RU2363025C2 - Видеоголограмма и устройство для восстановления видеоголограмм - Google Patents

Видеоголограмма и устройство для восстановления видеоголограмм Download PDF

Info

Publication number
RU2363025C2
RU2363025C2 RU2007105102/28A RU2007105102A RU2363025C2 RU 2363025 C2 RU2363025 C2 RU 2363025C2 RU 2007105102/28 A RU2007105102/28 A RU 2007105102/28A RU 2007105102 A RU2007105102 A RU 2007105102A RU 2363025 C2 RU2363025 C2 RU 2363025C2
Authority
RU
Russia
Prior art keywords
video
hologram
observation window
video hologram
observer
Prior art date
Application number
RU2007105102/28A
Other languages
English (en)
Other versions
RU2007105102A (ru
Inventor
Армин ШВЕРДТНЕР (DE)
Армин ШВЕРДТНЕР
Original Assignee
Сириал Текнолоджиз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сириал Текнолоджиз Гмбх filed Critical Сириал Текнолоджиз Гмбх
Publication of RU2007105102A publication Critical patent/RU2007105102A/ru
Application granted granted Critical
Publication of RU2363025C2 publication Critical patent/RU2363025C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/16Processes or apparatus for producing holograms using Fourier transform
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • G03H2001/0858Cell encoding wherein each computed values is represented by at least two pixels of the modulator, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2242Multiple viewing windows
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • G03H2001/2271RGB holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/20Coherence of the light source
    • G03H2222/22Spatial coherence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Holo Graphy (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Изобретение относится к голографии. Устройство содержит оптическую систему, состоящую, по меньшей мере, из одного реального или виртуального точечного и/или линейного, достаточно когерентного источника света и линзы, а также видеоголограммы из регулярно расположенных в виде матрицы или иным регулярным образом ячеек. В плоскости наблюдения, соответствующей плоскости прямого или обратного Фурье преобразования видеоголограммы, локализовано окно наблюдения (5), занимающее определенный интервал периодичности восстановления в виде Фурье образа видеоголограммы (3), через которое можно наблюдать восстановленную трехмерную сцену (6), при этом протяженность окна наблюдения (5) не превышает интервал периодичности в плоскости обратного Фурье образа и трехмерная сцена возникает в виде Френеля образа видеоголограммы. Технический результат - возможность получения топографических видеоизображений протяженных пространственных объектов широкой области наблюдения. 2 н. и 18 з.п. ф-лы, 5 ил.

Description

Изобретение относится к видеоголограмме и к устройству для восстановления видеоголограмм, содержащему оптическую систему, состоящую, по меньшей мере, из одного источника света, линзы и видеоголограммы из расположенных в виде матрицы или иным регулярным образом ячеек, по меньшей мере, с одним управляемым по амплитуде и/или фазе отверстием на ячейку, а также из плоскости наблюдения в месте изображения источника света.
Известны устройства для восстановления видеоголограмм, содержащие акустооптические модуляторы (АОМ) (Stephen A. Benton, Joel S. Kollin: Three dimensional display system, US 5172251). Эти акустооптические модуляторы преобразуют электрические сигналы в оптические волновые фронты, которые затем посредством отклоняющих зеркал формируются в двухмерные топографические поверхности в пределах одного видеокадра. Волновые фронты восстанавливаются посредством дополнительных оптических элементов в виде видимой наблюдателю сцены. Используемые оптические средства, такие как линзы и отклоняющие элементы, имеют протяженность порядка восстанавливаемых сцен и из-за своих больших габаритов являются громоздкими и тяжелыми. Они почти не поддаются миниатюризации и поэтому ограничены в отношении области своего применения.
Другую возможность формирования больших видеоголограмм предоставляет так называемый метод тайлинга с генерированными на компьютере голограммами (CGH: Computer Generated Holograms). В соответствии с известным из WO 00/75698 А1 и US 6437919 В1 способом посредством отображающей оптической системы формируют большие CGH из маленьких CGH с малым шагом. Для этого на первом этапе записывают необходимую информацию на быстрых матрицах с малым шагом (как правило, EASLM: Elektronisch Adressierbare Spatiale Licht-Modulatoren - электронно адресуемые пространственные модуляторы света), отображают их на топографически подходящую среду и составляют из них более крупную видеоголограмму. Применяемой средой является, как правило, оптически адресуемый пространственный модулятор света (OASLM: Optisch Adressierbarer Spatialer Licht-Modulator). На втором этапе составленную видеоголограмму восстанавливают когерентным светом на просвет или отражение.
У CGH с управляемыми отверстиями, расположенными в виде матрицы или иным регулярным образом, ставших известными, например, из WO 01/95016 А1 или Fukaya et al. “Eye-position tracking type electro-holographic display using liquid crystal devices”, Proceedings of EOS Topical meeting on Diffractive Optics, 1997, применяют дифракцию на маленьких отверстиях для кодирования сцен. Распространяющиеся от отверстий волновые фронты сходятся в объектных точках трехмерной сцены, прежде чем достигнут наблюдателя. Чем меньше шаг и тем самым величина отверстий в СGН, тем больше угол дифракции, т.е. угол наблюдения. Увеличение угла наблюдения означает у этих известных способов поэтому увеличение разрешения.
У голограмм Фурье восстановление происходит, как известно, в одной плоскости в виде прямого или обратного Фурье образа голограммы. Эта восстановленная голограмма периодически продолжается с интервалом периодичности, протяженность которого обратно пропорциональна шагу в голограмме.
Если протяженность восстановленной голограммы Фурье больше интервала периодичности, то соседние порядки дифракции накладываются друг на друга. По мере уменьшения разрешения, т.е. по мере возрастания шага отверстий, края восстановленной голограммы все больше нарушаются за счет наложения более высоких порядков дифракции. Используемое восстановление все больше и больше ограничивается из-за этого по своей протяженности.
Если хочется достичь больших интервалов периодичности и тем самым больших углов наблюдения, то требуемый шаг в голограмме приближается к длине световой волны. Для того чтобы иметь возможность в этом случае изображать как можно большие сцены, CGH должны быть, однако, также соответственно большие. Оба условия требуют большую CGH с очень большим числом отверстий, которую в виде дисплеев с управляемыми отверстиями реализовать в настоящее время невозможно (см. ЕР 0992163 B1). CGH с управляемыми отверстиями имеют поэтому размеры один или несколько дюймов, причем шаги пока значительно превышают 1 мкм.
Оба параметра, шаг и размер голограммы, описываются так называемым Space-Bandwidth-Produkt (SBP - произведение из размера голограммы и ширины диапазона частот) как общее число отверстий в голограмме. Если требуется реализовать восстановление CGH с управляемыми отверстиями шириной 50 см так, чтобы наблюдатель мог видеть сцену с расстояния 1 м в пределах горизонтального окна наблюдения шириной 50 см, то SBP составляет в горизонтальном направлении примерно 0,5·106. Этому в CGH соответствует 500000 управляемых отверстий с шагом 1 мкм. При формате изображения 4:3 в вертикальном направлении возникает соответственно 375000 отверстий. CGH содержит, следовательно, 3,75·1011 отверстий, если учесть три цветных субпиксела. Это число утраивается, если подумать, что в CGH с управляемыми отверстиями можно повлиять в большинстве случаев только на амплитуды. Фазовое кодирование происходит тогда за счет так называемого эффекта обходной фазы (Detourphasen-Effekt), для чего требуются, по меньшей мере, три равноотстоящих отверстия на каждую точку отсчета. Пространственные модуляторы света (ПМС) с таким числом управляемых отверстий в настоящее время неизвестны.
Данные для голограмм должны вычисляться на основании восстанавливаемых сцен. При глубине цвета 1 байт для каждого из трех основных цветов и частоте кадров 50 Гц CGH требует информационного потока 50·1012=0,5·1014 байт/с. Преобразования Фурье потоков данных этой величины значительно превышают мощность используемых в настоящее время компьютеров и исключают расчет голограмм на основе локальных компьютеров. Однако и передачу этого количества информации по сетям передачи данных для нормального пользователя в настоящее время реализовать невозможно.
Для уменьшения объема вычислительных процессов предложено, например, провести расчет голограммы не полностью, а лишь по тем частям, которые могут непосредственно рассматриваться наблюдателем или которые изменяются. В уже указанной выше публикации WO 01/95016 А1 описана такая голограмма, состоящая из адресуемых субобластей, как, например, упомянутая тайлинг-голограмма. Отправной точкой расчетов является так называемый эффективный выходной зрачок, который может совпадать со зрачком глаза наблюдателя в соответствующем положении. Слежение изображения при изменении положения наблюдателя происходит за счет постоянного нового расчета той части голограммы, которая формирует изображение для нового положения наблюдателя. Этим, однако, отчасти снова сводится на нет сокращение затрат на расчеты.
Недостатки известных методов в итоге состоят в том, что устройства с акустооптическими модуляторами являются слишком громоздкими и не могут быть уменьшены до известных сегодня из плоскоэкранной техники размеров, что видеоголограмы, изготовленные по методу тайлинга, являются двухступенчатыми с большими технологическими затратами, которые лишь с трудом можно уменьшить до величины настольного экрана, и, наконец, что устройства на основе ПМС с управляемыми отверстиями слишком малы для того, чтобы восстановить большие сцены. Для этого в настоящее время отсутствуют управляемые большие ПМС с предельно малыми шагами, а также необходимая мощность компьютеров и необходимая большая полоса частот сетей.
В основе изобретения лежит задача устранения названных недостатков и создание возможности реализации протяженных видеоизображений голограмм в реальном времени и для больших углов наблюдения.
Эта задача решается согласно изобретению посредством признаков, приведенных в п.1 формулы изобретения. Предпочтительные варианты изобретения приведены в пп.2-10 формулы изобретения.
Видеоголограммы и устройства для восстановления видеоголограмм с управляемыми отверстиями согласно изобретению предусматривают, что в плоскости наблюдения образуется, по меньшей мере, одно окно наблюдения в одном интервале периодичности в виде прямого или обратного Фурье образа видеоголограммы, через которое наблюдатель может видеть трехмерную сцену в виде восстановления. Протяженность окна наблюдения максимально соответствует интервалу периодичности в плоскости обратного преобразования Фурье в месте изображения источника света. Вместе с голограммой окно наблюдения образует усеченный конус, который содержит всю трехмерную сцену в виде образа Френеля видеоголограммы.
В реализации изобретения окно наблюдения ограничено приблизительно глазом, межзрачковым расстоянием наблюдателя или другой подходящей областью и позиционировано на них.
В рамках изобретения предусмотрено, что для другого глаза наблюдателя имеется аналогичное окно наблюдения. Это происходит за счет того, что рассматриваемый источник света соответственно смещается или дополняется путем подключения второго реального или виртуального, достаточно когерентного источника света в другом подходящем месте в пару источников света в оптической системе. Таким образом, создается возможность наблюдения трехмерной сцены двумя глазами через два соответствующих окна наблюдения. При этом содержание видеоголограммы можно изменить, т.е. перекодировать, синхронно с подключением второго окна наблюдения в соответствии с положением глаза. При нескольких наблюдателях можно, таким образом, создать соответствующее число окон наблюдения за счет подключения дополнительных источников света.
В отношении устройства для восстановления видеоголограммы другая существенная идея изобретения состоит в расположении оптической системы и видеоголограммы так, чтобы более высокие порядки дифракции видеоголограммы для первого окна наблюдения имели нулевое значение или минимум интенсивности в месте второго окна наблюдения. Этим предотвращается то, что информация одного окна наблюдения, предназначенная для одного глаза, попадает на другой глаз наблюдателя или других наблюдателей. Таким образом, выгодно используется уменьшение интенсивности света в сторону более высоких порядков дифракции из-за конечной ширины отверстий видеоголограммы и/или наличия минимумов характеристики интенсивности. Например, при наличии прямоугольных отверстий в качестве кривой интенсивности возникает функция sinc2, которая быстро убывает и представляет собой функцию sin2, убывающую по мере увеличения расстояний.
Для видеоголограммы следует рассчитывать лишь столько данных, сколько отверстий имеет дисплей. Передача данных от компьютера или из сети на дисплей в качестве голограммы ограничена таким же числом значений. Поток данных поэтому практически не отличается от потока данных, уже сегодня обрабатываемого обычной дисплейной техникой. Это следует пояснить примером. Если уменьшить окно наблюдения за счет выбора дисплея с достаточно низким разрешением, например с размеров 50 см по горизонтали и 37,5 см по вертикали до размеров 1×1 см, то это будет соответствовать уменьшению числа отверстий в голограмме на 1/1875, Таким же образом при передаче через сеть уменьшается требуемая ширина полосы частот. У изготовленных известными способами видеоголограмм с необходимыми 1012 отверстиями они уменьшаются в данном примере примерно до 5·108 пикселей. Через оставшееся окно наблюдения сцену можно рассматривать полностью. Требованиям к шагу и величине голограммы в соответствии с SBP уже отвечают имеющиеся сегодня в распоряжении дисплеи. Тем самым можно экономичным образом реализовать большие видеоголограммы в реальном времени на дисплеях с большим шагом для большой области наблюдения.
Слежение окна наблюдения (трекинг) реализуется посредством механического или электронного смещения источников света, подвижных зеркал или позиционируемых другим подходящим образом источников света. При смещении изображений источников света смещаются и окна наблюдения. Если наблюдатель движется, то источник (источники) света смещается (смещаются) в пространстве так, что окна наблюдения следуют за глазами наблюдателя. Это гарантирует, что наблюдатели даже в движении увидят восстановленную трехмерную сцену, и что, с другой стороны, свобода их движения не ограничена. Для детектирования положения наблюдателей известны различные системы, например на основе магнитных датчиков, которые здесь преимущественно можно использовать.
Настоящее изобретение позволяет также эффективно восстанавливать видеоголограмму в цвете. При этом предусмотрено, что восстановление происходит, по меньшей мере, с тремя управляемыми по амплитуде и/или фазе отверстиями на ячейку для основных цветов, причем кодирование для отверстий для каждого основного цвета осуществляется раздельно. Другая возможность восстановления видеоголограммы в цвете состоит в осуществлении, по меньшей мере, трех последовательных восстановлений в основных цветах на основе устройства согласно изобретению.
С помощью настоящего изобретения могут быть выгодным образом созданы голографические изображения протяженных пространственных сцен посредством управляемых дисплеев, таких как плоские тонкопленочные (ТFТ)-дисплеи, в реальном времени и для больших углов наблюдения. Эти видеоголограммы преимущественно применяются в области телевидения, мультимедиа, игр и конструирования, в военной и медицинской технике и в других областях экономики и общества. Трехмерные картины могут быть созданы на компьютере или иным образом.
Пример реализации изобретения представлен на чертежах и ниже описывается более подробно.
На чертежах представлены:
- фиг.1: принципиальная схема видеоголограммы и устройства для восстановления видеоголограмм, с возникновением порядков дифракции света и положением окна наблюдения;
- фиг.2: принципиальная схема устройства для восстановления видеоголограмм с трехмерной сценой, которую можно рассматривать через окно наблюдения;
- фиг.3: принципиальная схема устройства для восстановления видеоголограмм с кодированием трехмерной сцены в части видеоголограммы так, что порядки дифракции света не накладываются друг на друга;
- фиг.4: распределение интенсивности света в плоскости наблюдения в зависимости от порядков дифракции;
- фиг.5: принципиальная схема устройства для восстановления видеоголограмм с положением окон наблюдения для обоих глаз наблюдателя в отношении порядков дифракции во избежание того, что свет, предназначенный для одного глаза, попал бы на другой глаз.
Устройство для восстановления видеоголограмм состоит из видеоголограммы, достаточно когерентного реального или виртуального точечного или линейного источника света и оптической системы. Сама видеоголограмма состоит из расположенных в виде матрицы или иным регулярным образом ячеек, содержащих, по меньшей мере, одно управляемое по амплитуде и/или фазе отверстие на ячейку. Оптическая система для восстановления видеоголограммы может быть реализована известным образом, например просто в виде оптической системы отображения, состоящей из точечного или линейного лазера и достаточно когерентного источника света.
Принципиальная схема видеоголограммы и ее восстановление показаны на фиг.1.
По направлению света последовательно расположены источник света 1, линза 2, голограмма 3 и плоскость наблюдения 4. Плоскости наблюдения 4 соответствует плоскость Фурье обратного преобразования видеоголограммы с порядками дифракции света.
Источник света 1 отображается оптической системой, которая представлена линзой 2, в плоскость наблюдения 4. При установке голограммы 3 она представляется в плоскости наблюдения 4 в виде обратного преобразования Фурье. Голограмма 3 с периодическими отверстиями создает равноотстоящие продолженные порядки дифракции в плоскости наблюдения 4, причем для голографического кодирования, например посредством так называемого эффекта обходной фазы используются более высокие порядки дифракции света. Поскольку интенсивность уменьшается в сторону более высоких порядков дифракции света, в качестве окна наблюдения 5 выбирают, как правило, 1-й или -1-й порядок дифракции. Если это не указано особо, то для изложения изобретения в дальнейшем следует исходить из 1-го порядка дифракции.
Протяженность восстановления была выбрана здесь так, чтобы она по своей величине совпала с интервалом периодичности 1-го порядка дифракции в плоскости наблюдения 4. Таким образом, более высокие порядки дифракции примыкают друг к другу без промежутка, но и без наложения.
Выбранный 1-й порядок дифракции является, правда, в виде Фурье образа восстановленной голограммы 3, однако не представляет собственно трехмерную сцену 6. Он служит лишь в качестве окна наблюдения 5, через которое можно рассматривать трехмерную сцену 6 (см. фиг.2). Внутри светового пучка 1-го порядка дифракции собственно трехмерная сцена 6 обозначена кружком. Сцена лежит, следовательно, внутри конуса восстановления, образуемого голограммой 3 и окном наблюдения 5. Сцена возникает в виде образа Френеля голограммы, тогда как окно наблюдения является частью Фурье образа.
На фиг.3 показано голографическое кодирование. Трехмерная сцена 6 состоит из точек. Пользуясь окном наблюдения 5 в качестве основы и выбранной точкой 7 в сцене 6 в качестве вершины конуса, проецируется конус как продолжение через эту точку на голограмму 3. Возникает область проекции 8 в видеоголограмме 3, в которой эта точка голографически кодируется. Для расчета фазовых значений можно определить расстояния от рассматриваемой точки 7 до ячеек голограммы 3. С этим способом восстановления соблюдается величина окна наблюдения 5 в интервале периодичности. Если бы в этом примере, напротив, рассматриваемая точка 7 кодировалась во всей голограмме 3, то восстановление имело бы протяженность за пределами интервала периодичности. Зоны наблюдения из соседних порядков дифракции накладывались бы друг на друга, причем наблюдатель видел бы периодическое продолжение рассматриваемой точки 7. Кодированная таким образом поверхность представлялась бы размытой по своим контурам из-за многократных наложений.
Уменьшение интенсивности в сторону более высоких порядков дифракции преимущественно используют для подавления интенсивности от одного окна наблюдения в других окнах наблюдения. На фиг.4 схематично показано распределение интенсивности света по порядкам дифракции, которое возникает за счет конечной ширины отверстий в CGH. На абсциссе нанесены порядки дифракции. 1-й порядок дифракции представляет окно наблюдения 5 для левого глаза, т.е. левое окно наблюдения, через которое можно рассматривать трехмерную сцену 6. Появление света, предназначенного для левого глаза, в окне наблюдения для правого глаза подавляется за счет уменьшения интенсивности в сторону более высоких порядков и дополнительно еще за счет нулевого значения распределения интенсивности.
Наблюдатель может рассматривать сцену 6 голограммы 3, конечно, также обоими глазами (см. фиг.5). Для правого глаза в качестве правого окна 5' наблюдения был выбран -1-й порядок дифракции от источника света 1'. Как видно из чертежа, от этой интенсивности только очень маленькая часть попадает на левый глаз. Она соответствует здесь -6-му порядку дифракции.
Для левого глаза был выбран 1-й порядок дифракции в соответствии с положением источника света 1. Здесь аналогичным образом возникает левое окно наблюдения 5. Согласно изобретению с помощью двух источников света 1 и 1' изображаются соответствующие трехмерные сцены 6 и 6' (здесь не показаны) на фиксированном месте по отношению к глазам. Для этого голограмма 3 при подключении источников света 1 и 1' кодируется соответственно заново. В качестве альтернативы оба источника света 1 и 1' могут восстановить одновременно голограмму 3 на обоих окнах наблюдения 5 и 5'.
При движении наблюдателя источники света 1 и 1' подводятся так, что оба окна наблюдения 5 и 5' остались локализованными в глазах наблюдателя. Это относится и к движениям по нормали, т.е. перпендикулярно к видеоголограмме. Кроме того, трехмерную сцену могут рассматривать также несколько наблюдателей за счет того, что при подключении дополнительных источников света возникают дополнительные окна наблюдения.

Claims (20)

1. Устройство для восстановления видеоголограмм, содержащее оптическую систему, состоящую, по меньшей мере, из одного реального или виртуального точечного и/или линейного, достаточно когерентного источника света и линзы, а также видеоголограммы из регулярно расположенных в виде матрицы или иным регулярным образом ячеек, по меньшей мере, с одним управляемым по амплитуде и/или фазе отверстием на ячейку и плоскости наблюдения в месте изображения источника света, отличающееся тем, что в плоскости наблюдения, соответствующей плоскости прямого или обратного Фурье преобразования видеоголограммы, локализовано окно наблюдения (5), занимающее определенный интервал периодичности восстановления в виде Фурье образа видеоголограммы (3), через которое можно наблюдать восстановленную трехмерную сцену (6), при этом протяженность окна наблюдения (5) не превышает интервал периодичности в плоскости обратного Фурье образа, и трехмерная сцена возникает в виде Френеля образа видеоголограммы.
2. Устройство для восстановления видеоголограмм по п.1, отличающееся тем, что окно наблюдения (5) приблизительно ограничено глазом, межзрачковым расстоянием наблюдателя или другой подходящей областью и позиционировано на них.
3. Устройство для восстановления видеоголограмм по п.1, отличающееся тем, что другому глазу наблюдателя соответствует второе окно наблюдения (5') за счет подключения второго реального или виртуального, достаточно когерентного источника света (1') в другом месте в пару источников света в оптической системе.
4. Устройство для восстановления видеоголограмм по п.3, отличающееся тем, что оптическая система и видеоголограмма (3) расположены так, что более высокие порядки дифракции видеоголограммы (3) для первого окна наблюдения (5) имеют нулевое значение или минимум интенсивности в месте второго окна наблюдения (5').
5. Устройство для восстановления видеоголограмм по п.4, отличающееся тем, что видеоголограмма (3) для второго глаза выполнена с возможностью перекодировки синхронно с подключением второго окна наблюдения (5').
6. Устройство для восстановления видеоголограмм по любому из пп.3-5, отличающееся тем, что для нескольких наблюдателей могут быть подключены несколько источников света.
7. Устройство для восстановления видеоголограмм по п.1, отличающееся тем, что источники света выполнены с возможностью позиционирования за счет механического или электронного смещения, подвижных зеркал или иным подходящим образом.
8. Устройство для восстановления видеоголограмм по п.1, отличающееся тем, что информацию для определения положения источников света получают, по меньшей мере, от одного датчика положения в зависимости от положения наблюдателя или наблюдателей.
9. Устройство для восстановления видеоголограмм по п.1, отличающееся тем, что осуществляют восстановление в цвете видеоголограммы (3) из регулярно расположенных в виде матрицы или иным образом ячеек, по меньшей мере, с тремя управляемыми для основных цветов по амплитуде и/или фазе отверстиями на ячейку, причем кодирование для отверстий на каждый основной цвет осуществляют раздельно.
10. Устройство для восстановления видеоголограмм по п.1, отличающееся тем, что восстановление в цвете осуществляют посредством, по меньшей мере, трех последовательно проведенных восстановлений в основных цветах.
11. Способ для голографического восстановления трехмерной сцены, колируемой в виде видеоголограммы, используя оптическую систему, состоящую, по меньшей мере, из одного реального или виртуального точечного и/или линейного, достаточно когерентного источника света и линзы, а также видеоголограммы из регулярно расположенных в виде матрицы или иным образом ячеек, по меньшей мере, с одним управляемым по амплитуде и/или фазе отверстием на ячейку, включающий следующие шаги:
(а) кодирование видеоголограммы на носителе видеоголограммы,
(б) голографическое восстановление трехмерной сцены, которую можно наблюдать через окно наблюдения, расположенное в плоскости изображения источника света, в которой возникает обратный Фурье образ видеоголограммы, причем протяженность окна наблюдения не превышает интервала периодичности обратного Фурье образа видеоголограммы, и трехмерная сцена возникает в виде Френеля образа видеоголограммы в пространстве, протягивающемся в виде усеченного конуса от окна наблюдения до носителя видеоголограммы.
12. Способ по п.11, в котором окно наблюдения (5) приблизительно ограничивают глазом, межзрачковым расстоянием наблюдателя или другой подходящей областью и позиционируют на них.
13. Способ по п.11, в котором другому глазу наблюдателя приводят в соответствие второе окно наблюдения (5') за счет подключения второго реального или виртуального, достаточно когерентного источника света (1') в другом месте в пару источников света в оптической системе.
14. Способ по п.13, в котором оптическую систему и видеоголограмму (3) располагают так, что более высокие порядки дифракции видеоголограммы (3) для первого окна наблюдения (5) имеют нулевое значение или минимум интенсивности в месте второго окна наблюдения (5').
15. Способ по п.14, в котором видеоголограмму (3) для второго глаза выполняют с возможностью перекодировки синхронно с подключением второго окна наблюдения (5').
16. Способ по любому из пп.13-15, в котором для нескольких наблюдателей могут быть подключены несколько источников света.
17. Способ по п.11, в котором источники света выполняют с возможностью позиционирования за счет механического или электронного смещения, подвижных зеркал или иным подходящим образом.
18. Способ по п.11, в котором информацию для определения положения источников света получают, по меньшей мере, от одного датчика положения в зависимости от положения наблюдателя или наблюдателей.
19. Способ по п.11, в котором осуществляют восстановление в цвете видеоголограммы (3) из регулярно расположенных в виде матрицы или иным образом ячеек, по меньшей мере, с тремя управляемыми для основных цветов по амплитуде и/или фазе отверстиями на ячейку, причем кодирование для отверстий на каждый основной цвет осуществляют раздельно.
20. Способ по п.11, в котором восстановление в цвете осуществляют посредством, по меньшей мере, трех последовательно проведенных восстановлений в основных цветах.
RU2007105102/28A 2002-11-13 2003-11-11 Видеоголограмма и устройство для восстановления видеоголограмм RU2363025C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10253292 2002-11-13
DE10253292 2002-11-13
DE10253292.3 2002-11-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2005118086/28A Division RU2293365C2 (ru) 2002-11-13 2003-11-11 Устройство для восстановления видеоголограмм

Publications (2)

Publication Number Publication Date
RU2007105102A RU2007105102A (ru) 2008-08-20
RU2363025C2 true RU2363025C2 (ru) 2009-07-27

Family

ID=32308559

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2005118086/28A RU2293365C2 (ru) 2002-11-13 2003-11-11 Устройство для восстановления видеоголограмм
RU2007105102/28A RU2363025C2 (ru) 2002-11-13 2003-11-11 Видеоголограмма и устройство для восстановления видеоголограмм

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2005118086/28A RU2293365C2 (ru) 2002-11-13 2003-11-11 Устройство для восстановления видеоголограмм

Country Status (13)

Country Link
US (14) US7839548B2 (ru)
EP (3) EP2138911B1 (ru)
JP (5) JP4473133B2 (ru)
KR (2) KR100915431B1 (ru)
CN (3) CN100437393C (ru)
AT (1) ATE441877T1 (ru)
BR (1) BR0316222A (ru)
DE (2) DE10353439B4 (ru)
HK (2) HK1087198A1 (ru)
IL (1) IL168538A (ru)
MX (1) MXPA05005229A (ru)
RU (2) RU2293365C2 (ru)
WO (1) WO2004044659A2 (ru)

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9903032D0 (en) * 1999-02-11 1999-03-31 Symbian Ltd Messaging architecture
MXPA05005229A (es) * 2002-11-13 2005-10-18 Seereal Technologies Gmbh Holograma de video y dispositivo para la reconstruccion de hologramas de video.
DE102004044111B4 (de) * 2004-09-08 2015-05-07 Seereal Technologies Gmbh Verfahren und Vorrichtung zum Kodieren und Rekonstruieren von computergenerierten Videohologrammen
DE102004063838A1 (de) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme
DE102005021155B3 (de) 2005-04-29 2006-11-23 Seereal Technologies Gmbh Steuerbare Beleuchtungseinrichtung
JP5180064B2 (ja) * 2005-05-06 2013-04-10 シーリアル、テクノロジーズ、ゲーエムベーハー 3次元シーンのホログラフィック再構成用装置
JP5015950B2 (ja) * 2005-12-22 2012-09-05 シーリアル テクノロジーズ ソシエテ アノニム ホログラフィックに再構成されたシーンにおける不均一な輝度知覚を補償する方法
CN101346674B (zh) * 2005-12-22 2012-06-27 视瑞尔技术公司 全息再现场景中不均匀亮度感知补偿的方法
DE102006003741B4 (de) * 2006-01-18 2009-08-27 Seereal Technologies S.A. Verfahren zum Kodieren eines computergenerierten Hologramms
DE102006004301A1 (de) * 2006-01-20 2007-08-02 Seereal Technologies S.A. Holographische Projektionsvorrichtung zur Vergrößerung eines Rekonstruktionsbereichs
DE102006018689A1 (de) * 2006-04-13 2007-10-25 Seereal Technologies S.A. Verfahren zum Rendern und Generieren computergenerierter Videohologramme in Echtzeit
DE102006024356B4 (de) 2006-05-19 2016-09-29 Seereal Technologies S.A. Holographische Projektionsvorrichtung zur Rekonstruktion von Szenen und Verfahren zur holographischen Rekonstruktion
DE102006042324B4 (de) * 2006-09-01 2014-06-18 Seereal Technologies S.A. Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen
JP5266223B2 (ja) 2006-09-01 2013-08-21 シーリアル テクノロジーズ ソシエテ アノニム 伝播を使用して計算機ビデオホログラムをリアルタイムに生成する方法
JP5265546B2 (ja) 2006-09-01 2013-08-14 シーリアル テクノロジーズ ソシエテ アノニム サブホログラムを使用してビデオホログラムをリアルタイムに生成する方法
JP2010501904A (ja) 2006-09-01 2010-01-21 シーリアル テクノロジーズ ソシエテ アノニム ホログラフィック符号化ユニット又はホログラフィック表示装置のためのインタフェース及び回路
DE102006041637B4 (de) * 2006-09-05 2010-11-25 Seereal Technologies S.A. Wiedergabevorrichtung und Verfahren zum Nachführen eines Betrachterfensters
DE102006042467A1 (de) * 2006-09-09 2008-03-27 Seereal Technologies S.A. Verfahren und Vorrichtung zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren
DE102006043297B4 (de) * 2006-09-14 2010-12-09 Seereal Technologies S.A. Wiedergabevorrichtung und Verfahren mit Mitteln zum Nachführen eines Betrachterfensters
JP2010507824A (ja) * 2006-10-26 2010-03-11 シーリアル テクノロジーズ ソシエテ アノニム ホログラフィック・ディスプレイ装置
TWI454742B (zh) * 2006-10-26 2014-10-01 Seereal Technologies Sa 全像顯示裝置(四)
TWI403868B (zh) * 2006-10-26 2013-08-01 Seereal Technologies Sa 全像顯示裝置及方法
DE102007024236A1 (de) * 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Anordnung von steuerbaren Mikroprismen
WO2008049909A1 (en) * 2006-10-26 2008-05-02 Seereal Technologies S.A. Compact holographic display device
GB0709379D0 (en) * 2007-05-16 2007-06-27 Seereal Technologies Sa Smart display extended
DE102007024237B4 (de) 2007-05-21 2009-01-29 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
DE102006062376B4 (de) 2006-12-19 2018-03-22 Seereal Technologies S.A. Verfahren und Wiedergabeeinrichtung zum Reduzieren von Speckle
DE102006062377B4 (de) 2006-12-19 2018-03-22 Seereal Technologies S.A. Verfahren und holographische Wiedergabeeinrichtung zum Reduzieren von Speckle
DE102006062413A1 (de) 2006-12-21 2008-06-26 Seereal Technologies S.A. Holographische Projektionsvorrichtung zur Vergrößerung eines Sichtbarkeitsbereichs
DE102007005823A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Optische Wellenfrontkorrektur für ein holographisches Projektionssystem
DE102007005822A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
DE102007011561B4 (de) * 2007-03-02 2016-03-17 Seereal Technologies S.A. Einrichtung zur Korrektur der Wellenlängenabhängigkeit in beugungsbasierten optischen Systemen
DE102007011560A1 (de) 2007-03-02 2008-09-04 Seereal Technologies S.A. Vorrichtung zur Minimierung der verbeugungsbedingten Dispersion in Lichtmodulatoren
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
US8218211B2 (en) 2007-05-16 2012-07-10 Seereal Technologies S.A. Holographic display with a variable beam deflection
DE102007023785B4 (de) * 2007-05-16 2014-06-18 Seereal Technologies S.A. Analytisches Verfahren zu Berechnung von Videohologrammen in Echtzeit und holographische Wiedergabeeinrichtung
US9581965B2 (en) 2007-05-16 2017-02-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time
GB0718634D0 (en) 2007-05-16 2007-10-31 Seereal Technologies Sa Holograms
DE102007023739B4 (de) * 2007-05-16 2018-01-04 Seereal Technologies S.A. Verfahren zum Rendern und Generieren von Farbvideohologrammen in Echtzeit und holographische Wiedergabeeinrichtung
DE102007023738A1 (de) 2007-05-16 2009-01-08 Seereal Technologies S.A. Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Display
DE102007023737B4 (de) 2007-05-16 2009-01-02 Seereal Technologies S.A. Verfahren zum Generieren von Videohologrammen in Echtzeit zur Erweiterung einer 3D-Rendering-Graphikpipeline
DE102007023740B4 (de) 2007-05-16 2009-04-09 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
DE102007024235B4 (de) * 2007-05-21 2009-04-30 Seereal Technologies S.A. Holografisches Rekonstruktionssystem sowie -verfahren mit erweitertem Sichtbarkeitsbereich
DE102007025069B4 (de) 2007-05-21 2018-05-24 Seereal Technologies S.A. Holographisches Rekonstruktionssystem
DE102007028371B4 (de) 2007-06-13 2012-05-16 Seereal Technologies S.A. Einrichtung zur Lichtmodulation
DE102007036127A1 (de) 2007-07-27 2009-01-29 Seereal Technologies S.A. Holographische Rekonstruktionseinrichtung
GB0716829D0 (en) * 2007-08-31 2007-10-10 Seereal Technologies Sa Holographic display
DE102007045332B4 (de) 2007-09-17 2019-01-17 Seereal Technologies S.A. Holographisches Display zum Rekonstruieren einer Szene
GB0720484D0 (en) * 2007-10-19 2007-11-28 Seereal Technologies Sa Cells
DE102007051521A1 (de) 2007-10-19 2009-04-23 Seereal Technologies S.A. Dynamische Wellenformereinheit
TW200928624A (en) * 2007-10-19 2009-07-01 Seereal Technologies Sa Light modulating device
GB2454246B (en) * 2007-11-02 2010-03-10 Light Blue Optics Ltd Holographic image display systems
DE102008000116A1 (de) 2008-01-21 2009-07-30 Seereal Technologies S.A. Beleuchtungseinheit für ein holographisches Rekonstruktionssystem
MD3896G2 (ru) * 2008-01-25 2009-12-31 Государственный Университет Молд0 Устройство для восстановления мультиплексных голограмм
DE102008000589B4 (de) 2008-03-11 2018-02-01 Seereal Technologies S.A. Verfahren zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren
DE102008002692B4 (de) * 2008-06-26 2019-02-21 Seereal Technologies S.A. Displayeinrichtung zur dreidimensionalen holographischen oder stereoskopischen Darstellung räumlicher Objekte und Verfahren zum Ermitteln einer Apodisationsfunktion für eine Apodisationsmaske
DE102008040581B4 (de) * 2008-07-21 2017-06-01 Seereal Technologies S.A. Steuerbare Lichtmodulationseinrichtung
USD666663S1 (en) 2008-10-20 2012-09-04 X6D Limited 3D glasses
USD603445S1 (en) 2009-03-13 2009-11-03 X6D Limited 3D glasses
USRE45394E1 (en) 2008-10-20 2015-03-03 X6D Limited 3D glasses
USD624952S1 (en) 2008-10-20 2010-10-05 X6D Ltd. 3D glasses
US8542326B2 (en) 2008-11-17 2013-09-24 X6D Limited 3D shutter glasses for use with LCD displays
CA2684513A1 (en) * 2008-11-17 2010-05-17 X6D Limited Improved performance 3d glasses
DE102008054438A1 (de) 2008-12-09 2010-06-24 Seereal Technologies S.A. Optisches Bauteil zum Ablenken von das optische Bauteil durchlaufende Lichtstrahlen
USD646451S1 (en) 2009-03-30 2011-10-04 X6D Limited Cart for 3D glasses
US8927801B2 (en) 2009-04-13 2015-01-06 The Procter & Gamble Company Absorbent articles comprising wetness indicators
USD650956S1 (en) 2009-05-13 2011-12-20 X6D Limited Cart for 3D glasses
USD672804S1 (en) 2009-05-13 2012-12-18 X6D Limited 3D glasses
USD671590S1 (en) 2010-09-10 2012-11-27 X6D Limited 3D glasses
USD669522S1 (en) 2010-08-27 2012-10-23 X6D Limited 3D glasses
USD692941S1 (en) 2009-11-16 2013-11-05 X6D Limited 3D glasses
USD662965S1 (en) 2010-02-04 2012-07-03 X6D Limited 3D glasses
CN102918466B (zh) 2010-04-01 2016-11-16 视瑞尔技术公司 用于在全息系统中编码包含透明物体的三维场景的方法和装置
KR102251546B1 (ko) 2010-07-06 2021-05-14 시리얼 테크놀로지즈 에스.에이. 홀로그래픽 또는 입체 디스플레이를 위한 빔 확장 및 각종 콜리메이터
USD664183S1 (en) 2010-08-27 2012-07-24 X6D Limited 3D glasses
KR101670927B1 (ko) * 2010-11-05 2016-11-01 삼성전자주식회사 디스플레이 장치 및 방법
US8913149B1 (en) 2010-11-30 2014-12-16 Integrity Applications Incorporated Apparatus and techniques for enhanced resolution imaging
DE102011005154B4 (de) 2010-12-22 2022-03-31 Seereal Technologies S.A. Lichtmodulationsvorrichtung für ein holographisches oder ein autostereoskopisches Display
WO2012085045A1 (de) 2010-12-22 2012-06-28 Seereal Technologies S.A. Kombinierte lichtmodulationsvorrichtung zur benutzernachführung
DE102011053037A1 (de) 2011-08-26 2013-02-28 Seereal Technologies S.A. Beleuchtungsvorrichtung
KR101507202B1 (ko) * 2011-11-16 2015-04-08 엘지디스플레이 주식회사 투과형 액정표시패널을 이용한 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
DE102011056006B4 (de) 2011-12-01 2016-03-10 Seereal Technologies S.A. Verfahren zur Kodierung eines Hologramms in einer Lichtmodulationseinrichtung
KR101841624B1 (ko) * 2012-01-25 2018-03-26 삼성전자주식회사 고속으로 3d 홀로그램을 생성하는 방법 및 장치
WO2013110748A1 (de) 2012-01-26 2013-08-01 Seereal Technologies S.A. Display mit betrachternachführung
US9581966B1 (en) 2012-02-15 2017-02-28 Integrity Applications Incorporated Systems and methodologies related to 3-D imaging and viewing
US9934614B2 (en) 2012-05-31 2018-04-03 Microsoft Technology Licensing, Llc Fixed size augmented reality objects
US9354606B1 (en) 2012-07-31 2016-05-31 Integrity Applications Incorporated Systems and methodologies related to generating projectable data for 3-D viewing
USD711959S1 (en) 2012-08-10 2014-08-26 X6D Limited Glasses for amblyopia treatment
US9219905B1 (en) 2012-08-31 2015-12-22 Integrity Applications Incorporated Systems and methodologies related to formatting data for 3-D viewing
CN104661690A (zh) 2012-09-26 2015-05-27 宝洁公司 具有持久性着色剂的液体活化制剂
AU2013237745A1 (en) 2012-10-09 2014-04-24 Aristocrat Technologies Australia Pty Limited A gaming system and a method of gaming
CN103186090B (zh) * 2013-03-14 2015-08-26 北京工业大学 数字全息成像在线重构显示系统及方法
US9310769B2 (en) * 2013-03-28 2016-04-12 Disney Enterprises, Inc. Coarse integral holographic display
DE112014002704A5 (de) 2013-06-06 2016-03-03 Seereal Technologies S.A. Vorrichtung und Verfahren zur Berechnung von Hologrammdaten
FR3015743A1 (fr) * 2013-12-23 2015-06-26 Orange Procede de traitement d'une sequence d'images holographiques, dispositifs, signaux, dispositifs et programme d'ordinateur associes
KR102208960B1 (ko) 2014-04-09 2021-01-28 삼성전자주식회사 홀로그래픽 디스플레이
US9473764B2 (en) 2014-06-27 2016-10-18 Microsoft Technology Licensing, Llc Stereoscopic image display
KR20160027384A (ko) * 2014-08-29 2016-03-10 전자부품연구원 투명-디스플레이와 홀로그램을 이용한 전시 장치
DE102015101203B4 (de) 2015-01-28 2021-06-17 Seereal Technologies S.A. Lichtmodulationsvorrichtung und holographische Anzeigevorrichtung
KR101800929B1 (ko) 2015-01-29 2017-11-23 한국전자통신연구원 홀로그래픽 디스플레이 왜곡 보정 방법 및 장치
KR102384223B1 (ko) 2015-02-26 2022-04-07 삼성전자주식회사 3차원 영상 표시용 광 변조 신호 형성 방법, 3차원 영상 표시 방법 및 장치
WO2016141263A1 (en) * 2015-03-04 2016-09-09 Oculus Vr, Llc Sparse projection for a virtual reality system
DE102015205873A1 (de) 2015-04-01 2016-10-06 Seereal Technologies S.A. Verfahren zur Berechnung von Hologrammen zur holographischen Rekonstruktion von zweidimensionalen und/oder dreidimensionalen Szenen
CN105223796B (zh) * 2015-09-08 2018-09-11 北京邮电大学 基于近眼显示设备的全息图计算方法及装置
KR20180098395A (ko) 2015-12-28 2018-09-03 시리얼 테크놀로지즈 에스.에이. 이미지 품질을 최적화하는 디스플레이 디바이스 및 방법
KR102346032B1 (ko) 2016-03-02 2021-12-31 시리얼 테크놀로지즈 에스.에이. 조명 장치
US11397406B2 (en) 2016-05-18 2022-07-26 Seereal Technologies S.A. Method for producing holograms
CN108020977A (zh) * 2016-10-28 2018-05-11 京东方科技集团股份有限公司 显示装置及其显示方法
RU2650086C1 (ru) 2016-12-22 2018-04-06 Самсунг Электроникс Ко., Лтд. Устройство отображения голографических изображений и способ функционирования блока управления, содержащегося в нем
US10969740B2 (en) 2017-06-27 2021-04-06 Nvidia Corporation System and method for near-eye light field rendering for wide field of view interactive three-dimensional computer graphics
CN109581850B (zh) * 2017-09-29 2021-03-05 京东方科技集团股份有限公司 全息显示方法和全息显示装置
JP7344873B2 (ja) 2017-12-07 2023-09-14 シーリアル テクノロジーズ ソシエテ アノニム ヘッドアップディスプレイ
CN108305320B (zh) * 2018-02-09 2021-06-04 重庆大学 用于提高大视野全息成像质量的自适应滑动窗重建方法
US10753579B2 (en) 2018-07-20 2020-08-25 Flex-N-Gate Advanced Product Development, Llc Animated 3D image multiplier
WO2020018878A1 (en) 2018-07-20 2020-01-23 Flex-N-Gate Advanced Product Development, Llc Floating image generation
US20210231996A1 (en) 2018-08-16 2021-07-29 Seereal Technolgies S.A. Light modulation device
US11454928B2 (en) * 2018-11-06 2022-09-27 Samsung Electronics Co., Ltd. Holographic display apparatus and method for providing expanded viewing window
DE112021004254A5 (de) 2020-08-10 2023-06-01 Seereal Technologies S.A. Vorrichtung und Verfahren zur Berechnung von Hologrammdaten
KR102510926B1 (ko) * 2020-10-14 2023-03-16 울산과학기술원 디더링 마스크에 기반한 홀로그램 색상 지정 시스템 및 홀로그램 색상 지정 방법
US11798370B2 (en) 2020-10-26 2023-10-24 Lnw Gaming, Inc. Gaming machine and method with symbol array alteration
US11907435B1 (en) 2021-08-02 2024-02-20 Omar Kevin Ubilla Transformable apparatus with retractable display
WO2024058438A1 (ko) * 2022-09-15 2024-03-21 삼성전자 주식회사 홀로그램 영상을 제공하는 전자 장치 및 전자 장치의 동작 방법

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028323A (en) * 1968-02-19 1977-06-07 Ciba-Geigy Ag Process for making azo compounds by coupling with nitrosated heterocyclic primary amines
US3635726A (en) * 1968-09-20 1972-01-18 Griffith Laboratories Method of producing soy protein concentrates
US3966982A (en) * 1973-06-18 1976-06-29 Dravo Corporation Process and apparatus for treating oleaginous seed material
US3957353A (en) * 1974-03-08 1976-05-18 The Board Of Trustees Of The Leland Stanford University Multiemulsion transparency providing separate phase and amplitude control
US3897574A (en) * 1974-03-21 1975-07-29 Central Soya Co Purification of ethanol extractant in soy protein concentrate process
US4188399A (en) * 1974-12-23 1980-02-12 Miles Laboratories, Inc. Process for preparing a heat coagulable viscous protein
CA1066329A (en) * 1976-03-16 1979-11-13 Edward J. Falk Tandem brake master cylinder
US4285862A (en) * 1976-09-30 1981-08-25 General Foods, Limited Protein isolate product
US4072670A (en) * 1976-10-26 1978-02-07 Mead Johnson & Company Low phytate isoelectric precipitated soy protein isolate
US4091120A (en) * 1976-11-15 1978-05-23 Mead Johnson & Company Liquid dietary product containing soy protein membrane isolate
US4151828A (en) * 1977-06-28 1979-05-01 Solarpower, Inc. Solar energy collection tube
US4321280A (en) * 1977-12-01 1982-03-23 General Foods Corporation Textured oil seed protein products
US4284656A (en) * 1979-12-14 1981-08-18 Hwa Stephen C P Novel protein curd product and process of preparation
US4346122A (en) * 1980-12-29 1982-08-24 A. E. Staley Manufacturing Company Low-viscosity, high-NSI, heat-gelling soy isolates
US4435438A (en) * 1980-12-29 1984-03-06 A. E. Staley Manufacturing Company Soy isolate suitable for use in imitation cheese
US4368151A (en) * 1981-08-10 1983-01-11 A. E. Staley Manufacturing Company 7S And 11S vegetable protein fractionation and isolation
US4460613A (en) * 1982-11-01 1984-07-17 Ralston Purina Company Basal material for the preparation of tofu
US4500454A (en) * 1982-12-03 1985-02-19 Stauffer Chemical Company Vegetable protein evidencing improved solution viscosity
US4530788A (en) * 1982-12-03 1985-07-23 Stauffer Chemical Company Oil seed proteins evidencing improved functionality
US4493854A (en) * 1983-09-20 1985-01-15 The United States Of America As Represented By The Secretary Of Agriculture Production of defatted soybean products by supercritical fluid extraction
US5290959A (en) * 1985-09-10 1994-03-01 Vitamins, Inc. Mass separation of materials
US5086166A (en) * 1987-02-13 1992-02-04 The Texas A&M University System Protein foods and food ingredients and processes for producing them from defatted and undefatted oilseeds
US5097017A (en) * 1989-12-20 1992-03-17 Central Soya Company, Inc. Process for making soy protein concentrate
US5172251A (en) 1990-04-12 1992-12-15 Massachusetts Institute Of Technology Three dimensional display system
US5191449A (en) * 1992-02-03 1993-03-02 Cfc Applied Holographics Animated holographic stereogram display
JPH0627864A (ja) * 1992-07-10 1994-02-04 Fujitsu Ltd 計算機ホログラムの作成方法及び装置
JPH0635391A (ja) * 1992-07-20 1994-02-10 Fujitsu Ltd 立体表示装置
JPH07261125A (ja) * 1994-03-24 1995-10-13 Olympus Optical Co Ltd 投影型画像表示装置
US5798964A (en) * 1994-08-29 1998-08-25 Toshiba Corporation FRAM, FRAM card, and card system using the same
JP2765489B2 (ja) * 1994-09-30 1998-06-18 不二製油株式会社 大豆たん白及びその製造法
JP2989115B2 (ja) * 1995-03-27 1999-12-13 浜松ホトニクス株式会社 立体表示方法および立体表示装置
CA2146811C (en) * 1995-04-11 2003-07-01 David Michael Moore Dean Method and apparatus for presenting stereoscopic images
US5936069A (en) * 1995-12-06 1999-08-10 Iowa State University Research Foundation Process for producing improved soy protein concentrate from genetically-modified soybeans
ES2120878B1 (es) * 1996-01-05 1999-06-01 Alejo Trevijano Jose Javier Sistema estereoscopico electronico.
DE69737779T2 (de) * 1996-02-29 2008-03-06 Hamamatsu Photonics K.K., Hamamatsu Holographisches Abbildungs- und Anzeigegerät und Verfahren
ZA972978B (en) * 1996-04-09 1998-10-23 Du Pont Isoflavone-enriched soy protein product and method for its manufacture
US6108440A (en) * 1996-06-28 2000-08-22 Sony Corporation Image data converting method
JP3546618B2 (ja) * 1996-12-19 2004-07-28 不二製油株式会社 大豆蛋白の製造法
US6171640B1 (en) * 1997-04-04 2001-01-09 Monsanto Company High beta-conglycinin products and their use
JP3798511B2 (ja) * 1997-06-11 2006-07-19 浜松ホトニクス株式会社 計算機ホログラム表示装置
GB9713658D0 (en) 1997-06-28 1997-09-03 Travis Adrian R L View-sequential holographic display
GB2330471A (en) 1997-10-15 1999-04-21 Secr Defence Production of moving images for holography
US6330088B1 (en) 1998-02-27 2001-12-11 Zebra Imaging, Inc. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms
US6710920B1 (en) * 1998-03-27 2004-03-23 Sanyo Electric Co., Ltd Stereoscopic display
DE19825192A1 (de) * 1998-06-05 1999-12-16 Joerg Gutjahr Projektionsschirm
KR20010074685A (ko) 1998-07-10 2001-08-09 추후보정 형상 재구성식 홀로그래픽 광학에 기초한 투영 시스템
JP2000059822A (ja) * 1998-08-06 2000-02-25 Toshiba Corp 立体映像表示装置
JP4026242B2 (ja) * 1998-08-19 2007-12-26 松下電器産業株式会社 光学式3次元動画表示装置
JP3505404B2 (ja) * 1998-10-16 2004-03-08 理想科学工業株式会社 ホログラムパターン決定装置、その決定方法及び記録媒体
US6844458B2 (en) * 1998-11-20 2005-01-18 Ip Holdings, L.L.C. Vegetable oil refining
EP1008919A1 (fr) * 1998-12-09 2000-06-14 Communauté Européenne (CE) Procédé et dispositif holographiques assistés par ordinateur pour restituer des images tridimensionnelles
GB2350962A (en) 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
US6335043B1 (en) * 1999-08-03 2002-01-01 Haokui Jiang Method for extracting soybean proteins using an enzyme
US6665100B1 (en) * 1999-08-10 2003-12-16 Zebra Imaging, Inc. Autostereoscopic three dimensional display using holographic projection
US6677327B1 (en) * 1999-11-24 2004-01-13 Archer-Daniels-Midland Company Phytosterol and phytostanol compositions
IL134701A0 (en) * 2000-02-23 2001-04-30 J P M E D Ltd Homogeneous solid matrix containing vegetable proteins
DE10008710C2 (de) * 2000-02-24 2002-01-10 Loh Optikmaschinen Ag Vorrichtung zum zentrierenden Spannen von optischen Linsen für deren Randbearbeitung
GB2363273A (en) * 2000-06-09 2001-12-12 Secr Defence Computation time reduction for three dimensional displays
JP2004504863A (ja) * 2000-08-11 2004-02-19 ナチュラ・ホールディングス・プロプライエタリー・リミテッド 脂肪種子の加工
US6797309B2 (en) * 2000-08-18 2004-09-28 Solae, Llc Soy protein product and process for its manufacture
CN2439045Y (zh) * 2000-08-31 2001-07-11 深圳市泛彩溢实业有限公司 全息液晶显示器
EP1323352B1 (en) * 2000-09-29 2007-06-13 Fuji Oil Company, Ltd. Process for producing soybean protein
GB0027103D0 (en) * 2000-11-07 2000-12-20 Secr Defence Improved 3D display
JP2002149045A (ja) * 2000-11-15 2002-05-22 Victor Co Of Japan Ltd ホログラム記録媒体
US6630195B1 (en) * 2000-11-21 2003-10-07 Cargill, Incorporated Process for producing oilseed protein products
US7037547B2 (en) * 2000-11-30 2006-05-02 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials for use in beverages
US20040170743A1 (en) * 2000-11-30 2004-09-02 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials confectionary type products
US7045163B2 (en) * 2000-11-30 2006-05-16 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials
US20040161513A1 (en) * 2000-11-30 2004-08-19 Kraft Foods Holdings, Inc. Method of preparation of high quality soy-containing meat and meat analog products
US20040161512A1 (en) * 2000-11-30 2004-08-19 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials for use in dough-based and baked products
US7175869B2 (en) * 2000-11-30 2007-02-13 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials using electrodialysis
US6787173B2 (en) * 2000-11-30 2004-09-07 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials
US6576253B2 (en) * 2000-12-05 2003-06-10 Pbm Pharmaceuticals, Inc. Food bars containing nutritional supplements
JP4632331B2 (ja) 2000-12-19 2011-02-16 大日本印刷株式会社 光学複製用ホログラム原版の作製方法
BR0206479A (pt) * 2001-01-16 2004-03-23 Solae Llc Protéina vegetal de formação de gel
KR100425293B1 (ko) * 2001-02-01 2004-03-30 삼성전자주식회사 입체 영상 표시 장치
BR0207386B1 (pt) * 2001-02-20 2014-08-05 Solae Llc Processo para produzir um produto de proteína de soja, produto de proteína de soja e análogo de carne ou laticínio
RU2316223C2 (ru) * 2001-05-04 2008-02-10 Баркон Ньютрасайнс (Мб) Корп. Производство белкового изолята из семян масличных культур
GB2379351A (en) * 2001-09-04 2003-03-05 Holographic Imaging Llc Illuminating a computer generated hologram
US20030059514A1 (en) * 2001-09-10 2003-03-27 Villagran Francisco Valentino Compositions comprising soy protein and processes of their preparation
KR100933766B1 (ko) * 2001-11-20 2009-12-24 버콘 뉴트라사이언스 (엠비) 코포레이션 기름 종자 단백질 분리물의 연속 제조 방법
US7090863B2 (en) * 2001-11-30 2006-08-15 Inpharma S.A. Hypocholesterolemic composition and methods of use
RU2318397C2 (ru) * 2001-12-13 2008-03-10 Баркон Ньютрасайнс (Мб) Корп. Увеличенное извлечение белка из семян масличных культур
RU2004135371A (ru) * 2002-05-07 2006-02-27 Солае, Ооо (Us) Соевый белковый материал с низким содержанием изофлавонов и высоким содержанием сапонинов и способ его получения
RU2361415C2 (ru) * 2002-06-21 2009-07-20 Баркон Ньютрасайнс (Мб) Корп. Экстракция белка из кормовой муки из жмыха семян масличной канолы
GB2391475B (en) * 2002-08-10 2005-02-02 Reckitt Benckiser A packaged hair-removing layer, its manufacture and its use
MXPA05005229A (es) * 2002-11-13 2005-10-18 Seereal Technologies Gmbh Holograma de video y dispositivo para la reconstruccion de hologramas de video.
US20060019017A1 (en) * 2002-12-09 2006-01-26 Navpreet Singh Soy protein concentrate with high gel strength and the process for making the same
US7018668B2 (en) * 2003-02-06 2006-03-28 Procter & Gamble Co. Low fat creamer compositions
WO2004072739A1 (ja) * 2003-02-12 2004-08-26 Dai Nippon Printing Co., Ltd. 計算機合成ホログラム
WO2004112493A1 (en) * 2003-06-20 2004-12-29 Burcon Nutrascience (Mb) Corp. Oil seed meal preparation
US20050084470A1 (en) * 2003-10-15 2005-04-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Skin care and cleansing compositions containing oil seed product
US20050095345A1 (en) * 2003-11-04 2005-05-05 Schillinger John A. Soy products and soy product production methods and apparatus
US20070128323A1 (en) * 2003-12-26 2007-06-07 Setsuo Tsujii Creams, whipped products thereof, dry powders thereof and process for producing the same
US20050220979A1 (en) * 2004-04-02 2005-10-06 Craig Baumer High soy protein nuggets and applications in food products
GB2416108A (en) * 2004-07-16 2006-01-18 Solae Llc Protein-containing dairy product
US7556836B2 (en) * 2004-09-03 2009-07-07 Solae, Llc High protein snack product
US7169425B2 (en) * 2004-09-17 2007-01-30 Solae, Llc Size exclusion chromatography process for the preparation of an improved soy protein-containing composition
US20060062889A1 (en) * 2004-09-17 2006-03-23 Solae, Llc. Soy protein-containing composition
US20060121176A1 (en) * 2004-12-06 2006-06-08 Solae, Llc Soy protein-containing composition having improved functionality
US7332192B2 (en) * 2004-12-17 2008-02-19 Solae, Llc Soy protein isolate
DE102004063838A1 (de) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme
US20070014896A1 (en) * 2005-07-18 2007-01-18 Wong Theodore M Calcium containing soy protein isolate composition
US20070031577A1 (en) * 2005-07-20 2007-02-08 Novozymes A/S Method for producing a soy protein product
US20070042106A1 (en) * 2005-08-17 2007-02-22 Solae, Llc High Protein Food Bars Comprising Sugar Alcohols and Having Improved Texture and Shelf-Life
US20070042103A1 (en) * 2005-08-17 2007-02-22 Solae, Llc. Isolated Soy Protein Having High Molecular Weight Protein Fractions and Low Molecular Weight Protein Fractions
WO2007041470A2 (en) * 2005-09-30 2007-04-12 Archer-Daniels-Midland Company High-protein soy-wheat crisps
US20070092633A1 (en) * 2005-10-25 2007-04-26 Navpreet Singh Soy protein product with a high sterol and tocopherol content and process for its manufacture
DE102007005822A1 (de) * 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
JP5206951B2 (ja) * 2008-06-24 2013-06-12 株式会社ニコン 画像表示装置
KR101759252B1 (ko) * 2011-01-21 2017-07-19 삼성전자주식회사 액티브 셔터를 이용한 3차원 홀로그래피 영상 표시 장치
JP5903805B2 (ja) * 2011-08-31 2016-04-13 ブラザー工業株式会社 現像装置およびその製造方法

Also Published As

Publication number Publication date
US20060238844A1 (en) 2006-10-26
RU2005118086A (ru) 2006-01-20
KR100891293B1 (ko) 2009-04-06
CN100437393C (zh) 2008-11-26
CN101349889B (zh) 2012-04-25
CN102520604A (zh) 2012-06-27
US8384974B2 (en) 2013-02-26
MXPA05005229A (es) 2005-10-18
DE10353439B4 (de) 2009-07-09
EP1563346B1 (de) 2009-09-02
EP1563346A2 (de) 2005-08-17
RU2293365C2 (ru) 2007-02-10
US8027071B2 (en) 2011-09-27
JP5371801B2 (ja) 2013-12-18
US20060238838A1 (en) 2006-10-26
CN101349889A (zh) 2009-01-21
BR0316222A (pt) 2005-10-04
EP2138910A3 (de) 2011-10-26
US20060055994A1 (en) 2006-03-16
EP2138911B1 (de) 2022-06-22
EP2138910B1 (de) 2020-05-13
US7315408B2 (en) 2008-01-01
JP4473133B2 (ja) 2010-06-02
JP5788427B2 (ja) 2015-09-30
EP2138911A3 (de) 2011-10-26
JP2013156646A (ja) 2013-08-15
CN1711509A (zh) 2005-12-21
WO2004044659A2 (de) 2004-05-27
US20060238839A1 (en) 2006-10-26
WO2004044659A3 (de) 2004-07-15
EP2138910A2 (de) 2009-12-30
KR100915431B1 (ko) 2009-09-03
US20060238837A1 (en) 2006-10-26
HK1087198A1 (en) 2006-10-06
KR20080035668A (ko) 2008-04-23
JP2015156029A (ja) 2015-08-27
JP6249977B2 (ja) 2017-12-20
US20060238843A1 (en) 2006-10-26
IL168538A (en) 2010-11-30
ATE441877T1 (de) 2009-09-15
US7924484B2 (en) 2011-04-12
US7839548B2 (en) 2010-11-23
EP2138911A2 (de) 2009-12-30
US20190137933A1 (en) 2019-05-09
JP2006506660A (ja) 2006-02-23
DE10353439A1 (de) 2004-06-09
JP2018028680A (ja) 2018-02-22
US20080252950A1 (en) 2008-10-16
US20060238840A1 (en) 2006-10-26
US20130265626A1 (en) 2013-10-10
DE50311875D1 (de) 2009-10-15
CN102520604B (zh) 2015-10-28
US8174744B2 (en) 2012-05-08
JP6701143B2 (ja) 2020-05-27
US8314981B2 (en) 2012-11-20
US7929189B2 (en) 2011-04-19
US20150192899A1 (en) 2015-07-09
RU2007105102A (ru) 2008-08-20
US10884377B2 (en) 2021-01-05
KR20050055052A (ko) 2005-06-10
US20110304895A1 (en) 2011-12-15
JP2010146019A (ja) 2010-07-01
US20110026089A1 (en) 2011-02-03
US9989920B2 (en) 2018-06-05
HK1128338A1 (en) 2009-10-23
US8941902B2 (en) 2015-01-27
US20060238836A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
RU2363025C2 (ru) Видеоголограмма и устройство для восстановления видеоголограмм
Lucente Interactive three-dimensional holographic displays: seeing the future in depth
Kollin The promises and perils of real-time holographic display
Dai et al. Electroholographic display with SLM
Takahashi et al. Approach to the multicolor imaging from computer generated hologram

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131112