RU2304294C2 - Присоединение оптического компонента к оптоэлектронным модулям - Google Patents

Присоединение оптического компонента к оптоэлектронным модулям Download PDF

Info

Publication number
RU2304294C2
RU2304294C2 RU2002133055/28A RU2002133055A RU2304294C2 RU 2304294 C2 RU2304294 C2 RU 2304294C2 RU 2002133055/28 A RU2002133055/28 A RU 2002133055/28A RU 2002133055 A RU2002133055 A RU 2002133055A RU 2304294 C2 RU2304294 C2 RU 2304294C2
Authority
RU
Russia
Prior art keywords
substrate
laser
aforementioned
optical
heat
Prior art date
Application number
RU2002133055/28A
Other languages
English (en)
Other versions
RU2002133055A (ru
Inventor
Мердад ЗИАРИ (US)
Мердад ЗИАРИ
Роберт Дж. ЛЭНГ (US)
Роберт Дж. ЛЭНГ
Тан К. ОЛЕСКЕВИЧ (CA)
Таня К. ОЛЕСКЕВИЧ
Вивек АГРАВАЛ (US)
Вивек АГРАВАЛ
Ашок П. КАНДЖАМАЛА (US)
Ашок П. КАНДЖАМАЛА
Доналд К. ХАРГРИВЗ (US)
Доналд К. ХАРГРИВЗ
Харрисон Л. РЭНСОМ (US)
Харрисон Л. РЭНСОМ
Дейвид Д. ДОСОН (US)
Дейвид Д. ДОСОН
Радхакришнан Л. НАГАРАДЖАН (US)
Радхакришнан Л. НАГАРАДЖАН
Original Assignee
ДжейДиЭс Юнифейз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДжейДиЭс Юнифейз Корпорейшн filed Critical ДжейДиЭс Юнифейз Корпорейшн
Publication of RU2002133055A publication Critical patent/RU2002133055A/ru
Application granted granted Critical
Publication of RU2304294C2 publication Critical patent/RU2304294C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4225Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements by a direct measurement of the degree of coupling, e.g. the amount of light power coupled to the fibre or the opto-electronic element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4267Reduction of thermal stress, e.g. by selecting thermal coefficient of materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4238Soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • H01S5/02446Cooling being separate from the laser chip cooling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Модуль оптического соединения для присоединения оптического компонента к подложке содержит подложку; вспомогательную опору, присоединенную к указанной подложке, включающую теплоизолирующий материал; оптический компонент, юстированный относительно первого лазера и припаянный к указанной вспомогательной опоре с использованием тепла от второго лазера; контактную площадку, расположенную между указанным теплоизолирующим материалом и указанным оптическим компонентом; лазерную вспомогательную опору, присоединенную к указанной подложке; и первый лазер, присоединенный к указанной лазерной вспомогательной опоре. Оптический компонент является оптическим волокном, а указанный модуль оптического соединения является модулем соединения первого лазера с оптическим волокном. Указанная контактная площадка и указанный теплоизолирующий материал обеспечивают локальное прохождение тепла во время пайки для равномерного плавления припоя и ограничения переноса тепла в указанную подложку. Указанный оптический компонент выбран из группы, включающей оптическое волокно, зеркала, линзы, детекторы, микроэлектромеханические устройства и изоляторы. Способ изготовления интегрального модуля оптического соединения содержит создание подложки, нанесение рисунка и травление первой зоны указанной подложки, создание теплоизолирующего материала в указанной первой зоне указанной подложки, полирование указанного теплоизолирующего материала и указанной подложки для создания плоской поверхности, включающей часть подложки и теплоизолирующую часть, присоединение контактной площадки, включающей по меньшей мере один металлический слой, к указанной теплоизолирующей части, расположение первого лазера на указанной части подложки и юстировку и присоединение оптического компонента к указанной контактной площадке. Указанный оптический компонент присоединяют к указанной контактной площадке с использованием припоя, который нагревают с использованием второго лазера. Технический результат - повышение эффективности, обеспечение работы лазера с высокой мощностью. 2 н. и 12 з.п. ф-лы, 11 ил.

Description

Область техники, к которой относится изобретение
Данное изобретение относится к оптическим волокнам, и в частности к присоединению оптических компонентов к подложке и к юстировке оптического компонента с лазером.
Уровень техники
В оптоэлектронной промышленности имеется значительный и все возрастающий спрос на недорогие соединенные волокном лазерные модули, имеющие высокую надежность. Соединенные волокном лазерные модули включают оптическое волокно, которое юстировано с лазером на подложке и присоединено к подложке. Однорежимные волоконные устройства нуждаются в соединенных волокном лазерных модулях. Например, соединенные волокном лазерные модули используются в качестве устройства накачки для волоконных усилителей, источников с уплотнением по длине волны, высокоскоростных и мощных лазеров с распределенной обратной связью и полупроводниковых оптических усилителей.
Обычно лазер и оптическое волокно изготавливают или устанавливают на подложке. Для обеспечения приемлемых характеристик оптическое волокно должно быть точно юстировано с лазером. После юстировки оптическое волокно должно быть надежно прикреплено к подложке без нарушения юстировки, повреждения лазера или оптического волокна или же выключения лазера. Правильная юстировка обеспечивает очень высокую эффективность однорежимного соединения оптического интерфейса. Соединение между оптическим волокном и подложкой должно также выдерживать окружающие условия, такие как изменения рабочей температуры, вибрации, пыль и т.д. Другие важные характеристики включают относительно высокую теплопроводность между лазером и подложкой для обеспечения работы лазера с высокой мощностью.
Высокая теплопроводность между лазером и подложкой может приводить к проблемам при соединении оптического волокна с подложкой с использованием методов присоединения, использующих тепло. Пайка включает нагревание металлических частей, подлежащих соединению друг с другом, и использование припоя для соединения частей друг с другом. Часто используют интегрированный резистор, который выполнен с возможностью обмена тепла с припоем, в качестве источника тепла для расплавления припоя.
Как показано на фиг.1, соединенный волокном лазерный модуль 10, согласно уровню техники, включает лазер 12 и оптическое волокно 14, которые присоединены к подложке 16. Тепло (обозначенное стрелками 18) генерируется во время присоединения оптического волокна к подложке 16. Большинство тепла 18 операции пайки обычно проходит вниз через подложку 16 в радиатор (не изображен), такой как термоэлектрический радиатор. За счет относительно высокой теплопроводности пути между лазером 12 и подложкой 16 некоторое количество тепла 18' также проходит к лазеру 12. Тепло 18' может повредить диод или расплавить припой, который соединяет лазер 12 с подложкой 16, что уменьшает надежность лазера 12 и увеличивает снижение параметров соединения припоем. Тепло 18' может также приводить к неправильной юстировке лазера 12 и/или выключению лазера 12 во время юстировки.
Сущность изобретения
Модуль оптического соединения, согласно изобретению, присоединяет оптический компонент к подложке и юстирует оптический компонент с лазером. Модуль оптического соединения включает волоконную вспомогательную опору, которая прикрепляется к подложке, и теплоизолирующий материал, имеющий толщину более 20 микрон. Оптический элемент припаивается к волоконной вспомогательной опоре посредством приложения тепла от лазера. Лазерная вспомогательная опора прикрепляется к подложке. Лазер прикреплен к лазерной вспомогательной опоре.
Согласно другим признакам изобретения, оптический компонент выбирается из активных и пассивных оптических компонентов, таких как оптическое волокно, линзы, зеркала, фильтры, детекторы, изоляторы и микроэлектромеханические устройства.
Согласно еще одному признаку изобретения, между припоем и теплоизолирующим материалом помещается волоконная контактная площадка. Волоконная контактная площадка имеет характеристики бокового потока тепла, которые значительно больше характеристик вертикального потока тепла. Волоконную контактную площадку помещают между теплоизолирующим материалом и оптическим волокном. Волоконная контактная площадка и теплоизолирующий материал обеспечивают местное и боковое прохождение тепла во время лазерной пайки для равномерного плавления припоя. Теплоизолирующий материал и волоконная контактная площадка ограничивают перенос тепла на подложку во время пайки. Волоконная контактная площадка также обеспечивает надежное место для соединения оптического компонента. Толщина волоконной контактной площадки также способствует боковому отводу тепла. Волоконная контактная площадка также обеспечивает барьер для припоя.
Согласно другим признакам изобретения, волоконная контактная площадка включает несколько слоев. Один слой выполнен из золота, а другие слои выбираются из группы, состоящей из никеля, хрома, титана и оксида хрома. Дополнительные слои могут быть выполнены из титана и платины.
Согласно другому признаку изобретения, интегральный соединенный волокном лазерный модуль для юстировки и присоединения оптического волокна к подложке включает теплоизолирующий материал, выполненный как единое целое с подложкой и имеющий толщину более 20 микрон. Волоконная контактная площадка включает, по меньшей мере, один металлический слой, присоединенный к теплоизолирующему материалу. Оптическое волокно припаивается лазером к волоконной контактной площадке.
Согласно другому признаку изобретения, интегрированный теплоизолирующий материал образован с помощью гидролиза в пламени или с помощью анодной сварки.
Другие области применения данного изобретения следуют из приведенного ниже подробного описания. Следует отметить, что подробное описание и специальные примеры, хотя и указывают предпочтительные варианты выполнения изобретения, служат лишь для иллюстрации и не должны ограничивать объем изобретения.
Перечень фигур чертежей
Для лучшего понимания данного изобретения ниже приводится подробное описание со ссылками на прилагаемые чертежи, на которых изображено:
фиг.1 - соединенный волокном лазерный модуль с лазером и оптическим волокном, которые юстируются и присоединяются к подложке, согласно уровню техники;
фиг.2 - модуль оптического соединения с лазером и оптическим компонентом, таким как оптическое волокно, которые присоединены к подложке, согласно данному изобретению;
фиг.3 - разрез волоконной контактной площадки, которая расположена между оптическим компонентом и изолирующей волоконной вспомогательной опорой;
фиг.4 - часть волоконной контактной площадки на виде сверху;
фиг.5 - разрез припоя и части волоконной контактной площадки;
фиг.6А и 6В - модуль оптического соединения, согласно фиг.2, и пример системы лазерной пайки;
фиг.7А и 7В - интегральный модуль оптического соединения с лазером и оптическим компонентом, таким как оптическое волокно, согласно данному изобретению;
фиг.8А-8С - первый вариант выполнения интегрального модуля оптического соединения, согласно фиг.7;
фиг.9А-9С - использование стеклоприпоя в боковых зазорах первого варианта выполнения интегрального модуля оптического соединения, согласно фиг.7;
фиг.10А-10D - первый вариант выполнения интегрального модуля оптического соединения, согласно фиг.7;
фиг.11 - система юстировки оптического элемента, согласно данному изобретению.
Сведения, подтверждающие возможность осуществления изобретения
Последующее описание предпочтительных вариантов выполнения приводится лишь в качестве примера и никоим образом не должно ограничивать изобретение, его применение или использование.
Данное изобретение раскрывает устройство и улучшенный способ присоединения оптического элемента к подложке с юстировкой оптического элемента относительно лазера. Для специалистов в данной области техники понятно, что данное изобретение можно применять для присоединения активных и пассивных оптических элементов, таких как оптическое волокно, зеркала, линзы, детекторы, микроэлектромеханические устройства, изоляторы и другие оптические устройства, к подложке без причинения вреда лазеру вследствие нагревания.
Ниже приводится описание данного изобретения применительно к модулю 30 оптического соединения для оптического волокна со ссылками на фиг.2. Для специалистов в данной области техники понятно, что данное изобретение применимо для присоединения и юстировки других активных и пассивных оптических компонентов. Лазер 32 присоединен к лазерной вспомогательной опоре 38 контактной зоной 40. Лазерная вспомогательная опора 38 соединена с подложкой 42 контактной зоной 44. Оптическое волокно 34 присоединено к волоконной контактной площадке 50 припоем 52. Волоконная контактная площадка 50 может включать один или несколько слоев. По меньшей мере один из слоев является предпочтительно металлическим.
Оптическое волокно 34 предпочтительно имеет металлический наружный слой 53 на части оптического волокна 34 для соединения с припоем 52. В качестве альтернативного решения, можно отказаться от металлического наружного слоя 53, а припой может полностью обтекать вокруг оптического волокна 34 для присоединения оптического волокна 34 к волоконной контактной площадке 50. Подходящими металлическими наружными слоями 53 могут быть слой NiAu и другие аналогичные металлические слои. Один конец оптического волокна 34 может содержать линзовую поверхность 54 для увеличения эффективности связи оптического волокна 34. Волоконная контактная площадка 50 присоединена к волоконной вспомогательной опоре 55. Волоконная вспомогательная опора 50 присоединена контактной зоной 56 к подложке 42.
Припой 52 предпочтительно имеет относительно высокую температуру плавления, такую как 250°С или выше. Припой предпочтительно является эвтектическим и твердым с минимальной ползучестью при комнатной температуре. Ползучесть является функцией энергии активации, которая обычно зависит от температуры плавления припоя. Другими словами, высокая температура плавления обычно соответствует высокой энергии активации. Минимальная ползучесть помогает сохранить имеющуюся юстировку. Например, припой может быть AuSn и иметь температуру плавления 284°С. Процентный состав составляет 80% Au и 20% Sn, возможны также другие составы. Другие подходящие материалы припоя включают PbSn и AuGe. Волоконная вспомогательная опора 55 предпочтительно выполнена из теплоизолирующего материала. Например, теплоизолирующий материал может быть стеклом (диоксидом кремния (SiO2)), керамикой, такой как Микор, диоксид циркония, или другими аналогичными теплоизолирующими материалами.
Путь между лазером 32 и подложкой 42 предпочтительно имеет относительно высокую теплопроводность. Другими словами, лазерная вспомогательная опора 38 и контактные зоны 40 и 44 имеют относительно высокую теплопроводность для минимизации температуры соединения лазера во время операции и улучшения мощности, эффективности и надежности. Например, лазерная вспомогательная опора 38 предпочтительно выполнена из CuW, AlN, SiC, BeO, Si, TcBN или алмаза. Контактные зоны 40 и 44 предпочтительно включают припой, такой как AuSn с 80% Au и 20% Sn (другие составы и процентные соотношения также возможны).
На фиг.3 показан более детально предпочтительный вариант выполнения волоконной контактной площадки 50 и волоконной вспомогательной опоры 55. Волоконная контактная площадка 50 включает один или более слоев и обеспечивает боковую теплопроводность для адекватной проводки тепла к припою 52 во время лазерной пайки. Волоконная вспомогательная опора 55 ограничивает вертикальное распространение тепла для исключения теплового потока через волоконную контактную площадку 50 и волоконную вспомогательную опору 55 в подложку 42 и к лазеру 32. Волоконная контактная площадка 50 обеспечивает также перегородку из припоя, поглощает лазерный свет, повышает прочность зоны присоединения и/или способствует боковой теплопроводности.
В одном варианте выполнения, волоконная контактная площадка 50 включает слои 60а-60h. Слой 60а обеспечивает смачивание слоем припоя и предпочтительно выполнен из Au или других аналогичных материалов. Слой 60b обеспечивает барьер для припоя и предпочтительно выполнен из Pt или других аналогичных материалов. Слой 60с обеспечивает механическую опору и предпочтительно выполнен из Ni или других аналогичных материалов. Слой 60d обеспечивает сцепление между слоями 60с и 60е и предпочтительно выполнен из Ti или других аналогичных материалов. Слой 60е обеспечивает поглощение падающего лазерного света и предпочтительно выполнен из Ti или других аналогичных материалов. Слой 60f обеспечивает боковую теплопроводность и предпочтительно выполнен из Ni или других аналогичных материалов. Слой 60g обеспечивает сцепление между слоями 60f и 60h и предпочтительно выполнен из Ti или других аналогичных материалов. Слой 60h обеспечивает боковую теплопроводность и сцепление с волоконной вспомогательной опорой и предпочтительно выполнен из Ni-керамического композитного материала или других аналогичных материалов.
Волоконная контактная площадка 50 обеспечивает точку прочного присоединения к волоконной опоре и барьер для припоя. Волоконная контактная площадка 50 также должна обеспечивать боковую теплопроводность через толщу слоев, предусмотренных на волоконной контактной площадке 50. Можно видеть, что для специалистов в данной области техники возможны многие вариации, включая удаление одного или более слоев, добавление других слоев и/или замена слоев на слои с аналогичными свойствами.
Как показано на фиг.6А, припой 52 предпочтительно плавится во время процесса юстировки и присоединения с использованием нагревания лазером. Для большей ясности, номера позиций из фиг.2 используются на фиг.6А для обозначения тех же элементов. Лазер 70 соединен с оптическим волокном 74. Луч 76 света выходит из оптического волокна 74. Луч 76 света коллимируется коллиматорной линзой 78 и фокусируется фокусирующей линзой 80 на припое 52. Необходимая для лазера 70 мощность предпочтительно небольшая, например обычно достаточно 1-3 Вт, когда в качестве припоя 52 используется AuSn. Первоначально юстируют лазер 32 и оптическое волокно 34. Луч 76 света нагревает припой 52, вызывая плавление припоя 52. Луч 76 света выключают или направляют прочь от припоя 52. Припой 52 охлаждается, затвердевает и фиксирует положение оптического волокна 34 относительно лазера 32. Как показано на фиг.6В, несколько лазеров 82-1 и 82-2 соединены оптическими волокнами 84-1 и 84-2 с системой 86 подачи лучей. Система 86 подачи лучей направляет лучи 88 света на припой 52 во время процесса юстировки и присоединения. Процесс юстировки можно повторять один или несколько раз до обеспечения юстировки. Понятно, что при желании можно использовать более двух лазеров.
На фиг.7А и 7В показан интегральный модуль 90 оптического соединения. Интегральный модуль 90 оптического соединения включает подложку 90 и теплоизолирующий материал 94, который интегрирован непосредственно в подложку 92. Подложка 92 предпочтительно выполнена из кремния, InP, GaAs или других подходящих материалов. Теплоизолирующий материал 94 предпочтительно является стеклом, керамикой или другим подходящим теплоизолирующим материалом. Теплоизолирующий материал 94 является плоским. Волоконная контактная площадка 96 присоединена к верхней поверхности теплоизолирующего материала 94. Волоконная контактная площадка 96 предпочтительно аналогична по структуре волоконной контактной площадке 50. Лазер 95 изготовлен непосредственно на подложке 92 или присоединен с использованием контактной поверхности (не изображена). Припой 100 присоединяет оптическое волокно 102 к волоконной контактной площадке 96. Может, не обязательно, использоваться металлический наружный слой 104 (как указывалось выше). Лазер нагревает припой 102 и/или нагревает волоконную контактную площадку 96. На фиг.7 единственный луч 106 лазера нагревает припой 100. На фиг.7В несколько лучей 107 и 108 лазера нагревают волоконную контактную площадку 96.
На фиг.8А, 8В и 8С показан способ изготовления относительно толстого теплоизолирующего материала 94 на подложке 92. Подложку 92 и теплоизолирующий материал 94 снабжают рисунком и протравливают. Гладкость контактных поверхностей подложки 94 и теплоизолирующего материала 94 должны быть примерно одинаковыми. Материал, используемый для получения подложки 92, и теплоизолирующий материал предпочтительно имеют примерно одинаковые коэффициенты теплового расширения. Подложку 92 и теплоизолирующий материал первоначально приводят в контакт при повышенной температуре в присутствии электрического поля. Образуется анодная сварка между подложкой 92 и теплоизолирующим материалом 94 на атомном уровне. Как показано на фиг.8С, затем подложку 92 и теплоизолирующий материал 94 полируют. Понятно, что указанный способ обеспечивает интеграцию относительно толстого теплоизолирующего материала 94 и подложки 92.
На фиг.9А, 9В и 9С показаны дополнительные стадии изготовления толстого теплоизолирующего материала 94 в подложке 92. Теплоизолирующий материал 94 и подложка 92 имеют протравленные топологические элементы или боковые зазоры между кромками 112 теплоизолирующего материала 94 и кромками 114 подложки 92. Зазоры 100 заполняют стеклоприпоем 116 в виде порошка, как показано на фиг.9В. После высокотемпературного отжига стеклоприпой 116 затвердевает в стекло. Верхнюю поверхность 118 полируют для обеспечения плоской, гладкой поверхности, как показано на фиг.9С. Отжиг осуществляют при температурах свыше 300°С.
На фиг.10А, 10В, 10С и 10D показан второй способ изготовления интегрального, соединенного волокном лазерного модуля 90. Как показано на фиг.10А, подложку 92 снабжают рисунком с использованием маски 120. Как показано на фиг.10В, подложку 92 протравливают в местах 93. Используют предпочтительно реактивное ионное травление, химическое травление или другие подходящие способы травления. Как показано на фиг.10С, маску 120 удаляют и формируют теплоизолирующий материал 122 с помощью одного или более наращиваний с помощью гидролиза в пламени. Обычно при каждом наращивании добавляют слой в 10-30 микрон.
Как показано на фиг.10D, затем выполняют полирование для открывания подложки 92 в зонах, закрытых перед этим маской 120, для получения плоской, гладкой верхней поверхности 124. Материалы, выбранные для подложки 92 и теплоизолирующего материала 94, предпочтительно имеют коэффициенты теплового расширения, которые совпадают. Создание теплоизолирующего материала 94 с использованием гидролиза в пламени обеспечивает свободное от пустот сцепление стекла с подложкой 92. Дополнительно к этому, интегральный модуль 90 оптического соединения имеет превосходную планарность.
Толщина теплоизолирующего материала 90 предпочтительно составляет между 20 и 300 микрон. Модули оптического соединения, согласно данному изобретению, имеют высокую теплопроводность между лазером и подложкой для обеспечения работы с высокой мощностью. Модули оптического соединения имеют также высокую тепловую изоляцию между зоной присоединения оптического волокна и лазером для минимизации повышения температуры лазера во время присоединения припоем оптического волокна. Модули оптического соединения имеют относительно высокую теплопроводность в зоне присоединения волокна для минимизации требуемого тепла. Дополнительно к этому, модули оптического соединения являются механически устойчивыми при рабочих температурах и температурах обработки. Интегральные модули оптического соединения являются плоскими и относительно дешевыми в изготовлении.
На фиг.11 показана система 150 юстировки оптических компонентов, которая включает компьютер 152, позиционирующее устройство 154 и измерительное устройство 150. Система 150 юстировки оптических элементов показана в соединении с вариантом выполнения, согласно фиг.7А. Для специалистов в данной области техники понятно, что систему 150 юстировки оптических элементов можно использовать с другими раскрытыми вариантами выполнения.
Лазер 160 генерирует один или несколько лучей 162 лазерного света, которые направляются на припой 100 и/или на волоконную контактную площадку 96 для нагревания припоя. Компьютер 152 включает лазер 95. Измерительное устройство 158 генерирует выходной сигнал, соответствующий выходному сигналу оптического волокна 102 или другого оптического компонента, и выдает выходной сигнал в компьютер 152. Компьютер 152 вычисляет сигналы регулирования положения, которые используются для юстировки положения оптического волокна 102. Выполняют одну или несколько итераций до правильной юстировки оптического волокна 102 относительно лазера 95.
Из приведенного выше описания для специалистов в данной области техники понятно, что емкие идеи данного изобретения можно осуществлять различными путями. Поэтому, хотя данное изобретение было описано применительно к конкретным примерам, истинный объем изобретения не должен ими ограничиваться, поскольку для специалистов в данной области техники станут очевидными другие модификации после изучения чертежей, описания и следующей формулы изобретения.

Claims (12)

1. Модуль оптического соединения для присоединения оптического компонента к подложке, содержащий
подложку;
вспомогательную опору, присоединенную к указанной подложке, включающую теплоизолирующий материал;
оптический компонент, юстированный относительно первого лазера и припаянный к указанной вспомогательной опоре с использованием тепла от второго лазера;
контактную площадку, расположенную между указанным теплоизолирующим материалом и указанным оптическим компонентом;
лазерную вспомогательную опору, присоединенную к указанной подложке; и
первый лазер, присоединенный к указанной лазерной вспомогательной опоре.
2. Модуль оптического соединения по п.1, в котором оптический компонент является оптическим волокном, а указанный модуль оптического соединения является модулем соединения первого лазера с оптическим волокном.
3. Модуль оптического соединения по п.1, в котором указанная контактная площадка и указанный теплоизолирующий материал обеспечивают локальное прохождение тепла во время пайки для равномерного плавления припоя и ограничения переноса тепла в указанную подложку.
4. Модуль оптического соединения по п.3, в котором указанная контактная площадка обеспечивает, по меньшей мере, создание барьера из припоя, поглощение лазерного света, боковое прохождение тепла и повышение прочности соединения между указанным оптическим компонентом и указанной подложкой.
5. Модуль оптического соединения по п.4, в котором указанная контактная площадка содержит несколько слоев, включая
первый слой из золота;
второй слой, выбранный из группы, состоящей из никеля, хрома, титана и оксида хрома;
третий слой из титана; и
четвертый слой из платины.
6. Модуль оптического соединения по п.1, в котором
указанный теплоизолирующий материал выбран из группы, состоящей из стекла и керамики;
указанный припой выбран из группы, состоящей из AuSn, PbSn и AuGe; и
указанная лазерная вспомогательная опора выбрана из группы, состоящей из A1N, AINi, SiC, BeO, TcBN, алмаза и Si.
7. Модуль оптического соединения по п.1, в котором указанный оптический компонент выбран из группы, включающей оптическое волокно, зеркала, линзы, детекторы, микроэлектромеханические устройства и изоляторы.
8. Способ изготовления интегрального модуля оптического соединения, содержащий
создание подложки;
нанесение рисунка и травление первой зоны указанной подложки;
создание теплоизолирующего материала в указанной первой зоне указанной подложки;
полирование указанного теплоизолирующего материала и указанной подложки для создания плоской поверхности, включающей часть подложки и теплоизолирующую часть;
присоединение контактной площадки, включающей по меньшей мере один металлический слой, к указанной теплоизолирующей части;
расположение первого лазера на указанной части подложки; и
юстировку и присоединение оптического компонента к указанной контактной площадке.
9. Способ по п.8, в котором указанный теплоизолирующий материал создается с помощью анодной сварки.
10. Способ по п.9, в котором по меньшей мере один боковой зазор формируют между указанной подложкой и указанным теплоизолирующим материалом, дополнительно содержащий стадии:
заполнение указанного зазора стеклоприпоем;
отжиг указанной подложки, указанного теплоизолирующего материала и указанного стеклоприпоя; и
полирование верхней поверхности указанной подложки, указанного теплоизолирующего материала и указанного стеклоприпоя.
11. Способ по п.8, в котором указанный теплоизолирующий материал создают с помощью гидролиза в пламени в указанной первой зоне.
12. Способ по п.8, в котором указанный оптический компонент присоединяют к указанной контактной площадке с использованием припоя, который нагревают с использованием второго лазера.
RU2002133055/28A 2001-12-10 2002-12-09 Присоединение оптического компонента к оптоэлектронным модулям RU2304294C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/016,473 US6758610B2 (en) 2001-12-10 2001-12-10 Optical component attachment to optoelectronic packages
US10/016,473 2001-12-10

Publications (2)

Publication Number Publication Date
RU2002133055A RU2002133055A (ru) 2004-06-10
RU2304294C2 true RU2304294C2 (ru) 2007-08-10

Family

ID=21777313

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002133055/28A RU2304294C2 (ru) 2001-12-10 2002-12-09 Присоединение оптического компонента к оптоэлектронным модулям

Country Status (5)

Country Link
US (1) US6758610B2 (ru)
EP (1) EP1328047B1 (ru)
CN (1) CN1275062C (ru)
DE (1) DE60233927D1 (ru)
RU (1) RU2304294C2 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053537A2 (en) * 2002-12-10 2004-06-24 Picometrix, Inc. Precision fiber attachment
US20050007118A1 (en) * 2003-04-09 2005-01-13 John Kitching Micromachined alkali-atom vapor cells and method of fabrication
US20040232535A1 (en) * 2003-05-22 2004-11-25 Terry Tarn Microelectromechanical device packages with integral heaters
US20040245228A1 (en) * 2003-06-04 2004-12-09 Hongwei Liu Attach aligned optics and microelectronics with laser soldering methods
US7284913B2 (en) * 2003-07-14 2007-10-23 Matsushita Electric Industrial Co., Ltd. Integrated fiber attach pad for optical package
US7146083B2 (en) * 2004-03-31 2006-12-05 Imra America, Inc. Etched plate alignment method and apparatus
US7293922B2 (en) * 2004-06-02 2007-11-13 Matsushita Electric Industrial Co., Ltd. Non-mechanical adjustment of an optical fiber to an optical output port
DE102004057454B4 (de) * 2004-11-25 2009-10-22 Jenoptik Laserdiode Gmbh Diodenlasermodul und Verfahren zu dessen Herstellung
US7691723B2 (en) * 2005-01-07 2010-04-06 Honeywell International Inc. Bonding system having stress control
EP1942358A2 (en) 2006-12-27 2008-07-09 JDS Uniphase Corporation Component assembly and fabrication method
US7512306B2 (en) 2007-01-03 2009-03-31 Jds Uniphase Corporation Polarization maintaining fiber pigtail assembly
US8102887B2 (en) * 2009-05-26 2012-01-24 Corning Incorporated Edge bonded optical packages
US20100303109A1 (en) * 2009-05-26 2010-12-02 Venkata Adiseshaiah Bhagavatula Proximity Coupled Athermal Optical Package Comprising Laser Source And Compound Facet Wavelength Conversion Device
US8475056B2 (en) * 2009-07-28 2013-07-02 Jds Uniphase Corporation Semiconductor device assembly
US8111452B2 (en) * 2010-02-22 2012-02-07 Corning Incorporated Wavelength conversion device with microlens and optical package incorporating the same
JP5509317B2 (ja) 2010-03-30 2014-06-04 株式会社フジクラ レーザ装置およびその製造方法
WO2011122540A1 (ja) * 2010-03-31 2011-10-06 株式会社フジクラ レーザ装置
JP5508249B2 (ja) * 2010-12-21 2014-05-28 株式会社フジクラ 光モジュールの製造方法
JP5102380B2 (ja) * 2011-02-24 2012-12-19 株式会社フジクラ ファイバマウント装置、及び、それを用いた光モジュール、及び、光モジュールの製造方法
JP5281122B2 (ja) * 2011-06-16 2013-09-04 株式会社フジクラ 接合方法、及び、製造方法
JP2013004752A (ja) 2011-06-16 2013-01-07 Fujikura Ltd レーザモジュール
CN102412500A (zh) * 2011-11-30 2012-04-11 江苏飞格光电有限公司 半导体激光器的封装方法
JP5230829B1 (ja) * 2012-03-09 2013-07-10 株式会社フジクラ 水分の除去方法、光ファイバの半田付け方法、及び、半導体レーザモジュールの製造方法
US9488785B2 (en) * 2013-07-24 2016-11-08 Effect Photonics B.V. Optical subassembly, optical system and method
JP6488539B2 (ja) * 2013-11-27 2019-03-27 住友大阪セメント株式会社 光学素子モジュール
CN104070282B (zh) * 2014-06-30 2016-05-04 北京航天时代光电科技有限公司 一种光电探测器尾纤耦合焊接装置及方法
DE112015003234T5 (de) * 2014-07-11 2017-04-20 Acacia Communications, Inc. Integrierter abstimmbarer Hochleistungslaser mit einstellbaren Ausgängen
WO2019195807A1 (en) * 2018-04-06 2019-10-10 Ipg Photonics Corporation Submarine optical repeater with high voltage isolation
US11137581B2 (en) * 2018-09-27 2021-10-05 Himax Technologies Limited Wafer-level homogeneous bonding optical structure and method to form the same
US10809469B1 (en) * 2019-04-02 2020-10-20 Cloud Light Technology Limited Laser diode edge assembly structure for three-dimensional active alignment in transmitter optical assembly
WO2022266786A1 (en) * 2021-06-21 2022-12-29 Lumentum Operations Llc Control of solder bond line thickness with squeezed gold bump space
US20230408767A1 (en) * 2022-06-17 2023-12-21 Ayar Labs, Inc. High-Temperature-Compatible Fiber Array Packaging Methods

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138191A (en) * 1981-02-19 1982-08-26 Kokusai Denshin Denwa Co Ltd <Kdd> United structure of semiconductor laser and optical fiber
GB8508280D0 (en) 1985-03-29 1985-05-09 British Telecomm Optical component mounting
FR2582413B1 (fr) * 1985-05-23 1988-12-02 Comp Generale Electricite Procede de couplage d'une fibre optique a un composant optoelectronique sur une embase
US4708429A (en) 1985-09-26 1987-11-24 Rca Corporation Optical fiber assembly and optically coupled device package including same
JPS62211965A (ja) 1986-03-13 1987-09-17 Toshiba Corp 光半導体装置
US4702547A (en) 1986-07-28 1987-10-27 Tektronix, Inc. Method for attaching an optical fiber to a substrate to form an optical fiber package
FR2605418B1 (fr) * 1986-10-17 1990-04-20 Thomson Semiconducteurs Module pour le couplage entre un dispositif semi-conducteur et une fibre optique, et procede d'alignement de ce dispositif semi-conducteur et de cette fibre
JPH01118106A (ja) * 1987-10-30 1989-05-10 Japan Aviation Electron Ind Ltd 光ファイバ調芯固定方法
FR2623297B1 (fr) 1987-11-13 1991-09-27 Cit Alcatel Dispositif de couplage entre une fibre optique et un composant optoelectronique
US4997253A (en) 1989-04-03 1991-03-05 Tektronix, Inc. Electro-optical transducer module and a method of fabricating such a module
US4971418A (en) 1989-08-31 1990-11-20 At&T Bell Laboratories Apparatus and method for making low-loss permanent optical fiber splices
US4970365A (en) 1989-09-28 1990-11-13 International Business Machines Corporation Method and apparatus for bonding components leads to pads located on a non-rigid substrate
EP0584356B1 (en) 1992-01-17 1996-06-26 S.L.T. Japan Co, Ltd. Method of soldering
US5307434A (en) 1992-07-16 1994-04-26 At&T Bell Laboratories Article that comprises a laser coupled to an optical fiber
US5359686A (en) 1993-03-29 1994-10-25 Motorola, Inc. Interface for coupling optical fibers to electronic circuitry
US5367140A (en) 1993-12-27 1994-11-22 At&T Bell Laboratories Method for laser welding of optical packages
US5469456A (en) 1994-03-31 1995-11-21 Opto Power Corporation Laser device and method of manufacture using non-metalized fiber
US5568892A (en) 1994-06-16 1996-10-29 Lucent Technologies Inc. Alignment and bonding techniques
TW253856B (en) 1994-12-13 1995-08-11 At & T Corp Method of solder bonding, and article produced by the method
JP3147141B2 (ja) 1995-08-30 2001-03-19 株式会社日立製作所 光アセンブリ
US6074103A (en) 1996-10-15 2000-06-13 Sdl, Inc. Aligning an optical fiber with electroluminescent semiconductor diodes and other optical components
US6205264B1 (en) * 1998-04-14 2001-03-20 Lucent Technologies Inc. Optical assembly with improved dimensional stability
JP3486378B2 (ja) * 1998-09-14 2004-01-13 シーメンス アクチエンゲゼルシヤフト 光電素子を製造するための方法

Also Published As

Publication number Publication date
EP1328047A2 (en) 2003-07-16
CN1275062C (zh) 2006-09-13
CN1447142A (zh) 2003-10-08
US6758610B2 (en) 2004-07-06
EP1328047A3 (en) 2006-09-27
DE60233927D1 (de) 2009-11-19
US20030108304A1 (en) 2003-06-12
EP1328047B1 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
RU2304294C2 (ru) Присоединение оптического компонента к оптоэлектронным модулям
US5574811A (en) Method and apparatus for providing optical coupling between optical components
TWI238892B (en) Packaging of multiple active optical devices
KR0171374B1 (ko) 광집속렌즈를 포함하는 레이저 모듈 및 그 렌즈 고정방법
JPS61277908A (ja) 固体の調節固定方法と装置及びそれを用いて製造したデバイス
JPH01255810A (ja) 光電子デバイスとこれに結合された光導波管より成る素子の製造方法
RU2002133055A (ru) Присоединение оптического компонента к оптоэлектронным модулям
JP2002006183A (ja) 光結合装置
US6582548B1 (en) Compression bonding method using laser assisted heating
JP3036446B2 (ja) 光素子の実装方法
EP1942358A2 (en) Component assembly and fabrication method
JPS60261186A (ja) 光モジユ−ル製造法
EP1153698A1 (en) Article comprising creep-resistant and stress-reducing solder
JPH07199006A (ja) 光サブアセンブリ及び光モジュール
JP4436915B2 (ja) 精密なファイバ・アタッチメント
US6846113B2 (en) Packaging for high power pump laser modules
WO2008131211A1 (en) Alignment with thin bonding layer of optical components
JPH05323158A (ja) レ−ザダイオ−ド結合装置及びその組立方法
JPH04359207A (ja) レーザダイオード結合装置及びその組立方法
JPS6365411A (ja) レンズ固定方法
JP3459286B2 (ja) レンズ固定装置
US6880984B2 (en) Laser platform
Eberhardt et al. Optoelectronic packaging based on laser joining
JPS63167311A (ja) 光素子と光フアイバとの結合器
JPH0429387A (ja) 光結合装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091210