RU2402842C2 - Химический источник электроэнергии и способ его изготовления - Google Patents

Химический источник электроэнергии и способ его изготовления Download PDF

Info

Publication number
RU2402842C2
RU2402842C2 RU2007139012/09A RU2007139012A RU2402842C2 RU 2402842 C2 RU2402842 C2 RU 2402842C2 RU 2007139012/09 A RU2007139012/09 A RU 2007139012/09A RU 2007139012 A RU2007139012 A RU 2007139012A RU 2402842 C2 RU2402842 C2 RU 2402842C2
Authority
RU
Russia
Prior art keywords
lithium
sulfur
cathode
electrical energy
chemical source
Prior art date
Application number
RU2007139012/09A
Other languages
English (en)
Other versions
RU2007139012A (ru
Inventor
Владимир КОЛОСНИЦИН (RU)
Владимир КОЛОСНИЦИН
Елена КАРАСЕВА (RU)
Елена КАРАСЕВА
Original Assignee
Оксис Энерджи Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0505790A external-priority patent/GB2424511B/en
Application filed by Оксис Энерджи Лимитед filed Critical Оксис Энерджи Лимитед
Publication of RU2007139012A publication Critical patent/RU2007139012A/ru
Application granted granted Critical
Publication of RU2402842C2 publication Critical patent/RU2402842C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Изобретение относится к области электрохимической энергетики. Техническим результатом изобретения является увеличение длительности цикла и снижение стоимости производства. Согласно изобретению химический источник электрической энергии содержит положительный электрод (катод) из электропроводящего материала, смесь сульфида лития и серы, проницаемый сепаратор или мембрану и отрицательный электрод (анод) из электропроводящего материала или материала, способного обратимо интеркалировать ионы лития, причем между электродами предложено помещать апротонный электролит, содержащий по меньшей мере одну соль лития в по меньшей мере одном растворителе. 2 н. и 15 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к электрохимической энергетике и, в частности, к химическим источникам электрической энергии (батареям), состоящим из отрицательного электрода (анода), где образуется окислительно-восстановительная пара Li+/Li0, положительного электрода (катода), где образуется окислительно-восстановительная пара S0/S-2, и неводного апротонного электролита. Варианты изобретения также относятся к композиции деполяризатора для положительного электрода.
Предпосылки создания изобретения
В данной заявке авторы ссылаются на различные патенты и опубликованные заявки путем цитирования. Раскрытия патентов и опубликованных патентных заявок, относящихся к данной заявке, включены в настоящее описание в виде ссылок для более полного описания современного состояния области техники, к которой относится данное изобретение.
Электроактивное вещество, предназначенное для структуры, используемой в батарее, определяется как электрод. Из пары электродов батареи, определенной здесь как химический источник электрической энергии, электрод на стороне с более высоким электрохимическим потенциалом определяют как положительный электрод, или катод, а электрод на стороне с более низким электрохимическим потенциалом определяют как отрицательный электрод, или анод.
Электрохимически активное вещество, используемое в катоде, или положительном электроде, определяют здесь и далее как активное вещество катода. Электрохимически активное вещество, используемое в аноде, или отрицательном электроде, здесь и далее определяется как активное вещество анода. Химический источник электрической энергии, или батарея, содержащая катод из активного вещества катода в окисленном состоянии и анод из активного вещества анода в восстановленном состоянии, определяют как находящийся в заряженном состоянии. Соответственно, химический источник электрической энергии, содержащий катод из активного вещества катода в восстановленном состоянии и анод из активного вещества анода в окисленном состоянии, определяют как находящийся в разряженном состоянии.
Важное требование, предъявляемое к новым типам перезаряжаемых батарей, включает высокую удельную энергию, длительный срок службы, безопасность для пользователя и окружающей среды, а также низкую стоимость. Одной из перспективных электрохимических систем является система литий-сера, которая имеет высокую теоретическую удельную энергию (2600 Вт·ч/кг), безопасна и дешева. В литий-серных батареях в качестве деполяризаторов положительного электрода используют серу или органические соединения серы и полимеры на основе серы. В качестве деполяризатора для отрицательного электрода используют литий или литиевые сплавы.
В литий-серных батареях деполяризатором для положительного электрода обычно служат элементная сера (Патенты США 5789108, 5814420), органические соединения серы (Патент США 6090504) или серосодержащие полимеры (Патенты США 6201100, 6174621, 6117590). Металлический литий обычно используют как материал для отрицательного электрода (Патент США 6706449). Было предложено использовать для отрицательных электродов вещества, в которые литий может быть обратимо внедрен (интеркалирован). Такие вещества представляют собой графит (D. Aurbach, E. Zinigrad, Y.Cohen, H. Teller; "A short review of failure mechanism of lithium metal and lithiated graphite anodes in liquid electrolyte solutions"; Solid State Ionics; 2002; vol 148; pp 405-416) и оксиды и сульфиды некоторых металлов (Патент США 6319633). Однако заявитель не смог найти в доступной литературе конкретные примеры интеркаляционных электродов для литий-серных батарей. Следует подчеркнуть, что интеркаляционные электроды (отрицательные или положительные) можно использовать только в датированной форме. Также необходимо учитывать, что интеркаляционные соединения, содержащие литий, химически активны и их химические свойства близки к свойствам металлического лития.
Одним из недостатков литий-серных батарей (ограничивающих их промышленное использование) является невысокое время цикла из-за низкого коэффициента полезного действия (кпд) цикла литиевого электрода. Соответственно, в литий-серных батареях для достижения более длительного времени цикла обычно используют избыток лития, в 2-10 раз превышающий теоретическое значение. Для повышения кпд цикла литиевого электрода было предложено добавлять в электролит различные соединения (Патенты США 5962171, 6632573) или наносить на поверхность электрода защитные слои полимеров (Патенты США 5648187, 5961672) либо неорганических соединений (Патенты США 6797428, 6733924). Использование защитных покрытий заметно повышает кпд цикла литиевого электрода, но не приводит к значительному увеличению времени цикла во многих областях промышленного применения.
Известно, что весьма эффективны электроды из графитовых интеркалятов (D.Aurbach, E.Zinigrad, Y.Cohen, H.Teller; "A short review of failure mechanism of lithium metal and lithiated graphite anodes in liquid electrolyte solutions"; Solid State Ionics; 2002; vol 148; pp 405-416). Однако для использования таких электродов в качестве отрицательного электрода необходимо иметь источник ионов лития. В традиционных литий-ионных батареях это могут быть литированные оксиды переходных металлов, кобальта, никеля, марганца и других, которые деполяризуют положительный электрод.
Теоретически можно использовать в качестве источника ионов лития конечные продукты разрядки серного электрода (сульфид и дисульфид лития). Однако сульфид и дисульфид лития плохо растворимы в апротонных системах электролитов и поэтому они электрохимически не активны. До сих пор попытки использовать сульфид лития в качестве деполяризатора положительного электрода в литий-серных батареях были неудачны (Peled E., Gorenshtein A., Segal M., Sternberg Y.; "Rechargeable lithium-sulphur battery (extended abstract)"; J. of Power Sources; 1989; vol 26; pp 269-271).
Сульфид лития может реагировать с элементной серой в апротонной среде с образованием полисульфидов лития, которые хорошо растворимы в большинстве известных апротонных электролитных систем (Shin-Ichi Tobishima, Hideo Yamamoto, Minoru Matsuda, "Study on the reduction species of sulphur by alkali metals in nonaqueous solvents", Electrochimica Acta, 1997, vol 42, no 6, pp 1019- 1029; Rauh R.D., Shuker F.S., Marston J.M., Brummer S.B., "Formation of lithium polysulphides in aprotic media", J. Inorg. Nucl Chem., 1977, vol 39, pp 1761-1766; J, Paris, V. Plichom "Electrochemical reduction of sulphur in dimethylacetamide", Electrochimica Acta, 1981, vol 26, no 12, pp 1823-1829; Rauh R.D., Abraham K.M., Pearson G.F., Surprenant J.K., Brummer S.B., "A lithium/dissolved sulphur battery with an organic electrolyte", J, Electrochem-Soc, 1979, vol 126, no 4, pp 523-527). Растворимость полисульфидов лития в апротонных электролитных системах зависит от свойств их компонентов (растворителей и солей), а также от длины полисульфидной цепи. Полисульфиды лития могут диспропорционировать в растворах согласно следующей схеме:
Figure 00000001
Соответственно, в растворе электролита могут одновременно присутствовать полисульфиды лития разной длины, которые находятся в термодинамическом равновесии друг с другом. Молекулярно-массовое распределение полисульфидов определяется составом и физикохимическими свойствами компонентов раствора электролитов. Такие растворы полисульфидов лития обладают высокой электропроводностью (Duck-Rye Chang, Suck-Hyun Lee, Sun-Wook Kim, Hee-Tak Kim "Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulphur battery», J. of Power Sources, 2002, vol 112, pp 452-460) и высокой электрохимической активностью (Taitiro Fujnaga, Tooru Kuwamoto, Satoshi Okazaki, Masashi Horo, "Electrochemical reduction of elemental sulphur in acetonitrile". Bull. Chem. Soc. Jpn., 1980, vol 53, pp 2851-2855; Levillain Е.9 Gaillard F.9 Leghie P., Demortier A., Lelieur LP., "On the understanding of the reduction of sulphur (Sg) in dimethylformamide (DMF)", J. of Electroanalytical Chemistry, 1997, vol 420, pp 167-177; Yamin EL, Penciner J., Gorenshtain A., Elam M., Peled E., "The electrochemical behavior of polysulphides in tetrahydrofuran", J. of Power Sources, 1985, vol 14, pp 129-134; Yamin H., Gorenshtein A., Penciner L, Sternberg Y., Peled E., "Lithium sulphur battery. Oxidation/reduction mechanisms of polysulphides in THF solution", J. Electrochem. Soc, 1988, vol 135, no 5, pp 1045-1048).
Было предложено использовать растворы полисульфидов в апротонных электролитных системах в качестве жидких деполяризаторов для литий-серных батарей (Rauh R.D., Abraham IC.M., Pearson G.F., Surprenant J.C., Brummer S.B., "A lithium/dissolved sulphur battery with an organic electrolyte", J.Electrochem. Soc, 1979, vol 126, no 4, pp 523-527; Yamin H., Peled R, "Electrochemistry of a nonaqueous lithium/sulphur cell", J. of Power Sources, 1983, vol 9, pp 281-287). Такие батареи обычно известны как «литий-серные батареи с жидкими катодами». Степень использования серы в таких батареях с катодами из жидких сульфидов зависит от природы и условий поляризации апротонных электролитных систем. Во многих случаях она близка к 100%, если учитывать полное восстановление серы и образование сульфида лития (Rauh R.D., Abraham K.M., Pearson G.F., Surprenant J.K., Brummer S.B., "A lithium/dissolved sulphur battery with an organic electrolyte", J. Electrochem.Soc, 1979, vol 126, no 4, pp 523-527). Вырабатываемая энергия при использовании жидких катодов на основе полисульфидов лития определяется их растворимостью. В некоторых растворителях (например, тетрагидрофуране) растворимость серы с образованием полисульфидов лития может достигать 20 моль/л (Yamin H., Peled E. "Electrochemistry of a nonaqueous lithium/sulphur cell", J. of Power Sources, 1983, vol 9, pp 281-287). Вырабатываемая энергия при таких жидких катодах составляет более 1000 А·час/л. Длительность цикла литий-серных батарей также определяется свойствами металлического литиевого электрода и лимитируется кпд цикла такого электрода, который в сульфидных системах составляет примерно 80-90% (Peled E., Sternberg Y., Gorenshtein A., Lavi Y., "Lithium-sulphur battery; evaluation of dioxolane-based electrolytes", J. Electrochem. Soc., 1989, vol 136, no 6, pp 1621-1625).
Данные заявителя показали, что длительность цикла литий-серных батарей с жидкими катодами можно увеличить путем использования графита в качестве отрицательного электрода. Но в этом случае необходим источник ионов лития. Обычно в качестве жидких серных катодов используют растворы полисульфидов с длинной цепью (Li2Sn, где n>8). В таких молекулах на один ион лития приходятся восемь или более атомов серы. Соответственно, степень использования цикла литий-серных батарей с жидкими катодами будет низкой и будет определяться длиной полисульфидной цепи. При уменьшении длины цепи полисульфида лития степень использования цикла литий-серных батарей с жидким катодом на основе сульфидов лития увеличивается. Однако, чем короче цепь полисульфидов лития, тем хуже их растворимость в апротонной электролитной системе и, следовательно, ниже выход энергии с катода из жидкого сульфида.
Заявитель установил, что во время контактирования апротонной системы электолитов со смесью сульфида лития и серы образуется раствор полисульфидов лития. Концентрация полисульфидов в растворе и длина полисульфидных цепей определяется, с одной стороны, мольным соотношением сульфида лития и серы, а с другой стороны, природой апротонной электролитной системы. Обычно в присутствии небольшого количества серы не происходит полного растворения сульфида. Однако во время зарядки ячейки, сопровождающейся окислением растворенных полисульфидов до элементной серы, происходит дальнейшее растворение сульфида лития в результате реакции с образовавшейся серой вплоть до полного растворения сульфида лития.
Сущность изобретения
Согласно первому аспекту настоящего изобретения, предложен химический источник электрической энергии, представляющий собой положительный электрод (катод) из электропроводящего материала, проницаемый сепаратор или мембрану, отрицательный электрод (анод) из электропроводящего материала или вещества, способного обратимо интеркалировать ионы лития, и смесь сульфида лития и серы, причем в пространстве между электродами находится апротонный электролит, содержащий по меньшей мере одну соль лития в по меньшей мере одном растворителе.
Смесь сульфида лития с элементной серой служит деполяризатором положительного электрода (электроактивным веществом) для решения проблем (длительность цикла и стоимость производства), связанных с использованием вещества, способного обратимо интеркалировать ионы лития, в качестве отрицательного электрода.
Смесь сульфид лития/сера можно вводить непосредственно в состав положительного электрода при его изготовлении, либо она может быть в виде коллоидного раствора или суспензии, добавляемых к электролиту, или полутвердой эмульсии, пасты или порошковой композиции.
Предпочтительно, чтобы положительный электрод был пористым и имел высокую электропроводность и развитую поверхность.
В других вариантах положительный электрод может иметь практически гладкую или исключительно гладкую поверхность и/или непористую структуру.
Положительный электрод можно изготовить из углерода или графита или металла или другого, предпочтительно высокоэлектропроводного материала (необязательно высокопористого), который устойчив к коррозии в среде сульфидов. Полупроводящие или полупроводниковые материалы, такие как кремний, могут быть альтернативой или добавкой при изготовлении положительного электрода.
Проницаемый сепаратор или мембрану можно изготовить из пористой пленки или нетканого материала, например микропористого полипропилена (сепаратор Celgard®) или нетканого полипропилена.
В случае, когда смесь сульфид лития/сера используют в виде суспензии или коллоида, содержание твердого вещества в суспензии или коллоиде составляет предпочтительно 5-50%. Предпочтительно, чтобы содержание сульфида лития в коллоиде или суспензии составляло 10-99 мас.% или 10-90 мас.% от содержания серы.
Апротонный электролит может представлять собой раствор одного или более следующих соединений: трифторметансульфонат лития, перхлорат лития, трифторметансульфонимид лития, гексафторфосфат лития, гексафторарсенат лития, тетрахлоралюминат лития, литий-тетраалкиламмониевая соль, хлорид лития, бромид лития и иодид лития в одном или нескольких растворителях, выбранных из группы, состоящей из диоксолана, тетрагидрофурана, диметоксиэтана, диглима, триглима, тетраглима, диалкилкарбонатов, сульфолана и бутиролактона.
Согласно второму аспекту настоящего изобретения предложен способ изготовления химического источника электрической энергии, включающий стадии:
i) изготовление катода;
ii) изготовление смеси сульфида лития и серы в апротонном электролите, содержащем по меньшей мере одну соль лития в по меньшей мере одном расторителе;
iii) нанесение покрытия из смеси на катод;
iv) нанесение проницаемого сепаратора или мембраны на покрытый катод;
v) нанесение покрытия из апротонного электролита, содержащего по меньшей мере одну соль лития в по меньшей мере одном растворителе, поверх проницаемого сепаратора или мембраны;
vi) наложение анода на покрытие из апротонного электролита, причем анод изготовлен из электропроводящего материала или материала, способного обратимо интеркалировать ионы лития;
vii) обеспечение контакта между анодом и катодом и герметичное запаивание структуры, полученной в результате указанных стадий.
Катод может иметь развитую, либо загрубленную, либо гладкую поверхность. Предпочтительно, чтобы катод был пористым, но в некоторых вариантах катод является непористым.
Предпочтительно использовать смесь сульфида лития и серы в виде суспензии, коллоида, полутвердой эмульсии, пасты или порошка.
На стадии v) апротонный электролит может также необязательно содержать смесь сульфида лития и серы, как на стадии ii), или он может не содержать смеси сульфида лития или серы.
Перед запаиванием структуру можно компактно сложить или придать ей нужную форму.
Важным отличием настоящего изобретения от предшествующего уровня техники является то, что все положительные электроды (катоды) на предшествующем уровне техники включали серосодержащие компоненты (серу, сульфиды металлов, сероорганические соединения, включая полимеры), из которых состоял катод. Другими словами, эти серосодержашие компоненты были тесно связаны друг с другом в катоде. В вариантах настоящего изобретения, напротив, смесь (например, коллоидный раствор, суспензия, полутвердая эмульсия, паста или порошок) сульфида лития и серы в апротонном электролите наносят или ей покрывают электропроводящий инертный материал (например, уголь, графит, металл, кремний). В катоде нет серосодержащих компонентов, тесно связанных друг с другом. В частности, в предыдущем уровне техники не был раскрыт химический источник тока, в котором смесь сульфида лития и серы в апротонном электролите наносят на катод или ею покрывают катод, и в котором проницаемый сепаратор или мембрана затем помещается поверх покрытия.
Более того, варианты настоящего изобретения используют иной электрохимический способ, чем известный в системах предыдущего уровня техники. В системах предыдущего уровня техники анод с самого начала изготавливали из лития, сплавов лития или других материалов, содержащих ионы лития, а катод изначально делали из серосодержащих компонентов. Реакция в ячейке имеет вид: xLi+S - LixS. В вариантах настоящего изобретения анод с самого начала не содержит металлического лития или ионов лития. Ионы лития инкорпорируют в анод после зарядки ячейки. Аналогично катод с самого начала не содержит серы. Проще говоря, работа литийсульфидной системы в вариантах настоящего изобретения начинается в момент, когда заканчивается цикл существующих литий-серный ячеек и литий окисляется на аноде, а сера восстанавливается на катоде во время разрядки.
Краткое описание чертежей
Для лучшего понимания вариантов настоящего изобретения и иллюстраций их эффективной работы авторы ссылаются на примеры, изображенные на сопровождающих чертежах:
На Фигуре 1 показаны кривые зарядки-разрядки для первого варианта; и
На Фигуре 2 показаны кривые зарядки-разрядки для второго варианта.
Подробное описание изобретения
Известно, что сульфид лития в присутствии апротонных растворителей реагирует с серой с образованием полисульфидов лития разной длины:
Апротонный растворитель
Li2Sтв.+nSтв.→Li2Sn раствор
Полисульфиды лития хорошо растворяются в большинстве известных апротонных электролитных систем и обладают высокой электрохимической активностью. В растворе они подвергаются многостадийной диссоциации:
Li2Sn→Li++LiS-n
LiSn-→Li++Sn2
Во время зарядки электрохимической ячейки, содержащей смесь сульфида лития с серой согласно схеме:
Инертный электрод/ Li2S+nS + раствор соли/инертный электрод
будет протекать реакция восстановления лития на отрицательном электроде:
Li++e→Li0
и реакция окисления серы на положительном электроде:
Sn2-2e→nS
Во время разрядки ячейки на электродах будут протекать обратимые реакции. На отрицательном электроде:
Li0-e→Li+
На положительном электроде:
nS-2ne→nS-2
Удельная мощность и кпд такой ячейки сильно зависят от мольного соотношения сульфида лития и серы. С одной стороны, это соотношение должно обеспечить высокую плотность энергии и, с другой стороны, оно должно привести к большой длительности цикла.
ПРИМЕР 1
Сульфид лития, 98% (Sigma-Aldrich, UK), и сублимированную серу, 99.5% (Fisher Scientific, UK), взятые в массовом соотношении 90:10, размололи в высокоскоростной мельнице (Microtron MB550) в течение 15-20 мин в атмосфере сухого аргона (содержание влаги 20-25 м.д.). Размолотую смесь сульфида лития и серы поместили в колбу, в которую добавили электролит. В качестве электролита использовали 1М раствор трифторметансульфоната лития (выпускаемого 3М Corporation, St. Paul, Minn.) в сульфолане (99.8%, стандарт для ГХ от Sigma-Aldrich, UK). Массовое соотношение жидкость:твердая фаза составило 10:1. Содержимое колбы перемешивали в течение 24 час с помощью магнитной мешалки при комнатной температуре. Жидкую фазу отделили от нерастворившейся твердой фазы фильтрованием. Затем анализировали серу в виде сульфидов и общее содержание серы. Содержание общей серы в исходном электролите также анализировали и учитывали. Результаты анализа:
Содержание общей серы в исходном электролите,
мас.% 25.8±0.1
Содержание общей серы в электролите после реакции со смесью
серы и сульфида лития, % 26.9±0.1
Содержание сульфидной серы в электролите после реакции со
смесью серы и сульфида лития, % 0.18±0.015
Результаты анализов позволили рассчитать состав полисульфидов лития после реакции сульфида лития и серы в электролите, а также концентрацию полисульфида лития в электролите.
Результаты расчета:
Состав полисульфида: Li2S6.1
Концентрация: 0.18%
ПРИМЕР 2
Раствор полисульфидов в электролите готовили, как описано в примере 1 (1М раствор трифторметансульфоната лития в сульфолане), и проводили химический анализ общего количества серы и сульфида. Массовое соотношение Li2S:S составило 50:50.
Результаты анализа:
Содержание общей серы в исходном электролите,
мас.% 25.8±0.1
Содержание общей серы в электролите после реакции со смесью
серы и сульфида лития, % 31,8±0.1
Содержание сульфидной серы в электролите после реакции со
смесью серы и сульфида лития, % 0.96±0.05
Содержание и состав полисульфидов лития в электролите после реакции сульфида лития с серой рассчитывали на основании результатов анализа.
Результаты расчета:
Состав полисульфида: Li2S6.25
Концентрация; 0.96%
ПРИМЕР 3
Раствор полисульфидов в электролите готовили, как описано в примаре 1 (1М раствор трифторметансульфоната лития в сульфолане), и проводили химический анализ общего количества серы и сульфида. Массовое соотношение Li2S:S составило 10:90.
Результаты анализа:
Содержание общей серы в исходном электролите,
мас.%, 25.8±0.1
Содержание общей серы в электролите после реакции со смесью
серы и сульфида лития, % 29.9
Содержание сульфидной серы в электролите после реакции со
смесью серы и сульфида лития, % 0.7
Содержание и состав полисульфидов лития в электролите после реакции сульфида лития с серой рассчитывали на основании результатов анализа.
Результаты расчета:
Состав полисульфида: Li2S5.86
Концентрация: 0.7%
ПРИМЕР 4
Пористый электрод, изготовленный из 50% электропроводящей сажи (Ketjenblack EC-600JD от Akzo Nobel Polymer Chemicals BV, Netherlands) и полиэтиленоксида (РЕО, молекулярная масса 4000000 от Sigma - Aldrich, UK) в качестве связующего, готовили по следующей методике.
Смесь сухих компонентов размололи в высокоскоростной мельнице (Microtron MB550) в течение 15-20 мин. Затем к смеси добавили ацетонитрил в качестве растворителя для связующего. Полученную суспензию затем перемешивали в течение 15-20 час на лабораторной мешалке DLH. Содержание твердого вещества в суспензии составило 5%. Полученную суспензию нанесли с помощью автоматического аппликатора пленки (Elcometer SPRL) на одну сторону алюминиевой фольги толщиной 18 мкм с электропроводящим угольным покрытием (продукт No. 60303 от Rexam Graphics, South Hadley, Mass.) в качестве токоприемника.
Угольное покрытие сушили при обычных условиях в течение 20 час. После сушки электрод прессовали под давлением 1000 кг/см2. После прессования полученный слой сухого катода имел толщину 8 мкм и содержал 0.47 мг/см2 смеси уголь - РЕО. Объемная плотность угольного слоя составила 590 мг/см3 и пористость была 72%.
ПРИМЕР 5
Приготовили суспензию, содержащую смесь сульфида лития и серы в электролите. Сульфид лития, 98% (Sigma-Aldrich, UK), и сублимированную серу, 99.5% (Fisher Scientific, UK), взятые в массовом соотношении 90:10, размололи в высокоскоростной мельнице (Microtron MB550) в течение 15-20 мин в атмосфере сухого аргона (содержание влаги 20-25 м.д.). Измельченную смесь сульфида лития и серы поместили в шаровую мельницу и в мельницу добавили электролит. В качестве электролита использовали раствор трифторметансульфоната лития (выпускаемого 3М Corporation, St. Paul, Minn.) в сульфолане (99.8%, стандарт для ГХ от Sigma-Aldrich, UK). Соотношение жидкость:твердая фаза составило 10:1.
ПРИМЕР 6
Твердый композитный катод из примера 4 с величиной поверхности электрода 5 см2 использовали в малой электрохимической ячейке, производящей электрический ток. Перед помещением в ячейку электрод сушили в вакууме при 50°С в течение 5 час. В качестве пористого сепаратора использовали Celgard 2500 (торговая марка Tonen Chemical Corporation, Tokyo, Japan, также выпускаемая Mobil Chemical Company, Films Division, Pittsford, N.Y.). В качестве токоприемника на отрицательном электроде использовали медную фольгу.
Ячейку собирали следующим образом:
тонкий ровный слой суспензии сульфида лития и серы в электролите из примера 5 нанесли на поверхность пористого угольного катода из примера 4 в количестве примерно 7.5 мг/см2. Затем на электрод поверх нанесенной суспензии нанесли один слой Celgard 2500. На сепаратор нанесли электролит, включающий раствор трифторметансульфоната лития (выпускаемого 3М Corporation, St. Paul, Minn.) в сульфолане (99.8%, стандарт для ГХ от Sigma-Aldrich, UK), но без суспензии сульфида лития-серы, в количестве 1 мкл/см2. Медный токоприемник поместили сверху полученной «сэндвичевой» структуры. Наконец, ячейку герметически запаяли.
Ячейку выдерживали при обычной температуре в течение 24 час и затем заряжали при плотности тока 0.05 мА/см2 до напряжения 2.8 В.
Затем ячейку обрабатывали циклами зарядки-разрядки при плотности тока 0.1 мА/см2, конец разрядки при 1.5 В и конец зарядки при 2.8 В. Кривые зарядки-разрядки показаны на фигуре 1. Кривые зарядки-разрядки аналогичны кривым, полученным для литий-серных ячеек с использованием элементной серы в качестве деполяризатора катода (электроактивное вещество). Эффективность использования литий-серы составляет 55-65%.
ПРИМЕР 7
Твердый композитный катод с величиной поверхности примерно 5 см2 из примера 4 использовали в электрохимической ячейке. Перед изготовлением ячейки электрод сушили в течение 5 час в вакууме при 50°С.
Использовали пористый сепаратор Celgard 2500 (Tonen Chemical Corporation, Tokyo, Japan, также выпускаемый Mobil Chemical Company; Films Division, Pibbsford, N.Y.).
В качестве токоприемника для отрицательного электрода использовали алюминиевую фольгу толщиной 20 мкм.
Ячейку собирали следующим образом:
пористый угольный электрод покрыли тонким однородным слоем суспензии сульфида лития и серы в электролите, полученной как описано в примере 2, в количестве примерно 7.5 мг/см2. Затем на электрод нанесли один слой сепаратора Celgard 2500 поверх нанесенной суспензии. Электролит нанесли на сепаратор в количестве 1 мкл/см2. Сверху поместили диск из медной фольги. Затем ячейку запаяли.
Ячейку выдержали при комнатной температуре в течение 24 час и затем зарядили при плотности тока 0.05 мА/см2 до 2.8 В.
Затем ячейку обрабатывали циклами зарядки-разрядки при плотности тока 0.1 мА/см2, окончание разрядки при 1.5 В и окончание зарядки при 2.8 В. Полученные кривые зарядки-разрядки приведены на фигуре 2.
Предпочтительные особенности изобретения применимы ко всем вариантам изобретения и могут быть использованы в любой возможной комбинации.
В описании и формуле изобретения термины «включают» и «содержат» и их вариации, например «включающий» и «содержащий», означают «включают, но не ограничивают» и не исключают другие компоненты, целые числа, фрагменты, добавки или стадии.

Claims (17)

1. Химический источник электрической энергии, содержащий положительный электрод (катод) из электропроводящего материала, проницаемый сепаратор или мембрану и отрицательный электрод (анод) из электропроводящего материала или материала, способного обратимо интеркалировать ионы лития, который находится в апротонном электролите между катодом и сепаратором, содержащим смесь сульфида лития и серы и по меньшей мере одну соль лития в по меньшей мере одном растворителе, в форме суспензии, коллоида, полутвердой эмульсии или пасты, и апротонный электролит, содержащий по меньшей мере одну соль лития в по меньшей мере одном растворителе, находящийся между сепаратором и анодом.
2. Химический источник электрической энергии по п.1, в котором положительный электрод является пористым.
3. Химический источник электрической энергии по п.1, в котором положительный электрод является непористым.
4. Химический источник электрической энергии по п.1, в котором положительный электрод имеет развитую или затрубленную поверхность.
5. Химический источник электрической энергии по п.1, в котором положительный электрод имеет гладкую поверхность.
6. Химический источник электрической энергии по п.1, в котором положительный электрод изготовлен из угля, или графита, или металлического материала, устойчивого к коррозии в сульфидных средах, или полупроводникового материала.
7. Химический источник электрической энергии по п.1, в котором проницаемый сепаратор или мембрана изготовлены из пористого тканого или нетканого материала.
8. Химический источник электрической энергии по п.1, в котором смесь содержит 5-50% твердого вещества.
9. Химический источник электрической энергии по п.8, в котором содержание сульфида лития в смеси составляет 10-99 мас.% от содержания серы.
10. Химический источник электрической энергии по п.1, в котором электролиты между катодом и сепаратором, с одной стороны, и между сепаратором и анодом, с другой стороны, одинаковые.
11. Химический источник электрической энергии по п.1, в котором апротонный электролит содержит раствор одного или более следующих соединений: трифторметансульфонат лития, перхлорат лития, трифторметансульфонимид лития, гексафторфосфат лития, гексафторарсенат лития, тетрахлоралюминат лития, литий-тетраалкиламмониевая соль, хлорид лития, бромид лития и иодид лития в одном или нескольких растворителях, выбранных из группы, состоящей из диоксолана, тетрагидрофурана, диметоксиэтана, диглима, триглима, тетраглима, диалкилкарбонатов, сульфолана и бутиролактона.
12. Способ изготовления химического источника электрической энергии, включающий:
i) получение катода;
ii) получение смеси сульфида лития и серы в апротонном электролите, содержащем по меньшей мере одну соль лития по меньшей мере в одном растворителе;
iii) нанесение покрытия из смеси на катод;
iv) нанесение проницаемого сепаратора или мембраны на покрытый катод;
v) нанесение покрытия из апротонного электролита, содержащего по меньшей мере одну соль лития в по меньшей мере одном растворителе, поверх проницаемого сепаратора или мембраны;
vi) получение анода на покрытии из апротонного электролита, причем анод изготовлен из электропроводящего материала или материала, способного обратимо интеркалировать ионы лития;
vii) обеспечение контакта между анодом и катодом и герметичное запаивание структуры, полученной в результате указанных стадий.
13. Способ по п.12, в котором катод является пористым.
14. Способ по п.12, в котором катод имеет гладкую поверхность.
15. Способ по п.12, в котором на стадии v) апротонный электролит содержит смесь сульфида лития и серы.
16. Способ по п.12, в котором на стадии v) апротонный электролит не содержит смеси сульфида лития и серы.
17. Способ по п.12, в котором структуру складывают или формуют иным образом перед запаиванием.
RU2007139012/09A 2005-03-22 2006-03-21 Химический источник электроэнергии и способ его изготовления RU2402842C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0505790A GB2424511B (en) 2005-03-22 2005-03-22 Lithium sulphide battery and method of producing the same
GB0505790.6 2005-03-22
US66459205P 2005-03-24 2005-03-24
US60/664,592 2005-03-24

Publications (2)

Publication Number Publication Date
RU2007139012A RU2007139012A (ru) 2009-04-27
RU2402842C2 true RU2402842C2 (ru) 2010-10-27

Family

ID=36968857

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007139012/09A RU2402842C2 (ru) 2005-03-22 2006-03-21 Химический источник электроэнергии и способ его изготовления

Country Status (6)

Country Link
US (3) US7695861B2 (ru)
EP (1) EP1867000B1 (ru)
JP (3) JP2008535154A (ru)
KR (1) KR101301115B1 (ru)
RU (1) RU2402842C2 (ru)
WO (1) WO2006100464A2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA023189B1 (ru) * 2010-08-20 2016-05-31 Лекланше Са Способ получения гальванического элемента
RU2619080C1 (ru) * 2013-08-16 2017-05-11 ЭлДжи КЕМ, ЛТД. Катод для литиево-серной батареи и способ его приготовления
RU2670920C1 (ru) * 2016-12-09 2018-10-25 Тойота Дзидося Кабусики Кайся Способ получения сульфидного твердого электролита
US10243212B2 (en) 2013-06-03 2019-03-26 Lg Chem, Ltd. Electrode assembly for sulfur-lithium ion battery and sulfur-lithium ion battery including the same
RU2754868C2 (ru) * 2017-03-22 2021-09-08 Мицубиси Газ Кемикал Компани, Инк. Способ получения твердого электролита на основе lgps
US11283070B1 (en) 2021-04-22 2022-03-22 Massachusetts Instilute of Technology Aluminum-chalcogen batteries with alkali halide molten salt electrolytes
RU2796628C2 (ru) * 2022-07-19 2023-05-29 Общество С Ограниченной Ответственностью "Даглитий" Способ получения литий-серного катода

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629947B2 (en) * 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US20060024579A1 (en) * 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
JP5466364B2 (ja) * 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
WO2006077380A2 (en) * 2005-01-18 2006-07-27 Oxis Energy Limited Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds
RU2402842C2 (ru) * 2005-03-22 2010-10-27 Оксис Энерджи Лимитед Химический источник электроэнергии и способ его изготовления
WO2007034243A1 (en) * 2005-09-26 2007-03-29 Oxis Energy Limited Lithium-sulphur battery with high specific energy
GB0615870D0 (en) * 2006-08-10 2006-09-20 Oxis Energy Ltd An electrolyte for batteries with a metal lithium electrode
EP2102924B1 (en) * 2006-12-04 2018-03-28 Sion Power Corporation Separation of electrolytes in lithium batteries
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
EP2409349A4 (en) * 2009-03-19 2013-05-01 Sion Power Corp CATHODE FOR LITHIUM BATTERY
CN102598364B (zh) * 2009-08-28 2016-01-27 赛昂能源有限公司 包含含硫的多孔结构的电化学电池
DE102010018731A1 (de) * 2010-04-29 2011-11-03 Li-Tec Battery Gmbh Lithium-Schwefel-Batterie
JP5596790B2 (ja) * 2010-12-28 2014-09-24 三井金属鉱業株式会社 リチウム二次電池用正極活物質の製造方法
FR2979755B1 (fr) * 2011-09-02 2015-06-05 Commissariat Energie Atomique Accumulateur electrochimique de type lithium-soufre (li-s) et son procede de realisation
WO2013123131A1 (en) 2012-02-14 2013-08-22 Sion Power Corporation Electrode structure for electrochemical cell
EP2629352A1 (en) 2012-02-17 2013-08-21 Oxis Energy Limited Reinforced metal foil electrode
US9406960B2 (en) * 2012-03-28 2016-08-02 Battelle Memorial Institute Energy storage systems having an electrode comprising LixSy
WO2014095483A1 (en) 2012-12-19 2014-06-26 Basf Se Electrode structure and method for making same
US9257699B2 (en) 2013-03-07 2016-02-09 Uchicago Argonne, Llc Sulfur cathode hosted in porous organic polymeric matrices
EP2784850A1 (en) 2013-03-25 2014-10-01 Oxis Energy Limited A method of cycling a lithium-sulphur cell
EP2784851B1 (en) 2013-03-25 2015-08-19 Oxis Energy Limited A method of charging a lithium-sulphur cell
ES2671399T3 (es) 2013-03-25 2018-06-06 Oxis Energy Limited Un método para cargar una celda de litio-azufre
JP6048751B2 (ja) * 2013-06-06 2016-12-21 株式会社豊田自動織機 リチウムイオン二次電池用集電体、リチウムイオン二次電池用電極及びリチウムイオン二次電池
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
WO2015092380A1 (en) 2013-12-17 2015-06-25 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
WO2015126932A1 (en) * 2014-02-18 2015-08-27 Brookhaven Science Associates, Llc Multifunctional cathode additives for battery technologies
WO2015166030A1 (en) 2014-05-01 2015-11-05 Basf Se Electrode fabrication methods and associated articles
CN106537660B (zh) 2014-05-30 2020-08-14 奥克斯能源有限公司 锂硫电池
US20180233742A1 (en) * 2014-10-08 2018-08-16 Wayne State University Electrocatalysis of lithium polysulfides: current collectors as electrodes in li/s battery configuration
US10439219B2 (en) * 2015-04-17 2019-10-08 Uchicago Argonne, Llc Ultrastable cathodes for lithium sulfur batteries
US11784341B2 (en) * 2015-12-08 2023-10-10 The Chinese University Of Hong Kong High-energy density and low-cost flow electrochemical devices with moving rechargeable anode and cathode belts
CN106816634B (zh) * 2017-03-10 2019-12-10 中国计量大学 一种伪高浓度锂硫电池电解液和锂硫电池
KR20200014325A (ko) * 2017-06-02 2020-02-10 나노텍 인스트러먼츠, 인코포레이티드 형상 순응 알칼리 금속-황 전지
KR102160707B1 (ko) * 2017-09-22 2020-09-28 주식회사 엘지화학 리튬-황 전지의 수명 개선 방법

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185590A (en) 1961-01-06 1965-05-25 North American Aviation Inc Lightweight secondary battery
US3578500A (en) 1968-07-08 1971-05-11 American Cyanamid Co Nonaqueous electro-chemical current producing cell having soluble cathode depolarizer
US3639174A (en) 1970-04-22 1972-02-01 Du Pont Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system
US3778310A (en) 1972-05-01 1973-12-11 Du Pont High energy density battery having unsaturated heterocyclic solvent containing electrolyte
US3877983A (en) 1973-05-14 1975-04-15 Du Pont Thin film polymer-bonded cathode
US3907597A (en) 1974-09-27 1975-09-23 Union Carbide Corp Nonaqueous cell having an electrolyte containing sulfolane or an alkyl-substituted derivative thereof
US3947291A (en) * 1974-09-30 1976-03-30 The United States Of America As Represented By The United States Energy Research And Development Administration Electrochemical cell assembled in discharged state
US4048389A (en) * 1976-02-18 1977-09-13 Union Carbide Corporation Cathode or cathode collector arcuate bodies for use in various cell systems
US4060674A (en) 1976-12-14 1977-11-29 Exxon Research And Engineering Company Alkali metal anode-containing cells having electrolytes of organometallic-alkali metal salts and organic solvents
US4118550A (en) 1977-09-26 1978-10-03 Eic Corporation Aprotic solvent electrolytes and batteries using same
US4104451A (en) 1977-09-26 1978-08-01 Exxon Research & Engineering Co. Alkali metal anode/chalcogenide cathode reversible batteries having alkali metal polyaryl metallic compound electrolytes
US4163829A (en) 1977-11-14 1979-08-07 Union Carbide Corporation Metallic reducing additives for solid cathodes for use in nonaqueous cells
FR2442512A1 (fr) 1978-11-22 1980-06-20 Anvar Nouveaux materiaux elastomeres a conduction ionique
US4218523A (en) * 1979-02-28 1980-08-19 Union Carbide Corporation Nonaqueous electrochemical cell
US4252876A (en) 1979-07-02 1981-02-24 Eic Corporation Lithium battery
JPS59194361A (ja) 1983-03-18 1984-11-05 Toshiba Battery Co Ltd 空気電池
US4499161A (en) 1983-04-25 1985-02-12 Eic Laboratories, Inc. Electrochemical cell using dimethoxymethane and/or trimethoxymethane as solvent for electrolyte
US4550064A (en) 1983-12-08 1985-10-29 California Institute Of Technology High cycle life secondary lithium battery
FR2576712B1 (fr) 1985-01-30 1988-07-08 Accumulateurs Fixes Generateur electrochimique a electrolyte non aqueux
EP0208254B1 (en) 1985-07-05 1993-02-24 Showa Denko Kabushiki Kaisha Secondary battery
US4725927A (en) 1986-04-08 1988-02-16 Asahi Glass Company Ltd. Electric double layer capacitor
CA2016777C (en) 1989-05-16 1993-10-12 Norio Takami Nonaqueous electrolyte secondary battery
US5219684A (en) 1990-05-16 1993-06-15 Her Majesty The Queen In Right Of Canada, As Represented By The Province Of British Columbia Electrochemical cells containing a safety electrolyte solvent
US5587253A (en) 1993-03-05 1996-12-24 Bell Communications Research, Inc. Low resistance rechargeable lithium-ion battery
US5460905A (en) 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5648187A (en) * 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5961672A (en) * 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
JPH0869812A (ja) 1994-08-30 1996-03-12 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池およびその製造法
JPH08138650A (ja) 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc 非水電解液二次電池用炭素質電極板および二次電池
US6020089A (en) 1994-11-07 2000-02-01 Sumitomo Electric Industries, Ltd. Electrode plate for battery
US5814420A (en) * 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US5686201A (en) * 1994-11-23 1997-11-11 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6030720A (en) 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US5582623A (en) 1994-11-23 1996-12-10 Polyplus Battery Company, Inc. Methods of fabricating rechargeable positive electrodes
DE69619179T2 (de) 1995-04-03 2002-08-22 Mitsubishi Materials Corp Poröser metallischer körper mit höher spezifischer oberfläche, verfahren zu dessen herstellung, poröses metallisches material und elektrode für alkalische sekundärbatterie
JPH08298230A (ja) 1995-04-26 1996-11-12 Mitsubishi Chem Corp 電気二重層コンデンサ用電解液
JPH08298229A (ja) 1995-04-26 1996-11-12 Mitsubishi Chem Corp 電気二重層コンデンサ用電解液
US5529860A (en) 1995-06-07 1996-06-25 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
EP0834201A4 (en) 1995-06-07 1999-11-10 Moltech Corp ELECTROACTIVE UPLOAD CAPACITIVE POLYACETYLENE-CO-POLYSULPHUR MATERIALS AND ELECTROLYTIC CELLS CONTAINING THEM
US5773168A (en) * 1995-08-23 1998-06-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and method for manufacturing the same
JPH09147913A (ja) 1995-11-22 1997-06-06 Sanyo Electric Co Ltd 非水電解質電池
US5797428A (en) 1996-01-11 1998-08-25 Vemco Corporation Pop-alert device
EP0958627B1 (en) 1996-05-22 2002-02-27 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
WO1997048145A1 (en) * 1996-06-14 1997-12-18 Moltech Corporation Composition useful in electrolytes of secondary battery cells
JPH10284076A (ja) 1997-04-01 1998-10-23 Matsushita Electric Ind Co Ltd アルカリ蓄電池及びその電極の製造方法
US6090504A (en) * 1997-09-24 2000-07-18 Korea Kumho Petrochemical Co., Ltd. High capacity composite electrode and secondary cell therefrom
US6245465B1 (en) 1997-10-15 2001-06-12 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
US6201100B1 (en) * 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
US6302928B1 (en) 1998-12-17 2001-10-16 Moltech Corporation Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers
JP3573992B2 (ja) * 1999-02-15 2004-10-06 三洋電機株式会社 リチウム二次電池
JP2000340225A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Ind Co Ltd 複合電極組成物およびこれを用いたリチウム電池
JP2000311684A (ja) * 1999-04-26 2000-11-07 Matsushita Electric Ind Co Ltd リチウム二次電池およびその正極の製造方法
KR100322449B1 (ko) 1999-06-07 2002-02-07 김순택 리튬 이차 전지용 전해액 및 이를 사용한 리튬 이차 전지
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US6733924B1 (en) * 1999-11-23 2004-05-11 Moltech Corporation Lithium anodes for electrochemical cells
WO2001097304A1 (en) 2000-06-12 2001-12-20 Korea Institute Of Science And Technology Multi-layered lithium electrode, its preparation and lithium batteries comprising it
KR100756812B1 (ko) 2000-07-17 2007-09-07 마츠시타 덴끼 산교 가부시키가이샤 비수 전기화학 장치
KR100326467B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
KR100326466B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
EP1344265B1 (en) * 2000-12-21 2008-02-13 Sion Power Corporation Lithium anodes for electrochemical cells
US6632573B1 (en) * 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
JP2002329495A (ja) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd リチウム二次電池とその製造方法
KR100385357B1 (ko) * 2001-06-01 2003-05-27 삼성에스디아이 주식회사 리튬-황 전지
KR100472513B1 (ko) * 2002-11-16 2005-03-11 삼성에스디아이 주식회사 리튬 설퍼 전지용 유기 전해액 및 이를 채용한 리튬 설퍼전지
JP2004179160A (ja) * 2002-11-26 2004-06-24 Samsung Sdi Co Ltd リチウム−硫黄電池用正極
JP4055642B2 (ja) * 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
JP2005108724A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005158313A (ja) * 2003-11-21 2005-06-16 Sanyo Electric Co Ltd 非水電解質二次電池
JP4535722B2 (ja) * 2003-12-24 2010-09-01 三洋電機株式会社 非水電解質二次電池
JP2005251473A (ja) * 2004-03-02 2005-09-15 Sanyo Electric Co Ltd 非水電解質二次電池
US20060024579A1 (en) 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
JP5466364B2 (ja) 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
WO2006077380A2 (en) 2005-01-18 2006-07-27 Oxis Energy Limited Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds
RU2402842C2 (ru) * 2005-03-22 2010-10-27 Оксис Энерджи Лимитед Химический источник электроэнергии и способ его изготовления
WO2007034243A1 (en) 2005-09-26 2007-03-29 Oxis Energy Limited Lithium-sulphur battery with high specific energy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA023189B1 (ru) * 2010-08-20 2016-05-31 Лекланше Са Способ получения гальванического элемента
US10243212B2 (en) 2013-06-03 2019-03-26 Lg Chem, Ltd. Electrode assembly for sulfur-lithium ion battery and sulfur-lithium ion battery including the same
RU2619080C1 (ru) * 2013-08-16 2017-05-11 ЭлДжи КЕМ, ЛТД. Катод для литиево-серной батареи и способ его приготовления
RU2670920C1 (ru) * 2016-12-09 2018-10-25 Тойота Дзидося Кабусики Кайся Способ получения сульфидного твердого электролита
RU2670920C9 (ru) * 2016-12-09 2018-12-13 Тойота Дзидося Кабусики Кайся Способ получения сульфидного твердого электролита
RU2754868C2 (ru) * 2017-03-22 2021-09-08 Мицубиси Газ Кемикал Компани, Инк. Способ получения твердого электролита на основе lgps
US11283070B1 (en) 2021-04-22 2022-03-22 Massachusetts Instilute of Technology Aluminum-chalcogen batteries with alkali halide molten salt electrolytes
RU2796628C2 (ru) * 2022-07-19 2023-05-29 Общество С Ограниченной Ответственностью "Даглитий" Способ получения литий-серного катода
RU2820527C2 (ru) * 2023-01-23 2024-06-05 Общество С Ограниченной Ответственностью "Даглитий" Металл-серный проточный аккумулятор

Also Published As

Publication number Publication date
WO2006100464A2 (en) 2006-09-28
US20120189921A1 (en) 2012-07-26
US8361652B2 (en) 2013-01-29
JP2008535154A (ja) 2008-08-28
EP1867000A2 (en) 2007-12-19
JP2014089964A (ja) 2014-05-15
KR20070113208A (ko) 2007-11-28
JP2014089965A (ja) 2014-05-15
KR101301115B1 (ko) 2013-09-03
EP1867000B1 (en) 2011-10-05
US20060234126A1 (en) 2006-10-19
US7695861B2 (en) 2010-04-13
WO2006100464A3 (en) 2006-12-21
RU2007139012A (ru) 2009-04-27
US20100196757A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
RU2402842C2 (ru) Химический источник электроэнергии и способ его изготовления
JP5442257B2 (ja) 高い比エネルギーを備えたリチウム−硫黄バッテリ
JP5297383B2 (ja) 高比エネルギーのリチウム−硫黄電池及びその動作法
US9196929B2 (en) Electrolyte compositions for batteries using sulphur or sulphur compounds
KR20100136564A (ko) 네거티브 리튬 전극을 구비한 재충전식 전지
CN109585909B (zh) 用于锂硫电池的电解质组合物
EP2033246A2 (en) Lithium secondary battery for operation over a wide range of temperatures
KR20160100968A (ko) 리튬-황 셀
US20130260204A1 (en) Energy Storage Systems Having an Electrode Comprising LixSy
KR20140006085A (ko) 높은 비에너지를 가진 리튬-황 전지
ES2374834T3 (es) Batería de sulfuro de litio y método para producir la misma.
RU2431908C2 (ru) Химический источник электрической энергии
GB2422244A (en) Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds