RU2291160C1 - Способ получения наполненного бутадиен-стирольного каучука - Google Patents
Способ получения наполненного бутадиен-стирольного каучука Download PDFInfo
- Publication number
- RU2291160C1 RU2291160C1 RU2006100132/04A RU2006100132A RU2291160C1 RU 2291160 C1 RU2291160 C1 RU 2291160C1 RU 2006100132/04 A RU2006100132/04 A RU 2006100132/04A RU 2006100132 A RU2006100132 A RU 2006100132A RU 2291160 C1 RU2291160 C1 RU 2291160C1
- Authority
- RU
- Russia
- Prior art keywords
- rubber
- styrene
- antioxidant
- butadiene
- molecular weight
- Prior art date
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Изобретение относится к производству бутадиен-стирольных каучуков, получаемых методом эмульсионной (со)полимеризации, в частности к способам выделения их из латексов, и может быть использовано в нефтехимической промышленности. Описан способ получения наполненного бутадиен-стирольного каучука, заключающийся в сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксиданта, дегазации и выделении каучука из латекса методом коагуляции, отличающийся тем, что в качестве наполнителя и антиоксиданта используют волокнополимерноантиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, модифицированного термоокислительным воздействием в присутствии гидропероксида, содержащим антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук. Технический эффект - уменьшение потерь каучука, снижение загрязнения окружающей среды и повышение физико-механических показателей вулканизатов. 2 табл.
Description
Изобретение относится к производству бутадиен-стирольных каучуков, получаемых эмульсионной (со)полимеризацией, в частности к способам наполнения их на стадии латексов, и может быть использовано в нефтехимической промышленности.
Наиболее близким по технической сущности является способ получения наполненных бутадиен-стирольных каучуков на стадии латекса с использованием в качестве наполнителей нафтеновых, парафиновых масел с последующим выделением наполненного каучука водно-солевыми растворами и подкисляющим агентом. [Кирпичников П.А., Аверко-Антонович Л.А., Аверко-Антонович Ю.О. Химия и технология синтетического каучука: Учебник для вузов. - 3-е изд., перераб. - Л.: Химия, 1987. - 424 с., ил.]
Основными недостатками данного способа получения наполненных бутадиен-стирольных каучуков являются:
- образование мелкодисперсной крошки каучука, которая уносится с серумом и промывными водами из цехов выделения, что приводит к снижению производительности процесса;
- нарушение стабильности процесса;
- загрязнение окружающей среды каучуковыми продуктами;
- невысокая устойчивость термоокислительному воздействию.
Задачей, на решение которой направлено данное изобретение, является стабилизация процесса выделения каучука из латекса, уменьшение потерь каучука с образовавшейся крошкой из цехов выделения, снижение загрязнения окружающей среды каучуковыми продуктами, улучшение физико-механических показателей вулканизатов.
Поставленная задача достигается тем, что в способе получения наполненного бутадиен-стирольного каучука, путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксданта, дегазации и выделении каучука из латекса методом коагуляции, новым является то, что в качестве наполнителя и антиоксиданта используют волокнополимерноантиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, модифицированного термоокислительным воздействием в присутствии гидропероксида, содержащего антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук.
Предлагаемый способ получения наполненного бутадиен-стирольного каучука позволяет стабилизировать процесс коагуляции, уменьшить потери каучука, снизить загрязнение окружающей среды и повысить физико-механические показатели вулканизатов.
Способ осуществляется следующим образом
Сополимеризацию бутадиена со стиролом осуществляют в батарее, состоящей из 10-12 полимеризационных аппаратов, в присутствии инициаторов радикального типа (например гидропероксида пинана). После достижения конверсии 65-70% в систему вводится стоппер радикального процесса (нитрит натрия, ронгалит и др.) и полученный латекс подается на дегазацию, где происходит отгонка незаполимеризовавшихся мономеров (стирол, бутадиен и других низкокипящих продуктов. Из отделения дегазации латекс поступает на коагуляцию, где смешивается с масляноантиоксидантной эмульсией и агентами, обеспечивающими выделение каучука из латекса (водный раствор хлорида натрия и серной кислоты). Образующаяся крошка каучука подается на промывку, обезвоживание, сушку и упаковку (Распопов И.В., Никулин С.С., Гаршин А.П. и др. Совершенствование оборудования и технологии выделения бутадиен-(α-метил)стирольных каучуков из латексов. М.: ЦНИИТЭнефтехим, 1997. 68 с.). Данный процесс соответствует ограничительной части формулы изобретения.
Низкомолекулярный полимерный материал (НПМ) получали сополимеризацией непредельных соединений (4-винилциклогексена; циклододекатриена-1,5,9; н-додекатетраена-2,4,6,10), содержащихся в кубовом остатке очистки возвратного растворителя - толуола со стиролом в присутствии алюмосиликатных катализаторов. Данный процесс был реализован в промышленных масштабах. Полученный НПМ после выхода из последнего аппарата полимеризационной батареи подвергался термоокислительному воздействию 160-200°С в течение 5-15 часов (Грасси Н., Скотт Дж. Деструкция и стабилизация полимеров. М.: Мир. 1988. 446 с.). Свойства НИМ, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, подвергнутого термоокислительному воздействию: цвет по йодометрической шкале (ЙМШ) - 200-450; молекулярная масса - 1600-1900; кислотное число - 2,5-3,5 мг КОН/100 г.
На первом этапе проводится модификация низкомолекулярного стиролсодержащего сополимера, полученного на основе кубовых остатков очистки возвратного растворителя - толуола, производства полибутадиенового каучука термоокислительным воздействием в присутствии гидропероксида. Процесс модификации проводили следующим образом. В реактор загружали низкомолекулярный сополимер и вводили 1-3% гидропероксида пинана. Реактор герметично закрывали и при постоянном перемешивании процесс проводили при 160-180°С в течение 15-20 часов. Получаемый модифицированный полимерный материал представлял собой маслообразный продукт темно-коричневого цвета, хорошо растворимый в углеводородных растворителях.
Волокнистые материалы, являющиеся отходами различных производств (обрезки тканей, нитей, путанки и др.) измельчают до размера 2-10 мм и смешивают с углеводородным раствором низкомолекулярного полимерного материала (НПМ), полученного на основе непредельных соединений, содержащихся в кубовом остатке ректификации возвратного растворителя - толуола и стирола и модифицированного термоокислительным воздействием, проводимым в присутствии гидропероксида пинана, вводимого в количестве 1-3% на полимер и содержащего аминные или фенольные антиоксиданты. Полученный композит перемешивают на высокоскоростной мешалке в течение 10-15 минут при 60-90°С и подвергают дополнительному перетиру в течение 1-3 часов. В результате данных технологических операций происходит втирание масла в волокнистый материал и его обезвоживание. Полученный композит при постоянном перемешивании диспергируют в водной фазе, содержащей поверхностно-активные вещества, при 40-80°С в течение 1-3 часов. Дозировку волокнистого наполнителя выдерживают 0,1-1,0% на каучук, НПМ - от 2 до 6% на каучук. Применение более высоких дозировок волокнистого наполнителя (более 1,0% на каучук) приводит к резкому увеличению вязкости системы, что отрицательно влияет на ее подвижность и транспортабельность по трубопроводам. Полученную водноволокнополимерноантиоксидантную дисперсию (ВВПАД) подают на смешение с латексом СКС-30 АРК. Каучуковый латекс, содержащий ВВПАД, подают на коагуляцию.
Бутадиен-стирольный латекс СКС-30 АРК, содержащий ВВПАД, заливают в емкость для коагуляции, снабженную перемешивающим устройством и помещенную в термостат для поддержания заданной температуры. Выдерживают при заданной температуре 10-15 минут, вводят коагулирующий агент - 24% водный раствор хлорида натрия и перемешивают 5-10 минут. Процесс выделения завершают вводом 2% водного раствора серной кислоты. рН коагуляции поддерживают равным 2,0-2,5. Образующийся коагулюм отделяют от серума, промывают водой и высушивают при температуре 80-85°С. Полноту коагуляции оценивают визуально (серум прозрачный - коагуляция полная), а также по массе образующегося коагулюма.
Способ поясняется следующими примерами
Сополимеризация бутадиена со стиролом осуществляется по непрерывной схеме на батарее, состоящей из 12 полимеризаторов. В первый по ходу процесса полимеризатор подается водная и углеводородная фазы (смесь 70% бутадиена и 30% стирола), радикальный инициатор (гидропероксиды изопропилбензола, пинана и др.) и регулятор молекулярной массы (третичный додецилмеркаптан). Дополнительные количества регулятора молекулярной массы вводятся в процесс перед пятым и девятым полимеризаторами. Полимеризаторы оборудованы мешалками. Сополимеризацию бутадиена со стиролом проводят при 4-8°С. Процесс ведут до конверсии 65-68%. При выходе из последнего полимеризатора латекс непрерывно заправляется стоппером - раствором диметилдитиокарбаматом натрия с нитритом натрия. Заправленный стоппером латекс проходит через фильтр и направляется на отгонку незаполимеризовавшихся мономеров в верхнюю часть колонны предварительной дегазации, где происходит отгонка основного количества бутадиена. После колонны предварительной дегазации латекс направляется в вакуумный отгонный аппарат, где происходит отгонка стирола и оставшегося бутадиена. Латекс из отделения дегазации подается на коагуляцию.
В емкость, снабженную перемешивающим устройством, вводят 80 г НПМ, 20 г растворителя - толуола и антиоксиданты аминного или фенольного типа в количествах, соответствующих требованиям ТУ на выпускаемую марку каучука. Смесь при постоянном перемешивании нагревают до температуры 60-90°С и вводят волокнистый наполнитель (хлопок, вискоза, капрон), перемешивают полученный композит еще 10-15 минут, после чего подвергают перетиру в шаровой мельнице в течение 1-3 часов. В полученный композит вводят водный раствор, содержащий поверхностно-активные вещества - канифольное мыло, мыла на основе жирных кислот, таллового масла в количествах 6% и лейканол 0,5% на диспергируемую фазу и перемешивают на высокоскоростной мешалке при 40-80°С в течение 1-3 часов. После чего полученную ВВПАД подают на смешение с латексом бутадиен-стирольного каучука СКС-30 АРК в емкость для коагуляции, снабженную перемешивающим устройством и помещенную для поддержания заданной температуры в термостат. Выдерживают при заданной температуре 10-15 минут и при постояном перемешивании вводят 24% водный раствор хлорида натрия. Для завершения процесса коагуляции вводят подкисляющий агент, в виде 1-2% водного раствора серной кислотой. Расход серной кислоты - 15,0 кг/т каучука. рН коагуляции 2-2,5. После коагуляции образующийся коагулюм отделяют от серума, промывают водой и высушивают при температуре 80-85°C. Полноту коагуляции оценивают визуально (серум прозрачный - коагуляция полная), а также по массе образующегося коагулюма.
В таблице 1 приведены примеры по влиянию температуры, дозировки НПМ и волокнистого материала (% на каучук) на процесс выделения каучука из латекса.
Экспериментальные данные, представленные в табл.1, показывают, что дополнительное введение ВВПАД в латекс перед подачей его на коагуляцию позволяет повысить массу (выход, %) образующегося коагулюма, что может быть связано как с дополнительным введением модифицированного термоокислительным воздействием НПМ и волокнистого материала, а также за счет уменьшения потерь с образующейся мелкодисперсной крошкой, уносимой со стадии выделения и отмывки серумом и промывными водами.
Выделенная после коагуляции крошка каучука СКС-30 АРК, наполненная модифицированным термоокислительным воздействием НПМ и волокнистыми наполнителями, подвергалась сушке в сушильном шкафу при температуре 80-85°С. В дальнейшем на основе наполненного каучука СКС-30 АРК была приготовлена резиновая смесь по стандарной рецептуре и вулканизаты на ее основе.
В таблице 2 приведены показатели каучуков, резиновых смесей и вулканизатов стандартных резин на основе выделенных каучуков СКС-30 АРК.
Из приведенных результатов видно, что дополнительное введение в состав образующегося коагулюма волокнистого материала в количестве 0,1-1,0% и НПМ в количестве 2-6% на каучук обеспечивает достижение наилучшего эффекта, заключающегося в достижении максимального выхода коагулюма и улучшении таких свойств вулканизатов, как: сопротивление многократному растяжению, тепловое старение и температуростойкость. Применение более высоких дозировок волокнистого наполнителя (более 1,5%) затруднено в первую очередь возрастанием вязкости системы, что затрудняет ее как транспортировку по трубопроводам, так и ввод в латекс бутадиен-стирольного каучука.
Таблица 1 | |||||||||||
Влияние дозировки волокнистого наполнителя и НПМ, температуры коагуляции на расход хлорида натрия и выход образующегося коагулюма | |||||||||||
Номер опытов | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Массовая доля волокна, % на каучук: | |||||||||||
Хлопкового | 0 | 0,05 | 0,1 | 0,5 | 1,0 | 1,2 | - | - | 0,5 | 0,5 | 0,5 |
Вискозного | 0 | - | - | - | - | - | 0,5 | - | - | - | - |
Капронового | 0 | - | - | - | - | - | - | 0,5 | - | - | - |
Массовая доля НПМ, % на каучук | 0 | 1 | 2 | 4 | 6 | 8 | 4 | 4 | 4 | 4 | 4 |
Температура коагуляции, °С | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 40 | 80 | 60 |
Расход хлорида натрия, кг/т каучука | 175 | 165 | 168 | 171 | 170 | 173 | 172 | 175 | 170 | 172 | 170 |
Выход образующегося коагулюма, % | 94,7 | 95,1 | 96,4 | 97,2 | 97,4 | 97,4 | 97,9 | 96,8 | 98,0 | 97,6 | 96,5 |
Массовая доля антиоксиданта, %: ВТС-150 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | - |
ВС-30А | - | - | - | - | - | - | - | - | - | - | 1,5 |
Таблица 2 | ||||||||||||
Свойства каучуков, резиновых смесей и вулканизатов приготовленных на основе каучука СКС-30 АРК, наполненного НПМ с волокнистыми наполнителями | ||||||||||||
Показатели | Вид волокнистого наполнителя и его дозировка, % на каучук | |||||||||||
контроль, масло ПН-6 без волокна | хлопок | вискоза | капрон | |||||||||
2,0 | 4,0 | 6,0 | 0,1 | 0,5 | 1,0 | 0,1 | 0,5 | 1,0 | 0,1 | 0,5 | 1,0 | |
Дозировка НПМ, % на каучук | - | - | - | 2,0 | 4,0 | 6,0 | 2,0 | 4,0 | 6,0 | 2,0 | 4,0 | 6,0 |
Вязкость по Муни | ||||||||||||
Каучука | 53,0 | 50,0 | 47,0 | 53,0 | 49,5 | 47,0 | 52,5 | 50,0 | 47,5 | 53,0 | 50,5 | 47,0 |
резиновой смеси | 56,0 | 55,0 | 52,0 | 57,0 | 56,0 | 54,0 | 58,0 | 57,0 | 55,0 | 57,0 | 56,0 | 56,0 |
Пластичность по Карреру р/см усл.ед. | 0,36 | 0,38 | 0,39 | 0,35 | 0,36 | 0,38 | 0,36 | 0,38 | 0,40 | 0,35 | 0,37 | 0,39 |
Условная прочность при растяжении, МПа | 24,1 | 22,0 | 20,7 | 24,5 | 24,8 | 23,9 | 26,0 | 25,5 | 25,0 | 25,5 | 25,3 | 24,3 |
Относительное удлинение при разрыве, % | 660 | 690 | 680 | 690 | 710 | 720 | 690 | 700 | 715 | 680 | 695 | 700 |
Относительная остаточная деформация, % | 11 | 12 | 12 | 12 | 13 | 13 | 11 | 11 | 12 | 13 | 13 | 12 |
Сопротивление многократному растяжению, тыс.циклов | 62,9 | 60,2 | 64,2 | 70,0 | 75,1 | 74,7 | 82,0 | 80,7 | 76,4 | 77,7 | 73,1 | 78,1 |
Коэффициент старения (100°С, 72 ч): | ||||||||||||
- по прочности | 0,50 | 0,49 | 0,52 | 0,53 | 0,55 | 0,54 | 0,57 | 0,62 | 0,60 | 0,61 | 0,63 | 0,60 |
- по относительному удлинению | 0,35 | 0,37 | 0,34 | 0,38 | 0,40 | 0,42 | 0,36 | 0,38 | 0,38 | 0,40 | 0,37 | 0,40 |
Claims (1)
- Способ получения наполненного бутадиен-стирольного каучука, заключающийся в сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксиданта, дегазации и выделении каучука из латекса методом коагуляции, отличающийся тем, что в качестве наполнителя и антиоксиданта используют волокнополимерно-антиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, модифицированного термоокислительным воздействием в присутствии гидропероксида, содержащим антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006100132/04A RU2291160C1 (ru) | 2006-01-10 | 2006-01-10 | Способ получения наполненного бутадиен-стирольного каучука |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006100132/04A RU2291160C1 (ru) | 2006-01-10 | 2006-01-10 | Способ получения наполненного бутадиен-стирольного каучука |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2291160C1 true RU2291160C1 (ru) | 2007-01-10 |
Family
ID=37761206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006100132/04A RU2291160C1 (ru) | 2006-01-10 | 2006-01-10 | Способ получения наполненного бутадиен-стирольного каучука |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2291160C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2516640C2 (ru) * | 2012-07-03 | 2014-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий"(ФГБОУ ВПО "ВГУИТ") | Способ получения наполненного бутадиен-стирольного каучука |
-
2006
- 2006-01-10 RU RU2006100132/04A patent/RU2291160C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
КИРПИЧНИКОВ П.А., АВЕРКО-АНТОНОВИЧ Л.А., АВЕРКО-АНТОНОВИЧ Ю.О. Химия и технология синтетического каучука. Учебник для вузов. 3-е изд., перераб. - Л.: Химия, 1987, с.292. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2516640C2 (ru) * | 2012-07-03 | 2014-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий"(ФГБОУ ВПО "ВГУИТ") | Способ получения наполненного бутадиен-стирольного каучука |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI553018B (zh) | Modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition | |
CN101641378B (zh) | 改性共轭二烯系聚合物的制造方法、含有该聚合物的组合物以及含有该组合物的轮胎 | |
RU2291157C1 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
EP3124508A1 (de) | Versiegelungsgele, verfahren zu deren herstellung sowie ihrer verwendung in versiegelungsmassen für selbstversiegelnde reifen | |
RU2289590C1 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
JP6640862B2 (ja) | Nbrベースのミクロゲルを含む組成物 | |
RU2291160C1 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
CN106967201B (zh) | 一种松香改性c9石油树脂及其制备方法和应用 | |
CN110938174A (zh) | 一种接枝改性天然橡胶、其制备方法、包含接枝改性天然橡胶的橡胶组合物及其应用 | |
RU2470952C2 (ru) | Полунепрерывный объединенный способ производства ударостойких винилароматических (со)полимеров путем последовательной анионной/радикальной полимеризации | |
RU2291161C1 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
RU2291159C1 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
RU2291158C1 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
EP1110973A1 (de) | Lösungskautschuke mit unpolaren Seitengruppen | |
RU2515431C2 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
US2334582A (en) | Plasticizer | |
DE10009909A1 (de) | Kautschuke mit Polyether-Seitengruppen | |
RU2516640C2 (ru) | Способ получения наполненного бутадиен-стирольного каучука | |
RU2760489C1 (ru) | Способ получения бутадиен-стирольного каучука | |
CN108219216A (zh) | 松香改性的c9石油树脂及其制备方法和应用 | |
RU2758384C1 (ru) | Способ получения бутадиен-стирольного каучука | |
RU2497831C1 (ru) | Способ выделения бутадиен-стирольного каучука из латекса | |
CN106883416B (zh) | C9树脂改性苯酚甲醛树脂及其制备方法和应用 | |
US20220194033A1 (en) | Method for repairing or recycling an elastomeric film | |
DE68905258T2 (de) | Verfahren zur rueckgewinnung von kautschukkruemeln, hergestellt durch emulsionspolymerisation. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20080111 |