RU2397822C1 - Two-stage dust collection system by kochetov - Google Patents

Two-stage dust collection system by kochetov Download PDF

Info

Publication number
RU2397822C1
RU2397822C1 RU2008152309/05A RU2008152309A RU2397822C1 RU 2397822 C1 RU2397822 C1 RU 2397822C1 RU 2008152309/05 A RU2008152309/05 A RU 2008152309/05A RU 2008152309 A RU2008152309 A RU 2008152309A RU 2397822 C1 RU2397822 C1 RU 2397822C1
Authority
RU
Russia
Prior art keywords
filter
gas
dust
cyclone
chamber
Prior art date
Application number
RU2008152309/05A
Other languages
Russian (ru)
Other versions
RU2008152309A (en
Inventor
Олег Савельевич Кочетов (RU)
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2008152309/05A priority Critical patent/RU2397822C1/en
Publication of RU2008152309A publication Critical patent/RU2008152309A/en
Application granted granted Critical
Publication of RU2397822C1 publication Critical patent/RU2397822C1/en

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Cyclones (AREA)

Abstract

FIELD: mechanics.
SUBSTANCE: invention is related to dust collection machinery. The dust collection system contains a cyclone representing the first decontamination stage and connected to the filtering element representing the second stage of removal of dust from gas-and-air mixture. The cyclone contains a housing consisting of a cylindrical and a conic parts, a peripheral gas flow inlet represented by an inlet nipple, an exhaust device containing an exhaust pipe with a splitter for decontaminated gas inlet, a socket contained inside the housing with a water collector and a drain tube. The exhaust pipe is connected to the hose filter filtering chamber via an air duct. The hose filter filtering chamber is shaped as a cabinet with side doors for removal of vertically position filtering elements represented by filtering hoses. The decontaminated gas outlet flange is located inside the decontaminated gas chamber positioned over the filtering chamber, its cross section dimensions equal to those of the flange for inlet of gas to be decontaminated into the filter which is additionally equipped with a temperature sensor mounted inside the filtering section housing. Mounted inside the dust collection bin is an emergency dust level sensor; mounted inside the filtering section outlet box is an automatic thermal annunciator sensor. The above sensors outputs are connected to the governing controller.
EFFECT: improved efficiency and reliability of the dust collection process, reduction of metal-intensity and vibroacoustic activity of the device in general.
6 dwg

Description

Изобретение относится к технике пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.The invention relates to techniques for dust collection and can be used in chemical, textile, food, light and other industries for the purification of dusty gases.

Наиболее близким техническим решением к заявляемому объекту является система пылеудаления по патенту RU №2256510, В04С 9/00 от 15.06.04, содержащая циклон, как первую ступень очистки, имеющий корпус, периферийный ввод газового потока, крышку, бункер и выходной патрубок для выхода очищенного газа, причем на конце выходного патрубка очищенного газа закреплен фильтрующий элемент, выполняющий функцию второй ступени очистки газовоздушной смеси от пыли (прототип).The closest technical solution to the claimed object is a dust removal system according to patent RU No. 2256510, B04C 9/00 dated 06/15/04, containing a cyclone as a first cleaning stage, having a housing, a peripheral gas flow inlet, a lid, a hopper and an outlet pipe for the outlet of the cleaned gas, and at the end of the outlet of the purified gas a filter element is fixed, which performs the function of the second stage of dust-gas mixture cleaning (prototype).

Недостатком прототипа является сравнительно невысокая эффективность процесса пылеулавливания.The disadvantage of the prototype is the relatively low efficiency of the dust collection process.

Целью изобретения является повышение эффективности и надежности процесса пылеулавливания, а также снижение металлоемкости и виброакустической активности аппарата в целом.The aim of the invention is to increase the efficiency and reliability of the dust collection process, as well as reducing the metal consumption and vibroacoustic activity of the apparatus as a whole.

Это достигается тем, что в двухступенчатой системе пылеудаления, содержащей циклон, как первую ступень очистки, имеющий корпус, периферийный ввод газового потока, крышку, бункер и выходной патрубок для выхода очищенного газа, соединенный с фильтрующим элементом, выполняющим функцию второй ступени очистки газовоздушной смеси от пыли, циклон содержит корпус, состоящий из цилиндрической и конической частей, периферийный ввод газового потока, выполненный в виде входного патрубка и выхлопное устройство, содержащее выхлопную трубу с рассекателем для входа очищенного газа, размещенный внутри корпуса стакан с водосборником и сливной трубкой, причем выхлопная труба соединена воздуховодом с фильтрующей камерой рукавного фильтра, являющегося второй ступенью системы пылеулавливания, а вход рукавного фильтра соединен с выходом выхлопной трубы через фланец для входа очищаемого газа в фильтрующую камеру рукавного фильтра, имеющей вид шкафа с удобной выемкой через боковые двери вертикально расположенных фильтроэлементов в виде фильтрующих рукавов, причем фланец для выхода очищенного газа расположен в камере очищенного газа, расположенной над фильтрующей камерой, и имеет размеры поперечного сечения, равные с фланцем для входа очищаемого газа в фильтр, который дополнительно снабжен датчиком температуры, установленным в корпусе фильтровальной секции, а в бункере для сбора пыли установлен аварийный датчик уровня пыли, в выходном коробе фильтровальной секции установлен тепловой автоматический датчик-извещатель, выходы с которых соединены с управляющим контроллером, а в выходном коробе фильтровальной секции фильтра установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которым соединен с управляющим контроллером, причем бункер для сбора пыли выполнен конической или пирамидальной формы с углом наклона стенок, превышающим угол естественного откоса улавливаемой пыли, а система регенерации фильтра включает в себя клапанные блоки, в которых смонтированы электромагнитные клапаны, вход которых соединен с выходом управляющего контроллера; импульсные клапаны с импульсными трубами и патрубками, сопла Вентури; дифманометр, подключенный через датчик давления к камере для выхода очищенного газа и через датчик давления к фильтрующей камере для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов, причем дифманометр соединен с управляющим контроллером.This is achieved by the fact that in a two-stage dust removal system containing a cyclone as a first cleaning stage, having a housing, a peripheral gas inlet, a lid, a hopper and an outlet pipe for the outlet of the purified gas, connected to a filter element that performs the function of the second stage of purification of the gas-air mixture from dust, the cyclone contains a housing consisting of a cylindrical and conical parts, the peripheral input of the gas stream, made in the form of an inlet pipe and an exhaust device containing an exhaust pipe with a cut a clean gas inlet, a cup placed inside the housing with a water collector and a drain pipe, the exhaust pipe being connected by an air duct to the filter chamber of the bag filter, which is the second stage of the dust collection system, and the bag filter inlet is connected to the outlet of the exhaust pipe through a flange for the gas to be cleaned into the filter a bag filter chamber having the form of a cabinet with a convenient recess through the side doors of vertically arranged filter elements in the form of filter bags, the flange for cleaning out gas is located in the purified gas chamber located above the filter chamber and has a cross-sectional size equal to the flange for the gas to be cleaned into the filter, which is additionally equipped with a temperature sensor installed in the filter section housing, and an emergency sensor is installed in the dust bin dust level, a thermal automatic detector detector is installed in the output box of the filter section, the outputs of which are connected to the control controller, and in the output box of the filter section a collector with nozzles for connecting to the fire extinguishing system is installed, the control unit of which is connected to the control controller, the dust collecting bin made in a conical or pyramidal shape with an angle of inclination of the walls exceeding the angle of repose of the captured dust, and the filter regeneration system includes valve blocks in which electromagnetic valves are mounted, the input of which is connected to the output of the control controller; impulse valves with impulse pipes and nozzles, venturi nozzles; a differential pressure gauge connected through a pressure sensor to the chamber for the outlet of the purified gas and through a pressure sensor to the filter chamber for the entrance of the gas to be purified, as well as a set of valves for supplying compressed air to the valve blocks, the differential pressure gauge connected to the control controller.

На фиг.1 изображена схема двухступенчатой системы пылеудаления, на фиг.2 - вид сверху циклона, на фиг.3 - вид циклона сбоку и в разрезе, на фиг.4 - общий вид рукавного фильтра, на фиг.5 - профильная проекция фиг.4, фиг.6 - схема системы регенерации фильтра.Figure 1 shows a diagram of a two-stage dust removal system, figure 2 is a top view of the cyclone, figure 3 is a side view and a sectional view of the cyclone, figure 4 is a General view of the bag filter, figure 5 is a profile projection of fig. 4, 6 is a diagram of a filter regeneration system.

Двухступенчатая система пылеудаления содержит циклон (фиг.1-3), как первую ступень очистки, имеющий корпус 2, состоящий из цилиндрической и конической частей, периферийный ввод газового потока, выполненный в виде входного патрубка и выхлопное устройство, содержащее выхлопную трубу 4 с рассекателем 1 для выхода очищенного газа, размещенный внутри корпуса стакан 3 с водосборником 5 и сливной трубкой 6, причем выхлопная труба 4 соединена воздуховодом 33 с фильтрующей камерой 7 рукавного фильтра, являющегося второй ступенью системы пылеулавливания.The two-stage dust removal system contains a cyclone (Figs. 1-3), as a first cleaning stage, having a housing 2 consisting of a cylindrical and conical parts, a peripheral gas flow inlet made in the form of an inlet pipe and an exhaust device containing an exhaust pipe 4 with a divider 1 for the release of purified gas, a cup 3 is placed inside the housing with a water collector 5 and a drain pipe 6, the exhaust pipe 4 being connected by an air duct 33 to the filter chamber 7 of the bag filter, which is the second stage of the dust collection system I am.

Для снижения виброакустической активности циклона и его металлоемкости, а также повышения его надежности в предлагаемом устройстве предусмотрены следующие мероприятия: детали циклона выполнены из конструкционных композиционных или полимерных материалов, например полиэтилена, капрона, полиуретана с помощью литья, штамповки, формования; винтообразные элементы деталей циклона изготовлены способами пластической деформации, например выдавливания или накатки на оборудовании, имеющем винтообразное формообразующее движение; на винтообразные элементы деталей циклона и поверхности, контактирующие с запыленным газовым потоком нанесен износостойкий слой, например способами напыления или с применением гальванического оборудования; на поверхности деталей нанесен слой мягкого вибродемпфирующего материала, например мастики ВД-17, причем соотношение между толщиной металла и вибродемпфирующего покрытия находится в оптимальном интервале величин: 1/(2,5…4); детали циклона выполнены армированными или слоистыми, причем поверхности слоев, соприкасаемые с движущимся газовым потоком выполнены из материалов, обладающих повышенной износостойкостью и антифрикционными свойствами, а свойства материала арматуры подобраны из условия снижения виброакустической активности аппаратов; детали винтообразных поверхностей циклона выполнены армированными путем формования или заливки винтообразных износостойких элементов в корпусные детали или крышки.To reduce the vibroacoustic activity of the cyclone and its metal consumption, as well as to increase its reliability, the following measures are provided in the proposed device: the cyclone parts are made of structural composite or polymeric materials, for example, polyethylene, nylon, polyurethane using casting, stamping, molding; the helical elements of the cyclone parts are made by plastic deformation methods, for example extrusion or knurling on equipment having a helical form-forming movement; on the helical elements of the parts of the cyclone and the surface in contact with the dusty gas stream, a wear-resistant layer is applied, for example by spraying methods or using galvanic equipment; a layer of soft vibration-damping material, for example, VD-17 mastic, is applied on the surface of the parts, and the ratio between the thickness of the metal and the vibration-damping coating is in the optimal range of values: 1 / (2.5 ... 4); the details of the cyclone are made reinforced or layered, and the surfaces of the layers in contact with the moving gas stream are made of materials having increased wear resistance and antifriction properties, and the properties of the reinforcement material are selected from the condition of reducing the vibroacoustic activity of the apparatuses; Details of the helical surfaces of the cyclone are made reinforced by molding or pouring helical wear-resistant elements into body parts or covers.

Рукавный фильтр (фиг.4-5) соединен с выходом выхлопной трубы циклона воздуховодом 33 через фланец 15 для входа очищаемого газа в фильтрующую камеру 7 рукавного фильтра, имеющую вид шкафа с удобной выемкой через боковые двери 12 вертикально расположенных фильтроэлементов 24 в виде фильтрующих рукавов. Фланец 13 для выхода очищенного газа расположен в камере 22 очищенного газа, расположенной над фильтрующей камерой 7, и имеет размеры поперечного сечения, равные с фланцем 15 для входа очищаемого газа в фильтр.The bag filter (Figs. 4-5) is connected to the outlet of the exhaust pipe of the cyclone by an air duct 33 through a flange 15 for entering the gas to be cleaned into the filter chamber 7 of the bag filter, having the form of a cabinet with a convenient recess through the side doors 12 of vertically arranged filter elements 24 in the form of filter bags. The flange 13 for the outlet of the purified gas is located in the chamber 22 of the purified gas located above the filter chamber 7, and has a cross-sectional size equal to the flange 15 for the entrance of the cleaned gas into the filter.

Камеры 7 и 22 фильтра образуют его корпус совместно с расположенным под ними коническим бункером 17 с пылевыгружным устройством типа "двойная мигалка" (не показано) или - коническим бункером со шнеком 18 с пылевой задвижкой 19 с ручным приводом с пылевыгружным устройством типа шлюзовой ротационный затвор 21, а также местным пультом управления 20 шнеком и шлюзовым ротационным затвором. На бункере любого типа устанавливается датчик уровня пыли (не показано).The chambers 7 and 22 of the filter form its housing together with the conical hopper 17 located below them with a double flasher dust collector (not shown) or a conical hopper with an auger 18 with a dust latch 19 with a manual actuator with a dust puller device like a rotary shutter 21 , as well as the local control panel 20 auger and rotary lock gate. A dust level sensor (not shown) is mounted on any type of hopper.

Корпус фильтра снабжен опорной эстакадой, выполненной в виде, по крайней мере, трех стоек 8, жестко связанных между собой горизонтальными тягами 9, и наклонными ребрами жесткости 10, один конец которых соединен со стойками 8 и тягами 9, а другой - с бункером 17 фильтра. На эстакаде жестко установлены и закреплены между собой и корпусом фильтра лестницы 23 и ограждения 11.The filter housing is equipped with a support rack, made in the form of at least three racks 8, rigidly interconnected by horizontal rods 9, and inclined stiffeners 10, one end of which is connected to the racks 8 and rods 9, and the other to the hopper 17 of the filter . On the overpass are rigidly installed and fixed between themselves and the filter housing of the stairs 23 and fences 11.

При этом отношение габаритных размеров фильтра с эстакадой: высоты Н и длины L лежит в оптимальном интервале величин H/L=1,0÷2,0;The ratio of the overall dimensions of the filter with the flyover: height H and length L lies in the optimal range of values H / L = 1.0 ÷ 2.0;

отношение высоты Н фильтра к высоте В эстакады лежит в оптимальном интервале величин Н/В=1,0÷2,0;the ratio of the filter height H to the height B of the flyover lies in the optimal range of values N / V = 1.0 ÷ 2.0;

отношение высоты М геометрического центра фланца 13 для выхода очищенного газа к высоте N геометрического центра фланца 15 для входа очищаемого газа в фильтрующую камеру 7 лежит в оптимальном интервале величин M/N=1,5÷2,0.the ratio of the height M of the geometric center of the flange 13 for the outlet of the purified gas to the height N of the geometric center of the flange 15 for the entrance of the gas to be cleaned into the filter chamber 7 lies in the optimal range of values M / N = 1.5 ÷ 2.0.

Фильтрующие рукава (не показано) компонуются в легкосъемные кассеты, по 6 штук в каждую кассету, вертикально (возможно по 4 шт. для легких пылей; картриджи - по 2 шт. в кассете для тонкодисперсной пыли и т.п.). Фильтрующие рукава имеют в поперечном сечении прямоугольную форму: 340×32 мм, высота 2 и 3 м (общая площадь фильтрации Sф=1,4 м2). Фильтроэлемент подобной формы имеет следующие преимущества: высокая компактность; повышенная степень регенерации, - это связано с тем, что у плоского рукава меньше внутренний объем, что увеличивает инжекцию.Filter bags (not shown) are assembled into easily removable cartridges, 6 pieces per cartridge, vertically (possibly 4 pcs. For light dusts; cartridges - 2 pcs. In a cartridge for fine dust, etc.). Filter bags have a rectangular cross-section: 340 × 32 mm, height 2 and 3 m (total filtration area S f = 1.4 m 2 ). A filter element of a similar shape has the following advantages: high compactness; increased degree of regeneration - this is due to the fact that the flat sleeve has less internal volume, which increases injection.

В качестве материала фильтроэлементов рукавного фильтра может быть применен: нетканый полиэстер, упрочненный внутренней каркасной сеткой; нетканый арамид, упрочненный внутренней каркасной сеткой; нетканый тонковолокнистый полиэстер, упрочненный внутренней каркасной сеткой, со специальным покрытием; влагостойкий нетканый полиэстер, упрочненный внутренней каркасной сеткой, со специальным покрытием; нетканый, упрочненный внутренней каркасной сеткой полиэстер, антистатический с масловлагоотталкивающей пропиткой с гладкой поверхностью; нетканый тонковолокнистый полиэстер, упрочненный внутренней каркасной сеткой, со специальным покрытием.As a material for filter elements of a bag filter, the following can be applied: non-woven polyester reinforced with an internal frame mesh; non-woven aramid hardened by an internal wire mesh; non-woven thin-fiber polyester, reinforced with an internal wire mesh, with a special coating; moisture resistant non-woven polyester, hardened with an internal frame mesh, with a special coating; non-woven, hardened with an internal frame mesh polyester, antistatic with oil and water repellent impregnation with a smooth surface; non-woven, thin-fiber polyester, reinforced with an internal wire mesh, with a special coating.

Картриджные фильтроэлементы имеют размеры: диаметр 327 мм, высота 1 м.Cartridge filter elements have dimensions: diameter 327 mm, height 1 m.

Фильтроэлементы выполнены из специального фильтрополотна и отличаются большей площадью фильтрации по сравнению с кассетой, оснащенной шестью рукавами. Тонковолокнистый состав фильтроэлемента позволяет получать очень низкие показатели по остаточной запыленности - не более 0,2 мг/м3.The filter elements are made of a special filter cloth and have a larger filtration area compared to a cartridge equipped with six sleeves. The fine-fiber composition of the filter element allows you to get very low rates of residual dust - not more than 0.2 mg / m 3 .

Картриджные фильтроэлементы применяются в случае получения высокой степени очистки и малых габаритов фильтра. В фильтрах собираются по 2 штуки в кассету.Cartridge filter elements are used in case of obtaining a high degree of purification and small dimensions of the filter. In filters, 2 pieces are collected per cartridge.

Фильтры могут также комплектоваться: коническим, плоским либо специальным бункером, горизонтальным циклоном, позволяющим уменьшить входную пылевую нагрузку и обеспечить искрогашение; газовоздушным охладителем газа, уменьшающим температуру идущего в фильтр газа; клапаном подсоса атмосферного воздуха, а также отсечными и регулирующими клапанами для установки на газоходах; транспортным контейнером - пылесборным ящиком; пылевыгружными устройствами; аспирационным рукавом пылевыгрузки (не показано).Filters can also be equipped with: conical, flat or special hopper, horizontal cyclone, which allows to reduce the input dust load and provide spark suppression; gas air cooler reducing the temperature of the gas entering the filter; atmospheric air suction valve, as well as shut-off and control valves for installation on gas ducts; transport container - dust box; dust collecting devices; dust suction hose (not shown).

Область применения предлагаемой конструкции фильтра - фильтрация сухих пылегазовых сред малых расходов - от 1100 до 30000 м3/час, при установке в стесненных условиях.The scope of the proposed filter design is the filtration of dry dusty gas environments of low flow rates - from 1100 to 30,000 m 3 / h, when installed in cramped conditions.

Работа с высоким начальным запылением и низким остаточным пылесодержанием (не превышающим 10 мг/м3 в стандартном исполнении; при использовании кассет с картриджными фильтроэлементами или фильтроматериалом "нетканый тонковолокнистый полиэстер" - до 0,2 мг/м3; очищенный воздух можно сбрасывать прямо в цех).Work with high initial dusting and low residual dust content (not exceeding 10 mg / m 3 as standard; when using cartridges with cartridge filter elements or non-woven fine fiber polyester filter material - up to 0.2 mg / m 3 ; purified air can be dumped directly into shop).

Универсальность фильтров: простая замена кассет с фильтроэлементами на кассеты другого типа позволяет использовать фильтр для фильтрации других типов пыли (например, фильтровать сначала тяжелые, а потом легкие пыли).Universality of filters: simple replacement of cartridges with filter elements with cartridges of a different type allows you to use a filter to filter other types of dust (for example, filter heavy and then light dust first).

Импульсная система регенерации фильтрорукавов с соплами "Вентури" и плоскими прямоугольными фильтрорукавами позволяет эффективно работать с липкими, комкующимися пылями.Pulse filter hose regeneration system with Venturi nozzles and flat rectangular filter hoses allows you to work effectively with sticky, clumping dusts.

Импульсная система регенерации рукавного фильтра (фиг.6) включает в себя клапанные блоки 26, в которых смонтированы электромагнитные клапаны 25, вход которых соединен с выходом управляющего контроллера 32; импульсные клапаны 27 с импульсными трубами и патрубками, сопла Вентури 23; дифманометр 31, подключенный через датчик давления 28 к камере 22 для выхода очищенного газа и через датчик давления 29 к фильтрующей камере 7 для входа очищаемого газа, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов (не показано), причем дифманометр 31 соединен с управляющим контроллером 32.The pulse filter bag regeneration system (Fig. 6) includes valve blocks 26 in which solenoid valves 25 are mounted, the input of which is connected to the output of the control controller 32; impulse valves 27 with impulse pipes and nozzles, venturi nozzles 23; a differential pressure gauge 31 connected through a pressure sensor 28 to the chamber 22 for the outlet of the purified gas and through a pressure sensor 29 to the filter chamber 7 for the entrance of the gas to be purified, as well as a valve kit for supplying compressed air to the valve blocks (not shown), the differential pressure gauge 31 being connected to control controller 32.

Система обеспечения пожаровзрывобезопасности работы фильтра (не показано) содержит датчик температуры, установленный в корпусе фильтра, аварийный датчик уровня пыли, установленный в бункере для сбора пыли. В камере 22 для выхода очищенного газа установлен тепловой автоматический датчик-извещатель, причем входы и выходы датчиков соединены с управляющим контроллером 32, при этом в камере 22 для выхода очищенного газа установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которой также соединен с управляющим контроллером 32.The fire and explosion safety system of the filter (not shown) contains a temperature sensor installed in the filter housing, an emergency dust level sensor installed in the dust collection bin. In the chamber 22 for the outlet of the purified gas a thermal automatic detector detector is installed, the inputs and outputs of the sensors connected to the control controller 32, while in the chamber 22 for the outlet of the purified gas a collector with nozzles for connecting to the fire extinguishing system, the control unit of which is also connected to control controller 32.

Двухступенчатая система пылеудаления работает следующим образом.A two-stage dust removal system operates as follows.

Запыленный газовый поток поступает в циклон (фиг.1-3), как первую ступень очистки, через входной патрубок, закручивается за счет тангенциального периферийного ввода и движется далее по нисходящей винтовой линии вдоль стенок корпуса. В результате чего частицы пыли под действием центробежной силы движутся от центра циклона к периферии, и, достигая стенок аппарата, транспортируются вниз в коническую часть корпуса, а затем в бункер для сбора уловленной пыли. Очищенный воздух выводится из циклона через внутренний стакан 3 и выхлопную трубу 4. Водосборник 5 служит для сбора конденсата, который выводится через сливную трубку 6. При этом легкие, мелкодисперсные частицы пыли, не уловленные в циклоне, задерживаются в фильтрующей камере 7 рукавного фильтра. Процесс пылеулавливания протекает в оптимальном гидродинамическом режиме при следующих соотношениях основных конструктивных параметров предлагаемого устройства:The dusty gas stream enters the cyclone (Figs. 1-3), as the first cleaning stage, through the inlet pipe, is twisted due to the tangential peripheral input and moves further along the downward spiral line along the walls of the housing. As a result, dust particles under the action of centrifugal force move from the center of the cyclone to the periphery, and, reaching the walls of the apparatus, are transported down to the conical part of the body, and then to the hopper to collect the captured dust. The cleaned air is discharged from the cyclone through the inner cup 3 and the exhaust pipe 4. The collector 5 serves to collect condensate, which is discharged through the drain pipe 6. At the same time, light, finely dispersed dust particles not trapped in the cyclone are trapped in the filter chamber 7 of the bag filter. The dust collection process proceeds in the optimal hydrodynamic mode with the following ratios of the main structural parameters of the proposed device:

- отношение диаметра цилиндрической части корпуса к диаметру внутреннего стакана, находится в оптимальном интервале величин: D/D2=1,6…1,9;- the ratio of the diameter of the cylindrical part of the housing to the diameter of the inner glass, is in the optimal range of values: D / D 2 = 1.6 ... 1.9;

- отношение диаметра цилиндрической части корпуса к меньшему диаметру усеченного конуса конической части корпуса находится в оптимальном интервале величин: D/D1=4,9…7,2;- the ratio of the diameter of the cylindrical part of the body to the smaller diameter of the truncated cone of the conical part of the body is in the optimal range of values: D / D 1 = 4.9 ... 7.2;

- отношение высоты конической части корпуса циклона к высоте его цилиндрической части, находится в оптимальном интервале величин: h1/h2=1,6…1,8;- the ratio of the height of the conical part of the cyclone body to the height of its cylindrical part is in the optimal range of values: h 1 / h 2 = 1.6 ... 1.8;

- отношение высоты цилиндрической части корпуса циклона к расстоянию между корпусом циклона и корпусом выхлопного устройства, находится в оптимальном интервале величин: h2/h3=3,8…6,4.- the ratio of the height of the cylindrical part of the cyclone body to the distance between the cyclone body and the body of the exhaust device is in the optimal range of values: h 2 / h 3 = 3.8 ... 6.4.

Затем запыленный газовый поток поступает через фланец 15 (фиг.4-5) для входа очищаемого газа в фильтрующую камеру 7 рукавного фильтра, являющегося второй ступенью системы пылеулавливания, внутрь фильтроэлементов 24 в виде фильтрующих рукавов, где на фильтрующем материале задерживается пыль, а очищенный воздух поступает в камеру очищенного газа 22. Фланец 13 служит для выхода очищенного газа и расположен в камере 22 очищенного газа, которая находится над фильтрующей камерой 7.Then the dusty gas stream enters through the flange 15 (Fig. 4-5) to enter the gas to be cleaned into the filter chamber 7 of the bag filter, which is the second stage of the dust collection system, inside the filter elements 24 in the form of filter bags, where dust is trapped on the filter material and the cleaned air enters the purified gas chamber 22. The flange 13 serves to exit the purified gas and is located in the purified gas chamber 22, which is located above the filter chamber 7.

Импульсная система регенерации рукавного фильтра (фиг.6) работает в следующем порядке. При фильтрации газов на поверхности рукавов нарастает слой пыли, увеличивающий гидравлическое сопротивление фильтра, т.е. перепад давления между камерой 22 и фильтрующей камерой 7 (этот перепад давления задействован в системе регенерации как управляющий фактор). Дифманометр 31 постоянно измеряет перепад давления; при достижении установленного значения (по заданному положению на циферблате) выдается сигнал на контроллер 32, последний в соответствии со своей программой запускает работу импульсных клапанов 26. При срабатывании импульсного клапана 27 сжатый воздух из данного клапанного блока через импульсную трубу с патрубком выбрасывается в сопла Вентури 23 и, далее, внутрь рукавов 24 (или картриджей). Наличие импульсных патрубков и сопел Вентури повышает эффективность воздействия импульса сжатого воздуха и обеспечивает улучшенную очистку фильтроэлементов от пыли.The pulse regeneration system of the bag filter (Fig.6) works in the following order. When filtering gases on the surface of the sleeves, a dust layer builds up, increasing the hydraulic resistance of the filter, i.e. differential pressure between the chamber 22 and the filter chamber 7 (this differential pressure is involved in the regeneration system as a control factor). The differential pressure gauge 31 constantly measures the differential pressure; when the set value is reached (at the set position on the dial), a signal is issued to the controller 32, the latter, in accordance with its program, starts the operation of the pulse valves 26. When the pulse valve 27 is activated, compressed air from this valve block is discharged through the pulse pipe with the nozzle into the Venturi 23 nozzle 23 and, further, inside the sleeves 24 (or cartridges). The presence of pulse nozzles and Venturi nozzles increases the effectiveness of the impact of a pulse of compressed air and provides improved cleaning of filter elements from dust.

Все фильтры комплектуются системой подготовки сжатого воздуха (не показано) на входе в систему регенерации. Система подготовки допускает работу фильтра от сетевого сжатого воздуха практически при любых температурах окружающей среды. Система регенерации может устанавливаться с минимальной воздухоподготовкой: входной фильтр сжатого воздуха и влагоотделитель.All filters are equipped with a compressed air preparation system (not shown) at the entrance to the regeneration system. The preparation system allows the filter to operate from compressed air at virtually any ambient temperature. The regeneration system can be installed with minimal air conditioning: compressed air inlet filter and dehumidifier.

Система регенерации обеспечивает своевременную очистку рукавов от пыли и поддерживает номинальную газопроницаемость фильтроэлементов.The regeneration system ensures timely cleaning of bags from dust and maintains the nominal gas permeability of filter elements.

При недостаточной эффективности работы системы регенерации увеличивается гидравлическое сопротивление фильтра и падает расход очищаемого газа. В то же время при чрезмерном увеличении степени очистки рукавов в процессе фильтрации от осевшей пыли наблюдается повышенный проскок пыли через фильтрополотно, так как внешняя сторона рукава слишком "оголяется": с нее убирается фильтрующий слой.With insufficient efficiency of the regeneration system, the hydraulic resistance of the filter increases and the flow rate of the purified gas decreases. At the same time, with an excessive increase in the degree of cleaning of the sleeves during filtering from settled dust, an increased breakthrough of dust through the filter web is observed, since the outer side of the sleeve is too “bare”: the filter layer is removed from it.

Поэтому система регенерации содержит элементы, обеспечивающие настройку ее эффективности в различных эксплуатационных условиях за счет управляющего контроллера 32.Therefore, the regeneration system contains elements that provide tuning of its effectiveness in various operating conditions due to the control controller 32.

Система обеспечения пожаровзрывобезопасности работает следующим образом.The system of fire and explosion safety works as follows.

Тепловой датчик-извещатель и коллектор с форсунками системы пожаротушения установлены в камере 22 фильтра потому, что она является выходным звеном в предлагаемом устройстве, и чтобы предотвратить распространение пламя в случае возгорания дальше по вентиляционным каналам, эти системы устанавливают именно здесь, что повысит надежность и безопасность всего устройства.A thermal detector detector and a collector with nozzles of the fire extinguishing system are installed in the filter chamber 22 because it is an output link in the proposed device, and in order to prevent the spread of flame in case of fire further through the ventilation ducts, these systems are installed here, which will increase reliability and safety the whole device.

Работа коллектора с форсунками осуществляется по принципу открытия аварийного электромагнитного клапана подачи воды: при подаче на клапан управляющего сигнала от управляющего контроллера 32, обрабатывающего сигнал с теплового датчика-извещателя, который в свою очередь реагирует на увеличение температуры в камере 22 фильтра, вплоть до самовоспламенения пылевых аэрозолей и фильтрующих материалов фильтроэлемента.The collector with nozzles operates on the principle of opening the emergency electromagnetic water supply valve: when a control signal is supplied to the valve from the control controller 32, which processes the signal from the heat detector detector, which in turn responds to an increase in temperature in the filter chamber 22, up to self-ignition of dust aerosols and filter materials of the filter element.

Claims (1)

Двухступенчатая система пылеудаления, содержащая циклон, как первую ступень очистки, имеющий корпус, состоящий из цилиндрической и конической частей, периферийный ввод газового потока, выполненный в виде входного патрубка, крышку, бункер, выхлопное устройство, содержащее выхлопную трубу, и выходной патрубок для выхода очищенного газа, соединенный с рукавным фильтром, выполняющим функцию второй ступени очистки газовоздушной смеси от пыли, отличающаяся тем, что циклон снабжен размещенным внутри корпуса стаканом с водосборником и сливной трубкой, выхлопная труба циклона выполнена с рассекателем для входа очищенного газа и соединена воздуховодом с фильтрующей камерой рукавного фильтра, при этом фильтрующая камера рукавного фильтра имеет вид шкафа с боковыми дверями для выемки вертикально расположенных фильтроэлементов в виде фильтрующих рукавов, причем фланец для выхода очищенного газа расположен в камере очищенного газа, расположенной над фильтрующей камерой, и имеет размер поперечного сечения, равный с размером фланца для входа очищаемого газа в фильтр, при этом рукавный фильтр снабжен датчиком температуры, установленным в корпусе, в бункере для сбора пыли установлен аварийный датчик уровня пыли, в выходном коробе фильтровальной секции установлен тепловой автоматический датчик-извещатель, выходы с которых соединены с управляющим контроллером, причем в выходном коробе фильтровальной секции фильтра установлен коллектор с форсунками для подключения к системе пожаротушения, блок управления которой соединен с управляющим контроллером, при этом система регенерации фильтра включает в себя клапанные блоки, в которых смонтированы электромагнитные клапаны, вход которых соединен с выходом управляющего контроллера, дифманометр, подключенный через датчик давления к камере для выхода очищенного газа и через датчик давления - к фильтрующей камере, а также комплект арматуры для подвода сжатого воздуха к блокам клапанов, причем дифманометр соединен с управляющим контроллером, при этом отношение диаметра цилиндрической части корпуса циклона к диаметру внутреннего стакана находится в оптимальном интервале величин D/D2=1,6÷4,9, отношение диаметра цилиндрической части корпуса к меньшему диаметру усеченного конуса конической части корпуса находится в оптимальном интервале величин D/D1=4,9÷7,2, отношение высоты конической части корпуса циклона к высоте его цилиндрической части находится в оптимальном интервале величин h1/h2=1,6÷1,8. A two-stage dust removal system containing a cyclone as a first cleaning stage, having a housing consisting of cylindrical and conical parts, a peripheral gas inlet made in the form of an inlet pipe, a cover, a hopper, an exhaust device containing an exhaust pipe, and an outlet pipe for the outlet of the cleaned gas connected to a bag filter that performs the function of the second stage of dust-gas mixture cleaning, characterized in that the cyclone is equipped with a glass with a catchment and a drain located inside the housing tube, the exhaust pipe of the cyclone is made with a divider for the entrance of purified gas and is connected by an air duct to the filter chamber of the bag filter, while the filter chamber of the bag filter has the form of a cabinet with side doors for the extraction of vertically arranged filter elements in the form of filter bags, and the flange for the outlet of the purified gas is located in the purified gas chamber located above the filter chamber, and has a cross-sectional size equal to the size of the flange for entering the gas to be cleaned into the filter, while The main filter is equipped with a temperature sensor installed in the housing, an emergency dust level sensor is installed in the dust collection bin, a thermal automatic detector detector is installed in the output box of the filter section, the outputs of which are connected to the control controller, and a collector is installed in the output box of the filter filter section with nozzles for connection to a fire extinguishing system, the control unit of which is connected to the control controller, while the filter regeneration system includes valve blocks in which electromagnetic valves are mounted, the input of which is connected to the output of the control controller, a differential pressure gauge connected through a pressure sensor to the chamber for the outlet of the purified gas and through a pressure sensor to the filter chamber, as well as a valve kit for supplying compressed air to the valve blocks, differential pressure controller is connected to a control, wherein the ratio of the diameter of the cylindrical portion of the cyclone body to the diameter of the inner cup is in the optimal range of values of D / D 2 = 1,6 ÷ 4,9, the ratio of diameter The diameter of the cylindrical part of the body to the smaller diameter of the truncated cone of the conical part of the body is in the optimal range of values D / D 1 = 4.9 ÷ 7.2, the ratio of the height of the conical part of the cyclone body to the height of its cylindrical part is in the optimal range of h 1 / h 2 = 1.6 ÷ 1.8.
RU2008152309/05A 2008-12-30 2008-12-30 Two-stage dust collection system by kochetov RU2397822C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008152309/05A RU2397822C1 (en) 2008-12-30 2008-12-30 Two-stage dust collection system by kochetov

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008152309/05A RU2397822C1 (en) 2008-12-30 2008-12-30 Two-stage dust collection system by kochetov

Publications (2)

Publication Number Publication Date
RU2008152309A RU2008152309A (en) 2010-07-10
RU2397822C1 true RU2397822C1 (en) 2010-08-27

Family

ID=42684222

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008152309/05A RU2397822C1 (en) 2008-12-30 2008-12-30 Two-stage dust collection system by kochetov

Country Status (1)

Country Link
RU (1) RU2397822C1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658022C1 (en) * 2017-12-05 2018-06-19 Олег Савельевич Кочетов Two-step dust collector system with inertial dust separator
RU2658024C1 (en) * 2017-12-05 2018-06-19 Олег Савельевич Кочетов Two-step installation of dust-collector
RU2665528C1 (en) * 2017-12-05 2018-08-30 Олег Савельевич Кочетов Vortex dust collector with counter-swirling flows
RU2665532C1 (en) * 2017-12-19 2018-08-30 Олег Савельевич Кочетов Two-step dust collector system with inertial dust separator
RU2665531C1 (en) * 2017-12-19 2018-08-30 Олег Савельевич Кочетов Two-step installation of dust-collector
RU2665535C1 (en) * 2017-12-19 2018-08-30 Олег Савельевич Кочетов Vortex dust collector with counter-swirling flows

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471567C2 (en) * 2011-02-24 2013-01-10 Олег Савельевич Кочетов Kochetov's two-stage vortex dust-catching system
RU2458745C1 (en) * 2011-02-24 2012-08-20 Олег Савельевич Кочетов Kochetov's two-stage dust removal system
CN106943828B (en) * 2017-04-08 2023-06-20 安徽盛运重工机械有限责任公司 Corrosion-resistant combined electric dust collector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
МОРГУЛИС М.Л. и др. Рукавные фильтры. - М.: Машиностроение, 1977, с.89. *
Справочник по пыле- и золоулавливанию. /Под ред. А.А.Русанова. - М.: Энергоатомиздат, 1983, с.56, 63, 64. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658022C1 (en) * 2017-12-05 2018-06-19 Олег Савельевич Кочетов Two-step dust collector system with inertial dust separator
RU2658024C1 (en) * 2017-12-05 2018-06-19 Олег Савельевич Кочетов Two-step installation of dust-collector
RU2665528C1 (en) * 2017-12-05 2018-08-30 Олег Савельевич Кочетов Vortex dust collector with counter-swirling flows
RU2665532C1 (en) * 2017-12-19 2018-08-30 Олег Савельевич Кочетов Two-step dust collector system with inertial dust separator
RU2665531C1 (en) * 2017-12-19 2018-08-30 Олег Савельевич Кочетов Two-step installation of dust-collector
RU2665535C1 (en) * 2017-12-19 2018-08-30 Олег Савельевич Кочетов Vortex dust collector with counter-swirling flows

Also Published As

Publication number Publication date
RU2008152309A (en) 2010-07-10

Similar Documents

Publication Publication Date Title
RU2397822C1 (en) Two-stage dust collection system by kochetov
RU2393908C1 (en) Kochetov's acoustic dust separator
RU2397821C1 (en) Two-stage dust collection system with spiral-and-conic cyclone
CA1329784C (en) Filtration removal of matter from gas streams, with off-line cleaning of filters
RU2407596C2 (en) Kochetov's dust separation system
RU2669288C1 (en) Three-stage dust collection system
RU2310518C1 (en) Two-staged dust catching apparatus
KR102470578B1 (en) Cutting method of concrete structure for dismantling nuclear power plant
RU2458745C1 (en) Kochetov's two-stage dust removal system
RU2339433C1 (en) Method of dust control
RU2397823C1 (en) Dust collection system by kochetov
RU2471567C2 (en) Kochetov's two-stage vortex dust-catching system
RU2397824C1 (en) Dust collection installation with louver cyclone
RU2671314C1 (en) Two-stage dust removal system
RU2416457C2 (en) Aspiration system with osf (oncoming swirling flow) apparaturs and frame filter
RU2633886C1 (en) Dust catching two-step installation
RU2420340C1 (en) Kochetov's two-stage cartridge filtration system
RU2305601C1 (en) Acoustic dust-trapping installation
RU2671316C1 (en) Two-stage vortex dust-leading system
RU2342184C1 (en) Bag filter with regeneration system
RU2650922C1 (en) Dust collecting device
RU2342183C1 (en) Bag filter with regeneration system
RU2416455C2 (en) Separation system with vorject dust separator
RU2325938C2 (en) Sleeve filter with regeneration system
RU2305600C1 (en) Dust trapping installation provided with vibration cyclone