RU2406232C2 - Способ и устройство для определения местоположения движущегося объекта посредством использования связи с помощью света в видимой области спектра - Google Patents

Способ и устройство для определения местоположения движущегося объекта посредством использования связи с помощью света в видимой области спектра Download PDF

Info

Publication number
RU2406232C2
RU2406232C2 RU2008131545/09A RU2008131545A RU2406232C2 RU 2406232 C2 RU2406232 C2 RU 2406232C2 RU 2008131545/09 A RU2008131545/09 A RU 2008131545/09A RU 2008131545 A RU2008131545 A RU 2008131545A RU 2406232 C2 RU2406232 C2 RU 2406232C2
Authority
RU
Russia
Prior art keywords
location
moving object
unit
data
vehicle
Prior art date
Application number
RU2008131545/09A
Other languages
English (en)
Other versions
RU2008131545A (ru
Inventor
Сигехито СИМАДА (JP)
Сигехито СИМАДА
Original Assignee
Кабусики Кайся Тосиба
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кабусики Кайся Тосиба filed Critical Кабусики Кайся Тосиба
Publication of RU2008131545A publication Critical patent/RU2008131545A/ru
Application granted granted Critical
Publication of RU2406232C2 publication Critical patent/RU2406232C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096716Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7034Mounting or deployment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7038Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096758Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where no selection takes place on the transmitted or the received information
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2201/00Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters
    • G01S2201/01Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters adapted for specific applications or environments

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Atmospheric Sciences (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Optical Communication System (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к системе определения местоположения транспортного средства. Технический результат достигается посредством использования системы связи с помощью света в видимой области спектра. Устройство использует маяк связи с помощью света в видимой области спектра и видеоданные, представляющие изображение, сфотографированное камерой. Маяк испускает видимый оптический сигнал (310), таким образом передавая данные местоположения. Маяк связи с помощью света в видимой области спектра содержит лампу (30) для освещения дороги и устройство (31) связи с помощью света в видимой области спектра, оба прикрепленные к фонарному столбу (3). Транспортное средство (1) имеет камеру и устройство (10) определения местоположения транспортного средства. Устройство (10) определения местоположения транспортного средства демодулирует видимый оптический сигнал (310), восстанавливая данные местоположения в этом месте, и рассчитывает текущее местоположение транспортного средства (1) по данным местоположения. 2 н. и 4 з.п. ф-лы, 7 ил.

Description

Уровень техники изобретения
Настоящее изобретение в целом относится к системе определения местоположения, которая использует связь с помощью света в видимой области спектра. Более точно, изобретение относится к системе определения местоположения, которая определяет местоположение движущегося объекта, такого как транспортное средство.
В последние годы системы определения местоположения, использующие глобальную систему определения местоположения (GPS), широко использовались в качестве систем для определения текущего местоположения транспортного средства, иллюстративным примером которого является автомобиль. Каждая система определения местоположения этого типа, например, включена в автомобильное навигационное устройство.
Недавно системы определения местоположения, которые используют систему связи с помощью света в видимой области спектра, были предложены в качестве систем определения местоположения высокой точности. Система связи с помощью света в видимой области спектра использует видимые оптические сигналы и может передавать видимые оптические сигналы, модулированные данными местоположения, которые необходимы для функции определения местоположения (например, смотрите публикацию № 2007-81703 заявки на выдачу патента Японии).
Видимые оптические сигналы, используемые в такой системе определения местоположения, могут использоваться в сочетании со стереоскопическими видеоданными, формируемыми множеством видеокамер, установленных на транспортном средстве. Это дает возможность определять текущее местоположение, например, автомобиля, двигающегося по дороге.
Любая система, которая использует множество камер, установленных на каждом транспортном средстве, однако, является дорогостоящей вследствие не только использования камер, но также использования устройства, которое выполняет сложную обработку сигналов, такую как обработка стереоскопических видеосигналов. Ввиду этого, система определения местоположения этого типа вряд ли может быть введена в практическое использование.
Краткая сущность изобретения
Цель настоящего изобретения состоит в том, чтобы предложить систему определения местоположения, которая использует систему связи с помощью света в видимой области спектра и по-прежнему может быть легко введена в практическое использование.
Согласно одному из аспектов этого изобретения, предложена система определения местоположения, которая использует маяк связи с помощью света в видимой области спектра и средство фотографирования с одним объективом. Маяк испускает данные местоположения в виде видимых оптических сигналов. Однообъективное средство фотографирования содержит камеру и формирует видеоданные, представляющие изображение, сфотографированное камерой.
Система определения местоположения, согласно этому аспекту изобретения, содержит: узел передачи, который расположен в фиксированном месте и передает видимый оптический сигнал, модулированный данными местоположения, включающими в себя данные высоты; однообъективное средство фотографирования, которое предусмотрено на движущемся объекте и фотографирует узел передачи; узел получения данных, который предусмотрен на движущемся объекте и принимает видимый оптический сигнал, и получает данные местоположения из видимого оптического сигнала; и узел определения, который предусмотрен на движущемся объекте и использует видеоданные, сформированные однообъективным средством фотографирования, тем самым определяя местоположение движущегося объекта.
Согласно изобретению предусмотрено устройство для определения местоположения движущегося объекта, содержащее:
узел (15) приема, который принимает видимый оптический сигнал, модулированный данными местоположения, включающими в себя данные высоты, которые передаются из узла (31) передачи, расположенным в фиксированном месте; узел (13) демодуляции, который демодулирует видимый оптический сигнал, тем самым, восстанавливая данные местоположения;
однообъективный узел (19) фотографирования, который фотографирует объект, расположенный в фиксированном месте, и выводит видеоданные, представляющие изображение объекта; и
узел (10) определения, которые использует видеоданные, выдаваемые однообъективным узлом (19) фотографирования, тем самым, определяя местоположение движущегося объекта, отличающийся тем, что узел (10) определения содержит:
узел расчета расстояния, которые использует видеоданные и данные местоположения, тем самым, вычисляя расстояние между текущим местоположением движущегося объекта и фиксированным местом; и
узел коррекции местоположения, который использует расстояние, рассчитанное узлом расчета расстояния, азимут, детектированный детектором азимута, предусмотренным на движущемся объекте, и координаты фиксированного места, тем самым, рассчитывая текущее местоположение движущегося объекта.
При этом узел (31) передачи предусмотрен на лампе (3) для освещения дороги, на которой находится движущийся объект, такой как транспортное средство, и включает в себя:
узел (36) хранения, который сохраняет данные местоположения, включенные в видимый оптический сигнал; и
узел (34) возбуждения светоизлучающего элемента, который управляет и приводит в действие светоизлучающий элемент (32), предусмотренный на лампе (3) для освещения дороги, побуждая светоизлучающий элемент (32) передавать видимый оптический сигнал, модулированный данными местоположения, хранимыми в узле (36) хранения.
Кроме того, в устройстве узел (31) передачи предусмотрен на сооружении, таком как здание, и прикреплен к конструкции, которая способна передавать видимый оптический сигнал.
Кроме того, узел (10) определения содержит:
узел расчета высоты, который использует синтезированные видеоданные, подготовленные посредством синтезирования первых видеоданных, представляющих изображение, сфотографированное однообъективным узлом фотографирования, когда движущийся объект в первом местоположении, и вторых видеоданных, представляющих, изображение, сфотографированное однообъективным узлом фотографирования, когда движущийся объект достигает второго местоположения из первого местоположении, тем самым рассчитывая разность высот, которую фиксированное место имеет в синтезированном изображении, представленном синтезированными видеоданными; при этом
узел расчета расстояния, который использует разность высот, данные, включенные в данные местоположения, и расстояние между первым и вторым местоположениями, тем самым, рассчитывая расстояние между текущим местоположением движущегося объекта и фиксированным местом; и
узел коррекции/расчета, который использует расстояние, рассчитанное узлом расчета расстояния, азимут, детектированный детектором азимута, предусмотренным на движущемся объекте, и координаты фиксированного места, тем самым рассчитывая текущее местоположение движущегося объекта.
В заявленном устройстве движущийся объект является транспортным средством, а узел (15) приема включает в себя:
элемент приема света, который принимает видимый оптический сигнал, передаваемый из средства передачи, предусмотренного на лампе (3) для освещения дороги.
Согласно другому аспекту предусмотрен способ определения текущего местоположения движущегося объекта, посредством использования видимого оптического сигнала, который передается из узла передачи, расположенного в фиксированном месте, и который модулируется данными местоположения, включающими в себя данные высоты, при этом способ содержит этапы, при которых:
фотографируют объект, расположенный в фиксированном месте, посредством. использования однообъективного узла фотографирования, предусмотренного на движущемся объекте, посредством чего формируют видеоданные, представляющие изображение объекта;
принимают видимый оптический сигнал,
демодулируют видимый оптический сигнал, тем самым, восстанавливая данные местоположения; и
определяют положение движущегося объекта, отличающийся тем, что на этапе определения:
рассчитывают расстояние между текущим местоположением движущегося объекта и фиксированным местом, используя видеоданные и данные местоположения, и
рассчитывают текущее местоположение движущегося объекта, используя рассчитанное расстояние, азимут, детектированный детектором азимута, предусмотренным на движущемся объекте, и координаты фиксированного места.
Краткое описание некоторых изображений по чертежам
Прилагаемые чертежи, которые включены в состав и составляют часть описания изобретения, иллюстрируют варианты осуществления изобретения и вместе с общим описанием, приведенным выше, и подробным описанием вариантов осуществления, приведенным ниже, служат для разъяснения принципов изобретения.
Фиг.1 - схема, показывающая основные компоненты системы определения местоположения согласно варианту осуществления этого изобретения;
фиг.2 - схема, изображающая конфигурацию устройства связи с помощью света в видимой области спектра согласно варианту осуществления;
фиг.3 - схема, изображающая конфигурацию устройства определения местоположения транспортного средства согласно варианту осуществления;
фиг.4 - схема, поясняющая операцию определения местоположения, выполняемую системой, согласно варианту осуществления, и показывающая относительное положение, которое имеет едущее транспортного средство по отношению к маякам связи с помощью света в видимой области спектра;
фиг.5 - схема, поясняющая последовательность, вычислительных операций, которые система, согласно варианту осуществления выполняет, чтобы определять местоположение транспортного средства;
фиг.6 - схема поясняющая, каким образом система, согласно варианту осуществления, корректирует данные местоположения, для того чтобы определять местоположение транспортного средства; и
фиг.7 - блок-схема последовательности операций способа, поясняющая последовательность этапов, которые выполняет система согласно варианту осуществления.
Подробное описание изобретения
Вариант осуществления настоящего изобретения будет описан со ссылкой на прилагаемые чертежи.
Конфигурация системы
Фиг.1 - схема, показывающая основные компоненты системы определения местоположения согласно варианту осуществления изобретения.
Вариант осуществления является системой, которая определяет текущее местоположение автомобиля 1 (в дальнейшем упоминается как транспортное средство) посредством использования системы связи с помощью света в видимой области спектра. Основными компонентами системы являются: фонарный столб 3 и устройство 10 определения местоположения. Фонарный столб 3 стоит на одной стороне дороги 2, по которой двигается транспортное средство 1. Устройство 10 определения местоположения (в дальнейшем упоминаемое как устройство определения местоположения транспортного средства) установлено на транспортном средстве 1.
Фонарный столб 3 содержит лампу 30 для освещения дороги и устройство 31 связи с помощью света в видимой области спектра. Лампа 30 освещает дорогу 2. Лампа 30 содержит светоизлучающий диод (в дальнейшем упоминаемый как СИД (LED)) и испускает световое излучение 300 освещения. Таким образом, лампа 30 является маяком связи с помощью света в видимой области спектра, который будет описан позже.
Устройство 31 связи с помощью света в видимой области спектра приводит в действие и управляет СИД, включенным в лампу 30 для освещения дороги, и образует маяк связи с помощью света в видимой области спектра. Лампа испускает видимый оптический сигнал 310, который содержит данные местоположения. В дальнейшем компоновка, состоящая из фонарного столба 3, зафиксированного на месте, лампы 30 для освещения дороги и устройства связи с помощью света в видимой области спектра, будет называться «маяком связи с помощью света в видимой области спектра».
Устройство 10 определения местоположения транспортного средства принимает видимый оптический сигнал, передаваемый с маяка связи с помощью света в видимой области спектра. Видимый оптический сигнал демодулируется, обеспечивая данные о местоположении. По данным местоположения устройство 10 определения местоположения транспортного средства определяет текущее местоположение транспортного средства 1. Отметим, что данные местоположения включают в себя координатные данные (долготу и широту) и данные высоты. Координатные данные представляют местоположение маяка видимой связи с помощью света в видимой области спектра, который зафиксирован на месте. Данные высоты представляют расстояние от дороги 2 до лампы 30 для освещения дороги (другими словами, данные высоты представляют высоту «Н» маяка связи с помощью света в видимой области спектра).
Конфигурация устройства связи с помощью света в видимой области спектра.
Фиг.2 - схема, изображающая конфигурацию устройства 31 связи с помощью света в видимой области спектра, согласно варианту осуществления.
Как показывает фиг.2, устройство 31 связи с помощью света в видимой области спектра зафиксировано на месте у фонарного столба 3 и расположено около лампы 30 для освещения дороги. Устройство 31 имеет источник 33 питания, устройство 34 возбуждения СИД, устройство 35 управления связью и устройство 36 хранения. Устройство 34 возбуждения СИД приводит в действие СИД 32, который является светоизлучающим элементом лампы 30 для освещения дороги. Устройство 35 управления связью управляет устройством 34 возбуждения СИД, в конечном счете, многократно включая и выключая СИД 32. Приведенный в действие таким образом СИД 32 передает видимый оптический сигнал 310, модулированный данными местоположения, хранимыми в устройстве 36 хранения. Данные местоположения содержат вышеупомянутые данные высоты и координатные данные, представляющие местоположение маяка оптической световой связи в фиксированном месте.
Данные местоположения относительно маяка оптической световой связи были заранее сохранены в устройстве 36 хранения или были переданы по радио, а затем сохранены в устройстве 36 хранения. Устройство 31 связи с помощью света в видимой области спектра модулирует видимый свет, испускаемый СИД 32, данными местоположения, формируя видимый оптический сигнал 310 (видимый световой сигнал маяка). Видимый свет может модулироваться надлежащим способом, выбранным из различных способов, имеющихся в распоряжении, таких как двухпозиционное регулирование и модуляция RGB (красный-зеленый-синий).
Конфигурация устройства определения местоположения
Фиг.3 - схема, изображающая конфигурацию устройства 10 определения местоположения транспортного средства, согласно варианту осуществления.
Транспортное средство 1 содержит не только устройство 10 определения местоположения транспортного средства, но также устанавливаемое на автомобиле измерительное устройство 16 и устанавливаемую на автомобиле видеокамеру 19 (в дальнейшем называемую камерой). Как показывает фиг.3, устанавливаемое на автомобиле измерительное устройство 16 включает в себя узел 15 приема света, детектор 17 азимута и дальномер 18. Узел 15 приема света принимает видимый свет.
Узел 15 приема света является фотодиодным (PD) элементом и принимает видимый оптический сигнал, а также преобразует его в электрический сигнал, который подается в устройство 10 определения местоположения транспортного средства. Детектор 17 азимута и дальномер 18 присоединены к устройству 10 определения местоположения транспортного средства. Детектор 17 азимута детектирует азимут транспортного средства 1 и формирует сигнал азимута, а дальномер 18 определяет расстояние, которое прошло транспортное средство 1, и формирует сигнал расстояния. Сигнал 17 азимута и расстояние выводятся в устройство 10 определения местоположения транспортного средства. Камера 19 является однообъективным устройством фотографирования и формирует видеоданные, представляющие любое изображение, которое она сфотографировала. Видеоданные выводятся в устройство 10 определения местоположения транспортного средства.
Устройство 10 определения местоположения транспортного средства содержит узел 11 обработки данных, узел 12 обработки видеоданных, узел 13 связи с помощью света в видимой области спектра и интерфейс 14 устанавливаемого на автомобиле устройства. Узел 11 обработки данных выполняет операции, для того чтобы определять местоположение транспортного средства 1, как будет описано позже. Узел 12 обработки видеоданных обрабатывает видеоданные, поставляемые с камеры 19, формируя видеоданные. Эти видеоданные передаются в узел 11 обработки данных и будут использоваться для расчета высоты маяка оптической световой связи. Узел 11 обработки данных и узел 12 обработки видеоданных составляют микропроцессор или программное обеспечение. При этом узел 11 обработки данных включает узел расчета расстояния, узел коррекции местоположения, узел расчета высоты и узел коррекции/расчета.
Узел 13 связи с помощью света в видимой области спектра демодулирует видимый оптический сигнал (электрический сигнал), принимаемый узлом 15 приема света, таким образом, восстанавливая данные местоположения. Данные местоположения, восстановленные таким образом, передаются в узел 11 обработки данных. Между тем, интерфейс 14 устанавливаемого на автомобиле устройства принимает сигнал азимута и сигнал расстояния из детектора 17 азимута и дальномера соответственно и передает эти сигналы в узел 11 обработки данных.
Работа системы определения местоположения
Со ссылкой на фиг.4-7, будет пояснено, каким образом работает система определения местоположения согласно этому варианту осуществления.
Прежде всего, работа системы будет очерчена со ссылкой на фиг.4 и блок-схему последовательности операций способа по фиг.7.
Система определения местоположения, согласно этому варианту осуществления, выполнена для определения местоположения Р2 (второго местоположения), которое транспортное средство 1 принимает в текущий момент, после перемещения по дороге из местоположения Р1 (первого местоположения).
Дорога освещается светом, испускаемым из СИД 32 лампы 30 для освещения дороги. Лампа 30 для освещения дороги передает видимые оптические сигналы 20 в различных направлениях на дорогу. Сигналы 200 являются маяками связи с помощью света в видимой области спектра, каждый из которых зафиксирован в определенном месте и содержит данные местоположения.
Момент, в который транспортное средство 1 находится в местоположении Р1, узел 15 приема света принимает видимый оптический сигнал 200, испускаемый маяком связи с помощью света в видимой области спектра (этап S1). В устройстве 10 определения местоположения транспортного средства узел 13 связи с помощью света в видимой области спектра принимает видимый оптический сигнал 200 из узла 15 приема света и демодулирует сигнал 200 (электрический сигнал), восстанавливая данные местоположения. Данные местоположения передаются в узел 11 обработки данных.
На транспортном средстве 1 в местоположении Р1 камера 19 фотографирует лампу 30 для освещения дороги и фонарный столб 3, удерживающий лампу 30, в момент времени, когда узел 15 приема света принимает видимый оптический сигнал 200 (этап S1). В устройстве 10 определения местоположения транспортного средства узел 10 обработки видеоданных принимает изображение 100, сфотографированное камерой 19. Узел 12 обрабатывает изображение 100, формируя видеоданные. Видеоданные передаются в узел 11 обработки данных, так что может рассчитываться высота (Н) маяка связи с помощью света в видимой области спектра.
Когда транспортное средство 1 перемещается из местоположения Р1 в местоположение Р2, узел 15 приема света принимает видимый оптический сигнал 200, приходящий с маяка связи с помощью света в видимой области спектра. Одновременно камера 19 фотографирует маяк связи с помощью света в видимой области спектра (этап S2). То есть в устройстве 10 определения местоположения транспортного средства узел 13 связи с помощью света в видимой области спектра демодулирует видимый оптический сигнал 200, восстанавливая данные местоположения. Данные местоположения, восстановленные таким образом, передаются в узел 11 обработки данных.
Узел 11 обработки данных содержит внутреннюю память, которая сохраняет элементы данных местоположения, восстановленные в момент, когда транспортное средство 1 находится в местоположениях Р1 и Р2 соответственно. Узел 12 обработки видеоданных принимает изображение 100, сфотографированное камерой 19, формируя видеоданные. Видеоданные передаются в узел 11 обработки данных.
В устройстве 10 определения местоположения транспортного средства дальномер 18 определяет расстояние Lo, которое транспортное средство 1 прошло от местоположения Р1 до местоположения Р2, и формирует сигнал расстояния. Сигнал расстояния передается в узел 11 обработки данных устройства 10 определения местоположения транспортного средства. В узле 11 обработки данных данные, представляющие расстояние Lo, сохраняются во внутренней памяти.
В устройстве 10 определения местоположения транспортного средства узел 11 обработки данных синтезирует два элемента видеоданных, которые узел 12 обработки видеоданных получил в местоположениях Р1 и Р2 соответственно, формируя синтезированные видеоданные. С использованием синтезированных видеоданных данные местоположения и данные, представляющие расстояние Lo (расстояние, которое проехало транспортное средство 1), узел 11 обработки данных определяет расстояние Lx между местоположением (Р2) транспортного средства 1 и маяком связи с помощью света в видимой области спектра, а также координаты местоположения Р2 (этап S3).
В устройстве 10 определения местоположения транспортного средства узел 11 обработки данных дополнительно принимает данные, представляющие угол азимута, детектированный детектором 17 азимута в местоположении Р2 из устанавливаемого на автомобиле измерительного устройства 16 через интерфейс 14 устанавливаемого на автомобиле устройства. На основании угла азимута узел 11 обработки данных корректирует координаты местоположения Р2, тем самым рассчитывая текущее местоположение транспортного средства 1 (этап S4).
Последовательность расчета, которую устройство 10 определения местоположения транспортного средства, согласно варианту осуществления, выполняет для определения местоположения транспортного средства 1, будет подробно пояснена со ссылкой на фиг.5 и 6.
Прежде всего, при допущении, что транспортное средство 1 проехало из местоположения Р1 на дороге в местоположение Р2, будет пояснено, каким образом устройство 10 рассчитывает расстояние Lx между местоположением Р2 и маяком связи с помощью света в видимой области спектра. Здесь местоположение 700 маяка оптической световой связи, ради удобства, определено в качестве расстояния между лампой 30 для освещения дороги и пересечением поверхности дороги и перпендикуляра, тянущегося от лампы 30.
В устройстве 10 определения местоположения транспортного средства узел 11 обработки данных рассчитывает высоту h фонарного столба 3, которая измеряется в синтезированном изображении 600, полученном синтезированием двух элементов 400 и 500 видеоданных, собранных в местоположениях Р1 и Р2 узлом 12 обработки видеоданных. Как видно из фиг.5, высота h является разницей между высотой ha, которую имеет камера 19 в местоположении Р1, и точкой hb, в которой местоположение Р2 пересекается с линией, по которой лампа 30 для освещения дороги фотографируется под углом α.
Следующие соотношения с (1) по (5) выдерживаются в настоящем варианте осуществления.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
где H - высота маяка 700 связи с помощью света в видимой области спектра, vh - высота камеры 19, установленной на транспортном средстве 1, a L - расстояние между местоположением Р1 и местоположением 700 маяка связи с помощью света в видимой области спектра.
Узел 11 обработки данных рассчитывает расстояние Lo между местоположениями Р1 и Р2 по расстоянию перемещения транспортного средства 1, определенному дальномером 18. Узел 11 обработки данных находит высоту Н маяка связи с помощью света в видимой области спектра по данным местоположения, полученным демодулированием видимого оптического сигнала 200, который принял узел 15 приема света.
Узел 11 обработки данных устройства 10 определения местоположения транспортного средства выполняет расчеты на основании соотношений с (1) по (5), заданных выше, находя расстояние Lx между транспортным средством 1, перемещенным в местоположение Р2 и местоположением 700 маяка связи с помощью света в видимой области спектра.
Последовательность расчета координат (х, у) местоположения Р2, в которое переместилось транспортное средство 1, будет пояснена со ссылкой на фиг.6.
Местоположение маяка связи с помощью света в видимой области спектра определяется координатами (хо, уо). Координаты являются данными местоположения, которые обычно представляют долготу и широту. В устройстве 10 определения местоположения транспортного средства узел 15 приема света принимает видимый оптический сигнал 200, а узел 13 связи с помощью света в видимой области спектра демодулирует сигнал 200, извлекая координаты (хо, уо). Данные местоположения, представляющие координаты (хо, уо), передаются в узел 11 обработки данных. Между тем, узел 11 обработки данных получает угол γ азимута из детектора 17 азимута устанавливаемого на автомобиле измерительного устройства 16 через интерфейс 14 устанавливаемого на автомобиле устройства.
Узел 11 обработки данных корректирует координаты (хо, уо) маяка связи с помощью света в видимой области спектра посредством использования соотношений (6) и (7), приведенных ниже, рассчитывая координаты (х, у) местоположения Р2, где в данный момент находится транспортное средство 1. Более точно, узел 11 обработки данных, корректирующий координаты (хо, уо) маяка, рассчитывает координаты (х, у) посредством использования расстояния Lx между транспортным средством 1 и местоположением маяка, рассчитывая координаты (х, у) местоположения Р2, то есть текущее местоположение транспортного средства 1.
Figure 00000006
Figure 00000007
В системе согласно этому варианту осуществления, узел 11 обработки данных может находить координаты (х, у) транспортного средства 1 по координатам (хо, уо) маяка связи с помощью света в видимой области спектра, расстоянию Lx между транспортным средством 1 и местоположением маяка,, и углу у азимута транспортного средства 1. Отметим, что расстояние Lx между устройством 1 и маяком может получаться посредством так называемой тригонометрической съемки с использованием синтезированного изображения, подготовленного синтезированием изображений, сфотографированных одной камерой 19.
То есть расстояние Lx между транспортным средством 1 и маяком может рассчитываться в системе, согласно изобретению, только с использованием однообъективной камеры 19 без использования множества камер или сложной обработки видеоданных, такой как обработка стереоскопических изображений. Отсюда расстояние Lx может рассчитываться при более низкой стоимости, чем в случае, где используется множество камер. Более того, система, согласно варианту осуществления, может быть легко введена в практическое использование, так как большинство автомобилей, производимых и продаваемых в последнее время, - все содержат одну камеру. В дополнение система, согласно варианту осуществления, может находить координаты транспортного средства 1 с высокой точностью, так как координаты (хо, уо) маяка корректируются.
Таким образом, вариант осуществления может предоставить систему определения местоположения, которая использует систему связи с использованием света в видимой области спектра и по-прежнему может быть легка для использования при низкой стоимости.
В варианте осуществления, описанном выше, маяк связи с помощью света в видимой области спектра составлен лампой 30 для освещения дороги, расположенной в фиксированном месте. Однако маяк связи с помощью света в видимой области спектра, например, может быть составлен лампой для освещения такого типа, который находит применение в зданиях или сооружениях. Кроме того, маяку связи с помощью света в видимой области спектра не требуется быть объединенным с лампой для освещения. Он может быть независимым устройством, которое передает видимые оптические сигналы.
Дополнительные преимущества и модификации будут очевидны для специалистов в данной области техники. Поэтому изобретение в его более широких аспектах не ограничено отдельными подробностями и характерными вариантами осуществления, показанными и описанными в материалах настоящей заявки. Соответственно, различные модификации могут быть произведены, не выходя из сущности и объема общей изобретательной концепции, которые определены прилагаемой формулой изобретения и ее эквивалентами.

Claims (6)

1. Устройство для определения местоположения движущегося объекта, отличающееся тем, что содержит:
узел (15) приема, который принимает видимый оптический сигнал, модулированный данными местоположения, включающими в себя данные высоты, которые передаются из узла (31) передачи, расположенного в фиксированном месте;
узел (13) демодуляции, который демодулирует видимый оптический сигнал, тем самым, восстанавливая данные местоположения;
однообъективный узел (19) фотографирования, который фотографирует узел (31) передачи, расположенный в фиксированном месте, и выводит видеоданные, представляющие изображение фотографируемого узла (31) передачи; и
узел (10) определения, который использует видеоданные, выдаваемые однообъективным узлом (19) фотографирования, тем самым, определяя местоположение движущегося объекта, отличающийся тем, что узел (10) определения содержит:
узел расчета расстояния, который использует видеоданные и данные местоположения, тем самым, вычисляя расстояние между текущим местоположением движущегося объекта и фиксированным местом; и
узел коррекции местоположения, который использует расстояние, рассчитанное узлом расчета расстояния, азимут, детектированный детектором азимута, предусмотренным на движущемся объекте, и координаты фиксированного места, тем самым, рассчитывая текущее местоположение движущегося объекта.
2. Устройство по п.1, отличающееся тем, что узел (31) передачи предусмотрен на лампе (3) для освещения дороги для освещения дороги, на которой находится движущийся объект, такой как транспортное средство, и включает в себя:
узел (36) хранения, который сохраняет данные местоположения, включенные в видимый оптический сигнал; и
узел (34) возбуждения светоизлучающего элемента, который управляет и приводит в действие светоизлучающий элемент (32), предусмотренный на лампе (3) для освещения дороги, побуждая светоизлучающий элемент (32) передавать видимый оптический сигнал, модулированный данными местоположения, хранимыми в узле (36) хранения.
3. Устройство по п.1, отличающееся тем, что узел (31) передачи предусмотрен на сооружении, таком как здание, и прикреплен к конструкции, которая способна передавать видимый оптический сигнал.
4. Устройство по п.1, отличающееся тем, что узел (10) определения содержит:
узел расчета высоты, который использует синтезированные видеоданные, подготовленные посредством синтезирования первых видеоданных, представляющих изображение, сфотографированное однообъективным узлом фотографирования, когда движущийся объект в первом местоположении, и вторых видеоданных, представляющих изображение, сфотографированное однообъективным узлом фотографирования, когда движущийся объект достигает второго местоположения из первого местоположении, тем самым рассчитывая разность высот, которую фиксированное место имеет в синтезированном изображении, представленном синтезированными видеоданными; при этом
узел расчета расстояния, который использует разность высот, данные, включенные в данные местоположения, и расстояние между первым и вторым местоположениями, тем самым, рассчитывая расстояние между текущим местоположением движущегося объекта и фиксированным местом; и
узел коррекции/расчета, который использует расстояние, рассчитанное узлом расчета расстояния, азимут, детектированный детектором азимута, предусмотренным на движущемся объекте, и координаты фиксированного места, тем самым рассчитывая текущее местоположение движущегося объекта.
5. Устройство по п.1, отличающееся тем, что движущийся объект является транспортным средством, а узел (15) приема включает в себя:
элемент приема света, который принимает видимый оптический сигнал, передаваемый из средства передачи, предусмотренного на лампе (3) для освещения дороги.
6. Способ определения текущего местоположения движущегося объекта посредством использования видимого оптического сигнала, который передается из узла передачи, расположенного в фиксированном месте, и который модулируется данными местоположения, включающими в себя данные высоты, при этом способ содержит этапы, при которых:
фотографируют узел передачи, расположенный в фиксированном месте, посредством использования однообъективного узла фотографирования, предусмотренного на движущемся объекте, посредством чего формируют видеоданные, представляющие изображение фотографируемого узла передачи;
принимают видимый оптический сигнал;
демодулируют видимый оптический сигнал, тем самым, восстанавливая данные местоположения; и
определяют положение движущегося объекта, отличающийся тем, что на этапе определения:
рассчитывают расстояние между текущим местоположением движущегося объекта и фиксированным местом, используя видеоданные и данные местоположения, и
рассчитывают текущее местоположение движущегося объекта, используя рассчитанное расстояние, азимут, детектированный детектором азимута, предусмотренным на движущемся объекте, и координаты фиксированного места.
RU2008131545/09A 2007-07-31 2008-07-30 Способ и устройство для определения местоположения движущегося объекта посредством использования связи с помощью света в видимой области спектра RU2406232C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007199543A JP2009036571A (ja) 2007-07-31 2007-07-31 可視光通信システムを利用した位置測定システム、位置測定装置及び位置測定方法
JP2007-199543 2007-07-31

Publications (2)

Publication Number Publication Date
RU2008131545A RU2008131545A (ru) 2010-02-10
RU2406232C2 true RU2406232C2 (ru) 2010-12-10

Family

ID=39870503

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008131545/09A RU2406232C2 (ru) 2007-07-31 2008-07-30 Способ и устройство для определения местоположения движущегося объекта посредством использования связи с помощью света в видимой области спектра

Country Status (7)

Country Link
US (1) US7973819B2 (ru)
EP (1) EP2026086A3 (ru)
JP (1) JP2009036571A (ru)
KR (1) KR101014758B1 (ru)
CN (1) CN101358846B (ru)
RU (1) RU2406232C2 (ru)
TW (1) TWI366802B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533348C1 (ru) * 2013-07-04 2014-11-20 Святослав Николаевич Гузевич Оптический способ измерения размеров и положения объекта и дальномер-пеленгатор
RU2638876C1 (ru) * 2016-06-15 2017-12-18 Михаил Николаевич Матвеев Универсальный способ управления движением объекта с помощью оптической навигационной системы
RU2649840C1 (ru) * 2016-12-28 2018-04-04 Михаил Дмитриевич Косткин Способ управления движением транспортного средства (варианты)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249666A (ja) * 2007-03-30 2008-10-16 Fujitsu Ten Ltd 車両位置特定装置および車両位置特定方法
JP4839330B2 (ja) * 2008-02-29 2011-12-21 東芝テリー株式会社 画像処理装置および画像処理プログラム
JP5548888B2 (ja) * 2009-04-24 2014-07-16 真一郎 春山 レーザ通信機
JP5365792B2 (ja) * 2009-06-01 2013-12-11 マツダ株式会社 車両用位置測定装置
JP5397030B2 (ja) * 2009-06-15 2014-01-22 カシオ計算機株式会社 動画記録装置及びプログラム
TWI437509B (zh) * 2009-08-18 2014-05-11 Ind Tech Res Inst 光資訊接收方法
JP2011055288A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 可視光通信装置及びデータ受信方法
KR101064665B1 (ko) 2009-12-28 2011-09-15 전자부품연구원 차량용 가시광 통신장치, 가시광 통신을 이용한 터널 내 차량통신시스템 및 방법
JP5943938B2 (ja) 2010-12-22 2016-07-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 車両測位及び誘導システム
US8862395B2 (en) * 2011-01-31 2014-10-14 Raytheon Company Coded marker navigation system and method
US8520065B2 (en) 2011-07-26 2013-08-27 ByteLight, Inc. Method and system for video processing to determine digital pulse recognition tones
US9723676B2 (en) 2011-07-26 2017-08-01 Abl Ip Holding Llc Method and system for modifying a beacon light source for use in a light based positioning system
US8436896B2 (en) 2011-07-26 2013-05-07 ByteLight, Inc. Method and system for demodulating a digital pulse recognition signal in a light based positioning system using a Fourier transform
US9418115B2 (en) 2011-07-26 2016-08-16 Abl Ip Holding Llc Location-based mobile services and applications
US8994799B2 (en) 2011-07-26 2015-03-31 ByteLight, Inc. Method and system for determining the position of a device in a light based positioning system using locally stored maps
US8432438B2 (en) 2011-07-26 2013-04-30 ByteLight, Inc. Device for dimming a beacon light source used in a light based positioning system
US9444547B2 (en) 2011-07-26 2016-09-13 Abl Ip Holding Llc Self-identifying one-way authentication method using optical signals
US8334901B1 (en) 2011-07-26 2012-12-18 ByteLight, Inc. Method and system for modulating a light source in a light based positioning system using a DC bias
US8457502B2 (en) 2011-07-26 2013-06-04 ByteLight, Inc. Method and system for modulating a beacon light source in a light based positioning system
US9787397B2 (en) 2011-07-26 2017-10-10 Abl Ip Holding Llc Self identifying modulated light source
US8416290B2 (en) 2011-07-26 2013-04-09 ByteLight, Inc. Method and system for digital pulse recognition demodulation
US8964016B2 (en) 2011-07-26 2015-02-24 ByteLight, Inc. Content delivery based on a light positioning system
US8334898B1 (en) 2011-07-26 2012-12-18 ByteLight, Inc. Method and system for configuring an imaging device for the reception of digital pulse recognition information
US8866391B2 (en) 2011-07-26 2014-10-21 ByteLight, Inc. Self identifying modulated light source
CN102956114B (zh) * 2011-08-31 2015-05-27 深圳光启高等理工研究院 基于可见光无线通信的交通服务系统
GB2496379A (en) 2011-11-04 2013-05-15 Univ Edinburgh A freespace optical communication system which exploits the rolling shutter mechanism of a CMOS camera
CN103292819B (zh) * 2012-02-29 2015-10-07 深圳光启智能光子技术有限公司 基于可见光通信的车辆导航系统
US9576484B2 (en) * 2012-03-02 2017-02-21 Laser Technology, Inc. System and method for monitoring vehicular traffic with a laser rangefinding and speed measurement device utilizing a shaped divergent laser beam pattern
CN102610115A (zh) * 2012-03-09 2012-07-25 郭丰亮 基于led可见光通信的智能交通系统
KR101324364B1 (ko) 2012-03-16 2013-11-01 광운대학교 산학협력단 광원과 센서를 이용한 측위 시스템 및 방법
CN103363996B (zh) * 2012-04-01 2017-09-19 深圳光启智能光子技术有限公司 基于可见光通信的地图导航接收装置
CN103363984B (zh) * 2012-04-01 2017-09-19 深圳光启智能光子技术有限公司 基于可见光通信的地图导航系统
CN103363995A (zh) * 2012-04-01 2013-10-23 深圳光启创新技术有限公司 基于可见光通信的地图导航发送装置
CN103386993B (zh) * 2012-05-09 2015-11-18 深圳市坐标系交通技术有限公司 采集列车运行信息的系统、光发射装置和光接收处理装置
US8752761B2 (en) * 2012-09-21 2014-06-17 Symbol Technologies, Inc. Locationing using mobile device, camera, and a light source
TWI573481B (zh) * 2012-12-17 2017-03-01 鴻海精密工業股份有限公司 手機定位系統
US8988574B2 (en) 2012-12-27 2015-03-24 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
US9088360B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
JP5606653B1 (ja) * 2012-12-27 2014-10-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報通信方法
WO2014103333A1 (ja) 2012-12-27 2014-07-03 パナソニック株式会社 表示方法
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
US9560284B2 (en) 2012-12-27 2017-01-31 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
JP6294235B2 (ja) 2012-12-27 2018-03-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America プログラム、制御方法および情報通信装置
WO2014103151A1 (ja) * 2012-12-27 2014-07-03 パナソニック株式会社 情報通信方法
SG11201400469SA (en) 2012-12-27 2014-06-27 Panasonic Corp Information communication method
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US8922666B2 (en) 2012-12-27 2014-12-30 Panasonic Intellectual Property Corporation Of America Information communication method
US9247180B2 (en) 2012-12-27 2016-01-26 Panasonic Intellectual Property Corporation Of America Video display method using visible light communication image including stripe patterns having different pitches
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US9087349B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
CN103116994B (zh) * 2012-12-28 2015-01-07 方科峰 光通讯的交通系统及交通系统管理方法
US9705600B1 (en) 2013-06-05 2017-07-11 Abl Ip Holding Llc Method and system for optical communication
TWI552909B (zh) * 2013-07-30 2016-10-11 Vehicle visible light communication system
US9955559B2 (en) 2013-09-10 2018-04-24 Philips Lighting Holding B.V. Methods and apparatus for automated commissioning of coded light sources
WO2015036903A2 (en) 2013-09-13 2015-03-19 Koninklijke Philips N.V. System and method for augmented reality support
CN104467962B (zh) * 2013-09-18 2018-08-14 华为技术有限公司 一种基于可视光源的定位方法、移动终端及控制器
US9201145B2 (en) * 2013-10-17 2015-12-01 Globalfoundries Inc. Object location in three dimensional space using LED lights
WO2015077767A1 (en) 2013-11-25 2015-05-28 Daniel Ryan System and method for communication with a mobile device via a positioning system including rf communication devices and modulated beacon light sources
CN103869284A (zh) * 2014-02-28 2014-06-18 北京邮电大学 基于可见光通信的室内定位系统以及方法
US10075234B2 (en) * 2014-03-25 2018-09-11 Osram Sylvania Inc. Techniques for emitting position information from luminaires
EP3123194A2 (en) * 2014-03-25 2017-02-01 Osram Sylvania Inc. Techniques for augmenting gps-based navigation via light-based communication
CN103869285B (zh) * 2014-04-01 2016-04-06 中国人民解放军信息工程大学 一种利用可见光进行定位的方法和装置
CN104038285A (zh) * 2014-06-16 2014-09-10 上海航天电子通讯设备研究所 基于tcp/ip的室内可见光通信节点及双向通信系统
CN105444752A (zh) * 2014-09-02 2016-03-30 深圳市芯通信息科技有限公司 基于光源亮度的室内定位方法、装置及系统
CN104539738B (zh) * 2015-01-22 2018-04-27 重庆邮电大学 一种led通信的车辆自组织网络
CN105301562B (zh) * 2015-10-21 2017-06-23 宁波大学 可见光通信无线定位系统
JP2019500596A (ja) 2015-12-03 2019-01-10 オスラム・シルバニア・インコーポレイテッド 移動通信システムのための光ベースの車両位置特定
US9791544B2 (en) 2016-02-01 2017-10-17 Qualcomm Incorporated Location determination using light-based communications
JP6707378B2 (ja) * 2016-03-25 2020-06-10 本田技研工業株式会社 自己位置推定装置および自己位置推定方法
DE102016208488A1 (de) * 2016-05-18 2017-11-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Lokalisierung eines Fahrzeugs
EP3539102B1 (en) 2016-11-11 2020-11-04 Carrier Corporation High sensitivity fiber optic based detection
JP6615811B2 (ja) * 2017-03-17 2019-12-04 株式会社東芝 移動体位置推定システム、装置及び方法
CN107168306A (zh) * 2017-04-05 2017-09-15 罗厚兵 道路信标
EP3421936A1 (en) 2017-06-30 2019-01-02 Panasonic Automotive & Industrial Systems Europe GmbH Optical marker element for geo location information
CN107504960B (zh) * 2017-07-28 2019-10-01 西安电子科技大学 车辆定位方法和系统
CN107734449B (zh) * 2017-11-09 2020-05-12 陕西外号信息技术有限公司 一种基于光标签的室外辅助定位方法、系统及设备
JP6701153B2 (ja) * 2017-11-10 2020-05-27 株式会社Subaru 移動体の位置計測システム
KR101971370B1 (ko) * 2017-12-18 2019-08-13 국민대학교산학협력단 광학 카메라 통신을 이용하는 차량 위치 추정 방법 및 장치
RU2729196C1 (ru) * 2018-01-12 2020-08-05 Общество с ограниченной ответственностью "ИСС-СОФТ" Системы и способы формирования светового потока на основании изображений
KR101990734B1 (ko) * 2018-01-12 2019-06-19 숭실대학교산학협력단 복수의 카메라들로부터의 이미지들을 융합하여 차량의 위치를 추정하는 시스템
KR101996169B1 (ko) * 2018-01-12 2019-07-03 숭실대학교산학협력단 카메라 변위를 고려한 가시광 통신 기반의 차량 위치 추정 방법 및 장치
KR101996168B1 (ko) * 2018-01-12 2019-07-03 숭실대학교산학협력단 Cmos 센서의 롤링 셔터 보정을 고려한 가시광 통신 기반의 차량 위치 추정 방법 및 장치
CN108528326B (zh) * 2018-04-04 2020-06-23 王小红 一种车载互联互通方法
CN108363052A (zh) * 2018-05-22 2018-08-03 广东工业大学 一种基于可见光通信的室内定位系统及方法
CN108692701B (zh) * 2018-05-28 2020-08-07 佛山市南海区广工大数控装备协同创新研究院 基于粒子滤波器的移动机器人多传感器融合定位方法
CN108597228B (zh) * 2018-05-30 2023-08-29 中国科学技术大学 基于可见光感知的交通流智能感知系统及方法
AU2019296512B2 (en) * 2018-06-29 2023-06-01 Monash University Visible light positioning receiver arrangement and two stage positioning method
CN109596067B (zh) * 2018-12-25 2020-08-25 东南大学 一种钢厂行车调度用三维激光扫描可见光确认方法
RU2744510C2 (ru) * 2019-01-09 2021-03-11 Общество с ограниченной ответственностью "ИСС-СОФТ" Система и способ формирования светового потока на основании изображений
CN110133685B (zh) * 2019-05-22 2023-04-14 吉林大学 基于occ的路灯辅助手机详细定位通信系统
CN112213689A (zh) * 2019-07-09 2021-01-12 阿里巴巴集团控股有限公司 导航方法以及定位方法、装置、设备
KR20230002757A (ko) * 2020-04-29 2023-01-05 엘지전자 주식회사 무선통신시스템에서 vru 위치에 관련된 rsu의 동작 방법
KR102612593B1 (ko) * 2022-09-14 2023-12-08 인천대학교 산학협력단 전방 차량의 위치에 따라 지향성 광신호를 전송할 수 있는 차량용 신호 전송 장치 및 그 동작 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678731B1 (en) * 1994-04-15 1999-06-30 Nissan Motor Co., Ltd. Vehicle navigation system
JP3835628B2 (ja) * 1996-09-05 2006-10-18 マツダ株式会社 ナビゲーション装置
JP4121642B2 (ja) * 1998-11-13 2008-07-23 株式会社トプコン 建設機械制御システム
JP2002202741A (ja) 2000-11-02 2002-07-19 Matsushita Electric Ind Co Ltd Ledによる情報提供装置
US6865347B2 (en) * 2001-01-05 2005-03-08 Motorola, Inc. Optically-based location system and method for determining a location at a structure
DE10101992C2 (de) * 2001-01-18 2002-12-05 Eads Deutschland Gmbh Radarverfahren zur Erkennung und Endeckung verdeckter Ziele
US20070059098A1 (en) * 2002-03-25 2007-03-15 Ian Mayfield Automatic ground marking method and apparatus
KR100435654B1 (ko) * 2001-06-20 2004-06-12 현대자동차주식회사 자동차의 차선 이탈 방지를 위한 제어 방법
JP4338387B2 (ja) 2002-12-10 2009-10-07 日本ビクター株式会社 可視光受信装置及び可視光通信装置
ATE372894T1 (de) * 2002-12-20 2007-09-15 Murakami Corp Aussenspiegel
DE10394295T5 (de) * 2003-10-31 2012-02-09 Fujitsu Ltd. Entfernungsberechnungsvorrichtung und Berechnungsprogramm
US7123186B2 (en) * 2004-03-26 2006-10-17 Topcon Gps, Llc Controlling solution latency in a global navigation satellite receiver
US7706917B1 (en) * 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
JP4052310B2 (ja) * 2005-02-07 2008-02-27 住友電気工業株式会社 交差点までの距離算出方法、装置及びシステム
JP2006220465A (ja) * 2005-02-09 2006-08-24 Nippon Signal Co Ltd:The 位置特定システム
US7728869B2 (en) * 2005-06-14 2010-06-01 Lg Electronics Inc. Matching camera-photographed image with map data in portable terminal and travel route guidance method
JP4478885B2 (ja) * 2005-06-28 2010-06-09 ソニー株式会社 情報処理装置および方法、プログラム、並びに記録媒体
JP4643403B2 (ja) 2005-09-13 2011-03-02 株式会社東芝 可視光通信システム及びその方法
DE102005061786B4 (de) * 2005-12-23 2007-10-31 Lübeck, Felix Lichtsignalanlage mit Übertragung zusätzlicher Informationen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533348C1 (ru) * 2013-07-04 2014-11-20 Святослав Николаевич Гузевич Оптический способ измерения размеров и положения объекта и дальномер-пеленгатор
RU2638876C1 (ru) * 2016-06-15 2017-12-18 Михаил Николаевич Матвеев Универсальный способ управления движением объекта с помощью оптической навигационной системы
RU2649840C1 (ru) * 2016-12-28 2018-04-04 Михаил Дмитриевич Косткин Способ управления движением транспортного средства (варианты)
WO2018124936A1 (ru) * 2016-12-28 2018-07-05 Михаил Дмитриевич КОСТКИН Способ управления движением транспортного средства

Also Published As

Publication number Publication date
US20090033757A1 (en) 2009-02-05
KR20090013026A (ko) 2009-02-04
TW200923855A (en) 2009-06-01
JP2009036571A (ja) 2009-02-19
EP2026086A2 (en) 2009-02-18
EP2026086A3 (en) 2009-08-12
CN101358846B (zh) 2011-01-26
RU2008131545A (ru) 2010-02-10
TWI366802B (en) 2012-06-21
KR101014758B1 (ko) 2011-02-15
US7973819B2 (en) 2011-07-05
CN101358846A (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
RU2406232C2 (ru) Способ и устройство для определения местоположения движущегося объекта посредством использования связи с помощью света в видимой области спектра
US20110050903A1 (en) Method for determining position and orientation of vehicle trailers
CN113147582B (zh) 具有影像投射部的车辆
JP6685234B2 (ja) 符号化光に基づく携帯装置の位置特定
JP5145735B2 (ja) 測位装置及び測位システム
KR102479492B1 (ko) 차량 주변의 이미지를 제공하는 전자 장치 및 방법
US8542368B2 (en) Position measuring apparatus and method
US11188776B2 (en) Automated license plate recognition system and related method
US11999480B2 (en) Flight control system for unmanned aerial vehicle and topography measuring system
JP2007206099A (ja) 地図作成支援システム
JP2010002225A (ja) 可視光通信を利用した位置測定装置、位置測定システム、及び位置測定方法
US10895627B2 (en) Self-position estimation apparatus and self-position estimation method
JP2001142532A (ja) 移動体の位置検出装置
KR20070064052A (ko) 맵 매칭 자동차 내비게이션 장치
US20100085467A1 (en) Image pickup device capable of providing gps coordinates of subject to be shot and method for detecting gps coordinates thereof
CN105247571A (zh) 用于构建脉冲地发光的对象的拍摄的方法和设备
EP3682423B1 (en) Signal processing apparatus, signal processing method, program, and moving body
WO2017042276A1 (en) Method for operating a camera depending on a preset pulse frequency of an illumination source, camera and system
JP2014235022A (ja) ナビゲーション装置およびナビゲーション方法
JP2013073386A (ja) 画像投影装置
WO2019049710A1 (ja) 信号処理装置、および信号処理方法、プログラム、並びに移動体
JP2017062124A (ja) 撮像装置
FR3135534A1 (fr) Système de positionnement par modulation externe à haute fréquence d’intensité lumineuse
JP2020119212A (ja) 画像処理装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150731