RU2344069C2 - Способ получения водорода из газа, содержащего метан, в частности природного газа, и установка для осуществления способа - Google Patents
Способ получения водорода из газа, содержащего метан, в частности природного газа, и установка для осуществления способа Download PDFInfo
- Publication number
- RU2344069C2 RU2344069C2 RU2006106217/15A RU2006106217A RU2344069C2 RU 2344069 C2 RU2344069 C2 RU 2344069C2 RU 2006106217/15 A RU2006106217/15 A RU 2006106217/15A RU 2006106217 A RU2006106217 A RU 2006106217A RU 2344069 C2 RU2344069 C2 RU 2344069C2
- Authority
- RU
- Russia
- Prior art keywords
- hydrogen
- carbon dioxide
- gas
- scrubber
- conversion
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/48—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
- C01B2203/0288—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0822—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
- C01B2203/143—Three or more reforming, decomposition or partial oxidation steps in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/146—At least two purification steps in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Industrial Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation Of Gases By Adsorption (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Изобретение относится к способу получения водорода из газа, содержащего метан, в частности природного газа. Содержащиеся в газе углеводороды разлагаются в риформинг-печи посредством водяного пара каталитическим путем на водород, оксид углерода и диоксид углерода. На последующей конверсионной ступени с помощью водяного пара осуществляют каталитическую конверсию образовавшегося оксида углерода в диоксид углерода и водород. Диоксид углерода удаляют посредством скруббера из подвергнутого конверсии газового потока, и промытый, богатый водородом газовый поток разделяют затем в адсорбционной установке на состоящий из водорода поток газового продукта и поток отходящего газа. Поток отходящего газа вместе с водородом, отводимым от газового потока за скруббером, подают в риформинг-печь и сжигают там. Установка содержит, по меньшей мере, одну оборудованную камерой сгорания риформинг-печь, конверсионную ступень, по меньшей мере, с одним конверсионным реактором для каталитической конверсии оксида углерода посредством водяного пара в диоксид углерода, скруббер для отделения диоксида углерода и подключенную к нему адсорбционную установку для извлечения водорода, к которой присоединен ведущий обратно к камере сгорания газопровод для обогревания риформера выходящим из адсорбционной установки газовым потоком. Причем предусмотрено дополнительное устройство для возврата части покидающего скруббер газового потока в камеру сгорания риформинг-печи. Изобретение позволяет просто и экономично получать водород. При этом в атмосферу выделяется небольшое количество диоксида углерода. 2 н. и 4 з.п. ф-лы, 2 ил.
Description
Изобретение относится к способу получения водорода из газа, содержащего метан, в частности природного газа.
Из US 5131930 известна традиционная водородная установка, эксплуатируемая на природном газе в качестве исходного вещества. В установке происходит сначала каталитическое расщепление с помощью водяного пара углеводородов, содержащихся в природном газе, в обогреваемой печи для риформинг-процесса для получения оксида углерода и водородсодержащего синтез-газа. После этого происходит каталитическая конверсия оксида углерода в водород, а затем получение в чистом виде водорода с помощью адсорбционной установки. Отходящие газы адсорбционной установки возвращают в камеру сгорания печи для риформинг-процесса и сжигают там вместе с дополнительно подаваемым природным газом. Известно также использование в качестве дополнительного горючего газа рафинированного газа или других горючих газов. В результате парового расщепления метана образуется значительное количество диоксида углерода согласно водногазовому равновесию
СО+Н2O ⇒ Н2+CO2,
которое на конверсионной ступени еще больше повышается за счет конверсии оксида углерода до концентрации, в целом, около 16 об.% (в сухом виде). Это количество диоксида углерода поступает через дымовую трубу камеры сгорания в атмосферу вместе с диоксидом углерода, полученным в результате сжигания дополнительных углеродсодержащих топлив. Содержание СО2 в дымовых газах составляет, в целом, более 20 об.% (в сухом виде). На нефтеперегонном заводе выполненная таким образом водородная установка представляет собой, таким образом, один из крупнейших поставщиков диоксида углерода.
Из US 4553981 известен способ получения водорода, при котором углеводородсодержащий газ подвергают риформингу паром и конверсии. После этого в скруббере от подвергнутого конверсии газового потока отделяют поток отходящего CO2. Затем происходит изолирование водорода с помощью адсорбционной установки. Поток отходящих газов адсорбционной установки сжимают и возвращают на риформинг или конверсию. В результате возникают значительные циркуляционные потоки. Во избежание аккумулирования инертных газов, например азота, от потока отходящих газов адсорбционной установки приходится отбирать Purgestrom. Увлажнение печи для риформинга происходит традиционным образом. Способ далее сложен и дорог.
В основу изобретения положена задача создания простого и экономичного способа получения водорода из газа, содержащего метан, в частности природного газа, при котором в атмосферу выделяется лишь небольшое количество диоксида углерода.
Объектом изобретения и решением этой задачи является способ получения водорода из газа, содержащего метан, в частности природного газа, по п.1.
Содержащиеся в газе углеводороды разлагаются в риформинг-печи посредством водяного пара каталитическим путем на водород, оксид углерода и диоксид углерода, а на последующей конверсионной ступени с помощью водяного пара осуществляют каталитическую конверсию образовавшегося оксида углерода в диоксид углерода и водород. Диоксид углерода удаляют посредством скруббера из подвергнутого конверсии газового потока, и промытый, богатый водородом газовый поток затем разделяют в адсорбционной установке на состоящий из водорода газовый поток продукта и поток отходящего газа. Поток отходящего газа вместе с водородом, отводимым от газового потока за скруббером, подают в качестве в значительной степени свободного от углерода горючего газа к риформинг-печи и сжигают там.
В то время как в риформинг-печи происходит почти полное разложение углеводородов на водород, оксид углерода и диоксид углерода, на конверсионной ступени образовавшийся оксид углерода превращается в диоксид углерода, который удаляют в последующем скруббере. Отходящий газ адсорбционной установки содержит поэтому, по существу, водород и лишь небольшие количества углерода. То же относится к водороду, отводимому от газового потока за скруббером. При совместном сжигании обоих этих газовых потоков в риформинг-печи образуется поэтому состоящий, главным образом, из азота и воды отходящий газ, тогда как содержание диоксида углерода невелико. За счет возврата газа отпадает необходимость дополнительного обогрева риформинг-печи углеродсодержащими топливами, так что выделение диоксида углерода заметно уменьшается. По сравнению с традиционными способами выброс диоксида углерода может быть снижен примерно на 75%. Этапы способа, выполняемые в рамках изобретения, представляют собой без исключения совершенные технологии, успешно применяемые в получении водорода уже длительное время. Затраты, необходимые для достижения описанного снижения диоксида углерода, сравнительно малы. Возникает поэтому также возможность переоборудования существующей традиционной водородной установки, чтобы осуществить на ней способ согласно изобретению.
Преимущественно для конверсионной ступени используют работающий при средней температуре конверсионный реактор или высокотемпературный конверсионный реактор. За счет этого обеспечивается почти полная конверсия образовавшегося оксида углерода в диоксид углерода, который может быть затем удален из газового потока посредством скруббера. При использовании последовательно подключенного низкотемпературного конверсионного реактора возникает то преимущество, что может быть далее использован высокотемпературный конверсионный реактор существующей водородной установки, в результате чего заметно сокращаются расходы на переоборудование существующей установки.
Преимущественно в скруббере отделяется технически чистый диоксид углерода, который используют для технических целей или перерабатывают дальше в продукт с качеством, применяемый в пищевой промышленности. Наряду с применением в качестве исходного вещества для пищевой промышленности рассматривается также применение технически чистого диоксида углерода в качестве, например, заполнения нефтяной скважины как меры по эффективной нефтедобыче. В качестве альтернативы диоксид углерода может также применяться в качестве сырья для синтеза метанола. Скруббер для диоксида углерода может эксплуатироваться при этом известными физическими методами, например Rectisol, Selexol или Genosorb, или же химическим или физико-химическим методом, например aMDEA (водный раствор N-метилдитаноламина) или сульфинол.
При переоборудовании существующей водородной установки с целью минимизации CO2 подвергаемый конверсии газовый поток перед входом в заново установленный CO2-скруббер сжимают, чтобы компенсировать возникающую за счет этого потерю давления. Это повышает эффективность CO2-скруббера.
Объектом изобретения является также установка по п.4 для осуществления способа. Предпочтительные выполнения этой установки описаны в зависимых п.п.5 и 6.
Ниже изобретение подробно поясняется с помощью изображающих только один пример его осуществления чертежей, на которых:
фиг.1 изображает блок-схему способа согласно изобретению;
фиг.2 - блок-схему способа согласно изобретению после переоборудования традиционной водородной установки.
На фиг.1 изображена блок-схема способа согласно изобретению для получения водорода из метансодержащего природного газа. К потоку 1 природного газа примешивают поток 2 водяного пара. Содержащиеся в природном газе углеводороды, в частности метан, в оборудованной камерой 3 сгорания риформинг-печи 4 разлагаются с помощью примешанного потока 2 водяного пара каталитическим путем на водород, оксид углерода и диоксид углерода. Этот риформинг-процесс происходит почти полностью, так что на выходе указанной печи 4 практически больше нет углеводородсодержащих газов. В последовательно включенном, работающем при средней температуре конверсионном реакторе 5 с помощью водяного пара происходит каталитическая конверсия образующегося оксида углерода в диоксид углерода и водород. Также эта реакция протекает почти полностью, так что содержание оксида углерода в выходящем из конверсионного реактора 5 газовом потоке 8 составляет менее 1 об.% (в сухом виде). Затем образовавшийся диоксид углерода с помощью скруббера 7 почти полностью удаляют из газового потока 8. В примере выполнения скруббер 7 работает с водным раствором N-метилдитаноламина (aMDEA) в качестве промывочной жидкости. В рамках изобретения возможно также применение других известных методов промывки, например Rectisol, Selexol, Genosorb или сульфинол. Полученный в скруббере 7 диоксид углерода 18 концентрируют на следующей ступени 9 очистки до чистоты, применяемой в пищевой промышленности. Промытый газовый поток 10 содержит лишь небольшие количества углерода, и затем его в адсорбционной установке 11 разделяют на поток газа-продукта, состоящего из водорода 12, и поток 13 отходящего газа. Содержание водорода в потоке 12 газа-продукта составляет более 99 об.%. Поток 13 отходящего газа содержит, по существу, в данном случае водород и лишь незначительные количества непревращенных или лишь частично превращенных углеводородов. Вместе с частичным потоком 14, ответвленным за скруббером 7 с помощью устройства 19, также, по существу, состоящим из водорода, поток 13 отходящего газа по трубопроводу 17 подают в камеру сгорания риформинг-печи и сжигают там. При этом количество частичного потока 14 устанавливают таким, что он при совместном сжигании с потоком 13 отходящего газа покрывает потребность риформинг-печи 4 в энергии. Поскольку поток 13 отходящего газа и частичный поток 14 состоят преимущественно из водорода и содержат лишь небольшие количества углерода, отходящий из камеры сгорания газ 15 имеет высокое содержание водяного пара и лишь небольшую долю диоксида углерода. По сравнению с традиционными способами получения водорода, при которых в камере сгорания сжигают углеродсодержащие топлива, как, например, природный газ и углеводородсодержащие отходящие газы, способ согласно изобретению тем самым отличается небольшим выделением диоксида углерода.
Описанные этапы способа, применяемые в рамках решения согласно изобретению, представляют собой исключительно совершенные технологии, зарекомендовавшие себя как при получении водорода, так и при производстве аммиака. Риформинг-печь 4 должна иметь лишь достаточно большие габариты, чтобы обеспечить получение водорода, включая снабжение горючим газом после СО2-скруббера. Конверсионный реактор 5 эксплуатируют при средней температуре для обеспечения почти полной конверсии образовавшегося оксида углерода в диоксид углерода. Полученный в примере выполнения посредством ступени 9 очистки диоксид углерода 21 может быть подвергнут дальнейшей переработке в пищевой промышленности. В качестве альтернативы этому существует также возможность использования полученного в скруббере 7 технически чистого диоксида углерода 18 непосредственно для технических целей. При этом рассматривается, например, заполнение нефтяной скважины как меры по эффективной нефтедобыче или же применение в качестве сырья для синтеза метанола.
Затраты на осуществление описанного способа сравнительно малы. В частности, существует возможность переоборудования существующей традиционной водородной установки так, чтобы на ней можно было проводить способ согласно изобретению. На фиг.2 изображена переоборудованная согласно изобретению традиционная водородная установка. Уже существующие компоненты установки обозначены сплошными линиями, а добавляемые в рамках переоборудования компоненты - штриховыми линиями. Традиционная водородная установка содержит оборудованную камерой 3' сгорания риформинг-печь 4' для каталитического разложения газообразных углеводородов водяным паром. За ней расположен высокотемпературный конверсионный реактор 5' для каталитической конверсии оксида углерода с водяным паром в диоксид углерода и водород. К нему примыкает адсорбционная установка 11' для извлечения водорода 12' из конверсионного газового потока 8' с присоединенным газопроводом 17' к камере 3' сгорания для нагрева риформинг-печи 4' выходящим из адсорбционной установки 11' потоком 13' отходящего газа. В рамках переоборудования производительность ступени риформинга была повышена почти на 20% за счет установленной перед риформинг-печью 4' пред-риформинг-печи 4'' и установленной после риформинг-печи 4' пост-риформинг-печи 4'''. При необходимости достаточно, однако, предусмотреть только одну из обеих дополнительных риформинг-печей 4', 4'''. Высокотемпературный конверсионный реактор 5', работающий, как правило, при температурах 360-500°С, дополнен установленным после него, работающим в диапазоне 210-270°С низкотемпературным конверсионным реактором 5'', чтобы достичь максимально полной конверсии оксида углерода в диоксид углерода. В качестве альтернативы этому существующий высокотемпературный конверсионный реактор 5' может быть заменен также работающим при средней температуре конверсионным реактором. Между ступенью конверсии и адсорбционной установкой 11' предусмотрены газовый компрессор 16' для сжатия газового потока 6' и скруббер 7' для отделения образовавшегося диоксида углерода, причем в примере выполнения полученный в скруббере 7' диоксид углерода 18' направляют непосредственно на техническое использование. Между скруббером 7' и адсорбционной установкой 11' предусмотрено дополнительное устройство 19' для возврата части газового потока 14', покидающего скруббер, богатого водородом газового потока 10' в камеру 3', 3'', 3''' сгорания риформинг-печей 4', 4'', 4'''. В заключение осуществляли адаптацию существующей риформинг-печи 4' к сжиганию и использованию тепла, исходящего от богатого водородом топлива. Существующий газопровод 20 для подачи углеводородсодержащих горючих газов в камеру 3' сгорания риформинг-печи 4' больше не используют. Фиг.2 показывает, что со сравнительно малыми затратами традиционная водородная установка может быть переоборудована с возможностью выполнения на ней способа согласно изобретению. За счет этого дополнительно повышается привлекательность способа согласно изобретению.
Claims (6)
1. Способ получения водорода из газа, содержащего метан, в частности природного газа, при котором содержащиеся в газе углеводороды разлагаются в риформинг-печи (4) посредством водяного пара каталитическим путем на водород, оксид углерода и диоксид углерода, а на последующей конверсионной ступени с помощью водяного пара осуществляют каталитическую конверсию образовавшегося оксида углерода в диоксид углерода и водород, диоксид углерода удаляют посредством скруббера (7) из подвергнутого конверсии газового потока (8), и промытый, богатый водородом газовый поток (10) затем разделяют в адсорбционной установке (11) на состоящий из водорода поток (12) газового продукта и поток (13) отходящего газа, после чего поток (13) отходящего газа вместе с водородом (14), отводимым от газового потока (10) за скруббером (7), подают в качестве в значительной степени свободного от углерода горючего газа к риформинг-печи (4) и сжигают там.
2. Способ по п.1, отличающийся тем, что для конверсионной ступени используют работающий при средней температуре конверсионный реактор (5) или высокотемпературный конверсионный реактор (5') с подключенным к нему низкотемпературным конверсионным реактором (5'').
3. Способ по п.1 или 2, отличающийся тем, что в скруббере (7) отделяют технически чистый диоксид углерода (18), который используют для технических целей или перерабатывают дальше в продукт (21) применяемого в пищевой промышленности качества.
4. Установка для осуществления способа получения водорода, содержащая, по меньшей мере, одну оборудованную камерой (3) сгорания риформинг-печь (4) для каталитического разложения газообразных углеводородов водяным паром, конверсионную ступень, по меньшей мере, с одним конверсионным реактором (5) для каталитической конверсии оксида углерода посредством водяного пара в диоксид углерода и водород, скруббер (7) для отделения диоксида углерода от покидающего конверсионную ступень газового потока (8) и подключенную к нему адсорбционную установку (11) для извлечения водорода (12), к которой присоединен ведущий обратно к камере (3) сгорания газопровод (17) для обогревания риформера выходящим из адсорбционной установки газовым потоком, причем предусмотрено дополнительное устройство (19) для возврата части (14) покидающего скруббер (7) газового потока (10) в камеру (3) сгорания риформинг-печи (4).
5. Установка по п.4, отличающаяся тем, что конверсионная ступень включает в себя работающий при средней температуре конверсионный реактор (5) или высокотемпературный конверсионный реактор (5') с подключенным к нему низкотемпературным конверсионным реактором (5'').
6. Установка по п.4 или 5, отличающаяся тем, что к выходу скруббера (7) для диоксида углерода примыкает ступень (9) очистки для концентрации отделенного диоксида углерода (18).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10334590.6 | 2003-07-28 | ||
DE10334590A DE10334590B4 (de) | 2003-07-28 | 2003-07-28 | Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006106217A RU2006106217A (ru) | 2006-07-10 |
RU2344069C2 true RU2344069C2 (ru) | 2009-01-20 |
Family
ID=34111727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006106217/15A RU2344069C2 (ru) | 2003-07-28 | 2004-07-24 | Способ получения водорода из газа, содержащего метан, в частности природного газа, и установка для осуществления способа |
Country Status (13)
Country | Link |
---|---|
US (2) | US7682597B2 (ru) |
EP (1) | EP1648817B1 (ru) |
JP (1) | JP4707665B2 (ru) |
CN (1) | CN100347077C (ru) |
AT (1) | ATE343545T1 (ru) |
CA (1) | CA2534210C (ru) |
DE (2) | DE10334590B4 (ru) |
DK (1) | DK1648817T3 (ru) |
ES (1) | ES2275235T3 (ru) |
HK (1) | HK1093335A1 (ru) |
NO (1) | NO337257B1 (ru) |
RU (1) | RU2344069C2 (ru) |
WO (1) | WO2005012166A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2480399C1 (ru) * | 2011-11-16 | 2013-04-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ получения водорода из воды |
RU2663167C2 (ru) * | 2016-08-23 | 2018-08-01 | Общество с ограниченной ответственностью "Оргнефтехим-Холдинг" | Способ совместного производства аммиака и метанола |
RU2723017C1 (ru) * | 2015-09-30 | 2020-06-08 | Касале Са | Способ очистки потока со2 |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846413B2 (en) * | 2006-11-30 | 2010-12-07 | Shell Oil Company | Systems and processes for producing hydrogen and carbon dioxide |
US20080181837A1 (en) * | 2007-01-29 | 2008-07-31 | Grover Bhadra S | Hydrogen, Carbon Monoxide, and N2 Recovery From Low BTU Gases |
US8734545B2 (en) | 2008-03-28 | 2014-05-27 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
US20100037521A1 (en) * | 2008-08-13 | 2010-02-18 | L'Air Liquide Societe Anonyme Pour L'Etude et l'Exploitatation Des Procedes Georges Claude | Novel Steam Reformer Based Hydrogen Plant Scheme for Enhanced Carbon Dioxide Recovery |
FR2936507B1 (fr) * | 2008-09-29 | 2011-04-08 | Inst Francais Du Petrole | Procede de production d'hydrogene avec captation totale du co2 et recyclage du methane non converti |
EP2172417A1 (en) * | 2008-10-02 | 2010-04-07 | Ammonia Casale S.A. | Process for the production of ammonia synthesis gas |
CN102177326B (zh) | 2008-10-14 | 2014-05-07 | 埃克森美孚上游研究公司 | 控制燃烧产物的方法与装置 |
AT507917B1 (de) * | 2009-03-02 | 2014-02-15 | Univ Wien Tech | Verfahren zur herstellung von kohlendioxid und wasserstoff |
US8137422B2 (en) * | 2009-06-03 | 2012-03-20 | Air Products And Chemicals, Inc. | Steam-hydrocarbon reforming with reduced carbon dioxide emissions |
TWI386365B (zh) * | 2009-07-24 | 2013-02-21 | Wei Hsin Chen | 富氫與純氫氣體製造之整合裝置與方法 |
MX341477B (es) | 2009-11-12 | 2016-08-22 | Exxonmobil Upstream Res Company * | Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos. |
DE102009059310A1 (de) * | 2009-12-23 | 2011-06-30 | Solar Fuel GmbH, 70565 | Hocheffizientes Verfahren zur katalytischen Methanisierung von Kohlendioxid und Wasserstoff enthaltenden Gasgemischen |
US8057773B2 (en) * | 2009-12-28 | 2011-11-15 | Institute Francais du Pétrole | Reduction of greenhouse gas emission from petroleum refineries |
MY160833A (en) | 2010-07-02 | 2017-03-31 | Exxonmobil Upstream Res Co | Stoichiometric combustion of enriched air with exhaust gas recirculation |
CN102959202B (zh) | 2010-07-02 | 2016-08-03 | 埃克森美孚上游研究公司 | 集成系统、发电的方法和联合循环发电系统 |
MX352291B (es) | 2010-07-02 | 2017-11-16 | Exxonmobil Upstream Res Company Star | Sistemas y métodos de generación de potencia de triple ciclo de baja emisión. |
TWI554325B (zh) | 2010-07-02 | 2016-10-21 | 艾克頌美孚上游研究公司 | 低排放發電系統和方法 |
US20120118011A1 (en) | 2010-11-11 | 2012-05-17 | Air Liquide Large Industries U.S. Lp | Process For The Production Of Hydrogen And Carbon Dioxide |
US8535638B2 (en) | 2010-11-11 | 2013-09-17 | Air Liquide Large Industries U.S. | Process for recovering hydrogen and carbon dioxide |
CN102173381B (zh) * | 2011-02-28 | 2012-08-08 | 四川亚联高科技股份有限公司 | 一种以天然气为原料制备氢气的方法 |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
US20120291485A1 (en) | 2011-05-18 | 2012-11-22 | Air Liquide Large Industries U.S. Lp | Process For The Production Of Hydrogen And Carbon Dioxide |
US20120291482A1 (en) | 2011-05-18 | 2012-11-22 | Air Liquide Large Industries U.S. Lp | Process For Recovering Hydrogen And Carbon Dioxide |
WO2013095829A2 (en) | 2011-12-20 | 2013-06-27 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
CN102556964A (zh) * | 2012-01-16 | 2012-07-11 | 重庆市万利来化工股份有限公司 | 甲酰胺尾气回收综合利用工艺 |
EP2682364A1 (en) | 2012-07-04 | 2014-01-08 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for recovering hydrogen and capturing carbon dioxide |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
CN102633232B (zh) * | 2012-04-13 | 2015-07-01 | 信义电子玻璃(芜湖)有限公司 | 用于浮法玻璃制造中的制氢工艺及系统 |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
KR101903791B1 (ko) * | 2012-06-25 | 2018-10-02 | 에스케이이노베이션 주식회사 | 카본 블랙 촉매를 이용한 이산화탄소 개질 방법 |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US10100741B2 (en) | 2012-11-02 | 2018-10-16 | General Electric Company | System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
EP2733115A1 (en) | 2012-11-14 | 2014-05-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for recovering hydrogen and carbon dioxide |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
CA2902479C (en) | 2013-03-08 | 2017-11-07 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
DE102014116871A1 (de) * | 2014-11-18 | 2016-05-19 | L’AIR LIQUIDE Société Anonyme pour l’Etude et l’Exploitation des Procédés Georges Claude | Anlage zur Herstellung von Wasserstoff und Verfahren zum Betreiben dieser Anlage |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
CN104591083B (zh) * | 2015-01-28 | 2017-03-01 | 张进勇 | 一种制氢方法 |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
CN107755402B (zh) * | 2016-08-18 | 2021-05-04 | 高和同盛环保科技发展(北京)有限公司 | 城市生活垃圾催化制氢装置 |
EP3363770A1 (en) | 2017-02-15 | 2018-08-22 | Casale Sa | Process for the synthesis of ammonia with low emissions of co2 in atmosphere |
KR20240075921A (ko) | 2018-03-16 | 2024-05-29 | 퓨얼셀 에너지, 인크 | 고온 연료전지를 이용해서 수소를 생성하기 위한 시스템 및 방법 |
DE102018210910A1 (de) | 2018-07-03 | 2020-01-09 | Thyssenkrupp Ag | Verfahren zur Vermeidung von VOC und HAP Emissionen aus Synthesegas verarbeitenden Anlagen |
US10797332B2 (en) | 2018-08-31 | 2020-10-06 | Fuelcell Energy, Inc. | Low pressure carbon dioxide removal from the anode exhaust of a fuel cell |
US11434132B2 (en) | 2019-09-12 | 2022-09-06 | Saudi Arabian Oil Company | Process and means for decomposition of sour gas and hydrogen generation |
US10829371B1 (en) | 2019-10-04 | 2020-11-10 | Saudi Arabian Oil Company | Systems and processes for producing hydrogen from sour gases |
CN111924803A (zh) * | 2020-07-23 | 2020-11-13 | 江苏理文化工有限公司 | 一种氢气的提纯工艺技术 |
AU2021379842A1 (en) | 2020-11-13 | 2023-06-29 | Technip Energies France | A process for producing a hydrogen-comprising product gas from a hydrocarbon |
CN114713009A (zh) * | 2022-03-10 | 2022-07-08 | 中氢新能(北京)新能源技术研究院有限公司 | 一种甲醇催化重整制氢器的净化器 |
CN114955998B (zh) * | 2022-06-21 | 2024-07-09 | 中科氢焱零碳人居科技(苏州)有限公司 | 一种天然气制氢反应器 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3223702C2 (de) * | 1982-06-25 | 1984-06-28 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Verfahren zur Erzeugung von Synthesegas und Reaktor zur Durchführung des Verfahrens |
US4533981A (en) * | 1982-08-16 | 1985-08-06 | Ready Metal Manufacturing Company | Light cornice |
US4553981A (en) | 1984-02-07 | 1985-11-19 | Union Carbide Corporation | Enhanced hydrogen recovery from effluent gas streams |
JPS63501791A (ja) * | 1985-10-21 | 1988-07-21 | ユニオン カ−バイド コ−ポレ−シヨン | 流出ガス流からの高い水素回収率 |
DE3602352A1 (de) * | 1986-01-27 | 1987-07-30 | Linde Ag | Verfahren zur gewinnung von wasserstoff |
JP3237113B2 (ja) * | 1989-11-06 | 2001-12-10 | 栗田工業株式会社 | ガス吸収液の処理方法 |
EP0486174B1 (en) * | 1990-11-16 | 1994-10-05 | Texaco Development Corporation | Process for producing high purity hydrogen |
US5131930A (en) * | 1991-05-06 | 1992-07-21 | Air Products And Chemicals, Inc. | Process for mixing gas streams having different pressures |
AU5851500A (en) * | 1999-07-09 | 2001-01-30 | Ebara Corporation | Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell |
WO2001004046A1 (fr) * | 1999-07-13 | 2001-01-18 | Ebara Corporation | Procede de production d'energie electrique a l'aide d'une pile a combustible et systeme de production d'energie electrique utilisant une pile a combustible |
WO2001028916A1 (fr) * | 1999-10-21 | 2001-04-26 | Ebara Corporation | Procede de production d'hydrogene par gazeification de combustibles et production d'energie electrique a l'aide d'une pile a combustible |
US6610112B1 (en) * | 1999-12-07 | 2003-08-26 | Texaco Inc. | Method for oil gasification |
US6436363B1 (en) * | 2000-08-31 | 2002-08-20 | Engelhard Corporation | Process for generating hydrogen-rich gas |
US6500241B2 (en) * | 2000-12-19 | 2002-12-31 | Fluor Corporation | Hydrogen and carbon dioxide coproduction |
US6695983B2 (en) * | 2001-04-24 | 2004-02-24 | Praxair Technology, Inc. | Syngas production method utilizing an oxygen transport membrane |
FR2832398B1 (fr) * | 2001-11-22 | 2004-10-01 | Air Liquide | Installation de production d'hydrogene et procedes pour la mise en oeuvre de cette installation |
JP3911540B2 (ja) * | 2002-08-21 | 2007-05-09 | 丸紅株式会社 | ごみのガス化ガスによる燃料電池発電システム |
US6932848B2 (en) * | 2003-03-28 | 2005-08-23 | Utc Fuel Cells, Llc | High performance fuel processing system for fuel cell power plant |
-
2003
- 2003-07-28 DE DE10334590A patent/DE10334590B4/de not_active Expired - Fee Related
-
2004
- 2004-07-24 DK DK04763481T patent/DK1648817T3/da active
- 2004-07-24 CN CNB2004800216034A patent/CN100347077C/zh not_active Expired - Fee Related
- 2004-07-24 US US10/566,268 patent/US7682597B2/en active Active
- 2004-07-24 AT AT04763481T patent/ATE343545T1/de not_active IP Right Cessation
- 2004-07-24 DE DE502004001866T patent/DE502004001866D1/de not_active Expired - Lifetime
- 2004-07-24 EP EP04763481A patent/EP1648817B1/de not_active Expired - Lifetime
- 2004-07-24 WO PCT/EP2004/008322 patent/WO2005012166A1/de active IP Right Grant
- 2004-07-24 ES ES04763481T patent/ES2275235T3/es not_active Expired - Lifetime
- 2004-07-24 CA CA2534210A patent/CA2534210C/en not_active Expired - Lifetime
- 2004-07-24 RU RU2006106217/15A patent/RU2344069C2/ru not_active IP Right Cessation
- 2004-07-24 JP JP2006521494A patent/JP4707665B2/ja not_active Expired - Fee Related
-
2006
- 2006-01-27 NO NO20060457A patent/NO337257B1/no not_active IP Right Cessation
-
2007
- 2007-01-03 HK HK07100051A patent/HK1093335A1/xx not_active IP Right Cessation
-
2009
- 2009-12-17 US US12/653,699 patent/US20100098601A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2480399C1 (ru) * | 2011-11-16 | 2013-04-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ получения водорода из воды |
RU2723017C1 (ru) * | 2015-09-30 | 2020-06-08 | Касале Са | Способ очистки потока со2 |
RU2663167C2 (ru) * | 2016-08-23 | 2018-08-01 | Общество с ограниченной ответственностью "Оргнефтехим-Холдинг" | Способ совместного производства аммиака и метанола |
Also Published As
Publication number | Publication date |
---|---|
DE10334590A1 (de) | 2005-03-03 |
RU2006106217A (ru) | 2006-07-10 |
JP2007500115A (ja) | 2007-01-11 |
HK1093335A1 (en) | 2007-03-02 |
EP1648817A1 (de) | 2006-04-26 |
ES2275235T3 (es) | 2007-06-01 |
NO337257B1 (no) | 2016-02-29 |
ATE343545T1 (de) | 2006-11-15 |
CA2534210A1 (en) | 2005-02-10 |
NO20060457L (no) | 2006-02-28 |
US20060171878A1 (en) | 2006-08-03 |
JP4707665B2 (ja) | 2011-06-22 |
CA2534210C (en) | 2012-09-11 |
DE502004001866D1 (de) | 2006-12-07 |
CN1829656A (zh) | 2006-09-06 |
WO2005012166A1 (de) | 2005-02-10 |
CN100347077C (zh) | 2007-11-07 |
DE10334590B4 (de) | 2006-10-26 |
EP1648817B1 (de) | 2006-10-25 |
DK1648817T3 (da) | 2007-02-26 |
US20100098601A1 (en) | 2010-04-22 |
US7682597B2 (en) | 2010-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2344069C2 (ru) | Способ получения водорода из газа, содержащего метан, в частности природного газа, и установка для осуществления способа | |
FI106738B (fi) | Menetelmä sähköenergian kehittämiseksi | |
JP5268471B2 (ja) | ポリジェネレーションシステム | |
CN113795460A (zh) | 基于atr的氢气方法和设备 | |
UA127479C2 (uk) | Спосіб отримання синтез-газу | |
US20090123364A1 (en) | Process for Hydrogen Production | |
RU2011106035A (ru) | Каталитический риформинг с частичным окислением для обработки синтез-газа | |
RU2011110497A (ru) | Системы и способы производства сверхчистого водорода при высоком давлении | |
RU2011101927A (ru) | Устройство и способы обработки водорода и моноксида углерода | |
CN110869314A (zh) | 用于制备氨合成气的方法 | |
EP4196437A1 (en) | Low carbon hydrogen fuel | |
CA3079639A1 (en) | Process for producing a hydrogen-containing synthesis gas | |
CA3217663A1 (en) | Method for production of blue ammonia | |
JP2024530171A (ja) | Co2回収と連携した水素製造方法 | |
CN110958988A (zh) | 用于改善氨合成气装置的效率的方法 | |
CA2379942A1 (en) | A combined heat and power plant and a process for the operation thereof | |
WO2023213862A1 (en) | Method for production of blue ammonia | |
WO1999041188A1 (en) | Process for producing electrical power and steam | |
EP4281410A1 (en) | Method for preparing a synthesis gas | |
EP4375235A2 (en) | Integration of hydrogen fueled gas turbine with a hydrocarbon reforming process | |
RU2774658C1 (ru) | Способ производства метанола | |
EP4382476A1 (en) | System and process for producing synthetic fuels | |
WO2024153795A1 (en) | Method for production of blue ammonia | |
TW202428553A (zh) | 使用二氧化碳製造甲醇之系統及方法 | |
GB2625645A (en) | Process for producing hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170725 |