computer Corporation Apparatus and method for cooling electronic devices
CN1040160C (zh) 1993-09-07 1998-10-07 罗斯蒙德公司 多变量发送器
US5606513A (en) 1993-09-20 1997-02-25 Rosemount Inc. Transmitter having input for receiving a process variable from a remote sensor
JP3111816B2 (ja) 1993-10-08 2000-11-27 株式会社日立製作所 プロセス状態検出装置
US5542300A (en) 1994-01-24 1996-08-06 Setra Systems, Inc. Low cost, center-mounted capacitive pressure sensor
US5642301A (en) 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
DE4403180C1 (de) 1994-02-02 1995-03-16 Hansa Metallwerke Ag Einrichtung zur Umwandlung von in Fluidsystemen herrschenden Druckschwankungen in elektrische Energie
US5583294A (en) 1994-08-22 1996-12-10 The Foxboro Company Differential pressure transmitter having an integral flame arresting body and overrange diaphragm
US5531936A (en) 1994-08-31 1996-07-02 Board Of Trustees Operating Michigan State University Alkali metal quaternary chalcogenides and process for the preparation thereof
GB2293446A (en) 1994-09-17 1996-03-27 Liang Chung Lee Cooling assembly
JP3859015B2 (ja) 1994-10-24 2006-12-20 フィッシャー−ローズマウント システムズ, インコーポレイテッド 分散コントロールシステムに於けるフィールドデバイスへのアクセスを提供するための装置
US5793963A (en) 1994-10-24 1998-08-11 Fisher Rosemount Systems, Inc. Apparatus for providing non-redundant secondary access to field devices in a distributed control system
US5656782A (en) 1994-12-06 1997-08-12 The Foxboro Company Pressure sealed housing apparatus and methods
DE69523136T2 (de) 1995-01-30 2002-06-20 Alcatel Sa Übertragungsverfahren und Sender mit einem entkoppelten niedrigen Pegel und mit mindestens einem gekoppelten hohen Pegel, Schnittstellenschaltung und Systemkomponente für ein Telekommunikationsnetzwerk, die einen solchen Sender enthalten
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US5644185A (en) 1995-06-19 1997-07-01 Miller; Joel V. Multi stage thermoelectric power generation using an ammonia absorption refrigeration cycle and thermoelectric elements at numerous locations in the cycle
US5610552A (en) 1995-07-28 1997-03-11 Rosemount, Inc. Isolation circuitry for transmitter electronics in process control system
US5599172A (en) * 1995-07-31 1997-02-04 Mccabe; Francis J. Wind energy conversion system
US5705978A (en) 1995-09-29 1998-01-06 Rosemount Inc. Process control transmitter
US6126327A (en) 1995-10-16 2000-10-03 Packard Bell Nec Radio flash update
JPH09130289A (ja) 1995-10-31 1997-05-16 Mitsubishi Electric Corp アナログ携帯通信機
US5992240A (en) 1995-11-21 1999-11-30 Fuji Electric Co., Ltd. Pressure detecting apparatus for measuring pressure based on detected capacitance
US5757608A (en) 1996-01-25 1998-05-26 Alliedsignal Inc. Compensated pressure transducer
US5665899A (en) 1996-02-23 1997-09-09 Rosemount Inc. Pressure sensor diagnostics in a process transmitter
US6907383B2 (en) 1996-03-28 2005-06-14 Rosemount Inc. Flow diagnostic system
US7949495B2 (en) 1996-03-28 2011-05-24 Rosemount, Inc. Process variable transmitter with diagnostics
FR2747238B1 (fr) 1996-04-04 1998-07-10 France Etat Generateur thermoelectrique
DE19622295A1 (de) 1996-05-22 1997-11-27 Hartmann & Braun Ag Anordnung zur Datenübertragung in Prozeßleitsystemen
US5811201A (en) * 1996-08-16 1998-09-22 Southern California Edison Company Power generation system utilizing turbine and fuel cell
ES2127122B1 (es) 1996-09-02 1999-12-16 Blaquez Navarro Vicente Sistema mejorado electronico autonomo de monitorizacion para purgadores, valvulas e instalaciones en tiempo real.
US5803604A (en) 1996-09-30 1998-09-08 Exergen Corporation Thermocouple transmitter
US5970430A (en) 1996-10-04 1999-10-19 Fisher Controls International, Inc. Local device and process diagnostics in a process control network having distributed control functions
US5954526A (en) 1996-10-04 1999-09-21 Rosemount Inc. Process control transmitter with electrical feedthrough assembly
US5851083A (en) 1996-10-04 1998-12-22 Rosemount Inc. Microwave level gauge having an adapter with a thermal barrier
US5957727A (en) 1996-12-12 1999-09-28 The Whitaker Corporation Electrical connector assembly
DE19653291C1 (de) 1996-12-20 1998-04-02 Pepperl & Fuchs Sensor- und Auswertesystem, insbesondere für Doppelsensoren zur Endlagen- und Grenzwerterfassung
FR2758009B1 (fr) 1996-12-26 1999-03-19 France Etat Generateur thermoelectrique sous-marin a modules thermoelectriques disposes en manchons
ATE207647T1 (de) 1997-02-12 2001-11-15 Siemens Ag Anordnung und verfahren zur erzeugung kodierter hochfrequenzsignale
US6458319B1 (en) 1997-03-18 2002-10-01 California Institute Of Technology High performance P-type thermoelectric materials and methods of preparation
US6013204A (en) 1997-03-28 2000-01-11 Board Of Trustees Operating Michigan State University Alkali metal chalcogenides of bismuth alone or with antimony
US7068991B2 (en) 1997-05-09 2006-06-27 Parise Ronald J Remote power recharge for electronic equipment
US6792259B1 (en) 1997-05-09 2004-09-14 Ronald J. Parise Remote power communication system and method thereof
US5911162A (en) 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
US5872494A (en) 1997-06-27 1999-02-16 Rosemount Inc. Level gage waveguide process seal having wavelength-based dimensions
US5959372A (en) 1997-07-21 1999-09-28 Emerson Electric Co. Power management circuit
RU2131934C1 (ru) 1997-09-01 1999-06-20 Санков Олег Николаевич Нагревательная установка для обработки материалов
US6282247B1 (en) 1997-09-12 2001-08-28 Ericsson Inc. Method and apparatus for digital compensation of radio distortion over a wide range of temperatures
US6104759A (en) 1997-09-15 2000-08-15 Research In Motion Limited Power supply system for a packet-switched radio transmitter
FR2768527B1 (fr) 1997-09-18 2000-07-13 Sgs Thomson Microelectronics Regulateur de tension
US6109979A (en) 1997-10-31 2000-08-29 Micro Motion, Inc. Explosion proof feedthrough connector
US6823072B1 (en) 1997-12-08 2004-11-23 Thomson Licensing S.A. Peak to peak signal detector for audio system
EP0945714B1 (de) 1998-03-17 2010-10-20 Endress+Hauser (Deutschland) AG+Co. KG Elektronisches Gerät für den Einsatz in explosionsgefährdeten Bereichen
DE19816936A1 (de) 1998-04-16 1999-10-21 Siemens Ag Antennen-Transponder-Anordnung zur Energieübertragung und Winkelmessung
JP3951438B2 (ja) * 1998-04-23 2007-08-01 株式会社村田製作所 圧電型風力発電機
US6891838B1 (en) 1998-06-22 2005-05-10 Statsignal Ipc, Llc System and method for monitoring and controlling residential devices
US6437692B1 (en) 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
KR20010071587A (ko) 1998-06-26 2001-07-28 홀 케네스 알. 가스화공정에 사용되는 열전쌍
US6360277B1 (en) 1998-07-22 2002-03-19 Crydom Corporation Addressable intelligent relay
US6480699B1 (en) 1998-08-28 2002-11-12 Woodtoga Holdings Company Stand-alone device for transmitting a wireless signal containing data from a memory or a sensor
US6405139B1 (en) 1998-09-15 2002-06-11 Bently Nevada Corporation System for monitoring plant assets including machinery
US6236096B1 (en) 1998-10-06 2001-05-22 National Science Council Of Republic Of China Structure of a three-electrode capacitive pressure sensor
US6312617B1 (en) 1998-10-13 2001-11-06 Board Of Trustees Operating Michigan State University Conductive isostructural compounds
US6615074B2 (en) 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
US7640007B2 (en) 1999-02-12 2009-12-29 Fisher-Rosemount Systems, Inc. Wireless handheld communicator in a process control environment
TW420911B (en) 1999-03-15 2001-02-01 Actpro Internat Hk Ltd Mixed mode transceiver digital control network and collision-free communication method
US6127739A (en) 1999-03-22 2000-10-03 Appa; Kari Jet assisted counter rotating wind turbine
US6783167B2 (en) 1999-03-24 2004-08-31 Donnelly Corporation Safety system for a closed compartment of a vehicle
FI111760B (fi) 1999-04-16 2003-09-15 Metso Automation Oy Kenttälaitteen langaton ohjaus teollisuusprosessissa
US6640308B1 (en) 1999-04-16 2003-10-28 Invensys Systems, Inc. System and method of powering and communicating field ethernet device for an instrumentation and control using a single pair of powered ethernet wire
US6508131B2 (en) 1999-05-14 2003-01-21 Rosemount Inc. Process sensor module having a single ungrounded input/output conductor
US6295875B1 (en) 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
US7064671B2 (en) 2000-06-23 2006-06-20 Fisher Controls International Llc Low power regulator system and method
DE19930661A1 (de) 1999-07-02 2001-01-18 Siemens Ag Meßumformer
US6255010B1 (en) 1999-07-19 2001-07-03 Siemens Westinghouse Power Corporation Single module pressurized fuel cell turbine generator system
US6385972B1 (en) 1999-08-30 2002-05-14 Oscar Lee Fellows Thermoacoustic resonator
US6765968B1 (en) 1999-09-28 2004-07-20 Rosemount Inc. Process transmitter with local databus
JP3798693B2 (ja) 1999-09-28 2006-07-19 ローズマウント インコーポレイテッド 周囲密封式の計器ループ用アダプタ
US6510740B1 (en) 1999-09-28 2003-01-28 Rosemount Inc. Thermal management in a pressure transmitter
US6571132B1 (en) 1999-09-28 2003-05-27 Rosemount Inc. Component type adaptation in a transducer assembly
US7134354B2 (en) 1999-09-28 2006-11-14 Rosemount Inc. Display for process transmitter
US6487912B1 (en) 1999-09-28 2002-12-03 Rosemount Inc. Preinstallation of a pressure sensor module
US6484107B1 (en) 1999-09-28 2002-11-19 Rosemount Inc. Selectable on-off logic modes for a sensor module
US6667594B2 (en) 1999-11-23 2003-12-23 Honeywell International Inc. Determination of maximum travel of linear actuator
RU2168062C1 (ru) 1999-12-07 2001-05-27 Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" Ветрогенератор
US6934862B2 (en) 2000-01-07 2005-08-23 Robertshaw Controls Company Appliance retrofit monitoring device with a memory storing an electronic signature
US6546805B2 (en) 2000-03-07 2003-04-15 Rosemount Inc. Process fluid transmitter with an environmentally sealed service block
USD439178S1 (en) 2000-03-21 2001-03-20 Rosemount Inc. Pressure transmitter with dual inlet base and single compartment housing
USD441672S1 (en) 2000-03-21 2001-05-08 Rosemount Inc. Pressure transmitter with dual inlet base and economy housing
USD439179S1 (en) 2000-03-21 2001-03-20 Rosemount Inc. Pressure transmitter with single inlet base and dual compartment housing
USD439181S1 (en) 2000-03-21 2001-03-20 Rosemount Inc. Pressure transmitter with dual inlet base and dual compartment housing
USD439177S1 (en) 2000-03-21 2001-03-20 Rosemount Inc. Pressure transmitter with single inlet base and economy housing
USD439180S1 (en) 2000-03-21 2001-03-20 Rosemount Inc. Pressure transmitter with single inlet base and single compartment housing
DE10014272B4 (de) 2000-03-22 2008-06-05 Endress + Hauser Gmbh + Co. Kg Feldgerät, sowie Verfahren zum Umprogrammieren eines Feldgerätes
US6744814B1 (en) 2000-03-31 2004-06-01 Agere Systems Inc. Method and apparatus for reduced state sequence estimation with tap-selectable decision-feedback
AT410041B (de) 2000-04-17 2003-01-27 Voest Alpine Ind Anlagen Verfahren und einrichtung zur aufnahme von messdaten in einem hüttenwerk
US6441747B1 (en) 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
US6662662B1 (en) 2000-05-04 2003-12-16 Rosemount, Inc. Pressure transmitter with improved isolator system
US6574515B1 (en) * 2000-05-12 2003-06-03 Rosemount Inc. Two-wire field-mounted process device
US6504489B1 (en) 2000-05-15 2003-01-07 Rosemount Inc. Process control transmitter having an externally accessible DC circuit common
US6326764B1 (en) * 2000-06-05 2001-12-04 Clement Virtudes Portable solar-powered CD player and electrical generator
JP2001356037A (ja) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd ガスメータ
FI114507B (fi) 2000-07-07 2004-10-29 Metso Automation Oy Laitediagnostiikkajärjestelmä
US6522955B1 (en) * 2000-07-28 2003-02-18 Metallic Power, Inc. System and method for power management
DE10041160B4 (de) 2000-08-21 2004-01-15 Abb Research Ltd. Containerstation
EP1202145B1 (en) 2000-10-27 2005-02-09 Invensys Systems, Inc. Field device with a transmitter and/ or receiver for wireless data communication
US6794067B1 (en) * 2000-11-29 2004-09-21 Mti Microfuel Cells, Inc. Fuel cell control and measurement apparatus and method, using dielectric constant measurements
DE50106624D1 (de) 2001-01-12 2005-08-04 Vector Informatik Gmbh Verfahren und Vorrichtung zur Relevanzprüfung eines Kennzeichners
US6686831B2 (en) 2001-01-23 2004-02-03 Invensys Systems, Inc. Variable power control for process control instruments
US6728603B2 (en) 2001-02-08 2004-04-27 Electronic Data Systems Corporation System and method for managing wireless vehicular communications
US6625990B2 (en) 2001-02-09 2003-09-30 Bsst Llc Thermoelectric power generation systems
JP3394996B2 (ja) 2001-03-09 2003-04-07 独立行政法人産業技術総合研究所 最大電力動作点追尾方法及びその装置
DE20107114U1 (de) * 2001-04-25 2001-07-05 Abb Patent Gmbh Einrichtung zur Energieversorgung von Feldgeräten
DE20107112U1 (de) 2001-04-25 2001-07-05 Abb Patent Gmbh Einrichtung zur Energieversorgung von Feldgeräten
DE10125058B4 (de) 2001-05-22 2014-02-27 Enocean Gmbh Thermisch speisbarer Sender und Sensorsystem
JP2002369554A (ja) 2001-06-06 2002-12-20 Nec Tokin Corp 標示装置
US6774814B2 (en) 2001-06-22 2004-08-10 Network Technologies Group, Llc Pipe-to-soil testing apparatus and methods
JP2003051894A (ja) 2001-08-08 2003-02-21 Mitsubishi Electric Corp プラントの作業管理システム
US6781249B2 (en) * 2001-08-29 2004-08-24 Hewlett-Packard Development Company, L.P. Retrofittable power supply
EP1293853A1 (de) 2001-09-12 2003-03-19 ENDRESS + HAUSER WETZER GmbH + Co. KG Funkmodul für Feldgerät
US20030134161A1 (en) * 2001-09-20 2003-07-17 Gore Makarand P. Protective container with preventative agent therein
US6995685B2 (en) 2001-09-25 2006-02-07 Landis+Gyr, Inc. Utility meter power arrangements and methods
USD471829S1 (en) 2001-10-11 2003-03-18 Rosemount Inc. Dual inlet base pressure instrument
USD472831S1 (en) 2001-10-11 2003-04-08 Rosemount Inc. Single inlet base pressure instrument
JP3815603B2 (ja) 2001-10-29 2006-08-30 横河電機株式会社 通信システム
EP1440302A2 (en) 2001-11-01 2004-07-28 The Johns Hopkins University Techniques for monitoring health of vessels containing fluids
US7319191B2 (en) 2001-11-01 2008-01-15 Thermo Fisher Scientific Inc. Signal adapter
DE10161069A1 (de) * 2001-12-12 2003-06-18 Endress & Hauser Gmbh & Co Kg Feldgeräteelektronik mit einer Sensoreinheit für kapazitive Füllstandsmessungen in einem Behälter
DE60237401D1 (de) 2001-12-21 2010-09-30 Bae Systems Plc Sensorsystem
JP3874171B2 (ja) 2001-12-26 2007-01-31 横河電機株式会社 二重化通信モジュール装置
US6748793B2 (en) * 2001-12-28 2004-06-15 E. I. Du Pont De Nemours And Company Ultrasound sensing of concentration of methanol's aqueous solution
WO2003060432A1 (de) 2002-01-18 2003-07-24 Amepa Gmbh Verfahren und vorrichtung zur bestimmung von kenngrössen einer metallschmelze
US7002800B2 (en) 2002-01-25 2006-02-21 Lockheed Martin Corporation Integrated power and cooling architecture
US20030167631A1 (en) 2002-03-05 2003-09-11 Hallenbeck Peter D. Mounting assembly for premises automation system components
DE50212598D1 (de) * 2002-03-05 2008-09-18 Sfc Smart Fuel Cell Ag Mobile Vorrichtung zur Energieversorgung mit Brennstoffzellen
WO2003077431A2 (en) 2002-03-06 2003-09-18 Automatika, Inc Conduit network system
US7035773B2 (en) * 2002-03-06 2006-04-25 Fisher-Rosemount Systems, Inc. Appendable system and devices for data acquisition, analysis and control
US7256505B2 (en) 2003-03-05 2007-08-14 Microstrain, Inc. Shaft mounted energy harvesting for wireless sensor operation and data transmission
US6839546B2 (en) 2002-04-22 2005-01-04 Rosemount Inc. Process transmitter with wireless communication link
WO2003093941A2 (en) 2002-04-30 2003-11-13 Chevron U.S.A. Inc. Temporary wireless sensor network system
US20040203984A1 (en) 2002-06-11 2004-10-14 Tai-Her Yang Wireless information device with its transmission power lever adjustable
US6901523B2 (en) * 2002-06-14 2005-05-31 Dell Products L.P. Method and apparatus for information handling system sleep regulation
JP2004021877A (ja) 2002-06-20 2004-01-22 Yokogawa Electric Corp フィールド機器
US6839790B2 (en) 2002-06-21 2005-01-04 Smar Research Corporation Plug and play reconfigurable USB interface for industrial fieldbus network access
US6843110B2 (en) 2002-06-25 2005-01-18 Fluid Components International Llc Method and apparatus for validating the accuracy of a flowmeter
US20040098068A1 (en) * 2002-06-28 2004-05-20 Rafael Carbunaru Chair pad charging and communication system for a battery-powered microstimulator
US20040211456A1 (en) 2002-07-05 2004-10-28 Brown Jacob E. Apparatus, system, and method of diagnosing individual photovoltaic cells
US7709766B2 (en) 2002-08-05 2010-05-04 Research Foundation Of The State University Of New York System and method for manufacturing embedded conformal electronics
JP2004069197A (ja) 2002-08-07 2004-03-04 Jmc Geothermal Engineering Co Ltd 自然エネルギー・地中熱併用システムおよびその運転方法
WO2004017025A1 (de) 2002-08-13 2004-02-26 Vega Grieshaber Kg System zur herstellung einer modular augebauten vorrichtung zur bestimmung einer physikalischen prozessgrösse und standardisierte komponenten
US6838859B2 (en) 2002-08-13 2005-01-04 Reza H. Shah Device for increasing power of extremely low DC voltage
US7773715B2 (en) 2002-09-06 2010-08-10 Rosemount Inc. Two wire transmitter with isolated can output
US7109883B2 (en) 2002-09-06 2006-09-19 Rosemount Inc. Low power physical layer for a bus in an industrial transmitter
JP4058439B2 (ja) * 2002-09-13 2008-03-12 プロトン エネルギー システムズ,インク. 電力システム
US7444207B2 (en) * 2002-10-15 2008-10-28 Rain Bird Corporation Modular and expandable irrigation controller
US6910332B2 (en) 2002-10-15 2005-06-28 Oscar Lee Fellows Thermoacoustic engine-generator
JP2004139810A (ja) * 2002-10-17 2004-05-13 Matsushita Electric Works Ltd 燃料電池の給電システム
US7440735B2 (en) 2002-10-23 2008-10-21 Rosemount Inc. Virtual wireless transmitter
JP4043914B2 (ja) 2002-10-25 2008-02-06 矢崎総業株式会社 ワイヤハーネスの止水方法及び止水処理装置
US20040081872A1 (en) * 2002-10-28 2004-04-29 Herman Gregory S. Fuel cell stack with heat exchanger
US6750808B2 (en) 2002-10-30 2004-06-15 Maghetrol International Incorporated Process instrument with split intrinsic safety barrier
US6926440B2 (en) 2002-11-01 2005-08-09 The Boeing Company Infrared temperature sensors for solar panel
CN1251953C (zh) 2002-11-12 2006-04-19 三菱电机株式会社 电梯用绳索及电梯装置
JP2004208476A (ja) 2002-12-26 2004-07-22 Toyota Motor Corp 排熱発電装置
JP2004241169A (ja) * 2003-02-04 2004-08-26 Matsushita Electric Ind Co Ltd 燃料電池システムとそれを用いた携帯機器
US20040159235A1 (en) 2003-02-19 2004-08-19 Marganski Paul J. Low pressure drop canister for fixed bed scrubber applications and method of using same
US6680690B1 (en) 2003-02-28 2004-01-20 Saab Marine Electronics Ab Power efficiency circuit
US20060166059A1 (en) * 2003-03-12 2006-07-27 Abb Research Ltd. Arrangement and method for continuously supplying electric power to a field device in a technical system
WO2004082099A1 (de) 2003-03-12 2004-09-23 Abb Research Ltd. Anordnung und verfahren zur drahtlosen versorgung eines feldgerätes in einer verfahrenstechnischen anlage mit elektrischer energie
US6904476B2 (en) 2003-04-04 2005-06-07 Rosemount Inc. Transmitter with dual protocol interface
US7326851B2 (en) 2003-04-11 2008-02-05 Basf Aktiengesellschaft Pb-Ge-Te-compounds for thermoelectric generators or Peltier arrangements
WO2004094892A2 (en) * 2003-04-22 2004-11-04 Linli Zhou Inherently safe system for supplying energy to and exchanging signals with field devices in hazardous areas
US6891477B2 (en) 2003-04-23 2005-05-10 Baker Hughes Incorporated Apparatus and methods for remote monitoring of flow conduits
US20040214543A1 (en) 2003-04-28 2004-10-28 Yasuo Osone Variable capacitor system, microswitch and transmitter-receiver
US7512521B2 (en) 2003-04-30 2009-03-31 Fisher-Rosemount Systems, Inc. Intrinsically safe field maintenance tool with power islands
JP2004350479A (ja) 2003-05-26 2004-12-09 Hitachi Powdered Metals Co Ltd 熱電変換発電ユニットおよびこの熱電変換発電ユニットを備えるトンネル型炉
US7272454B2 (en) * 2003-06-05 2007-09-18 Fisher-Rosemount Systems, Inc. Multiple-input/multiple-output control blocks with non-linear predictive capabilities
US7436797B2 (en) 2003-06-18 2008-10-14 Fisher-Rosemount Systems, Inc. Wireless architecture and support for process control systems
US7460865B2 (en) 2003-06-18 2008-12-02 Fisher-Rosemount Systems, Inc. Self-configuring communication networks for use with process control systems
US7290450B2 (en) 2003-07-18 2007-11-06 Rosemount Inc. Process diagnostics
US7275213B2 (en) 2003-08-11 2007-09-25 Ricoh Company, Ltd. Configuring a graphical user interface on a multifunction peripheral
US7353413B2 (en) * 2003-08-18 2008-04-01 Intel Corporation Computer system power policy adjustment in response to an affirmative indication from a user
US20050046595A1 (en) 2003-08-26 2005-03-03 Mr.John Blyth Solar powered sign annunciator
US8481843B2 (en) 2003-09-12 2013-07-09 Board Of Trustees Operating Michigan State University Silver-containing p-type semiconductor
US7094967B2 (en) 2003-09-24 2006-08-22 Schlumberger Technology Corporation Electrical feedthru
US7627441B2 (en) 2003-09-30 2009-12-01 Rosemount Inc. Process device with vibration based diagnostics
US6932561B2 (en) * 2003-10-01 2005-08-23 Wafermasters, Inc. Power generation system
US20050082949A1 (en) * 2003-10-21 2005-04-21 Michio Tsujiura Piezoelectric generator
US7199481B2 (en) 2003-11-07 2007-04-03 William Walter Hirsch Wave energy conversion system
US20050109395A1 (en) 2003-11-25 2005-05-26 Seberger Steven G. Shut down apparatus and method for use with electro-pneumatic controllers
US7655331B2 (en) 2003-12-01 2010-02-02 Societe Bic Fuel cell supply including information storage device and control system
US20050139250A1 (en) 2003-12-02 2005-06-30 Battelle Memorial Institute Thermoelectric devices and applications for the same
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
US7330695B2 (en) 2003-12-12 2008-02-12 Rosemount, Inc. Bus powered wireless transmitter
US7057330B2 (en) 2003-12-18 2006-06-06 Palo Alto Research Center Incorporated Broad frequency band energy scavenger
US7523667B2 (en) 2003-12-23 2009-04-28 Rosemount Inc. Diagnostics of impulse piping in an industrial process
US7234084B2 (en) 2004-02-18 2007-06-19 Emerson Process Management System and method for associating a DLPDU received by an interface chip with a data measurement made by an external circuit
US6984899B1 (en) * 2004-03-01 2006-01-10 The United States Of America As Represented By The Secretary Of The Navy Wind dam electric generator and method
EP1721067B1 (en) 2004-03-02 2010-01-06 Rosemount, Inc. Process device with improved power generation
US20050201349A1 (en) 2004-03-15 2005-09-15 Honeywell International Inc. Redundant wireless node network with coordinated receiver diversity
US7515977B2 (en) 2004-03-30 2009-04-07 Fisher-Rosemount Systems, Inc. Integrated configuration system for use in a process plant
US6971274B2 (en) 2004-04-02 2005-12-06 Sierra Instruments, Inc. Immersible thermal mass flow meter
US7073394B2 (en) 2004-04-05 2006-07-11 Rosemount Inc. Scalable averaging insertion vortex flow meter
US20050228509A1 (en) 2004-04-07 2005-10-13 Robert James System, device, and method for adaptively providing a fieldbus link
DE102004020393A1 (de) 2004-04-23 2005-11-10 Endress + Hauser Gmbh + Co. Kg Funkmodul für Feldgeräte der Automatisierungstechnik
US8538560B2 (en) 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US7088285B2 (en) 2004-05-25 2006-08-08 Rosemount Inc. Test apparatus for a waveguide sensing level in a container
US7620409B2 (en) 2004-06-17 2009-11-17 Honeywell International Inc. Wireless communication system with channel hopping and redundant connectivity
US8160535B2 (en) 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
US7262693B2 (en) 2004-06-28 2007-08-28 Rosemount Inc. Process field device with radio frequency communication
US8929228B2 (en) 2004-07-01 2015-01-06 Honeywell International Inc. Latency controlled redundant routing
US7116036B2 (en) 2004-08-02 2006-10-03 General Electric Company Energy harvesting system, apparatus and method
US20060028327A1 (en) 2004-08-09 2006-02-09 Delbert Amis Wireless replication, verification, and tracking apparatus and methods for towed vehicles
US20060063522A1 (en) 2004-09-21 2006-03-23 Mcfarland Norman R Self-powering automated building control components
KR20060027578A (ko) 2004-09-23 2006-03-28 삼성에스디아이 주식회사 이차 전지 모듈 온도 제어 시스템
US20060077917A1 (en) 2004-10-07 2006-04-13 Honeywell International Inc. Architecture and method for enabling use of wireless devices in industrial control
JP4792851B2 (ja) 2004-11-01 2011-10-12 横河電機株式会社 フィールド機器
US7812019B2 (en) * 2004-11-24 2010-10-12 Abbott Laboratories Chromanylurea compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor and uses thereof
FI118699B (fi) 2004-12-14 2008-02-15 Elektrobit Wireless Comm Oy Automaatiojärjestelmän tiedonsiirtoratkaisu
TWI254252B (en) 2004-12-21 2006-05-01 Holtek Semiconductor Inc Power processing interface of passive radio frequency identification system
US7807313B2 (en) * 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package
US7680460B2 (en) 2005-01-03 2010-03-16 Rosemount Inc. Wireless process field device diagnostics
US7173343B2 (en) * 2005-01-28 2007-02-06 Moshe Kugel EMI energy harvester
US9184364B2 (en) 2005-03-02 2015-11-10 Rosemount Inc. Pipeline thermoelectric generator assembly
US20060227729A1 (en) 2005-04-12 2006-10-12 Honeywell International Inc. Wireless communication system with collision avoidance protocol
WO2006116709A1 (en) 2005-04-28 2006-11-02 Rosemount, Inc. Charging system for field devices
US7649138B2 (en) 2005-05-25 2010-01-19 Hi-Z Technology, Inc. Thermoelectric device with surface conforming heat conductor
US7742394B2 (en) 2005-06-03 2010-06-22 Honeywell International Inc. Redundantly connected wireless sensor networking methods
US7848223B2 (en) 2005-06-03 2010-12-07 Honeywell International Inc. Redundantly connected wireless sensor networking methods
KR100635405B1 (ko) 2005-06-10 2006-10-19 한국과학기술연구원 마이크로 발전기
US8463319B2 (en) 2005-06-17 2013-06-11 Honeywell International Inc. Wireless application installation, configuration and management tool
US8452255B2 (en) 2005-06-27 2013-05-28 Rosemount Inc. Field device with dynamically adjustable power consumption radio frequency communication
AU2006263659B2 (en) 2005-06-28 2010-09-30 Community Power Corporation Method and apparatus for automated, modular, biomass power generation
US7271679B2 (en) 2005-06-30 2007-09-18 Intermec Ip Corp. Apparatus and method to facilitate wireless communications of automatic data collection devices in potentially hazardous environments
US20070030816A1 (en) 2005-08-08 2007-02-08 Honeywell International Inc. Data compression and abnormal situation detection in a wireless sensor network
US7801094B2 (en) 2005-08-08 2010-09-21 Honeywell International Inc. Integrated infrastructure supporting multiple wireless devices
JP2007047130A (ja) 2005-08-12 2007-02-22 Omron Corp 摩擦特性測定装置およびそれに向けられるタイヤ
NL1030295C2 (nl) 2005-10-28 2007-05-03 Fei Co Hermetisch afgesloten behuizing met elektrische doorvoer.
US7626141B2 (en) 2006-03-20 2009-12-01 Surface Igniter Llc Mounting device gas igniter
DE102006028361B4 (de) 2006-03-22 2013-12-19 Phoenix Contact Gmbh & Co. Kg Elektrisches Feldgerät und Erweiterungsmodul zum Einstecken in ein elektrisches Feldgerät
US7848827B2 (en) 2006-03-31 2010-12-07 Honeywell International Inc. Apparatus, system, and method for wireless diagnostics
US8204078B2 (en) 2006-03-31 2012-06-19 Honeywell International Inc. Apparatus, system, and method for integration of wireless devices with a distributed control system
US7351098B2 (en) 2006-04-13 2008-04-01 Delphi Technologies, Inc. EMI shielded electrical connector and connection system
DE102006020070A1 (de) 2006-04-29 2007-10-31 Abb Patent Gmbh Einrichtung zur Ferdiagnose eines Feldgeräts
US7913566B2 (en) 2006-05-23 2011-03-29 Rosemount Inc. Industrial process device utilizing magnetic induction
KR100744902B1 (ko) 2006-05-24 2007-08-01 삼성전기주식회사 휴대 무선 조작기
US7675935B2 (en) 2006-05-31 2010-03-09 Honeywell International Inc. Apparatus and method for integrating wireless or other field devices in a process control system
US7876722B2 (en) 2006-05-31 2011-01-25 Honeywell International Inc. System and method for wireless communication between wired field devices and control system components
JP5255189B2 (ja) 2006-05-31 2013-08-07 株式会社ネットコムセック 電源装置及び高周波回路システム
US7889747B2 (en) 2006-05-31 2011-02-15 Honeywell International Inc. Apparatus, system, and method for integrating a wireless network with wired field devices in a process control system
US8266602B2 (en) 2006-05-31 2012-09-11 Honeywell International Inc. Apparatus and method for converting between device description languages in a process control system
US7965664B2 (en) 2006-05-31 2011-06-21 Honeywell International Inc. Apparatus and method for integrating wireless field devices with a wired protocol in a process control system
DE502006006395D1 (de) 2006-07-11 2010-04-22 Balluff Gmbh Elektrisches Gerät und Verfahren zur Herstellung eines elektrischen Geräts
US7385503B1 (en) 2006-08-03 2008-06-10 Rosemount, Inc. Self powered son device network
US7368827B2 (en) 2006-09-06 2008-05-06 Siemens Power Generation, Inc. Electrical assembly for monitoring conditions in a combustion turbine operating environment
US20080088464A1 (en) 2006-09-29 2008-04-17 Gutierrez Francisco M Power System Architecture for Fluid Flow Measurement Systems
US7644633B2 (en) 2006-12-18 2010-01-12 Rosemount Inc. Vortex flowmeter with temperature compensation
MX2009013688A (es) 2007-06-15 2010-04-21 Fisher Controls Int Convertidor de corriente directa a corriente directa de alimentacion regulada para barrido de energia.
US8193784B2 (en) 2007-06-15 2012-06-05 Fisher Controls International Llc Bidirectional DC to DC converter for power storage control in a power scavenging application
WO2009003146A1 (en) 2007-06-26 2008-12-31 Mactek Corporation Pass-through connection systems and methods for process control field devices
US20090066587A1 (en) 2007-09-12 2009-03-12 Gerard James Hayes Electronic device with cap member antenna element
US7595763B2 (en) 2007-12-31 2009-09-29 Honeywell International Inc. Wireless device having movable antenna assembly and system and method for process monitoring
US7812466B2 (en) 2008-02-06 2010-10-12 Rosemount Inc. Adjustable resonance frequency vibration power harvester
US8250924B2 (en) 2008-04-22 2012-08-28 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680929C2 (ru) * 2013-03-15 2019-02-28 Росемоунт Инк. Способ оптимизации потребляемых ресурсов в полевом устройстве

Also Published As

Publication number Publication date
JP2009511796A (ja) 2009-03-19
CA2616802A1 (en) 2007-04-05
EP1929386A1 (en) 2008-06-11
RU2008116682A (ru) 2009-11-10
CA2616802C (en) 2017-05-09
JP4779018B2 (ja) 2011-09-21
CN101273313B (zh) 2012-12-19
WO2007037988A1 (en) 2007-04-05
US20060116102A1 (en) 2006-06-01
EP1929386B1 (en) 2016-02-17
CN101273313A (zh) 2008-09-24
JP2011238618A (ja) 2011-11-24
US8145180B2 (en) 2012-03-27
JP5425837B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
RU2408916C2 (ru) Усовершенствованное получение электроэнергии для технологических устройств
RU2534016C2 (ru) Блок питания и беспроводной связи для технологических полевых устройств
RU2347921C2 (ru) Технологическое устройство с усовершенствованным обеспечением электропитанием
EP1875584B1 (en) Charging system for field devices
JP5031842B2 (ja) 産業立地のためのアンテナ及びレードームを備えたワイヤレスフィールド装置
JP4705589B2 (ja) 低電力装置用の圧縮ガスを電気エネルギに変換する装置
CN103529862B (zh) 分布式网络化的光伏电池板智能跟踪装置及其控制方法
Martinez et al. A sensor network for Glaciers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200914