RU2343977C2 - Катализатор для обработки органических соединений - Google Patents

Катализатор для обработки органических соединений Download PDF

Info

Publication number
RU2343977C2
RU2343977C2 RU2005115099/04A RU2005115099A RU2343977C2 RU 2343977 C2 RU2343977 C2 RU 2343977C2 RU 2005115099/04 A RU2005115099/04 A RU 2005115099/04A RU 2005115099 A RU2005115099 A RU 2005115099A RU 2343977 C2 RU2343977 C2 RU 2343977C2
Authority
RU
Russia
Prior art keywords
catalyst
hydrogen
imeh
metal hydride
metal
Prior art date
Application number
RU2005115099/04A
Other languages
English (en)
Other versions
RU2005115099A (ru
Inventor
Дэвид А. ПУРТА (US)
Дэвид А. ПУРТА
Марк А. ПОРТНОФФ (US)
Марк А. ПОРТНОФФ
Фаиц ПУРАРИАН (US)
Фаиц ПУРАРИАН
Маргарет А. НАСТА (US)
Маргарет А. НАСТА
Цзинфэн ЧЖАН (US)
Цзинфэн ЧЖАН
Original Assignee
Карнеги Меллон Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Карнеги Меллон Юниверсити filed Critical Карнеги Меллон Юниверсити
Publication of RU2005115099A publication Critical patent/RU2005115099A/ru
Application granted granted Critical
Publication of RU2343977C2 publication Critical patent/RU2343977C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится катализатору для гидрообработки нефтяных фракций. Катализатор для гидрообработки нефтяных фракций, содержащий гидрид металла типа внедрения на основе сплава, включающего металл VIII группы и лантанид, причем катализатор имеет реакционную поверхность и одноатомный водород на реакционной поверхности. Катализатор для гидрообработки нефтяных фракций, содержащий гидрид металла типа внедрения на основе сплава, включающего металл VIII группы и металл II группы, причем катализатор имеет реакционную поверхность и одноатомный водород на реакционной поверхности. Катализатор для гидрообработки нефтяных фракций, содержащий: носитель/поглотитель РЧ - или микроволновой энергии; и каталитически активную фазу, содержащую гидрид металла типа внедрения; в котором каталитически активная фаза сохраняет и производит водород в одноатомной форме. Катализатор для гидрообработки нефтяных фракций, содержащий: гидрид металла, имеющий реакционную поверхность; поглотитель РЧ- или микроволновой энергии; одноатомный водород на реакционной поверхности; и по меньшей мере, один из компонента для гидрообработки, компонента для крекинга и их комбинации. Кроме того, катализатор для гидрообработки нефтяных фракций, включающий комбинацию катализатора по п.2, где гидрид металла типа внедрения получен путем взаимодействия водорода со сплавом металла А2Т, где общая формула А2Т представляет собой: A2-xMxT1-yBy, где х=0,0-0,5; у=0,0-0,5; A=Mg; Т= по меньшей мере один из Ni или Cu; M=La; В= по меньшей мере один из Fe или Со с катализатором по п.1, в котором гидрид металла типа внедрения получают путем взаимодействия водорода со сплавом металла, выбранного из группы, состоящей из АТ5 и А2Т14В, и их комбинаций, в котором, для АТ5 общая формула представляет собой A1-xMxT5-у-zByCz, где х=0,0-1,0; у=0,0-2,5; z=0,0-0,5; А=Мм (мишметалл); T=Ni; М= по меньшей мере один из La, Pr, Nd или Се; В=Со; С= по меньшей мере один из Mn, Al или Cr; и в котором для катализатора А2Т14В общая формула представляет собой A2-xMxT14-yCyDzB, где х=0,0-2,0; у=0,0-14; z=0,0-3,0; A=Nd; T=Fe; М= по меньшей мере один из La, Pr или Се; В=Бор; С=Со; D= по меньшей мере один из Cr, Ni или Mn. А также катализатор для гидрообработки нефтяных фракций, включающий комбинацию катализатора по п.2, где гидрид металла содержит Mg(2,05)Ni(0,95)Cu(0,07) с катализатором по п.1, в котором гидрид металла содержит по меньшей мере один из Mm(1,1)Ni(4,22)CO(0,42)Al(0,15)Mn(0,15) и Nd(2,05)Dy(0,25)Fe(13)B(1,05), и их комбинаций. 6 н. и 19 з.п. ф-лы, 10 табл., 13 ил.

Description

Область техники
Данное изобретение относится к катализатору для гидрообработки органических соединений. Гидрообработка включает все типы способов гидрокрекинга и гидроочистки нефти. Данный катализатор может быть использован для гидрогенизации органических соединений и нефти при низком давлении с использованием обычных источников тепловой энергии. Кроме того, характеристики данного катализатора могут быть усилены с использованием энергии радиочастот (РЧ) или микроволн.
Уровень техники
Углеводороды подвергают разнообразной физической и химической обработке для получения более ценных продуктов. Указанные виды обработки включают фракционирование, изомеризацию, разрыв и образование связей, очистку и увеличение содержания водорода. Способы обработки, как правило, требуют высоких давлений и температур. Катализаторы используют в способах обработки в силу различных причин, включая, но не ограничиваясь перечисленным, снижение температуры и давления, при которых имеет место реакция преобразования углеводорода. Термин «гидрообработка» используют применительно ко всей совокупности указанных способов, в которых используют водород.
Нефть или сырая нефть является встречающейся в природе смесью углеводородов и небольших количеств органических соединений, содержащих гетероатомы, такие как сера, кислород, азот и металлы (главным образом, никель и ванадий). Нефтепродукты, полученные обработкой сырой нефти, значительно изменяются, в зависимости от требований рынка, качества сырой нефти и задач нефтеперерабатывающего завода. В современной практике промышленного производства, сырые нефти подают на дистилляцию при атмосферном давлении и в условиях вакуума. Перегоняемые фракции (включая остаточные фракции) в дальнейшем подвергают каталитическим способам очистки, таким образом, могут быть получены высокоценные продукты.
Содержание водорода в нефтепродуктах является важным показателем их экономической ценности. В обычных способах гидрокрекинга и гидроочистки решающую роль играют реакции гидрогенизации ароматических соединений. По природе тяжелые остаточные соединения обычно являются ароматическими соединениями. Полное или частичное насыщение указанных соединений добавлением водорода является важной стадией их крекинга с получением легких, более ценных соединений. Обычные способы гидрокрекинга тяжелой нефти требуют относительно высокой температуры (например, выше 400°C) и очень высокого давления (например, выше 1000 фунтов/кв.дюйм). В современных способах гидроочистки и гидрореформинга, Ni-Mo и Co-Mo сульфидированные катализаторы на подложке становятся активными только в области высоких температур. Чтобы реакции происходили в более низком благоприятном температурном диапазоне, обычно используют дорогостоящие катализаторы на основе благородных металлов, чтобы достичь высокой эффективности при гидрогенизации. Были предприняты попытки найти новые классы катализаторов, которые бы значительно понижали рабочие параметры с одновременным увеличением эффективности гидрогенизации в отношении значительного уменьшения содержания ароматических соединений, но прогресс, достигнутый к настоящему времени, главным образом касается незначительных усовершенствований существующих каталитических систем.
Как вытекает из названия, гидрокрекинг объединяет каталитический крекинг и гидрогенизацию с помощью бифункционального катализатора с достижением ряда предпочтительных преобразований, представляющих определенный интерес в случае выбранного исходного сырья. В типичном бифункциональном катализаторе, функцию крекинга обеспечивают кислотной носитель, тогда как функцию гидрогенизации обеспечивают благородные металлы или сульфиды неблагородных металлов из 6,9 и 10 группы Периодической таблицы (на основе системы, принятой в 1990 ИЮПАК, в которой столбцы обозначены под номерами 1-18). Гидрокрекинг является универсальным способом превращения разнообразного исходного сырья от светлых легких дистиллятов до тяжелых газовых нефтей в полезные продукты. Наиболее уникальная характеристика гидрокрекинга включает гидрогенизацию и расщепление многоядерных ароматических соединений. Значительные доли указанных типов исходного сырья превращают с помощью гидрокрекинга в меньшие по размерам и более полезные компоненты продукта. Однако некоторые из крупных комплексов ароматических соединений в указанном исходном сырье, после частичной гидрогенизации с помощью гидрокрекинга, могут затем подвергаться дегидрированию, образуя кокс на катализаторах. Образование кокса является одним из многочисленных механизмов дезактивации, который уменьшает срок службы катализатора.
На многих нефтеперерабатывающих заводах установка для гидрокрекинга служит основным источником компонентов топлива для реактивных двигателей и дизельного топлива (средние дистилляты). Обычные установки для гидрокрекинга вследствие требуемого высокого давления и потребления водорода являются очень дорогостоящими объектами при строительстве и в эксплуатации. С помощью разработки класса катализаторов с высокой селективностью для средних дистиллятов и благоприятными рабочими режимами, можно значительно уменьшить указанные высокие затраты с одновременным максимальным увеличением производства средних дистиллятов.
Чтобы удалить нежелательные гетероатомы, также осуществляют процессы десульфирования, деазотирования и деметаллизации, используя способы гидрообработки. Поскольку ценность нефтепродуктов непосредственно связана с содержанием в них водорода, эффективная гидрогенизация продуктов чрезвычайно желательна на всех стадиях очистки нефти.
Металлы, такие как платина, нанесенные на оксидные носители, такие как оксид алюминия или оксид кремния, широко используются в катализаторах для осуществления реакций реформинга углеводорода. Осажденный металл обеспечивает химически активные участки, на которых могут происходить требуемые реакции. Однако катализаторы, в которых используют указанные металлы, имеют проблему, связанную с тем, что они становятся неактивными, если тяжелые полиароматические органические соединения накапливаются и занимают или блокируют такие участки. Удаление серы и серосодержащих соединений также является проблемой для указанных катализаторов. Сера взаимодействует с каталитическими участками металлов Pt или Pd и также может дезактивировать такие участки посредством химического связывания с металлами. Успешный катализ требует, чтобы поддерживалась соответствующая высокая локальная концентрация водорода по ходу каталитического процесса. Давление и температуру подбирают таким образом, чтобы поддержать образование требуемого продукта, обеспечить подходящую степень превращения и избежать быстрой дезактивации каталитической поверхности.
Катализаторы для гидрообработки и их соответствующие компоненты могут принимать множество форм и структур. Много известно об оптимизации эффективности катализатора для конкретных процессов (например, гидрогенезации, гидрокрекинга, гидродеметаллизации и гидродесульфирования). Что касается формы катализатора, то катализатор можно использовать в виде порошка, экструдата или предварительно образованной матрицы, в зависимости от типа выбранной модели химического реактора (например, с кипящим слоем, неподвижным слоем, каталитическим конвертором).
Однако в целом остается потребность в улучшенных катализаторах и способах каталитической гидрообработки, которые могут быть осуществлены при относительно мягких условиях.
Сущность изобретения
В одном аспекте данное изобретение относится к катализатору, который включает в себя гидрид металла типа внедрения, имеющий реакционную поверхность и одноатомный водород на реакционной поверхности. Реакционная поверхность может по существу не содержать оксидного слоя.
В другом аспекте данное изобретение относится к катализатору, имеющему носитель, поглотитель радиочастотной (РЧ) или микроволновой энергии и каталитически активную фазу. Каталитически активная фаза сохраняет и производит водород в одноатомной форме. Поглотитель РЧ- или микроволновый энергии может быть каталитически активной фазой.
В другом аспекте данное изобретение относится к катализатору, включающему в себя гидрид металла, имеющий реакционную поверхность и одноатомный водород на реакционной поверхности. Катализатор также включает, по меньшей мере, один компонент для гидрообработки, компонент для крекинга и их комбинации.
В другом аспекте, изобретение относится к смеси, содержащей гидрид металла типа внедрения и жидкое органическое соединение.
Краткое описание чертежей
Фиг.1 является схемой способа получения первого катализатора согласно данному изобретению;
Фиг.2 является схемой способа получения второго катализатора согласно данному изобретению;
Фиг.3 является схемой способа получения третьего катализатора согласно данному изобретению;
Фиг.4 является схемой способа получения четвертого катализатора согласно данному изобретению;
Фиг.5 является схематическим изображением конструкции реактора для способа согласно данному изобретению;
Фиг.6 является схематическим изображением конструкции реактора для способа согласно данному изобретению с возможностью предварительного нагревания газа и жидкости и внутренней и внешней рециркуляцией реакционной смеси или компонентов реакционной смеси;
Фиг.7 является схематическим изображением конструкции реактора для способа согласно данному изобретению, с возможностью рециркуляции катализатора для регенерации или повторной загрузки;
Фиг.8 является схематическим изображением улучшенной обработки продукта в случае любой конструкции реактора для способа согласно данному изобретению, с возможностью разделения продукта на газ и жидкость;
Фиг.9 является схематическим представлением улучшенной обработки продукта в случае любой конструкции реактора для способа согласно данному изобретению, с возможностью сбора газообразного продукта, рециркуляции газообразного продукта, сбора жидкого продукта и рециркуляции жидкого продукта и устройством для впрыскивания газа и жидкости, подвергаемых рециркуляции и впрыскиваемых обратно в подаваемый или входной поток.
Фиг.10 является графиком зависимости давления водорода от содержания водорода при различных температурах для катализатора согласно данному изобретению;
Фиг.11 является графиком зависимости суммарного содержания водорода от температур при давлении окружающей среды для трех катализаторов согласно данному изобретению;
Фиг.12 является графиком зависимости тангенса диэлектрических потерь от микроволновой частоты для смолистого остатка и смолы после микроволновой обработки;
Фиг.13 является графиком давления, температуры, микроволновой мощности и потока водорода как функции времени для реакции, катализируемой iMeH Кат 300 с палладием, нанесенным на носитель USY.
Подробное описание изобретения
Настоящее изобретение относится к катализаторам, содержащим гидриды металлов типа внедрения, имеющие реакционные поверхности с доступным одноатомным водородом, и к любым каталитическим процессам, включающим использование указанных материалов. Согласно данному изобретению гидриды металлов типа внедрения (в данном описании специально обозначены iMeH) состоят из сплавов металлов, объединенных с атомарным водородом, который накоплен в междоузлиях внутри матрицы металлического сплава. Указанные гидриды металлов типа внедрения (iMeH), в тех случаях, когда они сформированы согласно данному изобретению, включают катализатор, способный к поглощению молекулярного водорода, и реакционно-способный одноатомный водород на реакционной поверхности. Катализаторы согласно данному изобретению имеют реакционные поверхности, которые могут быть сохранены по существу без оксидного слоя. Нежелательные формы оксидов могут служить препятствием для участия одноатомного водорода в каталитическом процессе. Образования оксидного слоя избегают и реакционные поверхности сохраняют по существу свободными от оксидного слоя с помощью минимизации воздействия на катализатор кислорода или водяного пара при повышенных температурах, таких как свыше 30°C. Воздействие кислорода и водяного пара минимизируют, окружая катализатор защитной атмосферой инертного газа, такого как азот или аргон, который подвергают воздействию осушителя. Установлено, что концентрация одноатомного водорода на поверхности катализатора достигает максимального значения при удалении кислорода и водяного пара при повышенных температурах. Одноатомный водород на поверхности катализатора iMeH расположен достаточно близко к поверхности, так, чтобы в одноатомной форме участвовать в реакции с исходным сырьем, находящимся в контакте с поверхностью.
В процессе использования гидрид металла типа внедрения может быть непосредственно объединен с исходным сырьем при температурах реакции, или iMeH сначала может быть включен в композицию с другими материалами для дальнейшего увеличения каталитической активности. Каталитический способ согласно данному изобретению включает контакт сырья с катализатором, содержащим гидрид металла типа внедрения, имеющий реакционную поверхность, создание смеси катализатор-исходное сырье, воздействие энергии, по меньшей мере, на один из катализатора и смеси катализатор-исходное сырье, образование одноатомного водорода на реакционной поверхности гидрида металла типа внедрения и взаимодействие сырья с одноатомным водородом. В одном варианте изобретения исходным сырьем является органическое соединение.
Повторно отмечается, что гидриды металлов типа внедрения состоят из сплавов металлов, объединенных с атомарным водородом, который накоплен в междоузлиях внутри матрицы металлического сплава. Указанная матрица может иметь кристаллическую или аморфную структуру. Особенно iMeH подходит для размещения атомарного водорода, отщепляемого от молекулярного водорода. Количество атомарного водорода в гидридах металлов типа внедрения имеет измеряемое значение, которое зависит от состава сплава и рабочей температуры и давления. Водород, накопленный внутри iMeH, не подвергается ионному или ковалентному связыванию. В iMeH отношение водорода к атомам металлов может меняться по всему диапазону и не может быть выражено как отношение малых целых чисел. Соединения iMeH согласно данному изобретению способны диссоциировать двухатомные молекулы водорода на поверхности на одноатомный водород, абсорбировать большие количества одноатомного водорода, произведенного таким образом, и десорбировать одноатомный водород при соответствующих условиях. Тепловая энергия абсорбции выделяется, когда молекулярный водород диссоциирует на атомарный водород и атомы водорода сами располагаются в междоузлиях в структуре материала. При температуре и давлении, подходящих для стационарного режима процесса, требуется дополнительная энергия для высвобождения одноатомного водорода изнутри катализатора. Указанная энергия может быть получена из тепловой энергии, образующейся в ходе реакции, или в результате внешнего приложения энергии или обоих вместе. Обеспечиваемый таким образом атомарный водород доступен для активизации реакции гидрообработки и гидрогенизации. Не намереваясь ограничиваться теорией, предполагают, что каталитическая активность согласно данному изобретению является следствием высокой концентрации доступного одноатомного водорода, который iMeH уникально обеспечивают за счет их диссоциации и абсорбции молекулярного водорода (H2) и последующей реакции обмена чрезвычайно реакционно-способного одноатомного водорода (H•) на поверхности.
Каталитическая активность катализатора согласно данному изобретению можно увеличивать и регулировать посредством воздействия на катализатор РЧ- или микроволновой энергии (с длиной волны 1000 м - 10-4 м) в отсутствии, либо в присутствии нагревания в результате сжигании топлива или резистивного нагревания. РЧ- или микроволновая энергия могут обеспечить значительное увеличение эффективности гидрообработки по сравнению с обычным нагреванием. Кроме того, микроволновую энергию можно модулировать и регулировать таким способом, чтобы оптимизировать реакции обмена одноатомного водорода из iMeH. В одном варианте изобретения компонент катализатора iMeH размещают в контакте с отдельным поглотителем РЧ- или микроволновой энергией. Отдельный поглотитель РЧ- или микроволновой энергии поглощает энергию и передает ее iMeH посредством теплопроводности или конвекции и может представлять собой один или несколько соединений, таких как карбид кремния, силицид железа, оксид никеля и карбид вольфрама. В другом варианте изобретения компонент iMeH функционирует как первичный поглотитель РЧ- или микроволновой энергии. В случае использования микроволнового усиления компонент iMeH в достаточной степени диспергирован внутри комбинации катализатора и сырья, чтобы была решена проблема горячих областей и образования электрической дуги, обычно связанная с внесением металлов в РЧ- или микроволновое поле.
Избирательное применение РЧ- или микроволновой энергии с целью управления каталитическим компонентом катализатора приводит в результате к прямому взаимодействию одноатомного водорода iMeH с исходным сырьем. Указанное применение эффективно с точки зрения затрат, чтобы максимизировать использование ископаемого топлива для предварительного нагревания исходного сырья почти до температур реакции и минимального использования РЧ- или микроволновой энергии с целью управления и контроля реакций при гидрообработке. В идеале будет иметь место минимальное или нулевое увеличение суммарной температуры в результате воздействия РЧ- или микроволновой энергии в носителе катализатора или в исходном сырье, так как данная указанная энергия главным образом направлена на iMeH, чтобы усилить реакцию обмена одноатомного водорода. Избирательное сочетание РЧ- или микроволновой энергии осуществляют путем выбора и контроля относительных диэлектрических параметров компонентов катализатора и исходного сырья. Вышесказанное приводит в результате к эффективным, экономически рентабельным каталитическим процессам, которые усиливают, используя микроволны.
Катализатор согласно данному изобретению может использоваться во всех типах гидрообработки или, в качестве более конкретного примера, для осуществления гидрокрекинга органических соединений. В указанных способах исходное сырье, например, органические соединения вводят в контакт с катализатором iMeH, содержащим гидрид металла, способный к высвобождению одноатомного водорода со своей поверхности. Комбинация iMeH и исходного сырья может быть подвергнута воздействию любого числа условий процесса, (таких как температура, давление и объемная скорость) подходящих для требуемой реакции гидрообработки.
Катализатор делает возможным гидрообработку в более умеренных условиях и при значительно более низких давлениях. Высокая реакционная способность, более низкие давления процесса и новые уровни селективности и регуляции с использованием РЧ- или микроволн обеспечивают улучшенные продукты и более низкие капитальные затраты на оборудование и эксплуатацию.
В данном изобретении были специально установлены составы катализаторов iMeH, имеющие следующие характеристики:
- Высокая емкость накопления водорода (в диапазоне от 0,01 мас.% -7,5 мас.% водорода в катализаторе).
- Высокие скорости абсорбции молекулярного водорода и реакции одноатомного водорода (выше 0,01 см3/мин/г) для заданной температуры или изменения давления. Типичные рабочие давления и температуры могут изменяться от давления окружающей среды до 1000 фунтов/кв.дюйм и от температуры окружающей среды до 600°C. Типичные значения скоростей водородных реакций равны 1 см3/мин/г и вещества были измерены со значениями величин, больших 50 см3/мин/г.
- Зависимое от температуры давление десорбции.
- Способность претерпевать многократные циклы гидрогенизации.
- Толерантность к примесям.
- С использованием раскрытого в данном описании изобретения могут быть разработаны катализаторы iMeH с высокими реакционными скоростями для работы до 3000 фунтов/кв.дюйм и 600°C.
Одноатомный водород, образующийся в присутствии катализатора iMeH, позволяет обеспечивать более высокие скорости реакции и более умеренные условия реакции, применяемые в случае данного способа.
Известно, что Pt и Pd диссоциируют молекулярный водород на одноатомный водород, когда он адсорбирован на поверхности указанных металлов. Материалы iMeH согласно данному изобретению также обладают указанными свойствами. Материалы iMeH также накапливают или абсорбируют диссоциированный молекулярный водород в объеме матрицы iMeH в виде одноатомного водорода, тогда как металлы, такие как платина, этого не делают.
Гидриды металлов типа внедрения получают с помощью приготовления образцов из составляющих металлов в необходимых пропорциях, их объединения и нагревания так, чтобы они вместе гомогенно плавились, чтобы получить металлический сплав. Полученный металлический сплав затем подвергают воздействию водорода при температуре и давлении, характерных для сплава так, чтобы металлический сплав поглотил водород в одноатомной форме.
Материалы iMeH согласно данному изобретению обычно получают с помощью волюмометрического способа (газ в твердый сплав) при известной температуре и давлении, используя нержавеющий стальной реактор. Гидрид металла будет абсорбировать водород с протеканием экзотермической реакции. Данный процесс гидрогенизации является обратимым в соответствии со следующей схемой химической реакции:
металлический сплав+H2↔iMeH+энергия.
В ходе указанного процесса атомы водорода займут междоузельные позиции в кристаллической решетке сплава.
Металлический сплав, из которого получают iMeH, может быть приготовлен механическим способом получения сплава или способом индукционного нагрева. Металлический сплав может быть стехиометрическим или сверхстехиометрическим. Сверхстехиометрическими соединениями являются соединения, которые отличаются широкими отклонениями состава от идеальной стехиометрии. Сверхстехиометрические системы содержат избыточные элементы, которые могут значительно влиять на фазовую стабильность гидридов металлов. iMeH получают из металлического сплава, подвергая сплав воздействию водорода при давлении и температуре, которые является характерными для конкретного сплава.
Катализаторы iMeH согласно данному изобретению могут быть выбраны таким образом, чтобы иметь необходимую структуру решетки и термодинамические свойства, такие как прикладываемое давление и температура, при которых они могут быть загружены, и рабочие давление и температура, в которых они могут быть возвращены в исходное состояние. Приведенные рабочие термодинамические параметры могут быть изменены и точно отрегулированы использованием соответствующих методов получения сплава, и поэтому состав катализаторов может быть разработан для использования в конкретном каталитическом процессе.
Настоящее изобретение касается катализаторов, содержащих гидриды металлов типа внедрения. Указанные гидриды состоят из сплавов металлов, объединенных с одноатомным водородом, который накоплен в междоузлиях внутри матрицы металлического сплава. Многокомпонентные металлические сплавы, из которых получают iMeH катализаторы согласно данному изобретению, включают комбинации элементов 4 группы с элементами 5, 6, 7, 8, 9, 10 и 11 группы (на основе системы, принятой в 1990 ИЮПАК, в которой столбцы обозначены под номерами 1-18). Кроме того, катализаторы iMeH данного изобретения могут быть получены из сплавов, включая все комбинации лантанидов (с атомными номерами от 58 до 71) с элементами 7, 8, 9, 10 и 11 группы. Например, сплав может быть AxTy, в котором А является одним или несколькими элементами 4 группы, а T является одним или несколькими элементами 5, 6, 7, 8, 9, 10 и 11 группы. В другом примере, А является одним или несколькими лантанидами, T является одним или несколькими элементами 7, 8, 9, 10 и 11 группы; x и y являются композиционными параметрами для различных элементов каждого ряда. Данные сплавы могут принимать форму кристаллических или аморфных тонкодисперсных порошков и полученные в результате гидриды металлов типа внедрения имеют свойства, делающие их полезными для реакций гидрообработки, в которых рабочая температура изменяется от температуры окружающей среды (20°C) до 1000°C, а рабочие давления по водороду находятся в диапазоне от давления окружающей среды (15 фунтов/кв.дюйм) до 2000 фунтов/кв.дюйм.
iMeH служит источником междоузельного одноатомного реакционно-способного водорода высокой плотности и может быть объединен с известными катализаторами для гидрообработки, такими как благородные металлы, оксиды металлов, сульфиды металлов, кислотные или щелочные центры цеолитов, чтобы далее активизировать гидрообработку исходного сырья, такого как органические соединения. Материалы iMeH могут быть объединены с другими материалами для гидрообработки разнообразными способами, чтобы создать оптимизированный катализатор для конкретной реакции или функции. В общем, чем более тонкодисперсны смешиваемые порошки (например, носитель iMeH), тем выше площадь поверхности и более тесное перемешивание. Ключевым процессом по отношению к стадиям обработки является минимизация воздействия на iMeH кислорода и/или водяного пара при повышенных температурах (свыше 25°C) в течение продолжительных периодов времени. Воздействие может быть минимизировано при помощи осушителей и посредством защитной атмосферы инертных газов, таких как азот и аргон. iMeH не отжигают и не подвергают окислению при повышенных температурах.
Катализаторы для гидрообработки и их соответствующие компоненты могут принимать разнообразные формы и структуры. Немало известно об оптимизации работы катализатора, основанной на технологических требованиях (например, гидрогенезация, гидрокрекинг, гидродесульфрирование (HDS), гидродеметаллизация (HDM) и гидродеазотирование(HDN)). Например, катализатор может быть использован в виде порошка, экструдата или предварительно полученной матрицы, в зависимости от типа выбранной модели реактора (например, с кипящим слоем, с неподвижный слоем, каталитический конвертер и т.д.).
Самым простым катализатором iMeH является собственно порошок iMeH. В указанном случае iMeH обеспечивает одноатомный водород и является катализатором для гидрообработки. Способ и аппаратные средства реактора более сложны, чем в способе с использованием неподвижного слоя катализа.
Катализаторы iMeH согласно данному изобретению, при использовании в виде порошка, могут быть смешаны и диспергированы в исходном сырье и пропущены через реактор (например, суспензионный реактор). После того, как необходимая реакция была катализирована в реакторе, далее порошок iMeH отделяют из продуктов реакции для повторного использования.
iMeH может быть объединен с носителем и необязательно с другими каталитическими элементами, чтобы создать композитный катализатор. Носитель обеспечивает физическую дисперсию iMeH, обеспечивая большую площадь поверхности и легкость обработки. Носитель также служит для увеличения площади поверхности активных каталитических элементов и, таким образом, увеличивает скорости протекания реакций. Носитель также служит для того, чтобы диспергировать металлические или металлоксидные каталитические участки, а также для того, чтобы предотвратить образование дуги в присутствии сильных электрических или магнитных полей, которые могут быть использованы для ускорения каталитического действия.
Соединения iMeH согласно данному изобретению могут использоваться в кристаллической или аморфной форме. Носитель может быть составлен из неорганического оксида, металла, углерода или комбинаций указанных материалов. Фазы и каталитические элементы iMeH могут быть диспергированы в виде механически смешанных порошков или могут быть химически диспергированы, нанесены с помощью пропитки или осаждены. Когда согласно данному изобретению используются смешанные порошки, размер частиц порошка контролируют, чтобы обеспечить порошок, который имеет частицы, являющиеся достаточно малыми, чтобы обеспечить подходящую площадь поверхности и реакционную способность, но не настолько малыми, чтобы служить причиной значительного поверхностного окисления. В одном варианте частицы, используемые в катализаторе согласно данному изобретению, имеют диаметр в пределах от примерно 0,01 микрометра до примерно 1000 микрометров, от примерно 0,1 микрометра до примерно 100 микрометров, или от примерно 1 микрометра до примерно 10 микрометров. Также было установлено, что пригодны наноразмерные порошки и наноструктурные элементы, содержащие iMeH. Другими каталитическими элементами могут быть известные катализаторы, такие как благородные металлы, такие как платина или палладий, оксиды металлов, сульфиды металлов, кислотные или щелочные центры цеолитов; указанные дополнительные каталитические элементы могут далее активизировать гидрообработку. Компонентом для гидрообработки и компонентом для гидрокрекинга, используемым в комбинации с iMeH может быть один или несколько из указанных каталитических элементов. Как комбинация порошка iMeH с носителем, который может обеспечить дополнительную каталитическую функцию (т.е. с каталитически активным или инертным носителем), так и iMeH, диспергированный в каталитический порошок для гидрообработки, могут быть особенно эффективны для гидрокрекинга в реакторе с кипящим слоем типа FCC.
Катализаторы iMeH согласно данному изобретению могут также быть нанесены в виде покрытия на экструдат, обычно образованный из смешанного оксида металлов, такого как оксид алюминия или оксид кремния. Указанный способ имеет практические преимущества при производстве обеспечивает однородное покрытие и приводит к высокой площади поверхности iMeH. iMeH может быть нанесен на шарики, гранулы, кольца, цилиндры, и экструдаты других форм, включая 3-дольные и 4-дольные экструдаты, из которых обычно формируют коммерческие катализаторы. Катализаторы iMeH также могут быть включены в остов экструдата. Порошок iMeH может быть смешан с порошком инертного носителя, такого как оксид кремния или оксид алюминия, или коммерческим катализатором для гидрообработки, коммерческим катализатором для гидроочистки или коммерческим катализатором для гидрокрекинга, измельченными до тонкодисперсного порошка. Смешанный порошок объединяют со связующим веществом и экструдируют. Оксид алюминия в виде крупнопористого тонкодисперсного порошка, покрытого сульфидами металлов, такими как CoMoSx, или порошок цеолита, покрытый благородным металлом, таким как палладий или платина, также может быть объединен с iMeH данным способом.
Порядок изготовления катализатора основан на минимизации воздействия на iMeH кислорода или водяного пара. Было установлено, что химическое покрытие формы из смешанных оксидов металлов, такой как экструдат, с использованием iMeH имеет несколько преимуществ при производстве, обеспечивает более однородное покрытие и должно приводить к самой большой фактической площади поверхности iMeH.
В типичном способе производства катализатора согласно данному изобретению, включающего экструдат, исходные неорганические оксидные материалы экструдируют и прокаливают, экструдат химически покрывают металлами для гидрообработки, такими как Ni/Mo или Pd, и полученную в результате комбинацию прокаливают. На конечной стадии, экструдат химически покрывают iMeH и обрабатывают водородом.
iMeH согласно данному изобретению может быть объединен посредством многих способов с имеющимися катализаторами или компонентами для гидрообработки.
На Фиг.1 изображены стадии способа получения катализатора согласно данному изобретению, детализирующие стадии обработки порошка iMeH перед смешиванием с порошком катализатора для гидрообработки. Металлический сплав с выбранным составом сначала подвергают воздействию водорода для получения структуры гидрида металла типа внедрения. На основе имеющегося оборудования iMeH затем переводят в форму порошка в инертной атмосфере или атмосфере водорода, используя любой из нескольких обычных методов получения порошков, известных специалистам в данной области. Альтернативно, металлический сплав сначала может быть превращен в порошок и затем подвергнут воздействию водорода для получения порошка iMeH. Порошок iMeH затем тщательно перемешивают с порошком катализатора для гидрообработки и формируют структуру катализатора. Катализатор может принять форму экструдата (включая 3-дольные и 4-дольные формы), шариков, гранул, колец, цилиндров или другие формы, включающие порошок с размером частиц, отличающимся от размеров частиц порошка исходных порошков. После образования iMeH активируют, воздействуя водородом при температуре и давлении, подходящим для состава iMeH.
На Фиг.2 изображены стадии процесса, пример, получения катализатора согласно настоящему изобретению, при котором порошок iMeH смешивают с порошком катализатора для гидрообработки. Порошок катализатора для гидрообработки может быть изготовлен специалистами в данной области согласно технологическим требованиям. На Фиг.2 показано несколько вариантов, состоящих из порошка носителя (такого как цеолит) покрытого катализатором из благородного металла и/или сульфидом металла, таким как NiMoSx.
На Фиг.3 изображены стадии способа получения катализатора согласно данному изобретению, при котором iMeH наносят на форму катализатора для гидрообработки. Форма катализатора для гидрообработки может быть изготовлена специалистами в данной области согласно технологическим требованиям. Покрытие iMeH может быть нанесено способами, включая, без ограничения, химическое осаждение из паровой фазы(CVD), химическое покрытие, ионную имплантацию и напыление. Катализатор для гидроочистки или катализатор для гидрокрекинга может заменить катализатор для гидрообработки.
На Фиг.4 изображены стадии способа получения катализатора, детализирующие, но не ограничивающие данное изобретение, при которых iMeH наносят на форму катализатора для гидрообработки. Форма катализатора для гидрообработки может быть изготовлена специалистами данной области согласно технологическим требованиям. На Фиг.4 конкретизировано несколько вариантов, состоящих из формы носителя, покрытого катализатором из благородного металла и/или сульфидом металла, таким как NiMoSx.
Свойства носителя, такие как пористость, распределение пор по размерам, площадь поверхности и кислотность, выбирают на основе исходного сырья и выбранного гидропроцесса. Для органических соединений с низким молекулярным весом, подходящими являются микропористые носители, потому что они обеспечивают небольшой размер пор и большую площадь поверхности. Для более тяжелых органических соединений требуется структура катализатора с большим размером пор с мезо- и/или макропорами, чтобы дать возможность проникать органическим соединениям с большим размером молекулы. Кислотность может быть отрегулирована до уровня, подходящего для конкретного процесса, который будет катализирован.
iMeH может быть объединен или размещен вблизи с одним или несколькими дополнительными каталитическими элементами или компонентами, такими как катализатор для крекинга или катализатор для гидрообработки. Указанная комбинация снижает жесткость условий требуемых для гидрообработки. Катализаторы Pd, Ni/Mo, W, и Co/Mo являются примерами материалов, которые могут функционировать как указанные дополнительные каталитические элементы или компоненты. Функция носителя и дополнительные каталитические свойства могут быть объединены в одном веществе. iMeH может, если он размещен в достаточно тесном контакте с дополнительными каталитическими элементами, снабдить их одноатомный водородом, тем самым увеличивая их каталитическую активность. Дополнительные каталитические элементы не должны обладать способностью к накоплению одноатомного водорода в своей матрице, они проявляют возрастающую каталитическую активность вследствие отдачи одноатомного водорода от iMeH.
Другим способом увеличения каталитической активности является ее повышение с помощью эффекта перемещения водорода. Не имея намерения ограничиваться данным описанием, эффект перемещения водорода обычно относится к явлению, когда адсорбируемый водород на (металлической)поверхности катализатора мигрирует к близлежащему каталитическому участку или в междоузельное пространство носителя. iMeH продуцирует одноатомный водород, который не может немедленно вступить в реакцию с подаваемым органическим соединением, но не ограничен указанной реакцией. Катализаторы из благородных металлов, таких как палладий и платина, могут способствовать миграции реакционно-способного одноатомного водорода. Показано, что указанные благородные металлы являются новыми активаторами в комбинации с iMeH, таким образом увеличивая каталитическое действие. Вышесказанное, как предполагают, происходит из-за эффекта перемещения водорода, который увеличивает эффективную область поверхности катализатора.
Конкретный пример такого комбинированного катализатора содержит цеолит, палладий и iMeH, который может усилить реакции гидрогенизации. iMeH в форме порошка имеет пониженную площадь поверхности по сравнению с палладием, химически нанесенным на носитель из цеолита. iMeH в форме порошка по размеру может быть на порядок величины больше, чем частицы палладия, диспергированные на носителе. Как предполагают, каталитический реакционный участок, расширяется за пределы поверхности iMeH, благодаря транспорту одноатомного водорода с помощью усиливаемого палладием эффекта перемещения водорода.
Одноатомный водород является высоко химически активной частицей и будет взаимодействовать со многими частицами, а также, с другими атомами водорода, образуя молекулярный водород. Таким образом, обнаружено, что тесный контакт между iMeH и исходным сырьем, подвергаемым гидрообработке, имеет большое значение. Например, если на поверхности iMeH существует оксидный слой, то вполне вероятно, что одноатомный водород будет реагировать в пределах оксидного слоя, прежде чем он столкнется и прореагирует с молекулой исходного сырья. IMeH, используемый в данном изобретении, по существу не содержит поверхностных оксидов; iMeH, имеющий значительное оксидное покрытие, не может предоставить каких-либо значительных количеств одноатомного водорода для химического процесса, происходящего на оксидном покрытии. Протяженность области, в которой одноатомный водород может быть обнаружен вблизи поверхности iMeH, изменяется с изменением условий процесса, которые влияют на подвижность и реакционную способность одноатомного водорода. Поверхность катализатора согласно данному изобретению поддерживают по существу свободной от оксидов, избегая воздействия на каталитическую поверхность воздуха, какого-либо другого окислительного агента или водяного пара при повышенных температурах. Для некоторых чрезвычайно активных катализаторов согласно данному изобретению, контакта с воздухом, каким-либо другим окислительным агентом или водяным паром избегают при температурах окружающей среды, а также при повышенных температурах. Экспериментальные результаты подтвердили, что минимизация количества присутствующих поверхностных оксидов увеличивает активность катализатора согласно данному изобретению. Для порошков или дисперсий iMeH, чем меньше размер частицы, тем требуются более тонкий слой поверхностного оксида. Толщина слоя поверхностного оксида не должна превышать половины диаметра частицы iMeH, предпочтительно составляет одну четверть диаметра или меньше, оптимально, составляет одну десятую диаметра или меньше. В качестве примера, для частицы iMeH с диаметром, равным одному микрометру, оптимальный оксидный слой был бы 100 нанометров или менее.
Также было установлено, что состояние поверхности iMeH связано с состоянием материала исходного сырья, обработка которого может быть катализирована. Установлено, что катализаторы согласно данному изобретению можно применять для обработки жидкого исходного сырья, так же, как и газообразного исходного сырья.
Обнаружено, что настоящее изобретение особенно применимо при гидрообработке органических соединений при более низких давлениях, чем в случае обычных катализаторов для конкретного процесса.
Согласно настоящему изобретению, обнаружено, что катализаторы iMeH особенно применимы в реакциях катализа, включающих присоединение или перегруппировку атомов водорода в химических соединениях. Предполагается, что катализатор согласно данному изобретению будет катализировать реакции неорганических материалов, в которые вовлекается водород. В частности, крекинг и гидрообработку нефтехимических веществ ускоряют катализаторами iMeH. Органические соединения определяют как соединения углерода. Другими элементами, которые могут быть включены в органические соединения, являются водород, кислород, азот, сера, фосфор, галогены и металлы. Классы органических соединений включают алифатические соединения, включая имеющие неразветвленную цепь и циклические алканы, олефины и ацетилены, ароматические соединения, включая полициклические структуры, кислородсодержащие соединения, включая спирты, простые эфиры, альдегиды, кетоны, карбоновыве кислоты, сложные эфиры, глицериды и углеводы, азотсодержащие соединения, включая амины, амиды, пирролы и порфирины, серосодержащие соединения, включая тиолы, сульфиды и тиофены, фосфорсодержащие соединения, включая сложные фосфатные эфиры, металлоорганические соединения и соединения с галогенами, такими как фтор и хлор. Следующие термины используют для описания процессов, в которых может быть использовано настоящее изобретение:
- Гидрообработка - Общий термин, используемый для описания всех каталитических процессов с участием водорода. Включает реакцию любой нефтяной фракции с водородом в присутствии катализатора. Примеры включают гидрокрекинг, гидроочистку и гидродесульфирование.
- Гидрокрекинг - Способ, используемый для превращения более тяжелого исходного сырья в кипящие при более низкой температуре, более ценные продукты. В способе используют высокое давление, высокую температуру, катализатор и водород. Обычно происходит уменьшение размеров молекул 50% или более подаваемого вещества.
- Депарафинизация - Способ удаления парафинов из обработанного нефтяного потока для улучшения его свойств при низкой температуре. Парафины являются насыщенными углеводородами с высоким молекулярным весом, которые обычно находятся в твердом состоянии при комнатной температуре. Депарафинизация может быть достигнута с помощью отделения растворителя, замораживания и фильтрации. В процессе каталитической депарафинизации используют один или два цеолитных катализатора, чтобы избирательно осуществить гидрокрекинг парафинов в вещества с пониженной молекулярной массой.
- Каталитическая депарафинизация - Процесс каталитического гидрокрекинга, в котором используют молекулярные сита, чтобы избирательно осуществить гидрокрекинг парафинов, присутствующих во фракциях углеводорода. Данный способ также называют гидродепарафинизацией.
- Гидроочистка - Способы, при которых удаляют нежелательные примеси, такие как сера, азот, металлы и ненасыщенные соединения в присутствии водорода и катализатора. Существенно, что в отличие от гидрокрекинга, при гидроочистке ни в каком из подаваемых веществ уменьшения размера молекулы не происходит.
- Гидродеазотирование - Способ гидроочистки, при котором удаляют азот, который присутствует в более тяжелых дистиллятах.
- Гидродеметаллизация - Способ гидроочистки, при котором удаляются металлы, обычно никель и ванадий, которые присутствуют в более тяжелых дистиллятах.
- Гидродесульфирование(HDS) - Каталитический способ, основная цель которого состоит в удалении серы из нефтяных фракций в присутствии водорода.
- Исходное сырье - Нефтяная фракция, подвергнутая процессу обработки, включающему в себя гидрообработку и крекинг.
- Крекинг - Преобразование исходного сырья в более легкие продукты.
Обычные катализаторы демонстрируют повышенную активность при повышенной температуре, и в большинстве случаев их подвергают обычному нагреванию за счет подвода тепла, чтобы повысить температуру. Также выбранные катализаторы могут быть нагреты диэлектрически. Диэлектрическое нагревание относится к широкому диапазону электромагнитного нагревания, либо к магнитно, либо к электрически сопряженным полям, и включает радиочастотное (РЧ) нагревание и микроволновое нагревание. Было установлено, что добавляемую ценность процесса максимизируют использованием минимума диэлектрически сопряженной энергии и использованием обычной тепловой энергии, чтобы дополнить полную энергию процесса. В предпочтительном варианте осуществления настоящего изобретения, микроволновую или РЧ- энергию используют вместе с нагреванием в результате сжигании топлива или резистивным нагреванием. Исключительное использование микроволнового нагревания или нагревания РЧ, при отсутствии нагревания в результате сжигании топлива или резистивного нагревания является экономически не целесообразным способом. В настоящем способе первичным эффектом, произведенным микроволновой и РЧ- энергией является усиление катализируемой химической реакции, а не косвенное действие нагревания.
В предпочтительном варианте осуществления настоящего изобретения, когда используется микроволновое усиление, iMeH находится в прямом контакте с носителем; iMeH функционирует в качестве материала для первичного поглощения микроволн и никакого другого компонента, поглощающего микроволны, в катализаторе не требуется. В случае, когда iMeH подходящим образом дисперигируют, например, во взвеси, содержащей исходное сырье и iMeH, он может использоваться в отсутствии отдельного материала носителя.
Диэлектрический параметр, называемый тангенсом потерь, известен специалистам в данной области для измерения относительной РЧ- или микроволновой энергии, которую конкретный материал поглощает при данной частоте. Тангенс потерь, также называемый коэффициентом потерь, представляет собой отношение потерянной энергии к поглощенной энергии. Больший тангенс потерь для материала означает, что поглощено больше энергии по сравнению с материалом с более низким тангенсом потерь. Диэлектрическое поглощение энергии может вызвать нагревание различных материалов с существенно разной степенью и достижение в значительной степени отличающихся температур в том же самом РЧ- или микроволновом поле.
Диэлектрически поглощенная энергия также может внести непосредственный вклад в энергетический баланс процесса. При использования для управления эндотермической реакцией, такой как, реакция крекинга, это означает, что, если поглощенная РЧ- или микроволновая энергия равна тепловой энергии реакции крекинга, то результирующего увеличения общей температуры процесса не будет. Однако, если поглощается больше РЧ- или микроволновой энергии, чем необходимо для реакции крекинга, или, если в результате произошла экзотермическая реакция, например, гидрогенизации в результате высвобождения одноатомного водорода, тогда будет иметь место результирующее увеличение общей температуры.
В предпочтительном варианте с использованием микроволнового и РЧ-усиления, каталитический материал iMeH подбирают так, чтобы он имел более высокий коэффициент потерь, чем носитель катализатора или другие материалы, составляющие катализатор. В указанном предпочтительном варианте, в катализаторе iMeH соединены две отличительные черты: 1) каталитически активные участки iMeH и 2) материал iMeH, являющийся первичным поглотителем микроволновой и РЧ-энергии из-за своего более высокого коэффициента потерь, чем другие материалы, составляющие катализатор. Обнаружено, что данный вариант настоящего изобретения обеспечивает более высокую эффективность реакции, чем полученная ранее.
В другом варианте изобретения, iMeH является первичным поглотителем микроволновой или РЧ- энергии, но присутствуют один или несколько других вторичных компонентов, поглощающих микроволны. В еще одном варианте данного изобретения, iMeH не является первичным поглотителем микроволновой или РЧ- энергии и не имеет самого высокого коэффициента потерь, но материал iMeH находится в прямом тепловом контакте с материалами, которые являются первичными поглотителями микроволновой или РЧ- энергии и имеют более высокие коэффициенты потерь.
Обнаружено, что коэффициенты потерь для основной массы катализатора iMeH, такие как 0,30 или менее, особенно 0,20 или менее, например, от 0,01 до 0,20, усиливают реакции, минимизируя при этом неизбирательное нагревание исходного сырья. Данный учет значений коэффициентов потерь максимизирует глубину проникновения РЧ или микроволн, делая возможным осуществление способа согласно данному изобретению в большом масштабе. В предпочтительном варианте коэффициент потерь для iMeH, в комбинации с носителем или основной массой катализатора, больше, чем таковой у исходного сырья. Следовательно, энергия идет на катализ реакции, а не на неизбирательное нагревание исходного сырья. Глубина проникновения также зависит от частоты.
Совместное использование катализатора iMeH наряду с микроволновой или РЧ- энергией включает две новых переменные процесса, для оптимизации каталитической гидрообработки. iMeH служит в качестве источника междоузельного реакционно-способного одноатомного водорода высокой плотности. Применение микроволновой или РЧ- энергии обеспечивает средства для регулирования реакции одноатомного водорода iMeH с исходным сырьем. К тому же, надлежащее применение микроволновой или РЧ- энергии активизирует более высокий поточный обмен одноатомного водорода из матрицы и еще более усиливает реакции гидрообработки. Вышесказанное также регулирует и активизирует поглощение молекулярного водорода, который будет диссоциирован на одноатомный водород. Более конкретно, надлежащее применение включает регулирование интенсивности или напряжения поля микроволн или РЧ, частоты и использование методик модуляции. Регулирование указанных параметров, в частности использование любого количества способов модуляции, известных специалистам в данной области, например, амплитудной модуляции, частотной модуляции и широтно-импульсной модуляции, имеет большое значение для точного регулирования или максимизации поточного обмена одноатомного водорода из iMeH для взаимодействия с органическими соединениями.
Альтернативно, катализатор согласно данному изобретению может содержать отдельный материал, поглощающий микроволны в комбинации с iMeH. Носитель может быть каталитически неактивным или активным. Если носитель каталитически активен, его активность может быть усилена с помощью производства одноатомного водорода в iMeH, с которым носитель находится в тесном контакте.
Катализатор iMeH, используемый в комбинации с микроволновой энергией, может быть сконфигурирован разнообразными способами для получения катализатора, оптимизированного для конкретной реакции или функции. Если желательна более тщательно перемешанная смесь, так, чтобы iMeH и носитель находились в более тесном контакте, то могут быть использованы более тонкодисперсные порошки, субмикронные или наночастицы; при этом обычно увеличивается и площадь каталитической поверхности.
В данном изобретении одноатомный водород, который также может быть описан как междоузельные (диссоциированные) радикалы атомов водорода, из объема матрицы iMeH, используют для гидрогенизации органических соединений и их производных. Указанные диссоциированные радикалы одноатомного водорода не являются ковалентно- или ионно-связанными с атомами металлов в объеме iMeH. В общем случае, популяция указанных свободных радикалов одноатомного водорода находится в равновесии между междоузельным водородом конкретного iMeH и его поверхностью. Указанным равновесием управляют с помощью факторов структуры iMeH, температуры, давления и напряженностью поля радиочастоты или энергии микроволн. Поглощение одноатомного водорода кристаллической решеткой iMeH является экзотермической реакцией. Поверхностные радикалы одноатомного водорода в равновесии с междоузельной матрицей iMeH могут непосредственно взаимодействовать с органическими соединениями и их производными, которые находятся в контакте с поверхностью или вблизи поверхности iMeH. Не желая быть связанным с данной характеристикой изобретения, полагают, что данная гидрогенизация имеет место вследствие того, что высокая локализованная плотность радикалов одноатомного водорода обеспечивает реакционную способность, равную или превышающую реакционную способность, которая создается при нелокализованной высокой плотности молекулярного водорода, вызванной действием высокого давления водорода. Водород является более реакционно-способным по отношению к связи C-C, когда он находится в форме одноатомного радикала, чем в случае, когда он находится в форме двухатомной молекулы. Каталитические реакции с участием iMeH могут обеспечить эффективность работы эквивалентную или превосходящую таковую в области высокого давления молекулярного водорода.
Способы согласно настоящей заявке, даже несмотря на то, что они могут не приводить к увеличению содержании водорода в продукте, зависят от наличия водорода по двум причинам: 1) наличие водорода препятствует отравлению катализатора и 2) наличие водорода является ключевым фактором, позволяющим молекулам подвергаться перегруппировке. В идеале, молекула, связывающаяся с активным каталитическим участком, подвергается необходимой реакции или перегруппировке и покидает каталитическую поверхность. Однако, если есть локальный дефицит водорода, молекула может полимеризироваться, взаимодействовать с другой активной молекулой или откладываться на каталитической поверхности в виде кокса; все три указанных следствия могут уменьшить количество доступных каталитических участков. При отсутствии водорода катализатор становится дезактивированным гораздо быстрее и требует более быстрой циркуляции. Поскольку катализатор согласно данному изобретению может обеспечить водород из своей собственной структуры так же, как и принять водород из реакционной среды, проблемы, связанные с недостатком локализованного водорода, сведены к минимуму. Кроме того, из-за своей способности к стабилизации одноатомного водорода, катализатор согласно данному изобретению способен активизировать реакции, в которых водородные атомы присоединяются к молекулам исходного сырья.
Результаты исследований указывают, что важно сбалансировать гидрогенизацию с другими каталитическими функциями, такими как крекинг или десульфирование, чтобы минимизировать нежелательные реакции, подобные коксованию. Указанный баланс достигают с помощью регулирования соотношения содержания iMeH и его соответствующей площади поверхности к содержанию и площади поверхности носителя и других каталитических компонентов.
Также установлено, что настоящее изобретение особенно применимо для крекинга или гидрокрекинга тяжелых органических соединений. Диэлектрические свойства тяжелых органических соединений позволяют их избирательно нагревать с помощью РЧ- и микроволнового нагревания. Если они расщепляются около поверхности iMeH, то они будут взаимодействовать с одноатомным водородом и подвергаться гидрогенезации, десульфированию и другим требуемым реакциям. Продукты реакции крекинга имеют более низкие коэффициенты микроволновых потерь, чем реагенты, и таким образом менее подвергаются РЧ- и микроволновому нагреванию, чем реагенты. Поэтому реагенты избирательно нагреваются и избирательно вступают в реакцию, приводя в результате к повышенной эффективности процесса.
Составы iMeH
Нижеследующее представляет собой примеры составов катализатора согласно настоящему изобретению, где гидрид металла типа внедрения представляет собой гидрид следующих сплавов.
Кат 100
Тип АТ5.
Кристаллическая структура: гексагональная.
Общая формула: A1-xMxT5-y-zByCz
х=0,0-1,0; у=0,0-2,5; z=0,0-0,5
А=Мм (мишметалл); T=Ni; M=La, Pr, Nd или Се; В=Со; C=Mn, Al или Cr,
где мишметалл (Мм) представляет собой природную композицию сплава следующих редкоземельных металлов: Се (Церий), La (Лантан), Pr (Празеодим) и Nd (Неодим). Например, процентное содержание редкоземельных компонентов в составе мишметалла в Кат 100 составляет приблизительно: Се=50%, La=25%, Pr=6% и Nd=19%.
Кат 200
Тип A2T14B.
Кристаллическая структура: тетрагональная.
Общая формула: A2-xMxT14-yCyDzB
х=0,0-2,0; у=0,0-14; z=0,0-3,0
A=Nd или Pr; T=Fe; M=La, Pr, Nd или Се; В=Бор;
С=Со; D=Cr, Ni или Mn.
Кат 300
Тип А2Т.
Кристаллическая структура: моноклинная.
Общая формула: A2-xMxT1-yBy
х=0,0-0,5; у=0,0-0,5
А=Mg; T=Ni или Cu; M=La; B=Fe или Со.
Катализаторы согласно данному изобретению могут также содержать комбинации указанных составов.
Катализатор согласно данному изобретению может использоваться со всеми множествами конфигураций технологических реакторов, которые известны специалистам в данной области. Обычно общим в этих конфигурациях является реакционный сосуд, сконструированный так, чтобы обеспечивать введение газа и жидкости, содержать исходное сырье и катализатор при подходящем давлении и температуре, и который обеспечивает удаление продукта, как показано на Фиг.5. Альтернативно, газ и/или жидкость могут быть предварительно нагреты в зависимости от условий процесса, что является установившейся практикой для специалистов в данной области. Катализатор вводят в реакционный сосуд в условиях, предотвращающих образование поверхностных оксидов. В зависимости от реакционной способности катализатора, воздействия на катализатор кислорода или водяного пара при высокой температуре можно избежать, или можно использовать инертную атмосферу для защиты катализатора. Катализатор может принять форму слоя в реакционном сосуде или катализатор и исходное сырье могут подвергаться циркуляции так, чтобы они находились в тесном контакте друг с другом в течение обработки, с получением смеси исходного сырья и катализатора (катализатора-органического соединения). Специалистам в данной области известно, что возможны другие типы реакторов со слоями катализаторов, например, с неподвижным слоем, с подвижным слоем, суспензионный реактор, с кипящим слоем. Предпочтительно, обеспечивают рециркуляцию водорода в течение каталитического процесса. Реакция происходит после введения исходного сырья и газообразного водорода на катализаторе в объеме реакционного сосуда. Исходное сырье (органические соединения) взаимодействуют с одноатомным водородом на поверхности катализатора. Энергию подводят к катализатору, исходному сырью (органическому соединению), реакционной смеси или смеси катализатор-исходное сырье (катализатор-органическое соединение); они могут быть нагреты с помощью тепловой энергии, возникающей при химической реакции, такой как сгорание, посредством резистивного нагревания или акустического нагревания, могут быть нагреты диэлектрически с помощью радиочастотной или микроволновой энергии, или они могут быть нагреты с помощью комбинации указанных способов. Сгорание является химическим соединением вещества с кислородом. Резистивное нагревание является нагреванием в результате движения тока через электрический проводник. Акустическое нагревание является нагреванием в результате физического движения или вибрации, вызванной в образце звуковой частотой приблизительно меньшей, чем 25 КГц, или сверхзвуковой частотой приблизительно большей, чем 25 КГц, обычно 40 КГц. Радиочастоты находятся в диапазоне от приблизительно 3×105 Гц до приблизительно 3×108 Гц; микроволновые частоты находятся в диапазоне от приблизительно 3×108 Гц до приблизительно 3×1012 Гц. Механизмы охлаждения, известные специалистам в данной области, могут быть объединены с реакционным сосудом для обеспечения экзотермических реакции (например, введением охлаждающих газов или жидкостей). Продукты реакции могут быть извлечены удалением из сосуда. Исходное сырье (органические соединения) могут быть предварительно нагреты до контакта или в комбинации с катализатором с помощью тепловой энергии в результате химической реакции, такой как сгорание, резистивным нагреванием или акустическим нагреванием, или могут быть нагреты диэлектрически с помощью радиочастотной или микроволновой энергии.
Катализатор согласно данному изобретению может использоваться во всем множестве технологических процессов, которые известны специалистам в данной области. Типичные технологические условия включают температуры, по меньшей мере, примерно 150°C, более предпочтительно, по меньшей мере, примерно 225°C и еще более предпочтительно, по меньшей мере, примерно 300°C. Обычно способы осуществляют при температурах меньше, чем примерно 600°C, более конкретно, меньше. чем примерно 550°C, и еще более конкретно, чем примерно 450°C. Обычно давление, при котором способы могут быть реализованы на практике равно, по меньшей мере, давлению окружающей среды (14,7 фунтов/кв.дюйм), более конкретно, положительному давлению, по меньшей мере, примерно 25 фунтов/кв.дюйм, и еще более конкретно, по меньшей мере, избыточному давлению примерно 50 фунтов/кв.дюйм. Обычно, давление меньше, чем избыточное давление 600 фунтов/кв. дюйм, более конкретно, меньше, чем избыточное давление, примерно 450 фунтов/кв.дюйм, и еще более конкретно, меньше, чем избыточное давление примерно 300 фунтов/кв.дюйм. Обычно может быть применима РЧ- или микроволновая энергия с частотой большей, или равной примерно 1 Мгц, и более конкретно, по меньшей мере, примерно 500 Мгц. Как правило, может быть применима РЧ- или микроволновая энергия с частотой менее чем примерно 10000 Мгц, и более конкретно менее чем примерно 3000 МГц РЧ- или микроволновая энергия. Объемная почасовая скорость поступления жидкости (LHSV) определяет отношение исходного сырья к катализатору. LHSV является объемной почасовой скоростью поступления жидкости, определенной как отношение объема исходного сырья к объему катализатора, которая проходит через катализатор в течение часа. Диапазон изменения LHSV составляет обычно, по меньшей мере, примерно 0,10 в час, и более конкретно, по меньшей мере, примерно 0,20 в час и еще более конкретно примерно 0,30 в час. LHSV имеет тенденцию быть меньше, чем примерно 10 в час, и более конкретно, меньше чем, примерно 5 в час, и еще более конкретно, меньше чем, примерно 3 в час.
Реакторы периодического действия, вмещающие катализатор и способы согласно данному изобретению, работают при повышенной температуре и давлении. Периодический способ может использовать средства для нагревания и/или охлаждения реактора, добавления и удаления катализатора, получения исходного сырья и газа, и удаления продукта и газа. Предпочтительные конфигурации включают средства для перемешивания или рециркуляции газа, катализатора и исходного сырья, средства повторной загрузки катализатора и средства для обеспечения РЧ- или микроволн в месте протекания реакции.
Предпочтительным вариантом является непрерывный поточный способ. Реакторы с непрерывным потоком, вмещающие катализатор и способ согласно данному изобретению работают при повышенной температуре и давлении. Они могут содержать средства для нагревания и/или охлаждения реактора, добавления и удаления катализатора, получения исходного сырья и газа, предварительного нагрева исходного сырья и газа и удаления продукта и газа. Предпочтительные конфигурации включают средства для перемешивания или рециркуляции газа, катализатора и исходного сырья, средство повторной загрузки катализатора и средство для обеспечения РЧ- или микроволн в месте протекания реакции.
Возможность рециркуляции увеличивает применимость реакторов, используемых согласно данному изобретению. Фиг.6 изображает применение реактора с возможностью предварительного нагревания газа и жидкости и внутренней и внешней рециркуляции реакционной смеси или компонентов. Фиг.7 изображает использование реактора с возможностью внутренней и внешней рециркуляции реакционной смеси или компонентов реакционной смеси, а также с возможностью рециркуляции катализатора для регенерации или повторной загрузки. Контур рециркуляции катализатора для регенерации или повторной загрузки может быть один, как показано в выбранном варианте 1 или, может быть объединен с существующими контурами, как показано в выбранных вариантах 2 или 3. Фиг.8 изображает улучшенную обработку продукции для любой конструкции реактора для способа согласно данному изобретению, обладающего возможностью разделения продукта на газ и жидкость. Выбранный вариант, показанный на Фиг.8, может использоваться с любым из реакторов, показанных на Фиг.5, 6 и 7. Фиг.9 изображает улучшенную обработку продукции для любой конструкции реактора для способа согласно данному изобретению, обладающую возможностью сбора газового продукта, рециркуляции газового продукта, сбора жидкого продукта и рециркуляции жидкого продукта и устройства для впрыскивания газа и жидкости, которые будут переработаны после впрыскивания обратно в подаваемый материал или входной поток. Выбранный вариант, показанный на Фиг.9 может использоваться с любым из реакторов, показанных на Фиг.5, 6 и 7.
Пример 1
Изотермы давления в логарифмическом масштабе-состав катализатора iMeH.
На Фиг. 10 показаны изотермы давления в логарифмическом масштабе - состав катализатора iMeH для кривой десорбции одноатомного водорода iMeH Кат 100, Mm(1,1)Ni(4, 22)Co(0,42)Al(0,15)Mn(0,15). График показывает результаты, полученные при постоянных температурах и в условиях равновесия для порошка Кат 100, относящиеся к давлению и плотности накопленного в iMeH водорода. График показывает, что при постоянной температуре плотность водорода iMeH увеличивается в виде нелинейной функции давления. Также график показывает, что уменьшение температуры изотерм приводит к увеличению плотности водорода iMeH. Приведенные данные характеризует емкость по водороду катализатора iMeH, которая обеспечивает одноатомный водород для реакций гидрогенизации или гидрообработки.
Пример 2
Выбор катализатора iMeH.
Чтобы выбрать iMeH для каталитического процесса и определить рабочие параметры, полезно знать, сколько водорода накапливает материал iMeH, температуру, при который десорбируется одноатомный водород, и влияние давления на десорбцию одноатомного водорода.
На Фиг.11 на графике показана зависимость общей водородной емкости от температуры при давлении окружающей среды для Кат 100, Кат 200 и Кат 300, трех примеров катализаторов согласно данному изобретению.
Составы сплавов, которые при обработке водородом превращаются в катализаторы на основе гидридов металла типа внедрения согласно данному изобретению, имеют следующий вид:
Кат 100
Mm(1,1)Ni(4,22)СО(0,42)Al(0,15)Mn(0,15)
Кат 200
Nd(2,05)Dy(0,25)Fe(13)B(1,05)
Кат 300
Mg(2,05)Ni(0,95)Cu(0,07)
Учитывая стандартный технологический допуск при производстве металлов, ожидается, что очень близкие свойства будут проявляться в случае составов со следующими общими формулами (где нижние индексы обозначают % компонента в композиции):
Кат 100
Mm(30-34,5) (Ni, Co, Al, Mn)(69,9-66,4)
Кат 200
(Nd, Dy) (15,5-16,5) (Fe, В) (83,5-84,5)
Кат 300
Mg(44-46) (Ni, Cu) (54-56)
Одноатомный водород десорбируется из Кат 100 при более низких температурах, ниже 200°С, в то время как одноатомный водород десорбируются из Кат 300 при температурах свыше 250°С. Кроме того, более резким является переход в случае десорбции для Кат 300. Таким образом, для реакции при давлении окружающей среды, может быть выбран Кат 100 для реакции при низкой температуре ниже 200°С и Кат 300 для реакции при более высокой температуре, свыше 300°С. Хотя Кат 200 имеет более низкую
суммарную емкостью по водороду, он обладает свойством осуществлять десорбцию одноатомного водорода в очень широком температурном диапазоне.
В случае, когда давление установлено, изменяют рабочую температуру, которая оптимизирует высвобождение одноатомного водорода. Таблица 1 показывает, что при заданной температуре по мере увеличения рабочего давления высвобождается меньше одноатомного водорода. Следовательно, выбор iMeH зависит от обоих параметров процесса, как температуры, так и давления. В указанном примере осуществление гидрогенизации iMeH можно регулировать рабочими параметрами так, чтобы iMeH с низкой температурой мог быть использован при более высоких температурах с увеличением рабочего давления в рамках его термодинамического предела.
Пример 3
Усиленная микроволнами гидрообработка по отношению к сырью.
Для тяжелой нефти, такой как остаточные смолы, микроволновая энергия предпочтительно поглощается ароматическими и полярными соединениями нефти, в силу этого активизируя их реакцию. Вышесказанное показано на Фиг.12, где тангенс потерь (по оси Y) для остаточной смолы примерно на порядок величины больше чем, в случае обработанной микроволнами смолы (уменьшенная молекулярная масса и более низкая точка кипения) на протяжении широкого диапазона микроволновых частот (0,5-2,8 ГГц). Тангенс потерь, также названный коэффициентом потерь или коэффициентом рассеяния, является мерой микроволновой адсорбции материала. Также тангенс потерь представляет собой соотношение потерянной энергии к запасенной энергии.
При гидрообработке согласно настоящему изобретению, надлежащее регулирование и использование тангенса диэлектрических потерь приводит к эффективному применению микроволновой энергии. Часть микроволновой энергии, которая поглощается любым компонентом смеси нефти и катализатора, может эффективно регулироваться. Например, когда тангенс диэлектрических потерь катализатора равен таковому для нефти, тогда сначала примерно половина микроволновой энергии идет на нагревание нефти и половина на нагревание катализатора. Первичный способ регулирования тангенса потерь осуществляется путем корректировки состава отдельных компонентов материала. Вышесказанное включает оптимизацию состава катализатора или смешивание сырья.
В случае, когда желательна повышенная гидрогенизация, гидрогенизация может быть усилена увеличением тангенса потерь компонента катализатора iMeH относительно тангенса потерь нефти. Как далее объяснено в примере 5 и показано на Фиг.13, для тяжелой нефти, поскольку нефть в процессе реакции превращается из остатка в нефть после крекинга, на локальном уровне больше микроволновой энергии доступно для вхождения в катализатор, дополнительно стимулируя усиление гидрогенизации по сравнению с тепловым нагреванием нефти.
Когда гидрогенизируют более легкую нефть, нефть сама по себе уже может иметь более низкий тангенс потерь. В указанном случае катализатор может быть отрегулирован так, чтобы поддержать высокое фиксированное отношение тангенса потерь катализатора к нефти. Таким образом, микроволновая энергия может быть эффективно направлена на активизацию гидрогенизации с помощью связывания компонентами катализатора для гидрогенизации.
Способы регулирования тангенса потерь катализатора включают, но этим не ограничены, регулирование дисперсии iMeH, концентрации iMeH, выбор типа сплава iMeH или состава и/или типа. Может быть осуществлена подобная модификация по отношению к структуре носителя, а также допирование и покрытие выбранными материалами.
Подобным образом, гидрокрекинг можно регулировать посредством корректировки диэлектрических свойств катализатора. Микроволновая энергия может быть эффективно направлена на активизацию крекинга с помощью связывания компонентами катализатора для гидрогенизации.
Пример 4
Оценка обработки с помощью микроволн тяжелых нефтяных фракций.
Образцами сырья, используемыми для данного примера, были остаточные смолы, тяжелый остаток, оставшийся после прямого цикла дистилляции при атмосферном давлении при производстве бензина и дизельных топлив. Образцы обрабатывали с использованием микроволновой энергии при 2,45 ГГц, давлений, несколько ниже окружающего давления при защите в атмосфере азота. Несколько типов коммерчески доступных цеолитов использовали в качестве катализаторов: 5A, 13X и аммиачный Y. Выборочные проверки суммарной температуры смеси катализатор/смола проводили с использованием термопары типа K. Температуры изменяли в диапазоне примерно от 200°C до 475°C. Чтобы свести к минимуму охлаждение образца, проверки температуры проводили настолько быстро, насколько это возможно после выключения источника микроволновой энергии, обычно в течение от пяти до десяти секунд.
Данные испытания показали эффект использования только простого катализатора без добавления катализатора iMeH. Свойства подаваемого материала (остаточной смолы) и продукта (смолы после обработки микроволнами) приведены в таблице 2. Микроволновая обработка подаваемого материала уменьшала температуру потери текучести от 95 до 30 и вязкость была снижена с 413 сСт при 100°C до 7 сСт при 50°C. Кроме того, данные по моделированию дистилляции показали, что распределение точек кипения значительно сместилось главным образом от высококипящих органических соединений в подаваемой смоле к более низкокипящим органические соединениям в продукте. Небольшое изменение наблюдали или в удельной массе, или в концентрации серы. Это указывает, что и без использования улучшенного катализатора с помощью реакции крекинга получали целевой продукт. Имело место небольшое десульфирование или присоединение водорода.
В другой серии исследований смолу, в присутствии или в отсутствии катализатора iMeH, обрабатывали микроволнами в микроволновой печи, чтобы оценить влияние компонента катализатора iMeH при использовании сырья в виде смолы. Испытания проводили с использованием следующих смесей катализаторов: 1) коммерческий цеолит 13X, 2) смесь коммерчески доступных катализаторов цеолита 13X и аммиачного Y и 3) смесь коммерческого катализатора натриевого Y с iMeH Кат 100. Как и ранее, образцы были обработаны при давлении, несколько ниже давления окружающей среды в защитной атмосфере азота при температуре примерно 250°C. Бумажный фильтр, пропитанный ацетатом свинца, был помещен вблизи выхода из реакционного сосуда, чтобы определить присутствие сероводорода (H2S).
Только испытания с использованием катализатора, содержащего компонент iMeH Кат 100, быстро изменили цвет бумажного фильтра с ацетатом свинца на черный, показывая, что получались большие количества сероводорода и что продукт десульфировался. H2S не был обнаружен в ходе исследований проводимых с катализаторами без компонента iMeH Кат 100.
Одноатомный водород, накопленный в объеме катализатора iMeH, был единственным источником свободного водорода. Проведенные испытания показали, что компонент катализатора iMeH, по мере повышения микроволновой энергии, способствует каталитической гидрогенизации и высвобождению H2S, активизируя десульфирование. Проведенные испытания показывают, что микроволновая энергия и катализатор iMeH активизируют гидрогенизацию и гидрообработку при низком давлении.
Пример 5
Описание усиленной микроволнами гидрогенизации по отношению к катализатору iMeH.
На Фиг.13 изображены измерения, полученные в испытании с использованием реактора периодического действия. В данном испытании 30 см3 катализатора iMeH (50% Кат 300/50% USY (1% Pd) были помещены в реактор с 30 см3 смеси кокс-керосин. Данное сырье содержит как серу, так и ароматические компоненты. Контролировали давление в реакторе, микроволновую мощность при 2,45 ГГц, общую температуру катализатора iMeH, наряду со скоростью потока H2 в реакторе. Начальное давление устанавливали при 50 фунтов/кв.дюйм. После нагревания до 200°C давление возросло до 60 фунтов/кв.дюйм и такое давление поддерживали в течение испытания.
Фиг.13 показывает, что при использовании в реакторе микроволн поток газообразного молекулярного водорода (H2) в реакторе равен нулю. В случае указанного примера сырья, катализатора, температуры и низкого давления, гидрогенизация происходит только тогда, когда одноатомный водород (H•) реагирует с поданной смесью кокс-керосин в результате действия как катализатора iMeH, так и микроволн. Данные показывают, что давление остается постоянным или несколько сниженным в течение периода времени, когда действуют микроволны. Гидрогенизация происходит, когда микроволновое поле одновременно стимулирует iMeH и вызывает прямую реакцию катализа одноатомного водорода (H•) в междоузельной решетке iMeH, и когда он объединен с углеводородами смеси кокс-керосин и серными соединениями, содержащимися сырье. Однако данная прямая каталитическая реакция временно исчерпывает одноатомный водород (H•) в междоузельной решетке iMeH.
Когда микроволны в реакторе не применяются, газообразный водород (H2) подается в реактор, пополняя запас водорода, использованного в реакциях гидрогенизации одноатомного (H•). Когда газообразный водород контактирует с поверхностью iMeH, он диссоциирует на одноатомный водород (H•) вследствие фундаментальной природы iMeH и поглощается междоузельной структурой iMeH. Имеет место полезный, но пониженный каталитический эффект в случае использовании iMeH без полезного действия микроволн. В случае без использования микроволн, равновесного обмена достигают, когда доля газообразного водорода (H2) на iMeH сбалансирована с долей одноатомного водорода (H•), реагирующего с сырьем. Однако без использования микроволн равновесная доля одноатомного водорода (H•), прореагировавшего с сырьем, обычно ниже. При использовании гидрогенизации нафталина, в качестве примера, микроволны в три раза повышают производство декалина и увеличивают поглощение водорода на 62% до 6,5 мас.%, как показано в Таблицах 4 и 7 для примера 6.
Пример 6
Количественные результаты исследований гидрогенизации нафталина.
Последовательные испытания проводили на нафталине (C10H8) в качестве модельного соединения для демонстрации способности к гидрогенизации катализаторов iMeH и эффекта микроволнового усиления реакций гидрогенизации, катализируемой iMeH. В данном примере показаны испытания, проводимые при одной и той же температуре и давлении (200°C и 50 фунтов/кв.дюйм H2) и одинаковой объемной почасовой скорости поступления жидкости (LHSV) установленной равной 0,5. Микроволновая частота была равна 2,45 ГГц.
Раствор подаваемого нафталина готовили с н-додеканом (n-C12H26) в качестве растворителя и н-нонаном (n-C9H20) в качестве внутреннего стандарта. Основные продукты гидрогенизации включают тетралин (C10Hl2) и цис- и транс-декалин (C10Hl8). Образование тетралина требует присоединения четырех атомов водорода на одну молекулу, в то время как для формирования декалина необходимо присоединение 10 атомов водорода. Декалин является предельно-насыщенным продуктом реакции гидрогенизации нафталина. Выход тетралина и декалина является мерой степени гидрогенизации нафталина, как показано в виде следующих реакций:
C10H8+2H2→C10H12(тетралин)
C10H8+5H2→C10H18(цис- и транс-декалин).
После испытания, продукт газовой фазы и жидкой фазы проанализировали газовой хроматографией (ГХ), чтобы определить их химический состав. Данные ГХ позволили количественно определить концентрацию нафталина, остающегося в продукте и количества полученного тетралина и цис- и транс-декалина. Массовый баланс был выполнен для каждого испытания. Изменение в содержании водорода рассчитывали вычитанием водорода сырья от водорода в продукте.
Результаты следующего испытания показывают, что катализатор iMeH имеет большую гидрогенизационную емкость, даже при значительно более низком давлении (200°C, 50 фунтов/кв.дюйм). Такую емкость значительно увеличивают применением микроволновой энергии.
Результаты испытания обеспечивают доказательство преимуществ использования гидридов металлов типа внедрения (iMeH) с применением и без применения микроволновой энергии. Представлены данные для трех различных классов катализаторов iMeH, Кат 100, Кат 200 и Кат 300. Компонент iMeH смешивают с коммерческим, ультрастабилизированным порошком цеолита Y (USY), в котором соотношение оксида кремния и оксида алюминия равно 80. Порошок USY тестировали как таковой, или с химическим покрытием 1 мас.% палладия (Pd). Все катализаторы тестировали в форме гранул.
Комбинации носителя и комбинации катализатора iMeH не оптимизируют, и они не ограничивают использование iMeH с другими носителями для других примеров гидрогенизации (ZSM-5, ZrO2, оксид кремния и оксид алюминия).
Другие испытанные каталитические материалы содержали коммерческий катализатор H-нефть и гидридные материалы, приготовленные обычными способами.
Порошок iMeH смешивали с порошком USY покрытым или не покрытым Pd для двух уровней составов (30 мас.%, 50 мас.%).
Испытания дали результаты, приведенные в форме таблицы на основе поглощения водорода продуктом и массового процента полученного декалина, нормализованного по отношению к полному превращению нафталинового сырья.
Три испытания представлены в Таблице 3. В испытаниях сравнивали три состава катализаторов, использованных при испытании гидрогенизации нафталина. Указанные испытания проводили, используя обычную тепловую энергию при рабочих параметрах, таких как 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV. Показано, что первый катализатор, 100% USY является цеолитным носителем и он не эффективен для гидрогенизации нафталина при указанных технологических условиях. Второй катализатор получали добавлением химически диспергированного палладия Pd 1 мас.% к носителю USY способами, известными специалистам в данной области. Известно, что палладий является катализатором для гидрогенизации, но обычно указанную реакцию гидрогенизации нафталина осуществляют при давлениях, превышающих 1000 фунтов/кв.дюйм. Данный катализатор позволил получить тетралин, обеспечивая поглощение водорода 1,6%. Последний катализатор получали смешиванием 30 мас.% порошка iMeH Кат 100 вместе с порошком USY. Данный катализатор приводил к поглощению водорода 1,9%, демонстрируя, что при гидрогенизации iMeH Кат 100 является эффективной заменой палладию.
Испытания гидрогенизации нафталина, сравнивающие катализатор с iMeH Кат 100, обработанный обычной или микроволновой энергией.
В Таблице 4 представлены результаты испытания катализатора, содержащего iMeH Кат 100 при двух концентрациях, 30 мас.% и 50 мас.%. Данные испытания проводили с использованием как обычной тепловой, так и микроволновая энергии при технологических условиях 200°C, 50 фунтов/кв.дюйм и 0,5 LHSV. Порошок USY покрывали 1 мас.% палладия и смешивали вместе с порошком iMeH Кат 100. Все каталитические комбинации обеспечили более высокое поглощение водорода и производство более предельно насыщенного декалина. Заключения, сделанные на основании указанных данных, включают:
- Поглощение водорода усиливается в результате комбинирования покрытого Pd USY с Кат 100.
- Поглощение водорода возрастает с увеличением содержания Кат 100.
- Поглощение водорода усиливается микроволнами.
В Таблице 5 представлены результаты испытания катализатора, содержащего iMeH Кат 200 при двух концентрациях, 30 мас.% и 50 мас.% и iMeH Кат 300 при концентрации 50 мас.%. Данные испытания проводили с использованием как обычной тепловой, так и микроволновой энергии при технологических условиях 200°C, 50 фунтов/кв.дюйм и 0,5 LHSV. Порошок USY покрывали 1% масс. палладия и смешивали с порошком iMeH Кат 100. Заключения, сделанные на основании указанных данных, включают:
- Кат 100 гидрогенизирует нафталин лучше, чем Кат 200.
- Поглощение водорода/производство декалина для Кат 200 значительно усиливается микроволнами.
- Поглощение водорода слегка увеличивается с возрастанием содержания Кат 200.
- Кат 300 гидрогенизует лучше, чем Кат 200, но хуже, чем Кат 100.
Эффективность гидрогенизации каждого материала iMeH можно объяснить уровнем одноатомного водорода, произведенного при рабочих параметрах 200°C и 50 фунтов/кв.дюйм. Следует отметить, что многократные серии исследований при идентичных условиях, указывают на стандартное отклонение, составляющее меньше 3% от величины при увеличении содержания водорода и производства декалина. В настоящее время результаты испытания согласно данному изобретению обеспечивают возможность способа определения точного давления и температуры, чтобы максимизировать гидрообработку данного вводимого исходного сырья и требуемый продукт.
В Таблице 6 сравнивается эффективность катализаторов предшествующего уровня техники или коммерческих катализаторов. Данные испытания проводили с использованием как обычной тепловой, так и микроволновой энергии при технологических условиях 200°C, 50 фунтов/кв.дюйм и 0,5 LHSV.
Коммерческий катализатор H-нефти обрабатывали, используя микроволновую энергию, поскольку хорошо известно, что он плохо работает при низких давлениях. Недостаточность гидрогенизации лучших современных катализаторов, используемых на практике, демонстрирует эффективность катализаторов iMeH согласно данному изобретению.
Второй катализатор представлял собой гидрид металла, приготовленный обычными способами и протестированный с использованием обычной тепловой энергии. Недостаточность гидрогенизации свидетельствует, что он не функционирует так, как катализатор iMeH согласно данному изобретению.
В Таблице 7 сравниваются iMeH Кат 100 при двух уровнях мощности микроволновой энергии и в частично окисленном состоянии. Указанные испытания проводили, используя микроволновую энергию при технологических условиях 200°C, 50 фунтов/кв.дюйм и 0,5 LHSV. Все предыдущие испытания проводили при установленном уровне микроволновой мощности 1, который оценивается как один ватт/см3. Второй уровень микроволновой мощности, уровень мощности 2, выбирали для сравнения, и он оценен как 1,9 ватт/см3. Для обоих уровней микроволновой мощности микроволновая энергия обеспечивает как энергию предварительного нагрева, так и энергию для усиления реакции.
Результаты испытания показывают, что значительное увеличение поглощения водорода, 47% увеличение, и возрастание производства декалина, 128%, осуществили установкой мощности микроволн на уровне 2. Предполагается, что установка более высокой микроволновой мощности обеспечивала большей микроволновой энергией реакцию, поскольку суммарные температуры поддерживали на тех же самых уровнях. Третий катализатор, с тем же самым составом, готовили без предосторожностей, предпринимаемых согласно данному изобретению для минимизации образования оксидного слоя на iMeH. Полученное в результате снижение на 58% поглощения водорода и снижение на 99,8% производства декалина демонстрирует эффективность iMeH катализаторов согласно данному изобретению.
Пример 7
Раскрытие цикла бензотиофена.
Проведены испытания с модельным соединением бензотиофеном, чтобы продемонстрировать десульфирование через раскрытие цикла. Бензотиофен является ароматическим, гетероциклическим серусодержащим соединением, с боковым бензольным кольцом, обычно входящим в состав нефти (C8H6S). Испытания выполняли с использованием раствора бензотиофена, приготовленного с додеканом в качестве растворителя и нонаном, как внутренним стандартом.
Раствор бензотиофена обрабатывали, используя iMeH Кат 300,50% Кат 300-50% USY (1% Pd), с микроволновой энергией при 2,45 ГГц, 2 уровень мощности, при технологических условиях 200°C, 50 фунтов/кв.дюйм и 0,5 LHSV. Осуществили превращение 93% бензотиофена и обнаружили газ H2S, что свидетельствует о протекании процесса гидродесульфирования через разрыв связи углерод-сера и раскрытие цикла.
Пример 8
Количественные результаты испытания гидрогенизации тестируемого коммерческого сырья.
Следующие испытания выполняли с использованием коммерческого сырья. Указанные испытания включают легкую газовую нефть (LGO), нефтяную смесь кокс-керосин и тяжелую вакуумную газовую нефть (HVGO).
Настоящее изобретение работает при существенно более низких давлениях, чем существующие реакции гидрообработки. Вышесказанное обеспечивает дополнительную гибкость при выборе переменных параметров способа. Например, для любого выбранного исходного сырья, рабочая температура и давление определяют долю органических соединений в паровой фазе и долю в жидкой фазе. В зависимости от реакции гидрообработки, регулирование отношения паровой фазы к жидкой может улучшить эффективность способа. Сказанное справедливо при температурах ниже 550°C, при давлениях ниже 600 фунтов/кв.дюйм и особенно при давлениях ниже 300 фунтов/кв.дюйм.
Результаты следующих исследований дают специалистам в данной области примеры определения надлежащего состава катализатора и условий реакции (т.е. температура, давление, LHSV, уровень микроволновой энергии), чтобы максимизировать гидрообработку для данного исходного сырья и требуемого продукта.
Испытание гидрогенизации легкой газовой нефти.
Легкая газовая нефть (LGO) является нефтяной фракцией, содержащей сложную смесь углеводородов с точками кипения в диапазоне от 140 до 450°C при одной атмосфере. 90% углеводных соединений кипят между 160-370°C при давлении окружающей среды. Согласно оценке, уровень ароматических соединений в LGO составляет примерно 30 мас.%. Сырье помещают в микроволновой реактор периодического действия в количестве и на время, чтобы обработать сырье в условиях 0,5 LHSV. Анализатор HCNS использовали для измерения молярного отношения водорода к углероду (H/C) в сырье и продукте. Чем выше соотношение H/C, тем больше водорода в продукте. Представлены результаты испытания, чтобы показать увеличение в содержания водорода (мас.%) в продукте.
LGO обрабатывали, используя катализатор iMeH Кат 300, 50% Кат 300-50% USY (1% Pd). Выполняли два испытания, используя микроволновую энергию при 2,45 ГГц, 2 уровень мощности, при двух различных рабочих давлениях, 50 фунтов/кв.дюйм или 150 фунтов/кв.дюйм, при одних и тех же условиях испытания 200°C и 0,5 LHSV. При 50 фунтах/кв.дюйм LGO гидрогенизировали с увеличением содержание водорода в продукте на 0,2 мас.%. При 150 фунтах/кв.дюйм, степень гидрогенизации увеличилась в два раза до 0,4 мас.%.
Испытания гидрогенизации кокс-керосин.
В Таблице 8 показаны результаты испытания для сырья кокс-керосин. Сырье кокс-керосин является фракцией малоценного продукта образуемой в процессе коксования. Фракция содержит сложную смесь органических соединений с точками кипения в диапазоне от 160 до 400°C. 90% органических соединений кипят в диапазоне 200-360°C. Фракция имеет высокий уровень содержания ароматических соединений и содержание серы более чем 3,5 мас.%.
В Таблице 9 представлены результаты испытания гидрогенизации кокс-керосина для iMeH Кат 300, 50% Кат 300-50% USY (1% Pd). Выполняли три испытания, используя микроволновую энергию при 2,45 ГГц, 2 уровень мощности и 0,5 LHSV. В испытаниях сравнивают эффект возрастания, либо рабочей температуры, либо рабочего давления, исходя из рабочих параметрах 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV.
Результаты испытания, приведенные в таблице 8, показывают, что катализатор iMeH Кат 300 способен гидрогенизировать и гидродесульфировать кокс-керосин. Степень гидрогенизации удваивалась, а степень десульфирования увеличивалась в 8 раз, когда рабочее давление изменяли от 50 фунтов/кв.дюйм до 150 фунтов/кв.дюйм. Такое же увеличение гидрогенизации и десульфирования наблюдали, когда рабочую температуру увеличивали до 250°C. Для указанного примера увеличение рабочего давления с 50 до 150 фунтов/кв.дюйм при 200°C было равно по эффективности гидрогенизации изменению температуры процесса от 200 до 250°C при давлении 50 фунтов/кв.дюйм.
Полученные результаты важны, так как указанное снижение содержания серы, осуществляемое при низком давлении, происходит из-за гидрогенизации серосодержащих соединений без использования стандартных катализаторов для десульфирования, таких как Ni/Mo и Co/Mo. Палладиевый металлический компонент указанного катализатора вообще не используется в промышленности для десульфирования, потому что он быстро подвергается сернистому отравлению.
Дополнительные испытания выполняли с катализатором, используя 50% iMeH Кат 300 со смесью 50-50 USY (1% Pd) и сульфидированного Ni/Mo на носителе из оксида алюминия. Кокс-керосин обрабатывали комбинацией обычного предварительного теплового нагревания и микроволновой энергии. Рабочие параметры представляли собой: предварительный нагрев сырья до 400°C, температура реакции 405°C, 150 фунтов/кв.дюйм, 0,5 LHSV. По проведенной оценке средняя плотность микроволновой энергии при 2,45 ГГц составляла 0,12 ватт/см3.
Анализ сырья и продукта показал возрастание в продукте содержания водорода, равное 0,51 мас.%, а степень гидродесульфирования составляла 57,3% (т.е. содержание серы уменьшалось от 3,61 мас.% серы. до 1,54 мас.% серы). Полагают, что более высокий уровень десульфирования может быть связан с добавкой сульфидированного Ni/Mo на оксиде алюминия к катализатору в виде гранул. В Таблице 9 показано улучшение других физических свойств, включая 65% увеличение цетанового числа.
Испытания гидрогенизации тяжелой вакуумной газовой нефти.
Тяжелую вакуумную газовую нефть получают из остатка дистиллята при атмосферном давлении при пониженных давлениях (25-100 мм Hg), чтобы избежать теплового крекинга. Диапазон температур кипения примерно составляет от 260 до 600°C при давлении, равном одной атмосфере. Плотность примерно составляет 0,97 г/мл. Содержание ароматическое соединений превышает 50%, а содержание серы составляет примерно 3,5 мас.%.
Испытания выполняли с катализатором, используя 50% iMeH Кат 300 со смесью 50-50 USY (1% Pd) и сульфидированного Ni/Mo на носителе из оксида алюминия. Сырье HVGO обрабатывали комбинацией обычного предварительного теплового нагревания и микроволновой энергии. Рабочие параметры представляли собой: предварительный нагрев сырья до 400°C, температура реакция 405°C, 150 фунтов/кв.дюйм, 0,5 LHSV. По проведенной оценке средняя плотность микроволновой энергии при 2,45 ГГц составляла 0,12 ватт/см3.
Анализ сырья и продукта показал небольшое возрастание в продукте содержания водорода, равное 0,08 мас.%, но степень гидродесульфирования составляла 68,8 %. Полагают, что более высокий уровень десульфирования может быть связан с добавкой сульфидированного Ni/Mo на оксиде алюминия к катализатору в виде гранул. Также в течение испытания в газовой фазе был обнаружен аммиак, что доказывает протекание гидродеазотирования. В Таблице 10 показано улучшение других физических свойств, включая уменьшение вязкости от 174 сСт до значений, меньших, чем 7 сСт и 55%-ного увеличения массы по API.
Таблица 1
Процент высвобождаемого водорода из iMeH
Кат 100 Кат 300
Нагретый до 200°С Нагретый до 350°С
@ 0 фунтов/кв.дюйм 100% 100%
@ 50 фунтов/кв.дюйм 52% 48%
@ 100 фунтов/кв.дюйм 25% 23%
Таблица 2
Свойства остаточной смолы до и после микроволновой обработки
Образец Тест ASTM Остаточная смола Смола, обработанная микроволнами
Удельная масса @ 60°F D1298 1,001 0,998
Сера, мас.% D129 4,93 4,57
Температура потери текучести, °F D97 95 30
Кинематическая вязкость, сСт 50 или 100°С D445 413@100°С 7,1@50°С
Моделируемая дистилляция D2887
Тяжелый бензин (IBP-60°С), об.% 0,0% 0,0%
Керосин (160-260°С), об.% 2,0% 20,0%
Дизель (260-370°С), об.% 70,0% 75,0%
HVGO (370-514°С), об.% 28,0% 5,0%
Таблица 3
Испытания гидрогенизации нафталина при обычном нагревании, сравнивающие катализатор с Pd и без него с катализатором, содержащим iMeH, Кат 100
Условия проведения испытания: 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV.
Материал катализатора Рабочая энергия Увеличение содержания водорода, мас.% Декалин, % полученного
100% USY Обычная 0,0% 0,0%
100% USY (1% Pd) Обычная 1,6% 0,0%
30% Кат 100 - 70% USY (без Pd) Обычная 1,9% 0,0%
Таблица 4
Испытания гидрогенизации нафталина, сравнивающие катализатор, содержащий iMeH, Кат 100, обработанный в условиях обычной тепловой или микроволновой энергии
Условия проведения испытаний: 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV.
Материал катализатора Рабочая энергия Увеличение содержания водорода, мас.% Декалин, % полученного
30% Кат 100 - 70% USY (1% Pd) Обычная 2,9% 1,4%
30% Кат 100 - 70% USY (1% Pd) Микроволновая 3,2% 9,9%
50% Кат 100 - 50% USY (1% Pd) Микроволновая 4,5% 40,9%
Таблица 5
Испытания гидрогенизации нафталина при обработке обычной тепловой или микроволновой энергией катализаторов, содержащих iMeH, Кат 200 или iMeH Кат 300
Условия проведения испытаний: 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV.
Материал катализатора Рабочая энергия Увеличение содержания водорода, мас.% Декалин, % полученного
30% Кат 200 - 70% USY (1% Pd) Обычная 2,6% 0,0%
30% Кат 200 - 70% USY (1% Pd) Микроволновая 3,4% 14,3%
50% Кат 200 - 50% USY (1% Pd) Микроволновая 3,5% 17,8%
50% Кат 300 - 50% USY (1% Pd) Микроволновая 3,8% 24,0%
Таблица 6
Испытания гидрогенизации нафталина, сравнивающие катализаторы предшествующего уровня техники и гидрид металла, обработанные тепловой энергией или микроволновой энергией.
Условия проведения испытаний: 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV.
Материал катализатора Рабочая энергия Увеличение содержания водорода, мас.% Декалин, % полученного
Катализатор Н-нефти Микроволновая 0,1% 0,0%
Обычный гидрид металла Обычная 0,1% 0,0%
Таблица 7
Испытания гидрогенизации нафталина, сравнивающие iMeH Кат 100 при двух уровнях мощности микроволновой энергии и в частично окисленном состоянии.
Условия проведения испытаний: 200°C, 50 фунтов/кв.дюйм, 0,5 LHSV.
Материал катализатора Рабочая энергия Увеличение содержания водорода, мас.% Декалин, % полученного
50% Кат 100 - 50% USY (1% Pd) 1 уровень микроволновой мощности 4,5% 40,9%
50% Кат 100 - 50% USY (1% Pd) 2 уровень микроволновой мощности 6,5% 93,4%
50% окисленный Кат 100 - 50% USY (1% Pd) 2 уровень микроволновой мощности 2,7% 0,2%
Таблица 8
Результаты испытаний гидрогенизации кокс-керосин, при обработке микроволновой энергией в случае катализатора iMeH Кат 300, 50% Кат 300 - 50% USY (1% Pd), при трех комбинациях рабочих температур и давлений.
Условия проведения испытаний: 0,5 LHSV.
Рабочая температура (°С) Рабочая энергия (фунт/кв.дюйм) Увеличение содержания водорода, % масс. Снижение содержания серы, %
200 50 0,24% 5,5%
200 150 0,42% 42,4%
250 50 0,44% 44,6%
Таблица 9
Физические свойства смеси кокс-керосин до и после обработки катализатора: 50% Кат 300 - 25% USY (1% Pd) - 25% сульфидированного Ni/Mo оксида алюминия.
Рабочая энергия: комбинация обычного предварительного теплового нагрева и микроволновой энергии.
Условия проведения испытаний: 405°C, 150 фунтов/кв.дюйм, 0,5 LHSV.
Физическое свойство Сырье кокс-керосин Обработанный продукт
Цетановое число (ASTM D4737) 27 44
Вес по API 27 32
Плотность @ 15°С (г/см3) 0,90 0,87
Вязкость @ 40°C (сСт) 3,7 1,6
Таблица 10
Физические свойства HVGO до и после обработки катализатора: 50% Кат 300 - 25% USY (1% Pd) - 25% сульфидированного Ni/Mo оксида алюминия.
Рабочая энергия: комбинация обычного предварительного теплового нагрева и микроволновой энергии.
Условия проведения испытаний: 405°C, 150 фунтов/кв.дюйм, 0,5 LHSV.
Физическое свойство Сырье HVGO Обработанный продукт
Цетановое число (ASTM D4737) -40 20
Вес по API 15 23
Плотность @ 15°С (г/см3) 0,97 0,91
Вязкость @ 40°C (сСт) 174 6,8

Claims (25)

1. Катализатор для гидрообработки нефтяных фракций, содержащий гидрид металла типа внедрения на основе сплава, включающего металл VIII группы и лантанид, причем катализатор имеет реакционную поверхность и одноатомный водород на реакционной поверхности.
2. Катализатор для гидрообработки нефтяных фракций, содержащий гидрид металла типа внедрения на основе сплава, включающего металл VIII группы и металл II группы, причем катализатор имеет реакционную поверхность и одноатомный водород на реакционной поверхности.
3. Катализатор по п.2, где гидрид металла типа внедрения получен путем взаимодействия водорода со сплавом металла А2Т, где общая формула А2Т представляет собой: А2-xMxT1-yBy, где х=0,0-0,5; у=0,0-0,5; A=Mg; Т= по меньшей мере один из Ni или Cu; M=La; В= по меньшей мере один из Fe или Со.
4. Катализатор по п.2, где гидрид металла содержит Mg(2,05)Ni(0,95)Cu(0,07).
5. Катализатор по п.1 или 2, кроме того, содержащий носитель в контакте с гидридом металла типа внедрения.
6. Катализатор по п.5, в котором носитель содержит, по меньшей мере, один из неорганических оксидов, углерода и их комбинации.
7. Катализатор по п.5, кроме того, содержащий, по меньшей мере, один из Pt, Pd и их комбинации.
8. Катализатор по п.5, в котором гидрид металла содержит частицы, имеющие диаметр от примерно 0,01 до примерно 1000 мкм.
9. Катализатор по п.1 или 2, в котором реакционная поверхность по существу не содержит оксидного слоя.
10. Катализатор по п.1, который находится в форме частицы, имеющей диаметр, и в котором реакционная поверхность имеет оксидный слой, имеющий толщину, равную или меньшую, чем половина диаметра частицы катализатора.
11. Катализатор по п.10, в котором толщина оксидного слоя равна или меньше, чем четверть диаметра частицы катализатора.
12. Катализатор по п.10, в котором толщина оксидного слоя равна или меньше, чем одна десятая диаметра частицы катализатора.
13. Катализатор по п.1 или 2, в котором одноатомный водород имеет определенную концентрацию на поверхности катализатора, и концентрацию максимизируют удалением кислорода и водяного пара при повышенных температурах.
14. Катализатор по п.1 или 2, кроме того, содержащий поглотитель радиочастотной (РЧ) или микроволновой (MB) энергии в тепловом контакте с гидридом металла.
15. Катализатор по п.1 или 2, в котором гидрид металла функционирует в качестве первичного поглотителя РЧ или микроволновой энергии.
16. Катализатор по п.1, в котором гидрид металла типа внедрения получают путем взаимодействия водорода со сплавом металла, выбранного из группы, состоящей из AT5 и А2Т14В, и их комбинаций, в котором, для АТ5 общая формула представляет собой A1-xMxT5-y-zByCz, где х=0,0-1,0; у=0,0-2,5; z=0,0-0,5; А=Мм (мишметалл); T=Ni; М= по меньшей мере один из La, Pr, Nd или Се; В=Со; С= по меньшей мере один из Mn, Al или Cr; и в котором для катализатора A2T14B общая формула представляет собой A2-xMxT14-yCyDzB, где х=0,0-2,0; у=0,0-14; z=0,0-3,0; A=Nd; T=Fe; М= по меньшей мере один из La, Pr или Се; В=Бор; С=Со; D= по меньшей мере один из Cr, Ni или Mn.
17. Катализатор по п.1, в котором гидрид металла содержит по меньшей мере один из Mm(1,1)Ni(4,22)Co(0,42)Al(0,15)Mn(0,15) и Nd(2,05)Dy(0,25)Fe(13)B(1,05), и их комбинаций.
18. Катализатор для гидрообработки нефтяных фракций, содержащий:
носитель;
поглотитель РЧ - или микроволновой энергии; и
каталитически активную фазу, содержащую гидрид металла типа внедрения,
в котором каталитически активная фаза сохраняет и производит водород в одноатомной форме.
19. Катализатор по п.18, в котором гидрид металла типа внедрения имеет реакционную поверхность и данная реакционная поверхность по существу не содержит оксидного слоя.
20. Катализатор по п.18, в котором носитель содержит, по меньшей мере, один из неорганических оксидов, металлов, углерода и их комбинаций.
21. Катализатор для гидрообработки нефтяных фракций, содержащий:
гидрид металла, имеющий реакционную поверхность;
поглотитель РЧ или микроволновой энергии;
одноатомный водород на реакционной поверхности; и
по меньшей мере, один из компонента для гидрообработки, компонента для крекинга и их комбинации.
22. Катализатор по п.21, в котором, по меньшей мере, один из компонента для гидрообработки, компонента для крекинга и их комбинации также функционирует в качестве поглотителя микроволновой энергии или энергии РЧ.
23. Катализатор по п.21, в котором реакционная поверхность по существу не содержит оксидного слоя.
24. Катализатор для гидрообработки нефтяных фракций, включающий комбинацию катализаторов по пп.16 и 3.
25. Катализатор для гидрообработки нефтяных фракций, включающий комбинацию катализаторов по пп.17 и 4.
RU2005115099/04A 2002-10-17 2003-10-16 Катализатор для обработки органических соединений RU2343977C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/273,384 2002-10-17
US10/273,384 US7157401B2 (en) 2002-10-17 2002-10-17 Catalyst for the treatment of organic compounds

Publications (2)

Publication Number Publication Date
RU2005115099A RU2005115099A (ru) 2006-01-20
RU2343977C2 true RU2343977C2 (ru) 2009-01-20

Family

ID=32092786

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005115099/04A RU2343977C2 (ru) 2002-10-17 2003-10-16 Катализатор для обработки органических соединений

Country Status (8)

Country Link
US (2) US7157401B2 (ru)
EP (3) EP1952883A1 (ru)
CN (1) CN1735457A (ru)
AU (1) AU2003277381A1 (ru)
CA (1) CA2542298A1 (ru)
CO (1) CO5650157A2 (ru)
RU (1) RU2343977C2 (ru)
WO (1) WO2004035205A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495717C1 (ru) * 2012-09-24 2013-10-20 Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук (ИППУ СО РАН) Способ получения нанесенного катализатора гидропереработки тяжелых нефтяных фракций

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963116B2 (en) * 2004-02-12 2011-06-21 Battelle Memorial Institute Bulk-scaffolded hydrogen storage and releasing materials and methods for preparing and using same
US7316788B2 (en) * 2004-02-12 2008-01-08 Battelle Memorial Institute Materials for storage and release of hydrogen and methods for preparing and using same
US20050274065A1 (en) * 2004-06-15 2005-12-15 Carnegie Mellon University Methods for producing biodiesel
KR100599712B1 (ko) * 2004-06-24 2006-07-12 삼성에스디아이 주식회사 연료 전지 시스템 및 개질기
KR101320388B1 (ko) * 2006-02-18 2013-10-22 삼성에스디아이 주식회사 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는연료처리장치
CA2665075C (en) 2006-10-04 2014-03-18 Infacare Pharmaceutical Corporation High-purity large-scale preparation of stannsoporfin
US20090068051A1 (en) * 2006-10-13 2009-03-12 Karl Gross Methods of forming nano-structured materials including compounds capable of storing and releasing hydrogen
US7518092B2 (en) * 2007-03-15 2009-04-14 Capital Technologies, Inc. Processing apparatus with an electromagnetic launch
WO2008149352A2 (en) * 2007-06-04 2008-12-11 Pixer Technology Ltd. Apparatus and method for inducing controllable jets in liquids
WO2009003109A1 (en) * 2007-06-26 2008-12-31 The Penn State Research Foundation Ultrasonic and microwave methods for enhancing the rate of a chemical reaction and apparatus for such methods
JP4496346B2 (ja) * 2007-10-11 2010-07-07 石油資源開発株式会社 炭化水素リフォーミング用触媒およびこれを用いた合成ガスの製法
US20090119979A1 (en) * 2007-11-08 2009-05-14 Imperial Petroleum, Inc. Catalysts for production of biodiesel fuel and glycerol
CN101990462A (zh) * 2007-11-09 2011-03-23 巴斯夫欧洲公司 制备催化剂的方法和作为电催化剂的用途
US8403043B2 (en) * 2007-11-14 2013-03-26 Saudi Arabian Oil Company Microwave-promoted desulfurization of crude oil
JP4639247B2 (ja) * 2008-07-23 2011-02-23 石油資源開発株式会社 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法
IT1396576B1 (it) * 2009-10-22 2012-12-14 Eni Spa Procedimento per la riduzione di viscosita' di residui petroliferi provenienti dalla distillazione a pressione atmosferica o sotto vuoto
US20110119990A1 (en) 2009-11-24 2011-05-26 Exxonmobil Research And Engineering Companhy Group 13-15 interstitial metal hydride catalysts and associated processes
US20110119992A1 (en) * 2009-11-24 2011-05-26 Exxonmobil Research And Engineering Company Oxidation resistant interstitial metal hydride catalysts and associated processes
US20110119993A1 (en) * 2009-11-24 2011-05-26 Exxonmobil Research And Engineering Company High severity hydroprocessing interstitial metal hydride catalysts and associated processes
US8618010B2 (en) * 2009-11-24 2013-12-31 Exxonmobil Research And Engineering Company Interstitial metal hydride catalyst activity regeneration process
US8598067B2 (en) 2010-11-09 2013-12-03 Exxonmobil Research And Engineering Company Interstitial metal hydride catalyst systems and associated processes
US8637424B2 (en) 2010-11-09 2014-01-28 Exxonmobil Research And Engineering Company Integrated interstitial metal hydride catalyst support systems and associated processes
US8765628B2 (en) * 2010-11-09 2014-07-01 Exxonmobil Research And Engineering Company Poison resistant catalyst systems and associated processes
WO2012106349A2 (en) * 2011-01-31 2012-08-09 The Regents Of The University Of Michigan High activity early transition metal carbide- and nitride-based catalysts
PL2691398T3 (pl) 2011-03-30 2017-07-31 Infacare Pharmaceutical Corporation Sposoby syntezy mezoporfiryn metali
US8487017B2 (en) 2011-06-27 2013-07-16 Covidien Lp Biodegradable materials for orthopedic devices based on polymer stereocomplexes
WO2016120882A1 (en) * 2015-01-28 2016-08-04 Rajah Vijay Kumar Hydro disambiguative catalytic donor recombination, process and apparatus
CN107107040B (zh) * 2015-08-12 2020-02-07 华北电力大学(保定) 一种担载型固相催化剂及其制备方法和应用
CN106971080B (zh) * 2017-04-21 2019-09-27 上海交通大学 一种改性生物炭吸附废水中磷的响应面优化方法
CN111607763B (zh) * 2020-06-17 2022-02-11 武汉纺织大学 微波诱导金属放电在碳基载体上快速生长金属单原子的方法及其应用

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2383579A (en) 1943-03-30 1945-08-28 Colgate Palmolive Peet Co Process for treating fats and fatty oils
GB795573A (en) 1955-05-10 1958-05-28 Belge Produits Chimiques Sa An improved process for the preparation of higher aliphatic alcohols
US4102938A (en) * 1977-03-02 1978-07-25 Kalur Vijaya Chandra Rao Production of hydrocarbons by thermolysis of vegetable oils
SU791768A1 (ru) 1977-11-18 1980-12-30 Предприятие П/Я Р-6518 Способ получени светлых нефтепродуктов
GB1563357A (en) 1977-12-13 1980-03-26 British Petroleum Co Hydrogenation process
US4234402A (en) * 1978-10-24 1980-11-18 Kirkbride Chalmer G Sulfur removal from crude petroleum
US4279722A (en) 1978-10-24 1981-07-21 Kirkbride Chalmer G Use of microwaves in petroleum refinery operations
US4302436A (en) * 1978-12-26 1981-11-24 Standard Oil Company (Indiana) Method of regenerating disproportionated hydrides
US4300946A (en) * 1979-05-17 1981-11-17 Billings Energy Corporation Granulating and activating metal to form metal hydride
EP0021242B1 (en) 1979-06-20 1982-04-07 BASF Canada Inc. Use of microwave energy in the production of plasticizer esters
JPS5681668A (en) 1979-12-05 1981-07-03 Hitachi Ltd Coating method for heat resistant alloy with aluminum
DE3022708C2 (de) * 1980-06-18 1984-05-24 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zur Aktivierung eines für die Speicherung von Wasserstoff geeigneten Metallgranulats
US4409411A (en) * 1981-09-17 1983-10-11 Allied Corporation Process of hydrogenating benzenes and group IVa metal hydride catalysts therefor
US4604187A (en) 1981-12-04 1986-08-05 Union Oil Company Of California Hydrocracking with rare earth-containing Y zeolite compositions
US4456693A (en) 1982-03-08 1984-06-26 W. R. Grace & Co. Hydrocracking catalyst
US4409180A (en) * 1982-05-26 1983-10-11 Mpd Technology Corporation Process for manufacturing rare earth intermetallic hydridable compounds
US4560816A (en) * 1982-06-01 1985-12-24 University Of South Carolina Catalyzed hydrogenation and dehydrogenation processes
US4555395A (en) * 1982-09-27 1985-11-26 Standard Oil Company Hydride compositions
CA1193574A (en) 1983-07-14 1985-09-17 Jeffrey K.S. Wan Hydrodesulphurization of hydrocracked pitch
SU1266052A1 (ru) 1984-05-29 1996-10-27 Т.Г. Бородацкая Способ приготовления катализатора для гидрирования ненасыщенных углеводородов
US4857169A (en) 1984-11-20 1989-08-15 Union Oil Company Of California Hydrocracking process utilizing a catalyst having a reduced zeolite content
JPS61124545A (ja) * 1984-11-21 1986-06-12 Nippon Steel Corp 水素吸蔵用金属材料
DE3512497A1 (de) 1985-04-06 1986-10-09 Hüls AG, 4370 Marl Verfahren zur herstellung von carbonsaeurealkylestern, insbesondere fettsaeurealkylestern, und deren verwendung als dieselkraftstoff
US4696873A (en) 1985-06-21 1987-09-29 Kabushiki Kaisha Toshiba Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component
JPS61295204A (ja) * 1985-06-25 1986-12-26 Mitsubishi Heavy Ind Ltd 水素ガスの精製方法
US4696806A (en) * 1986-04-09 1987-09-29 Air Products And Chemicals, Inc. Metal hydride adsorption process for hydrogen purification
US4839085A (en) * 1987-11-30 1989-06-13 Ergenics, Inc. Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
US4992605A (en) 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
SU1638867A3 (ru) 1988-04-08 1996-11-10 Институт катализа СО РАН Катализатор для гидрирования олефиновых и диеновых углеводородов с2-с4 в алканы
SU1638865A3 (ru) 1988-04-08 1996-11-10 Институт катализа СО РАН Катализатор для гидрирования бутадиена в бутены
SU1638866A3 (ru) 1988-04-08 1996-11-10 Институт катализа СО РАН Гидрид магнийкобальтового интерметаллида в качестве катализатора для гидрирования ацетилена в этилен
US4853507A (en) 1988-04-28 1989-08-01 E. I. Dupont De Nemours & Company Apparatus for microwave separation of emulsions
WO1990003840A1 (en) * 1988-10-10 1990-04-19 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for continuous chemical reactions
US5514820A (en) 1989-09-29 1996-05-07 Henkel Kommanditgesellschaft Auf Aktien Continuous process for the production of lower alkyl esters
GB2237815B (en) 1989-11-06 1994-01-05 Univ Singapore Production of synthetic crude petroleum
DE4122530A1 (de) 1991-07-08 1993-01-14 Henkel Kgaa Verfahren zur herstellung von fettsaeureniedrigalkylestern
US5387394A (en) 1992-06-29 1995-02-07 Allergan, Inc. Ophthalmic compositions and methods for preserving and using same
US5368171A (en) 1992-07-20 1994-11-29 Jackson; David P. Dense fluid microwave centrifuge
JPH06170223A (ja) * 1992-12-01 1994-06-21 Mazda Motor Corp 水素吸蔵合金の活性化方法
JP3383692B2 (ja) * 1993-02-22 2003-03-04 マツダ株式会社 複合水素吸蔵金属部材及びその製造方法
US5508457A (en) 1993-05-04 1996-04-16 Engelhard De Meern B.V. Esterification process
US5532392A (en) 1994-01-13 1996-07-02 Gheorghiu; Mihail Process for the preparation of methyl fatty acid esters starting from natural oil or fat, methyl esters obtained in this way and use thereof
US5460745A (en) * 1994-02-07 1995-10-24 The United States Of America As Represented By The United States Department Of Energy Hydride compositions
US5554456A (en) * 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles
US5616432A (en) * 1994-06-14 1997-04-01 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
CA2149685C (en) 1994-06-30 1999-09-14 Jacques Monnier Conversion of depitched tall oil to diesel fuel additive
US5525126A (en) 1994-10-31 1996-06-11 Agricultural Utilization Research Institute Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst
US5648483A (en) 1995-06-07 1997-07-15 The Procter & Gamble Company Continuous transesterification method for preparing polyol polyesters
US5578090A (en) 1995-06-07 1996-11-26 Bri Biodiesel fuel
FR2736646B1 (fr) * 1995-07-13 1997-10-03 Cpe Lyon Fcr Nouveau procede de degradation controlee de polymeres hydrocarbones
US6015041A (en) * 1996-04-01 2000-01-18 Westinghouse Savannah River Company Apparatus and methods for storing and releasing hydrogen
US5713965A (en) 1996-04-12 1998-02-03 The United States Of America As Represented By The Secretary Of Agriculture Production of biodiesel, lubricants and fuel and lubricant additives
US5882623A (en) 1996-05-13 1999-03-16 Hydro Quebec Method for inducing hydrogen desorption from a metal hydride
US5728271A (en) 1996-05-20 1998-03-17 Rti Resource Transforms International Ltd. Energy efficient liquefaction of biomaterials by thermolysis
DE19631201C2 (de) 1996-08-02 2001-07-05 Rainer Buchholz Verfahren und Reaktor zur Umwandlung von Biomasse in flüssige, feste oder gasförmige Brennstoffe und Chemierohstoffe
FR2752242B1 (fr) 1996-08-08 1998-10-16 Inst Francais Du Petrole Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools
DE19638460A1 (de) 1996-09-19 1998-03-26 Peter Siegfried Verfahren zur Herstellung von Fettsäureestern
GB9708873D0 (en) 1997-05-01 1997-06-25 Johnson Matthey Plc Improved hydrogen storage material
US5911885A (en) 1997-07-29 1999-06-15 Owens; Thomas L. Application of microwave radiation in a centrifuge for the separation of emulsions and dispersions
US6077400A (en) 1997-09-23 2000-06-20 Imperial Petroleum Recovery Corp. Radio frequency microwave energy method to break oil and water emulsions
US6086830A (en) 1997-09-23 2000-07-11 Imperial Petroleum Recovery Corporation Radio frequency microwave energy applicator apparatus to break oil and water emulsion
US5914014A (en) 1997-09-23 1999-06-22 Kartchner; Henry H. Radio frequency microwave energy apparatus and method to break oil and water emulsions
US6174501B1 (en) 1997-10-31 2001-01-16 The Board Of Regents Of The University Of Nebraska System and process for producing biodiesel fuel with reduced viscosity and a cloud point below thirty-two (32) degrees fahrenheit
PT1034160E (pt) 1997-11-24 2002-10-31 Energea Umwelttechnologie Gmbh Metodo para producao de metil ester de acido graxo e equipamento para realizar o mesmo
FR2772756B1 (fr) 1997-12-18 2000-02-11 Inst Francais Du Petrole Procede de fabrication d'esters de corps gras et les esters de haute purete obtenus
JP3350445B2 (ja) 1998-05-11 2002-11-25 日本重化学工業株式会社 ヒートポンプ用水素吸蔵合金ユニット
JP4036540B2 (ja) 1998-05-25 2008-01-23 ライオナス・エナジーズ・コーポレーション 油脂類から脂肪酸の低級アルキルエステルを製造する方法
EP0969110A3 (en) 1998-06-16 2000-01-19 Mitsubishi Materials Corporation Hydrogen occluding alloy
US6013387A (en) 1998-06-22 2000-01-11 Li-Ho Yao Hydrogen absorbing alloy for battery application
US6017845A (en) 1998-07-14 2000-01-25 Intevep, S.A. Microwave heated catalyst and process
AU5225099A (en) 1998-07-24 2000-02-14 Lockheed Martin Idaho Technologies Company A process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium
US6242723B1 (en) 1998-07-30 2001-06-05 Milestone S.R.L. Apparatus for performing chemical and physical processes without sample transfer within a microwave radiation field
JP4411370B2 (ja) 1998-10-06 2010-02-10 株式会社Cdmコンサルティング 油脂類から脂肪酸のアルキルエステルを製造する方法
US6175037B1 (en) 1998-10-09 2001-01-16 Ucb, S.A. Process for the preparation of (meth)acrylate esters and polyester (meth)acrylates using microwave energy as a heating source
EP1018856A1 (fr) 1999-01-06 2000-07-12 Snowdrift Corp. N.V. Installation micro-onde à deux magnétrons au moins et procédé de contrôle d'une telle installation
US6184427B1 (en) * 1999-03-19 2001-02-06 Invitri, Inc. Process and reactor for microwave cracking of plastic materials
DE19925871A1 (de) 1999-06-07 2000-12-21 At Agrar Technik Gmbh Verfahren zur Herstellung von Fettsäureestern einwertiger Alkylalkohole und deren Verwendung
US6262285B1 (en) 1999-06-24 2001-07-17 Crown Iron Works Company Process for dry synthesis and continuous separation of a fatty acid methyl ester reaction product
GB2361918A (en) 2000-05-06 2001-11-07 Interpole Ltd Transesterification and Hyrolysis Reactions activated by Microwave Radiation
US6726783B1 (en) * 2000-05-18 2004-04-27 Energy Conversion Devices, Inc. High storage capacity alloys having excellent kinetics and a long cycle life
JP4432239B2 (ja) * 2000-09-05 2010-03-17 トヨタ自動車株式会社 水素吸蔵合金の活性化装置と活性化方法
JP3452254B2 (ja) * 2000-09-20 2003-09-29 愛知製鋼株式会社 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
US6680042B1 (en) * 2000-11-07 2004-01-20 Hydro-Quebec Method of rapidly carrying out a hydrogenation of a hydrogen storage material
US6451174B1 (en) * 2000-11-13 2002-09-17 Serik M. Burkitbaev High frequency energy application to petroleum feed processing
US6596055B2 (en) 2000-11-22 2003-07-22 Air Products And Chemicals, Inc. Hydrogen storage using carbon-metal hybrid compositions
FI110427B (fi) 2001-03-28 2003-01-31 Kemira Chemicals Oy Työliuoksen hydraus vetyperoksidin valmistusprosessissa
ITBO20010429A1 (it) 2001-07-09 2003-01-09 Ipctisa S R L Metodi e dispositivi per idrolizzare gli esteri di acidi grassi naturali e successivamente esterificarli con metanolo in oli naturali sotto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495717C1 (ru) * 2012-09-24 2013-10-20 Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук (ИППУ СО РАН) Способ получения нанесенного катализатора гидропереработки тяжелых нефтяных фракций

Also Published As

Publication number Publication date
US20070087933A1 (en) 2007-04-19
US7625832B2 (en) 2009-12-01
CO5650157A2 (es) 2006-06-30
US7157401B2 (en) 2007-01-02
EP1946837A3 (en) 2008-07-30
EP1587619A2 (en) 2005-10-26
CN1735457A (zh) 2006-02-15
WO2004035205A2 (en) 2004-04-29
EP1952883A1 (en) 2008-08-06
AU2003277381A1 (en) 2004-05-04
WO2004035205A3 (en) 2004-06-03
US20040077485A1 (en) 2004-04-22
EP1946837A2 (en) 2008-07-23
AU2003277381A8 (en) 2004-05-04
CA2542298A1 (en) 2004-04-29
RU2005115099A (ru) 2006-01-20

Similar Documents

Publication Publication Date Title
RU2343977C2 (ru) Катализатор для обработки органических соединений
RU2342997C2 (ru) Каталитический способ обработки органических соединений
US20040007506A1 (en) Deep desulfurization of hydrocarbon fuels
US8637424B2 (en) Integrated interstitial metal hydride catalyst support systems and associated processes
US9663728B2 (en) Group 13-15 interstitial metal hydride catalysts and associated processes
US20110119992A1 (en) Oxidation resistant interstitial metal hydride catalysts and associated processes
Yoshimura et al. Ultra deep hydrodesulfurization of gas oils over sulfide and/or noble metal catalysts
JP4578182B2 (ja) 重質炭化水素油の水素化処理方法
US8932455B2 (en) Interstitial metal hydride catalyst systems and associated processes
US8765628B2 (en) Poison resistant catalyst systems and associated processes
Busto et al. Hydrocracking of long paraffins over Pt–Pd/WO3–ZrO2 in the presence of sulfur and aromatic impurities
Hussein et al. Hydrodesulfurization and Hydrodearomatization of Kerosene over high metal loading Ni w/γ-Al2O3 Catalyst
Tailleur Deactivation of WNiPd/TiO2Al2O3 catalyst during the upgrading of LCO
US8618010B2 (en) Interstitial metal hydride catalyst activity regeneration process
Fujimoto Hydrogen spillover and hydrocracking, hydroisomerization
RU2173696C2 (ru) Способ гидроконверсии
Xiao et al. Effect of the addition of antifoulant agents on the deactivation of NiMoP/Al2O3 catalysts for hydrotreating of residuum
WO2011066207A1 (en) High severity hydroprocessing interstitial metal hydride catalysts and associated processes
SHIMADA et al. Ultra-deep hydrodesulfurization and aromatics hydrogenation of diesel fuel over a Pd-Pt catalyst supported on yttrium-modified USY
Ali Department of Refining and Gas Researches, Petroleum Research and Development Center, Ministry of Oil, Baghdad, Iraq Salah Mehdi Ali, Ban Abdulrahman Ahmed, Sattar Jalil Hussein, Yazan Munaf Ali, Saad karim Ibrahim, Saba Abdulridha yousif. Supervised by Assist prof. Hussein Qasim Hussein/University of Baghdad/College of
CN104667858A (zh) 一种γ射线处理调节催化脱硫吸附剂孔结构的方法