RU2358020C1 - Способ производства мартенситной нержавеющей стали - Google Patents

Способ производства мартенситной нержавеющей стали Download PDF

Info

Publication number
RU2358020C1
RU2358020C1 RU2007139907/02A RU2007139907A RU2358020C1 RU 2358020 C1 RU2358020 C1 RU 2358020C1 RU 2007139907/02 A RU2007139907/02 A RU 2007139907/02A RU 2007139907 A RU2007139907 A RU 2007139907A RU 2358020 C1 RU2358020 C1 RU 2358020C1
Authority
RU
Russia
Prior art keywords
softening
steel
heat treatment
stainless steel
temperature
Prior art date
Application number
RU2007139907/02A
Other languages
English (en)
Inventor
Нобуюки МОРИ (JP)
Нобуюки МОРИ
Original Assignee
Сумитомо Метал Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сумитомо Метал Индастриз, Лтд. filed Critical Сумитомо Метал Индастриз, Лтд.
Application granted granted Critical
Publication of RU2358020C1 publication Critical patent/RU2358020C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

зобретение относится к области металлургии. Для предотвращения замедленного разрушения, которое встречается в подвергнутой горячей обработке мартенситной нержавеющей стали, сталь после горячей обработки и до термической обработки для закалки посредством резкого охлаждения от температуры, по меньшей мере, точки Ac1 стали подвергают предварительной разупрочняющей термической обработке при таких условиях, что параметр разупрочнения Р, как он определяется ниже, равен, по меньшей мере, 15400, а температура разупрочнения Т ниже точки Ас1 при этом Р (параметр разупрочнения): P=T(20+log t), где Т - температура разупрочнения [К], t - длительность разупрочняющей обработки (час). Изобретение особенно эффективно для мартенситной нержавеющей стали, имеющей состав стали, в котором количество эффективных растворенных С и N(=[C*+10N*]) больше 0,45, где С* и N* вычисляют по нижеприведенным формулам: С*=С-[12{(Cr/52)×(6/23)}/10],N*=N-[14{(V/51)+(Nb/93)}/10]-[14{(Ti/48)+(В/11)+(Al/27)}/10]. ! 2 н. и 5 з.п. ф-лы, 2 табл. 1 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к способу предотвращения замедленного разрушения в мартенситной нержавеющей стали, которая подвергается мартенситному превращению, даже когда ей дают возможность охлаждаться на воздухе, и к способу производства мартенситной нержавеющей стали, обладающей свойством предотвращения замедленного разрушения.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Стальные трубы из мартенситной нержавеющей стали, как например, API 13Cr-стали, имеют отличную коррозионную стойкость в атмосфере, содержащей СО2, и поэтому они применяются, главным образом, при бурении нефтяных скважин, например, в виде насосно-компрессорных и обсадных труб для использования при бурении нефтяных скважин. Мартенситную нержавеющую сталь подвергают закалке, резко охлаждая от температуры в аустенитной области (при температуре, равной точке Ас1 стали или выше ее), для образования мартенситной структуры. Следовательно, сталь обычно подвергают конечной термической обработке для закалки после горячей обработки.
Однако высокая прокаливаемость мартенситной нержавеющей стали может вызывать мартенситное превращение стали, даже когда ей дают возможность охлаждаться на воздухе после горячей обработки, например, при производстве труб, и в некоторых случаях образуются трещины, особенно в тех частях, по которым нанесен удар во время обращения с изделием. Это явление, которое называют замедленным разрушением, и возникает внезапно после того, как пройден определенный период времени после горячей обработки. Следовательно, в случае горячей обработки мартенситной нержавеющей стали необходимо предотвращать возникновение замедленного разрушения во время периода времени после горячей обработки и до термической обработки для упрочнения.
При изготовлении труб из мартенситной нержавеющей стали обычной контрмерой против замедленного разрушения является ограничение продолжительности времени от завершения изготовления трубы вплоть до начала термической обработки для упрочнения посредством закалки. Для этого вскоре после изготовления трубы ее необходимо подвергать термической обработке для придания стали достаточной прочности посредством закалки. Однако ограничение времени с момента изготовления трубы до термической обработки иногда приводит к необходимости частого изменения температуры термической обработки во время работы, что приводит к снижению эффективности производства.
В патентном документе JP 2004-43935 A описывается бесшовная труба из мартенситной нержавеющей стали, в которой замедленное разрушение предотвращается способом, основанным на ограничении количества эффективных растворенных C и N (которое описано ниже) до 0,45 или менее. Однако количество эффективных растворенных C и N определяется составом стали, и когда соответствующий состав стали выбирают с учетом других свойств, как, например, прочности и ударной вязкости, то случается, что количество эффективных растворенных C и N превышает 0,45. Следовательно, этот способ нельзя назвать оптимальным для предотвращения замедленного разрушения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является создание способа предотвращения замедленного разрушения мартенситной нержавеющей стали, которая подвергается мартенситному превращению, даже когда ей дают возможность охлаждаться на воздухе, при этом без ограничения продолжительности времени от завершения горячей обработки вплоть до термической обработки для упрочнения.
Другой задачей изобретения является создание способа предотвращения замедленного разрушения, который применим к мартенситной нержавеющей стали, имеющей количество эффективных растворенных C и N, превышающее 0,45.
Еще одной задачей изобретения является создание способа производства мартенситной нержавеющей стали, имеющей улучшенное сопротивление замедленному разрушению.
Авторами проведены исследования с учетом того факта, что причина замедленного разрушения в мартенситной нержавеющей стали связана с увеличением твердости материала и с количеством поглощенного водорода, причем то и другое вызвано растворением C и N в твердом растворе. В результате было установлено, что возникновение замедленного разрушения можно предотвратить, осуществляя предварительную смягчающую термическую обработку после горячей обработки. Затем при необходимости можно, конечно, в любое удобное время проводить термическую обработку для упрочнения.
Согласно одному аспекту настоящего изобретения предлагается способ предотвращения замедленного разрушения мартенситной нержавеющей стали, которая подвергается мартенситному превращению, когда ей дают возможностью охлаждаться на воздухе, отличающейся тем, что после горячей обработки и до термической обработки закалкой от температуры, равной точке Ас1 стали или выше ее, сталь подвергают предварительной разупрочняющей термической обработке при таких условиях, что параметр разупрочнения Р, как он определяется ниже, равен, по меньшей мере, 15400, а температура разупрочнения Т ниже точки Ас1:
Р (параметр разупрочнения): Р=Т(20+log t),
Т: температура разупрочнения [К],
t: длительность разупрочняющей обработки [часы].
Согласно другому аспекту настоящего изобретения предлагается способ производства мартенситной нержавеющей стали, имеющей улучшенное сопротивление замедленному разрушению, отличающийся тем, что мартенситную нержавеющую сталь, состоящую по существу из в мас.%, С: 0,15-0,22%, Si: 0,05-1,0%, Mn: 0,10-1,0%, Cr: 10,5-14,0%, Р: самое большее 0,020%, S: самое большее 0,010%, Al: самое большее 0,10%, Мо: 0-2,0%, V: самое большее 0,50%, Nb: 0-0,020%, Ca: 0-0,0050%, N: самое большее 0,1000% и остатка из Fe и примесей, после горячей обработки подвергают предварительной разупрочняющей термической обработке при таких условиях, что параметр разупрочнения Р, как он определен выше, равен, по меньшей мере, 15400, а температура разупрочнения Т ниже точки Ас1.
Согласно настоящему изобретению при изготовлении труб из мартенситной нержавеющей стали, которые используют в нефтяных скважинах и т.п., можно эффективно предотвращать замедленное разрушение, подвергая их предварительной разупрочняющей термической обработке вскоре после изготовления труб, что тем самым делает возможным последующее осуществление в произвольное время термической обработки для упрочнения путем закалки, чтобы образовать готовые изделия. В результате этого не существует никакой необходимости осуществлять закалку в пределах ограниченного периода времени после образования труб, при этом можно предотвращать замедленное разрушение мартенситной нержавеющей стали в отсутствие препятствия со стороны технологических операций, налагаемых таким ограничением.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖА
На чертеже представлен график, показывающий результаты из примеров.
НАИЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже будет описано настоящее изобретение в связи с некоторыми конкретными вариантами его осуществления. Однако нижеописанные варианты предназначаются лишь для иллюстрации настоящего изобретения, а не служат для его ограничения.
Сталью, которая представляет интерес в настоящем изобретении, в общем, является любая мартенситная нержавеющая сталь, которая подвергается мартенситному превращению, когда ей дают возможность охлаждаться на воздухе.
Однако ввиду того, что основным применением этой стали является ее использование в виде стальной трубы в нефтяной скважине, то предпочтителен следующий состав стали. В этом описании изобретения процентное содержание в составе стали выражено в массовых процентах, если не указано иное.
С: 0,15-0,22%
С (углерод) - это один из важнейших элементов в мартенситной нержавеющей стали, он необходим для достижения достаточной прочности. Содержание С поддерживают в пределах 0,15-0,22% для того, чтобы получить хорошо сбалансированные прочности, отношение предела текучести к пределу прочности. Если содержание С меньше 0,15%, то невозможно достигнуть достаточной прочности. Если оно превышает 0,22%, то прочность становится слишком высокой, при этом затрудняется достижение подходящего баланса прочности с отношением предела текучести и предела прочности. Кроме того, это приводит к значительному увеличению количества эффективного растворенного С, которое определено ниже, а в некоторых случаях невозможно предотвратить замедленное разрушение, даже если осуществляется предварительная смягчающая термическая обработка согласно настоящему изобретению. Нижний предел содержания С равен предпочтительно 0,16% и предпочтительнее 0,18%.
Si: 0,05-1,0%
Si (кремний) добавляют в сталь в качестве раскислителя. Для того, чтобы достигнуть этого результата, добавляют, по меньшей мере, 0,05% Si. Для того, чтобы предотвратить ухудшение ударной вязкости, верхний предел содержания Si равен 1,0%. Нижний предел содержания Si равен предпочтительно 0,16% и предпочтительнее 0,20%. Предпочтительный верхний предел содержания Si равен 0,35%.
Mn: 0,10-1,0%
Как и Si, Mn (марганец) обладает раскисляющим действием. Однако добавление слишком большого количества Mn вызывает ухудшение ударной вязкости. По этой причине содержание Mn равно 0,10-1,0%. Оно предпочтительно составляет, по меньшей мере, 0,30%, а для того, чтобы сохранить ударную вязкость после резкого охлаждения, оно предпочтительно составляет самое большее 0,60%.
Cr: 10,5-14,0%
Cr (хром) - это основной материал для достижения необходимой коррозионной стойкости в мартенситной нержавеющей стали. При добавлении, по меньшей мере, 10,5% Cr улучшается коррозионная стойкость в отношении питтинговой коррозии и длительной коррозии, при этом заметно улучшается коррозионная стойкость в среде, содержащей СО2. С другой стороны, Cr - это ферритообразующий элемент, поэтому если его содержание превышает 14,0%, то δ-феррит легко образуется во время обработки при высокой температуре, что тем самым ухудшает обрабатываемость в горячем состоянии и уменьшает прочность после горячей обработки. Содержание Cr составляет предпочтительно, по меньшей мере, 12,0% и самое большее 13,1%.
Р: самое большее 0,20%
Так как присутствие слишком большого количества Р (фосфора) в качестве примеси вызывает ухудшение ударной вязкости, то содержание Р составляет самое большее 0,020%.
S: самое большее 0,010%
Присутствие слишком большого количества S (серы) в качестве примеси вызывает только ухудшение ударной вязкости, но и развитие сегрегации, приводящей к ухудшению качества внутренней поверхности стальной трубы. Следовательно, содержание S составляет самое большее 0,010%.
Al: самое большее 0,10%.
Al присутствует в стали в виде примеси. Если его содержание превышает 0,10%, то ухудшается ударная вязкость, так что содержание Al составляет самое большее 0,10%, предпочтительно самое большее 0,05%.
Мо: 0-2,0%
Мо (молибден) - это необязательный легирующий элемент, но если добавлен Мо, то это имеет результатом увеличение прочности и коррозионной стойкости. Однако если количество Мо превышает 2,0%, то затрудняется протекание мартенситного превращения. Следовательно, при добавлении Мо его содержание составляет самое большее 2,0%. Мо - это дорогостоящий легирующий элемент, и добавление Мо в увеличенном количестве неэффективно с экономической точки зрения. Следовательно, когда добавляют Мо, его содержание предпочтительно делают по возможности небольшим.
V: самое большее 0,50%
Добавление V (ванадия) имеет результатом увеличение YR (YR=предел текучести/ предел прочности на растяжение) стали. Однако если содержание V превышает 0,50%, то это уменьшает ударную вязкость, так что верхний предел содержания V равен 0,50%. V - это дорогостоящий легирующий элемент, и добавление V в увеличенном количестве неэффективно с экономической точки зрения, так что верхний предел его содержания предпочтительно равен 0,30%.
Nb: 0-0,020%
Nb (ниобий) - это необязательный легирующий элемент. Если добавлен Nb, то это имеет результатом увеличение прочности. Однако если количество Nb превышает 0,020%, то это уменьшает ударную вязкость, так что верхний предел содержания Nb равен 0,020%. Nb также является дорогостоящим легирующим элементом, и добавление Nb в увеличенном количестве неэффективно с экономической точки зрения. Следовательно, когда добавляют Nb, его содержание предпочтительно делают по возможности небольшим.
Са: 0-0,0050%
Са (кальций) также является необязательным легирующим элементом. Са связывается с S в стали и в результате этого предотвращает ухудшение обрабатываемости в горячем состоянии из-за выделения S на границах зерен. Если содержание Са превышает 0,0050%, то растут включения в стали и уменьшается ударная вязкость. Следовательно, когда добавляют Са, верхний предел его содержания равен 0,0050%.
N: самое большее 0,1000%
N (азот) - это аустенитостабилизирующий элемент, и подобно С он является важным элементом в мартенситной нержавеющей стали, в частности, улучшая обрабатываемость в горячем состоянии. Если количество N превышает 0,1000%, то уменьшается ударная вязкость. Кроме того, это приводит к значительному увеличению количества эффективного растворенного N, и в результате этого очень легко происходит замедленное разрушение. Следовательно, верхний предел содержания N равен 0,100% и предпочтительно 0,0500%. С другой стороны, при слишком небольшом количестве N ухудшается эффективность стадии деазотирования в процессе производства стали, что тем самым препятствует производству стали. Следовательно, количество N предпочтительно составляет, по меньшей мере, 0,0100%.
После исключения вышеуказанных элементов остаток состава стали содержит Fe и примеси, как, например, Ti (титан), В (бор) и О (кислород).
Как описывается в вышеупомянутом патентном документе JP 2004-43935 А, на склонность мартенситной нержавеющей стали к замедленному разрушению влияет количество эффективных растворенных C и N. Замедленное разрушение имеет тенденцию к легкому возникновению, если сумма количества эффективного растворенного С и 10-кратного количества эффективного растворенного N, т.е. (С*+10N*) в стали превышает 0,45. Таким образом, настоящее изобретение дает результаты в отношении стальной трубы, у которой значение (С*+10N*) больше, чем 0,45. Другими словами, в стали с (С*+10N*)≤0,45 замедленное разрушение не происходит легко.
Таким образом, способ согласно настоящему изобретению особенно эффективен тогда, когда он применяется к стали с (С*+10N*)>0,45. А именно, в противоположность изобретению, описанному в патентном документе JP 2004-43935 А, при настоящем изобретении не требуется регулировать количество N в стали для удовлетворения требования (С*+10N*)≤0,45. Таким образом, можно в достаточной степени использовать действие N по улучшению обрабатываемости в горячем состоянии, тем самым облегчая горячую обработку мартенситной нержавеющей стали и благоприятно влияя на изделия, получаемые при горячей обработке.
Количество эффективных растворенных C и N (Q) вычисляют следующим образом:
Q: количество эффективных растворенных C и N
Q=C*+10N*
C*: количество эффективного растворенного С
С*:=С-[12{(Cr/52)×(6/23)}/10]
N*: количество эффективного растворенного N
N*=N - [14{(V/51)+(Nb/93)}/10]-[14{(Ti/48)+(B/11)+(Al/27)}/10]
В вышеприведенных формулах содержание каждого элемента указано в массовых процентах.
Согласно настоящему изобретению мартенситную нержавеющую сталь, имеющую вышеописанный состав, после горячей обработки, как например, изготовление трубы, подвергают предварительной разупрочняющей термической обработке для того, чтобы предотвратить в дальнейшем появление замедленного разрушения.
Причина замедленного разрушения мартенситной нержавеющей стали связана с азотом и водородом, захватываемыми при деформациях, которые осуществляются во время горячей обработки. Следовательно, если высвободить эти окклюдированные газы, то можно предотвратить замедленное разрушение. С этой целью осуществляют предварительную разупрочняющую обработку при таких условиях, что параметр разупрочнения Р, который вычисляют по нижеследующей формуле, равен, по меньшей мере, 15400, а температура разупрочнения Т ниже точки Ас1.
Р (параметр разупрочнения): Р=Т(20+log t),
Т: температура разупрочнения [К],
t: длительность разупрочняющей обработки (часы).
Для того, чтобы предотвратить замедленное разрушение, необходимо уменьшить количество окклюдированных водорода и азота в стали. С этой целью уменьшают твердость стали посредством разупрочняющей термической обработки. Если после разупрочняющей термической обработки параметр разупрочнения меньше 15400, то разупрочнение является недостаточным, и даже после осуществления такой термической обработки существует возможность появления замедленного разрушения. Однако даже в случае, когда сталь термически обрабатывают так, чтобы иметь параметр разупрочнения, равный 15400 или больше, и если температура разупрочнения, которая является температурой, при которой осуществляют такую термическую обработку, равна точке Ас1 стали или выше ее, то структура снова становится аустенитной, а после охлаждения появляется мартенситная структура, которая не подвергалась термической обработке, так как существует тенденция к появлению замедленного разрушения.
Предварительную разупрочняющую термическую обработку осуществляют после горячей обработки и до конечной термической обработки для закалки резким охлаждением от температуры, равной, по меньшей мере, точке Ас1 стали. Ее можно проводить в любое время в пределах этого периода, пока не произошло замедленное разрушение. Однако так как возможность появления замедленного разрушения увеличивается после того, как прошло 168 часов со времени завершения конечной горячей обработки (например, изготовления трубы)(исключая время последующего охлаждения), то предварительную разупрочняющую термическую обработку предпочитается осуществлять в пределах 168 часов со времени конечной горячей обработки. Предварительную разупрочняющую термическую обработку можно осуществлять сразу же после конечной горячей обработки. Например, ее можно проводить сразу же после охлаждения на воздухе изделия, обработанного в горячем состоянии, или даже во время этого охлаждения и после понижения температуры стали до точки Mf стали или ниже этой точки, при которой завершается мартенситное превращение.
Предварительную разупрочняющую термическую обработку выполняют нагреванием изделия, обработанного в горячем состоянии, до температуры разупрочнения Т, которая ниже, чем точка Ас1 стали, и поддержанием этой температуры в течение определенного периода времени. Длительность этой термической обработки является длительностью разупрочняющей обработки «t» в вышеприведенной формуле, поэтому ее выбирают в зависимости от температуры разупрочнения Т таким образом, чтобы параметр Р, вычисленный по вышеприведенной формуле, был равен, по меньшей мере, 15400. Охлаждение после разупрочняющей термической обработки предпочтительно осуществляют охлаждением на воздухе.
После того, как проведена предварительная разупрочняющая термическая обработка мартенситной нержавеющей стали, подвергшейся горячей обработки, сталь надежно предохранена от подверженности замедленному разрушению, так что конечная термическая обработка для упрочнения посредством закалки может быть проведена в любой удобный момент времени. В результате этого множество стальных изделий, которые подверглись горячей обработке и которые могут быть упрочнены закалкой от одинаковой температуры, в дальнейшем могут быть подвергнуты конечной термической обработке для упрочнения, что, таким образом, дает возможность уменьшить изменения температуры в термической печи, а следовательно, улучшить эффективность производства и снизить эксплуатационные расходы.
Как описано выше, на легкость появления замедленного разрушения влияет количество эффективных растворенных C и N. Согласно настоящему изобретению можно предотвращать замедленное разрушение независимо от этого количества (а именно, даже если количество эффективных растворенных C и N является довольно большим).
Горячая обработка и конечная термическая обработка для упрочнения (закалки) мартенситной нержавеющей стали могут быть проведены обычным образом. Например, горячую обработку можно осуществлять посредством образования трубы в условиях, которые обычно применяются при производстве бесшовных труб. Конечную термическую обработку обычно проводят резким охлаждением от температуры в интервале 920-980°C и последующим отпуском в интервале температур 650-750°С.
ПРИМЕР
По технологии производства труб методом Маннесмана и с использованием заготовок из мартенситной нержавеющей стали, имеющей составы (остальное: Fe и примеси), показанные в Таблице 1, изготовили бесшовные стальные трубы с наружным диаметром 60,33 мм и с толщиной стенки 4,83 мм.
От каждой получаемой бесшовной трубы брали опытный образец длиной 250 мм для использования при испытании на удар.
Чтобы вызвать деформацию от ударной нагрузки (294 Дж), на каждый опытный образец падал груз весом 150 кг с наконечником, имеющим кривизну в 90 мм. После этого опытный образец подвергали предварительной разупрочняющей термической обработке при условиях (1) и (2), показанных в Таблице 2, в отношении температуры термической печи (температура разупрочнения) и времени пребывания в ней (длительности разупрочняющей обработки). В Таблице 2 показаны также значения параметра разупрочнения, вычисленные при каждом условии испытания. Причина того, почему применялась ударная нагрузка до предварительной разупрочняющей термической обработки, заключается в том, чтобы имитировать повреждение стальной трубы при обращении с ней во время транспортировки в фактическом производственном процессе.
Каждый опытный образец, который был термически обработан для разупрочнения, оставляли на воздухе на 720 часов и затем исследовали на наличие или отсутствие трещин. Трещины выявляли при визуальном рассмотрении и ультразвуковом испытании. Результаты показаны в таблице 2 и на фиг.1.
По нижеприведенным формулам вычисляли количество эффективных растворенных C и N (Q) в каждой стали, значение которого показано в Таблице 1 наряду с ее точкой Ас1.
Q=(C*+10N*)
С*=С-[12{(Cr/52)×(6/23)}/10] и
N*=N-[14{(V/51)+(Nb/93)}/10]-[14{(Ti/48)+(B/11)+(Al/27)}/10]
Как можно видеть на фиг.1, замедленное разуршение не происходит, когда Q≤0,45, а когда Q>0,45, замедленное разрушение можно предотвратить, устанавливая параметр разупрочнения равным, по меньшей мере, 15400. Таким образом, в противоположность техническому решению в патентном документе JP2004-43935, в котором для того, чтобы предотвратить замедленное разрушение, должно быть удовлетворено условию Q≤0,45, настоящее изобретение дает возможность предотвращать замедленное разрушение даже в сталях, имеющих значение Q больше 0,45.
Figure 00000001
Figure 00000002

Claims (7)

1. Способ производства изделий из мартенситной нержавеющей стали, характеризующийся тем, что после горячей обработки и до термической обработки закалкой от температуры, равной точке Ac1 стали или выше ее, стальное изделие подвергают предварительной разупрочняющей термической обработке в условиях, при которых параметр разупрочнения Р равен, по меньшей мере, 15400 и определен следующим соотношением: P=T(20+log t),
где Т - температура разупрочнения, К;
t - длительность разупрочняющей обработки, ч;
а температура разупрочнения Т ниже точки Ас1.
2. Способ по п.1, при котором предварительную разупрочняющую термическую обработку осуществляют в пределах 168 ч после горячей обработки.
3. Способ по п.1, при котором горячей обработкой изготавливают трубу.
4. Способ производства изделий из мартенситной нержавеющей стали, характеризующийся тем, что изделия производят из стали следующего состава, мас.%:
С 0,15-0,22 Si 0,05-1,0 Mn 0,10-1,0 Cr 10,5-14,0 Р не более 0,020 S не более 0,010 Al не более 0,10 Mo 0-2,0 V не более 0,50 Nb 0-0,020 Са 0-0,0050 N не более 0,10 Fe и примеси остальное,

после горячей обработки стальное изделие подвергают предварительной разупрочняющей термической обработке в условиях, при которых параметр разупрочнения Р равен, по меньшей мере, 15400 и определен следующим соотношением: P=T(20+log t),
где Т - температура разупрочнения, К;
t - длительность разупрочняющей обработки, ч,
а температура разупрочнения Т ниже точки Ас1.
5. Способ по п.4, при котором сталь содержит количество эффективных растворенных С и N, равное [C*+10N*] больше 0,45, где С* и N* вычисляют по нижеприведенным формулам:
С*=С-[12{(Cr/52)·(6/23)}/10];
N*=N-[14{(V/51)+(Nb/93)}/10]-[14{(Ti/48)+(B/11)+(Al/27)}/10],
где В и Ti - содержание примесей в стали.
6. Способ по п.4 или 5, при котором предварительную разупрочняющую термическую обработку осуществляют в пределах 168 ч после горячей обработки.
7. Способ по п.4 или 5, при котором горячей обработкой изготавливают трубы.
RU2007139907/02A 2005-03-30 2006-03-28 Способ производства мартенситной нержавеющей стали RU2358020C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005098221 2005-03-30
JP2005-098221 2005-03-30

Publications (1)

Publication Number Publication Date
RU2358020C1 true RU2358020C1 (ru) 2009-06-10

Family

ID=37073216

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007139907/02A RU2358020C1 (ru) 2005-03-30 2006-03-28 Способ производства мартенситной нержавеющей стали

Country Status (8)

Country Link
US (2) US7905967B2 (ru)
EP (1) EP1867737B1 (ru)
JP (1) JP4992711B2 (ru)
CN (1) CN101146917B (ru)
AR (1) AR052732A1 (ru)
BR (1) BRPI0608954B1 (ru)
RU (1) RU2358020C1 (ru)
WO (1) WO2006106650A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635205C2 (ru) * 2016-01-11 2017-11-09 Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251084B (zh) * 2011-07-04 2013-04-17 南京迪威尔高端制造股份有限公司 深海采油设备液压缸用钢锻件性能热处理工艺
JP5900922B2 (ja) * 2012-03-14 2016-04-06 国立大学法人大阪大学 鉄鋼材の製造方法
CN102663498B (zh) * 2012-04-28 2014-06-18 武汉大学 一种9%Cr马氏体耐热钢焊缝金属Ac1点的预测方法
CN104711482A (zh) * 2015-03-26 2015-06-17 宝钢不锈钢有限公司 一种控氮马氏体不锈钢及其制造方法
CN110643894B (zh) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 具有良好的疲劳及扩孔性能的超高强热轧钢板和钢带及其制造方法
CN110643895B (zh) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 一种马氏体不锈钢油套管及其制造方法
CN114137070B (zh) * 2021-10-25 2023-10-10 湖南工学院 一种识别超声振动切削扬矿管螺纹中超声软化系数的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825419A (ja) * 1981-08-07 1983-02-15 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼の低温割れ防止法
JP2707839B2 (ja) * 1990-12-25 1998-02-04 住友金属工業株式会社 マルテンサイト系継目無鋼管とその製造方法
JP2705416B2 (ja) * 1991-12-19 1998-01-28 住友金属工業株式会社 マルテンサイト系ステンレス鋼と製造方法
AU739624B2 (en) * 1999-05-18 2001-10-18 Nippon Steel Corporation Martensitic stainless steel for seamless steel pipe
JP2003064416A (ja) * 2001-08-21 2003-03-05 Aichi Steel Works Ltd 冷鍛性、温鍛性に優れた析出硬化型マルテンサイト系ステンレス鋼の製造方法
JP4126979B2 (ja) 2002-07-15 2008-07-30 住友金属工業株式会社 マルテンサイト系ステンレス継目無鋼管とその製造方法
JP3895291B2 (ja) * 2003-03-24 2007-03-22 エヌケーケーシームレス鋼管株式会社 高強度9Cr鋼管の軟化熱処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635205C2 (ru) * 2016-01-11 2017-11-09 Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали

Also Published As

Publication number Publication date
BRPI0608954B1 (pt) 2017-06-20
CN101146917B (zh) 2010-11-17
JPWO2006106650A1 (ja) 2008-09-11
US7905967B2 (en) 2011-03-15
CN101146917A (zh) 2008-03-19
JP4992711B2 (ja) 2012-08-08
US20110067785A1 (en) 2011-03-24
WO2006106650A1 (ja) 2006-10-12
US20080078478A1 (en) 2008-04-03
AR052732A1 (es) 2007-03-28
EP1867737B1 (en) 2012-03-21
EP1867737A1 (en) 2007-12-19
EP1867737A4 (en) 2009-04-29
BRPI0608954A2 (pt) 2010-02-17

Similar Documents

Publication Publication Date Title
RU2358020C1 (ru) Способ производства мартенситной нержавеющей стали
JP5145793B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
US7083686B2 (en) Steel product for oil country tubular good
US10240221B2 (en) Stainless steel seamless pipe for oil well use and method for manufacturing the same
JP5446335B2 (ja) 油井用高強度ステンレス鋼管の評価方法
EA011363B1 (ru) Сталь для трубы, предназначенной для нефтяной скважины, и способ получения трубы
JP2008081793A (ja) 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP5499575B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
RU2690059C1 (ru) Стальной материал и стальная труба для нефтяных скважин
JPS63230851A (ja) 耐食性に優れた油井管用低合金鋼
JPS63230847A (ja) 耐食性に優れた油井管用低合金鋼
JP2006097051A (ja) マルテンサイト系ステンレス鋼管の製造方法
JP2861024B2 (ja) 油井用マルテンサイト系ステンレス鋼材とその製造方法
JP4867638B2 (ja) 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト
JP3750596B2 (ja) マルテンサイト系ステンレス鋼
JPH02217444A (ja) 耐食性,耐応力腐食割れ性の優れた高強度マルテンサイト系ステンレス鋼およびその製造方法
JP4975448B2 (ja) 靭性に優れた655MPa級マルテンサイト系ステンレス鋼及びその製造方法
JP4332446B2 (ja) 冷間加工性および耐遅れ破壊特性に優れた高強度鋼、並びに耐遅れ破壊特性に優れた高強度鋼部品
JP7543687B2 (ja) 高強度ボルト用鋼の製造方法
JP3398552B2 (ja) 疲労特性に優れたフラッパーバルブ用高強度オーステナイト系ステンレス鋼板およびその製造方法
JPS61272316A (ja) 耐応力腐蝕割れ性のすぐれた超高張力鋼の製造法
EP3748027B1 (en) Bolt
WO2024202565A1 (ja) 棒鋼、ボルト及びボルトの製造方法
JPH06100943A (ja) ステンレス鋼ラインパイプの製造方法
JP2001059136A (ja) 耐硫化水素腐食性および耐炭酸ガス腐食性能に優れたCr含有油井管用鋼

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20140623

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210329