RU2270985C1 - Способ и устройство для балансировки ротора - Google Patents
Способ и устройство для балансировки ротора Download PDFInfo
- Publication number
- RU2270985C1 RU2270985C1 RU2004129262/28A RU2004129262A RU2270985C1 RU 2270985 C1 RU2270985 C1 RU 2270985C1 RU 2004129262/28 A RU2004129262/28 A RU 2004129262/28A RU 2004129262 A RU2004129262 A RU 2004129262A RU 2270985 C1 RU2270985 C1 RU 2270985C1
- Authority
- RU
- Russia
- Prior art keywords
- rotor
- axis
- balanced body
- imbalance
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 34
- 230000010355 oscillation Effects 0.000 claims abstract description 24
- 230000009467 reduction Effects 0.000 claims description 18
- 230000003534 oscillatory effect Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 239000010755 BS 2869 Class G Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M1/00—Testing static or dynamic balance of machines or structures
- G01M1/14—Determining imbalance
- G01M1/16—Determining imbalance by oscillating or rotating the body to be tested
- G01M1/22—Determining imbalance by oscillating or rotating the body to be tested and converting vibrations due to imbalance into electric variables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Balance (AREA)
Abstract
Изобретение относится к измерительной технике. Сущность: сообщают ротору и соосному ему уравновешенному телу колебательное движение относительно неподвижной точки на общей оси ротора и уравновешенного тела. Измеряют амплитуду и фазу угловых колебаний ротора, по которым судят о параметрах неуравновешенности ротора в одной из плоскостей неуравновешенности. Причем одновременно в каждый момент времени в плоскости, проходящей через неподвижную точку, к уравновешенному телу по касательным прикладывают силы, противодействующие угловым колебаниям тела относительно оси. Устройство состоит из станины, укрепленного на роторе вала, установленного внутри уравновешенного тела на упругой опоре с возможностью смещения его относительно оси уравновешенного тела, снабженного на одном конце сферической опорой и связанного регулируемым эксцентриком с валом привода, а также датчиков измерения неуравновешенности, датчика опорного сигнала и блока обработки сигналов с выходов датчиков. Причем в устройство введена дополнительная упругая опора, расположенная в плоскости, проходящей через центр сферической опоры, расположенной на другом конце уравновешенного тела. Технический результат: повышение точности измерений. 2 н. и 7 з.п. ф-лы, 4 ил.
Description
Настоящее изобретение относится к технике динамической балансировки вращающихся тел и может быть использовано для определения и коррекции дисбаланса роторов, в частности жестких роторов.
Способ балансировки роторов предусматривает измерение параметров неуравновешенности (величина неуравновешенной массы, радиус и угол расположения ее центра относительно оси ротора) путем определения двух векторов дисбаланса (дисбаланс - векторная величина, равная произведению неуравновешенной массы на радиус-вектор ее центра относительно оси), которые лежат в двух произвольных плоскостях, перпендикулярных оси ротора. Эти плоскости называют плоскостями приведения неуравновешенности или плоскостями коррекции неуравновешенности (см., например, М.Е.Левит, В.М.Рыженков, Балансировка деталей и узлов. М., Машиностроение, 1986 г.).
Широко известны способы балансировки ротора, основанные на сообщении ротору вращательного движения и измерении амплитуд и фаз его колебаний в плоскостях, перпендикулярных оси ротора (например, пат. ЕР № 0150274, 1985 г.). Плоскости приведения неуравновешенности в соответствии с этим способом фиксируют опорами, в которых устанавливается ротор, а измерение амплитуды и фазы колебаний ротора осуществляют измерением динамических нагрузок, возникающих в опорах. Недостаток способа связан с тем, что измеряемые параметры должны подвергаться дополнительной обработке для разделения информации о дисбалансе в разных плоскостях приведения неуравновешенности.
Известен способ балансировки ротора, основанный, как и вышеприведенный, на сообщении ротору, установленному в опорах, вращательного движения. Особенностью этого способа является то, что для разделения плоскостей приведения неуравновешенности ротора после проведения измерений параметров колебаний при одном положении ротора его поворачивают на 180° и снова измеряют амплитуду и фазу колебаний ротора, после чего проводят обработку измеренных параметров, определяя дисбаланс в каждой из плоскостей приведения неуравновешенности (пат. США № 5359885, кл.73/146, 1994 г.). Недостатком этого способа является трудоемкость и малая производительность.
Более удобным в эксплуатации является способ, реализуемый с помощью одной распределенной опоры, в которой закрепляют одним торцом ротор. Способ характеризуется приведением ротора во вращательное движение и измерением динамических нагрузок в поперечных плоскостях опоры, симметричных относительно оси ротора (например, пат. США № 6430992, кл.73/66, 2002 г.). Недостатком этого способа является сложность обработки измеряемых параметров для определения неуравновешенности в каждой из плоскостей приведения.
Общим недостатком способов, основанных на сообщении ротору вращательного движения при установке его в опорах, является влияние используемых технических средств на результаты измерений из-за вибраций, вызываемых биением посадочных поверхностей муфт, овальностью цапф, перекосом наружных колец, наличием смазочного материала в подшипниках опор и т.п.
Настоящее изобретение относится к принципиально иному способу балансировки, характеризующемуся сложным движением ротора, который позволяет, используя достаточно простые технические средства, повысить точность измерения параметров неуравновешенности.
Этот способ известен по а.с. СССР № 297890, кл. G 01 М 1/38, 1971 г. В соответствии с этим способом ротор устанавливают в положение, при котором его ось ориентирована под острым углом к выбранной, например, вертикальной оси, и сообщают ротору колебательное движение относительно неподвижной точки пересечения его оси с выбранной вертикальной осью, при этом обеспечивают такое движение ротора, что проекция траектории движения любой точки оси ротора на горизонтальную плоскость симметрична относительно вертикальной оси.
Усовершенствование этого способа, известного по патенту России № 2105962, кл. G 01 M 1/38, 1993 г., направлено на повышение точности балансировки за счет снижения влияния угловых колебаний ротора на измеряемые параметры. Этот способ, как и вышеприведенный, включает сообщение ротору колебательного движения относительно неподвижной точки, расположенной на оси ротора, и измерение амплитуды и фазы угловых колебаний ротора, по которым судят о параметрах неуравновешенности ротора в одной из плоскостей неуравновешенности. Для повышения точности балансировки формируют систему отсчета измерений, позволяющую уменьшить влияние на измеряемые параметры угловых колебаний ротора относительно его оси. Формируют эту систему отсчета путем использования соосного ротору уравновешенного тела, которое приводят в движение одновременно с ротором. Этот способ является прототипом настоящего изобретения.
Однако при реализации этого способа происходят колебания ротора и, следовательно, уравновешенного тела в плоскости, перпендикулярной оси ротора, что негативно сказывается на точность балансировки.
Достигаемым техническим результатом при использовании настоящего изобретения является повышение точности измерений амплитуды и фазы угловых колебаний ротора за счет снижения (в идеальном случае - за счет исключения) угловых колебаний уравновешенного тела относительно его оси на измеряемые параметры.
В соответствии с настоящим изобретением способ, включающий сообщение ротору и соосному ему уравновешенного телу колебательного движения относительно неподвижной точки, выбранной на общей оси ротора и уравновешенного тела, и измерение амплитуды и фазы угловых колебаний ротора, по которым судят о параметрах неуравновешенности ротора, дополняют новой операцией, а именно одновременно в каждый момент времени в процессе определения дисбаланса в плоскости, проходящей через упомянутую неподвижную точку, к уравновешенному телу по касательным прикладывают силы, противодействующие угловым колебаниям уравновешенного тела относительно оси.
При совмещении упомянутой неподвижной точки с точкой пересечения оси ротора с одной из плоскостей приведения неуравновешенности ротора по измеренным амплитуде и фазе угловых колебаний судят о параметрах неуравновешенности в другой плоскости приведения неуравновешенности.
При смещении ротора вдоль оси на фиксированное расстояние и последующем измерении амплитуды и фазы угловых колебаний ротора в этом положении с учетом ранее измеренных амплитуды и фазы угловых колебаний определяют параметры неуравновешенности в плоскости приведения неуравновешенности, проходящей через упомянутую неподвижную точку.
Технический результат, обеспечиваемый выбором положения упомянутой неподвижной точки, заключается в дальнейшем повышении точности способа за счет устранения взаимного влияния плоскостей приведения неуравновешенности на измеряемые параметры.
Прототипом устройства, с помощью которого реализуется заявляемый способ, является устройство, известное по патенту России № 2105962, кл. G 01 M 1/38, 1993 г. и предназначенное для способа балансировки, основанного на сообщении ротору колебательного движения. Устройство содержит станину, закрепленный на роторе вал, установленный внутри уравновешенного тела на упругой опоре с возможностью смещения его относительно оси уравновешенного тела, снабженного на одном конце сферической опорой и связанного регулируемым эксцентриком с валом привода, а также датчики измерения неуравновешенности, датчик опорного сигнала и блок обработки сигналов с выходов датчиков. Блок обработки сигналов содержит формирователь последовательности импульсов, вход которого соединен с датчиком опорного сигнала, двоичный счетчик, триггер, запоминающий блок - регистр, дешифратор и индикатор величины и угловой координаты неуравновешенности. Перечисленные элементы блока соединены между собой по схеме, обеспечивающей измерение параметров неуравновешенности.
Недостатком этого устройства так же, как и известного способа, является недостаточно высокая точность балансировки из-за колебаний ротора в плоскости, перпендикулярной его оси.
Техническим результатом, получаемым при применении заявляемого устройства, является высокая точность балансировки, обеспечиваемая использованием простых технических средств, не вносящих искажений в результаты измерений параметров неуравновешенности ротора относительно уравновешенного тела.
Для реализации способа в устройство, содержащее станину, закрепленный на роторе вал, установленный внутри уравновешенного тела на упругой опоре с возможностью смещения его относительно оси уравновешенного тела, снабженного на одном конце сферической опорой и связанного регулируемым эксцентриком с валом привода, а также датчики измерения неуравновешенности, датчик опорного сигнала и блок обработки сигналов с выходов датчиков, введена дополнительная упругая опора, расположенная в плоскости, проходящей через центр сферической опоры.
Удобство эксплуатации устройства при определении параметров неуравновешенности в обеих плоскостях приведения неуравновешенности достигается тем, что ротор закреплен на валу привода с возможностью перемещения вдоль его оси и фиксации в двух положениях, в первом из которых одна из плоскостей приведения неуравновешенности ротора проходит через центр сферической опоры, а во втором смещена относительно центра сферической опоры.
Для увеличения инерционности уравновешенного тела дополнительная упругая опора выполнена в виде мембраны, жестко закрепленной по периметру в станине.
Датчики величин неуравновешенности установлены так, что центры их чувствительных элементов лежат симметрично относительно оси уравновешенного тела на одном диаметре, а выходы их соединены так, что при угловом смещении уравновешенного тела выходные сигналы датчиков суммируются, а при смещении в плоскости, перпендикулярной оси уравновешенного тела, вычитаются. Это позволяет при наличии остаточных колебаний ротора в плоскости, перпендикулярной оси ротора, обеспечить компенсацию воздействия этих колебаний на измеряемые параметры.
Блок обработки сигналов содержит блок управления, аналого-цифровой преобразователь, запоминающий блок, блок умножения, блок вычитания, блок измерения амплитуды и фазы и индикатор величины и угловой координаты неуравновешенности, при этом вход блока управления соединен с датчиком опорного сигнала, а выход соединен с управляющими входами аналого-цифрового преобразователя, запоминающего блока и блока измерения амплитуды и фазы, выходы датчиков величины неуравновешенности соединены с сигнальным входом аналого-цифрового преобразователя, выход которого соединен со входом запоминающего блока, входом блока измерения амплитуды и фазы и с первым входом блока вычитания, второй вход которого через блок умножения соединен с выходом запоминающего блока, выход блока вычитания подключен ко входу вышеупомянутого блока измерения, выход которого подключен ко входу индикатора величины и угловой координаты неуравновешенности.
На фиг.1 схематично изображено устройство, с помощью которого реализуется способ, на фиг.2 - разрез по линии А-А, на фиг.3 - разрез по линии Б-Б, на фиг.4 - блок обработки сигналов с выходов датчиков.
Устройство для балансировки ротора содержит станину 1, в которой на упругой опоре 2 посредством сферической опоры 3 закреплено одним концом уравновешенное тело 4. Центр сферической опоры 3 выполняет функцию неподвижной точки, относительно которой уравновешенное тело 4 совершает колебательное движение. Внутри уравновешенного тела 4 на осецентрирующих упругих опорах 5 и 6 установлен соосно вал 7 ротора 8. Другой конец уравновешенного тела 4 посредством сферической опоры 9 соединен с регулируемым эксцентриком 10, закрепленным на валу привода 11, установленного на станине 1. Ротор 8 установлен с возможностью перемещения его вдоль оси на величину h и фиксации его в двух положениях, в первом из которых одна из плоскостей приведения неуравновешенности, например нижняя, проходит через центр опоры 3, а во втором смещена относительно центра опоры 3 на величину h, например, вверх. Величина h - выбираемое расстояние из условия удобства измерения. Оно может быть меньше или равно расстоянию между плоскостями приведения неуравновешенности ротора.
Упругая опора 2 предназначена для предотвращения угловых колебаний уравновешенного тела 4 относительно станины 1 в плоскостях, перпендикулярных оси тела 4. В качестве упругой опоры может быть использована любая известная опора (пружины, упругие спицы, торсион и т.п.), однако использование мембраны, жестко закрепленной по периметру в станине 1, является предпочтительным, поскольку возможность жесткого закрепления ее в станине 1 увеличивает инерционность уравновешенного тела 4, позволяя дополнительно повысить точность определения параметров неуравновешенности.
Опоры 5 и 6 позволяют валу 7 ротора 8 поворачиваться вокруг оси, ограничивая его угловые колебания, и обеспечивают возврат ротора 8 в исходное состояние при остановке привода 11. В приведенном на фиг.2 варианте опоры 5 и 6 выполнены в виде спиц 12.
Датчики 13 и 14 измерения величины неуравновешенности расположены на платформе 15, закрепленной на уравновешенном теле 4 в плоскости, перпендикулярной его оси (фиг.3). Чувствительные элементы датчиков 13 и 14 расположены симметрично оси уравновешенного тела 4 и лежат на одном диаметре. При использовании в качестве датчиков 13 и 14 магнитоиндукционных датчиков их якоря закрепляют на присоединительных элементах 16, жестко соединенных с валом 7 ротора 8. Выходы датчиков 13 и 14 соединены так, что при угловом смещении уравновешенного тела 4 относительно оси выходные сигналы датчиков 13 и 14 суммируются и вычитаются при смещении оси уравновешенного тела 4 в плоскости, перпендикулярной его оси.
Регулируемый эксцентрик 10 (фиг.1) связан с датчиком 17 опорного сигнала. По периметру станины 1 установлены световые индикаторы 18, отображающие угловую координату положения неуравновешенности на роторе 8.
Блок обработки сигналов (фиг.4) с выходов датчиков 13 и 14 содержит блок 19 управления, аналого-цифровой преобразователь 20, запоминающий блок 21, блок 22 умножения, блок 23 вычитания, блок 24 измерения амплитуды и фазы и индикатор 25 величины и угловой координаты неуравновешенности. Вход блока 19 управления соединен с датчиком 17опорного сигнала, а выход соединен с управляющими входами аналого-цифрового преобразователя 20, запоминающего блока 21 и блока 24 измерения амплитуды и фазы. Выходы датчиков 13 и 14 величины неуравновешенности соединены с сигнальным входом аналого-цифрового преобразователя 20, выход которого соединен со входом запоминающего блока 21 и входом блока 24 измерения амплитуды и фазы. Первый вход блока 23 вычитания соединен с выходом аналого-цифрового преобразователя 20, а второй вход - с выходом блока 22 умножения. Выход блока 23 через блок 24 соединен с индикатором 25.
В начальный момент времени ротор 8 и уравновешенное тело 4 устанавливают на валу 7 в эксцентрике 10 на опоре так, что их ось ориентирована под острым углом к вертикальной оси, проходящей через центр сферической опоры 3 (см.фиг.1). При этом положение ротора 8 на валу 7 выбирают таким, что одна из плоскостей приведения неуравновешенности совпадает с нижней плоскостью ротора 8 (h=0). Затем вал привода 11 приводят во вращение, тем самым сообщают валу 7 ротора 8 и уравновешенному телу 4 колебательное движение относительно центра опоры 3 в плоскости, перпендикулярной плоскости чертежа. При наличии неуравновешенности в верхней плоскости приведения на ротор 8 действует вращающий момент, вызывающий поворот ротора 8 с валом 7 вокруг своей оси (в идеальном случае, когда ротор 8 уравновешен, он совершает колебательное движение без угловых колебаний вокруг своей оси). Одновременно ротор 8 совершает колебания в плоскости, перпендикулярной своей оси, амплитуда которых намного выше амплитуды колебаний, обусловленных неуравновешенностью. Из-за наличия упругих элементов, связывающих уравновешенное тело 4 с валом 7 ротора 8, угловые колебания ротора 8 воздействуют и на тело 4, но одновременное приложение в каждый момент времени к каждой точке уравновешенного тела 4 в плоскости, проходящей через центр опоры 3, сил, направленных по касательным к телу, приводит к компенсации влияния упругих элементов, т.е. к снижению (исключению) угловых колебаний уравновешенного тела 4 относительно своей оси.
Измерение величины неуравновешенности осуществляют датчиками 13 и 14. При использовании в качестве датчиков 13 и 14 магнитоиндукционных датчиков фазы сигналов, индуцируемых в их обмотках и обусловленных неуравновешенностью ротора 8, совпадают, а амплитуда суммарного сигнала датчиков удваивается (при равенстве их коэффициентов преобразования). Выходной сигнал датчиков 13 и 14 благодаря отсутствию угловых колебаний уравновешенного тела 4 в плоскости, перпендикулярной его оси, определяется только неуравновешенностью ротора 8: S1=A1sin(ωt+φ1), амплитуда A1 которого определяется величиной неуравновешенности, а фаза φ1 - угловой координатой ее положения. Этот сигнал преобразуется в аналого-цифровом преобразователе 20 и в цифровом виде поступает одновременно на сигнальный вход блока 24 измерения амплитуды и фазы и в запоминающий блок 21. В результате на выходе блока 24 формируется информация о величине неуравновешенности и ее угловой координате в верхней плоскости приведения неуравновешенности, эта информация отображается на индикаторе 25. В то же время запоминающий блок 21 запоминает мгновенные значения сигнала S1 в течение периода сигнала с выхода датчика 17 опорного сигнала, формирующего сигнал синхронизации начала цикла измерения.
После измерения неуравновешенности в верхней плоскости приведения ротор 8 перемещают вдоль оси на расстояние h и проводят измерение неуравновешенности в нижней плоскости приведения неуравновешенности ротора 8. Для исключения влияния на измеряемые величины верхней плоскости приведения неуравновешенности обработку выходных сигналов датчиков 13 и 14 осуществляют следующим образом. С выхода блока 19 управления на управляющий вход блока 24 измерения амплитуды и фазы подается сигнал на измерение амплитуды и фазы цифрового сигнала с выхода блока 23 вычитания. Этот блок выполняет операцию вычитания из сигнала S с выхода аналого-цифровом преобразователя 20 сигнала S1 с выхода запоминающего блока 21, умноженного на масштабный коэффициент k в блоке 22 умножения. Масштабный коэффициент k учитывает изменение амплитуды сигналов с выходов датчиков 13 и 14, обусловленное неуравновешенностью ротора 8 в верхней плоскости приведения неуравновешенности от смещения ротора вдоль оси. Сигнал S на выходе аналого-цифрового преобразователя 20 имеет вид S=kS1+S2, где S2=А2sin(ωt+φ2), А2 - амплитуда сигнала, соответствующего неуравновешенности в нижней плоскости приведения, φ2 - фаза этого сигнала. Выходной сигнал блока 23 вычитания, в котором происходит операция вычитания (S-k·S1), соответствует неуравновешенности ротора 8 в нижней плоскости приведения и равен S2=A2sin(ωt+φ2). Этот сигнал поступает на второй сигнальный вход блока 24 измерения амплитуды и фазы и индикатор 25, который выдает информацию о величине и угловом положении неуравновешенности ротора 8 в нижней плоскости приведения. Индикатор 25 может одновременно показывать параметры неуравновешенности в обеих плоскостях приведения.
Таким образом, использование заявляемого способа позволяет измерить параметры неуравновешенности ротора с высокой точностью в двух плоскостях приведения неуравновешенности. Способ удобен в эксплуатации и не требует больших материальных затрат на его реализацию. Способ может быть использован как в промышленных, так и в бытовых условиях.
Claims (9)
1. Способ балансировки ротора, включающий сообщение ротору и соосному ему уравновешенному телу колебательного движения относительно неподвижной точки на общей оси ротора и уравновешенного тела и измерение амплитуды и фазы угловых колебаний ротора, по которым судят о параметрах неуравновешенности ротора в одной из плоскостей неуравновешенности, отличающийся тем, что одновременно в каждый момент времени в плоскости, проходящей через неподвижную точку, к уравновешенному телу по касательным прикладывают силы, противодействующие угловым колебаниям тела относительно оси.
2. Способ по п.1, отличающийся тем, что в качестве упомянутой неподвижной точки используют точку пересечения оси ротора с одной из плоскостей приведения неуравновешенности ротора, а измеренные амплитуду и фазу угловых колебаний используют для определения параметров неуравновешенности в другой плоскости приведения неуравновешенности.
3. Способ по п.2, отличающийся тем, что после измерения амплитуды и фазы угловых колебаний ротора в первом положении, когда упомянутая неподвижная точка совмещена с точкой пересечения оси ротора с одной из плоскостей приведения неуравновешенности, ротор смещают на фиксированное расстояние во второе положение, затем снова измеряют амплитуду и фазу угловых колебаний ротора и используют измеренные амплитуды и фазы угловых колебаний ротора для определения параметров неуравновешенности в плоскости, изначально проходящей через упомянутую неподвижную точку.
4. Устройство для балансировки ротора, содержащее станину, укрепленный на роторе вал, установленный внутри уравновешенного тела на упругой опоре с возможностью смещения его относительно оси уравновешенного тела, снабженного на одном конце сферической опорой и связанного регулируемым эксцентриком с валом привода, а также датчики измерения неуравновешенности, датчик опорного сигнала и блок обработки сигналов с выходов датчиков, отличающееся тем, что в него введена дополнительная упругая опора, расположенная в плоскости, проходящей через центр сферической опоры, расположенной на другом конце уравновешенного тела.
5. Устройство по п.4, отличающееся тем, что дополнительная упругая опора выполнена в виде мембраны, жестко закрепленной по периметру в станине.
6. Устройство по п.4, отличающееся тем, что ротор закреплен на валу с возможностью его перемещения вдоль оси ротора.
7. Устройство по п.6, отличающееся тем, что ротор закреплен на валу с возможностью фиксации его в двух положениях, в первом из которых одна из плоскостей приведения неуравновешенности проходит через центр сферической опоры, а во втором смещена относительно центра сферической опоры.
8. Устройство по п.4, отличающееся тем, что датчики величин неуравновешенности установлены так, что центры их чувствительных элементов лежат симметрично относительно оси уравновешенного тела на одном диаметре, а их выходы соединены так, что при угловом смещении уравновешенного тела относительно оси выходные сигналы датчиков суммируются, а при смещении оси уравновешенного тела в плоскости, перпендикулярной его оси, вычитаются.
9. Устройство по п.4, отличающееся тем, что блок обработки сигналов содержит аналого-цифровой преобразователь, запоминающий блок, блок умножения, блок вычитания, блок управления, блок измерения амплитуды и фазы, причем выход датчиков величины неуравновешенности соединен с входом аналого-цифрового преобразователя, выход которого соединен с информационным входом запоминающего блока, с первым входом блока вычитания и первым входом блока измерения амплитуды и фазы, выход которого соединен с индикатором величины и угловой координаты неуравновешенности, а выход запоминающего блока через блок умножения соединен со вторым входом блока вычитания, выход которого соединен со вторым входом блока измерения амплитуды и фазы, вход блока управления соединен с выходом датчика опорного сигнала, а выход блока управления соединен с управляющими входами запоминающего блока, аналого-цифрового преобразователя и блока измерения амплитуды и фазы.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004129262/28A RU2270985C1 (ru) | 2004-10-06 | 2004-10-06 | Способ и устройство для балансировки ротора |
US11/576,003 US7856877B2 (en) | 2004-10-06 | 2005-10-05 | Rotor balancing method and device therefore |
JP2007535626A JP2008516226A (ja) | 2004-10-06 | 2005-10-05 | ローター釣り合わせ方法及びその装置 |
PCT/RU2005/000499 WO2006038835A2 (fr) | 2004-10-06 | 2005-10-05 | Procede et dispositif d'equilibrage de rotor |
CN2005800343034A CN101040178B (zh) | 2004-10-06 | 2005-10-05 | 转子平衡方法及其装置 |
BRPI0515817-6A BRPI0515817A (pt) | 2004-10-06 | 2005-10-05 | método de balanceamento de rotor e dispositivo correspondente |
EP05802863A EP1806570A4 (en) | 2004-10-06 | 2005-10-05 | ROTOR BALANCING METHOD AND DEVICE |
AU2005292753A AU2005292753A1 (en) | 2004-10-06 | 2005-10-05 | Rotor balancing method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004129262/28A RU2270985C1 (ru) | 2004-10-06 | 2004-10-06 | Способ и устройство для балансировки ротора |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2270985C1 true RU2270985C1 (ru) | 2006-02-27 |
Family
ID=36114407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2004129262/28A RU2270985C1 (ru) | 2004-10-06 | 2004-10-06 | Способ и устройство для балансировки ротора |
Country Status (8)
Country | Link |
---|---|
US (1) | US7856877B2 (ru) |
EP (1) | EP1806570A4 (ru) |
JP (1) | JP2008516226A (ru) |
CN (1) | CN101040178B (ru) |
AU (1) | AU2005292753A1 (ru) |
BR (1) | BRPI0515817A (ru) |
RU (1) | RU2270985C1 (ru) |
WO (1) | WO2006038835A2 (ru) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102095556B (zh) * | 2010-12-28 | 2012-07-04 | 孝感松林国际计测器有限公司 | 高分离比静偶动平衡测量装置 |
CN103234003B (zh) * | 2013-04-27 | 2015-02-04 | 东北大学 | 一种采用热辐射控制的转子系统自动平衡装置 |
CN103216573B (zh) * | 2013-05-06 | 2015-09-23 | 东北大学 | 一种利用辐射加热抑制转子振动的方法 |
CN103364139A (zh) * | 2013-07-30 | 2013-10-23 | 南车株洲电机有限公司 | 转子动平衡试验方法、动平衡试验设备及其保温装置 |
IL240316B (en) * | 2015-08-03 | 2018-10-31 | Technion Res & Dev Foundation | Method and system for parametric amplification |
EP3179611B1 (en) * | 2015-12-10 | 2018-06-27 | Skf Magnetic Mechatronics | Balancing method for balancing at high speed a rotor of a rotary machine |
CN106153253A (zh) * | 2016-06-16 | 2016-11-23 | 上海交通大学 | 盘形零件质心测量装置及测量方法 |
CN108226647B (zh) * | 2018-04-13 | 2024-05-24 | 南方电网科学研究院有限责任公司 | 一种对电力线接入点阻抗的测量装置 |
CN110940460A (zh) * | 2019-12-27 | 2020-03-31 | 无锡超通智能制造技术研究院有限公司 | 微型涡喷发动机转子的超精密激光自动去重动平衡机 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB361544A (en) * | 1929-10-22 | 1931-11-26 | British Thomson Houston Co Ltd | Improvements in and relating to balancing machines for rotating bodies |
US3158038A (en) * | 1961-12-18 | 1964-11-24 | Gen Electric | Rotor vibration reducing device |
US4285240A (en) * | 1980-01-11 | 1981-08-25 | Fmc Corporation | Wheel unbalance measurement system and method |
EP0150274B1 (de) | 1981-09-10 | 1988-11-17 | Carl Schenck Ag | Verfahren zum Übertragen der gemessenen Lage der Unwucht eines auszuwuchtenden Rotors auf dessen Umfang und Vorrichtung hierzu |
DE3176866D1 (en) | 1981-09-10 | 1988-10-13 | Schenck Ag Carl | Process and device for transferring the measured imbalance position of a rotor to its circumference |
US4930348A (en) * | 1988-11-25 | 1990-06-05 | Balance Engineering Corporation | Vertical balancing machine with cartridge assembly |
DE4133787C2 (de) * | 1991-10-11 | 2002-06-20 | Schenck Rotec Gmbh | Auswuchtverfahren zur testgewichtslauffreien Ermittlung der Ausgleichsmassen für einen elastischen Rotor auf einer kraftmessenden Auswuchtmaschine und Einrichtung zur Durchführung des Verfahrens |
DE4225195A1 (de) | 1992-07-30 | 1994-02-03 | Hofmann Maschinenbau Gmbh | Verfahren zur Messung von Rund- und/oder Planlaufabweichungen eines Rotors |
DE4240787C2 (de) * | 1992-12-04 | 1997-09-11 | Hofmann Maschinenbau Gmbh | Verfahren und Vorrichtung zum dynamischen Auswuchten eines Rotors |
RU2105962C1 (ru) | 1993-07-01 | 1998-02-27 | Борис Авраамович Малев | Станок для балансировки роторов |
ATE214477T1 (de) | 1998-09-02 | 2002-03-15 | Snap On Tech Inc | Unwuchtmessvorrichtungen mit mindestens einer virtuellen lagerstelle |
CN1269504A (zh) * | 1999-04-06 | 2000-10-11 | 黄震西 | 转子不平衡量两点测定法 |
ITTO20011218A1 (it) * | 2001-12-24 | 2003-06-24 | Redat Spa | Sistema per la misura dello squilibrio di rotori ,particolarmente di turbine per turbocompressori automobilistici. |
CN100344896C (zh) * | 2003-02-14 | 2007-10-24 | 重庆大学 | 转子平衡中平衡块的精确定位方法 |
-
2004
- 2004-10-06 RU RU2004129262/28A patent/RU2270985C1/ru not_active IP Right Cessation
-
2005
- 2005-10-05 EP EP05802863A patent/EP1806570A4/en not_active Withdrawn
- 2005-10-05 CN CN2005800343034A patent/CN101040178B/zh not_active Expired - Fee Related
- 2005-10-05 US US11/576,003 patent/US7856877B2/en not_active Expired - Fee Related
- 2005-10-05 WO PCT/RU2005/000499 patent/WO2006038835A2/ru active Application Filing
- 2005-10-05 BR BRPI0515817-6A patent/BRPI0515817A/pt not_active Application Discontinuation
- 2005-10-05 JP JP2007535626A patent/JP2008516226A/ja active Pending
- 2005-10-05 AU AU2005292753A patent/AU2005292753A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2006038835A3 (fr) | 2006-06-15 |
EP1806570A4 (en) | 2008-10-22 |
AU2005292753A1 (en) | 2006-04-13 |
US7856877B2 (en) | 2010-12-28 |
WO2006038835A2 (fr) | 2006-04-13 |
CN101040178A (zh) | 2007-09-19 |
JP2008516226A (ja) | 2008-05-15 |
EP1806570A2 (en) | 2007-07-11 |
BRPI0515817A (pt) | 2008-08-05 |
US20080060436A1 (en) | 2008-03-13 |
CN101040178B (zh) | 2010-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2270985C1 (ru) | Способ и устройство для балансировки ротора | |
CN103767725B (zh) | 一种用于平衡ct机架的方法和装置 | |
US6631640B2 (en) | Method and apparatus for measuring dynamic balance | |
KR100905397B1 (ko) | 주기적 회전진동을 이용한 동적 발란싱 장치 및 방법 | |
JP2004223511A (ja) | アンバランスダイナミックロード発生器 | |
RU2426082C1 (ru) | Способ и устройство для балансировки роторов | |
RU2426976C2 (ru) | Способ и устройство для автоматической балансировки ротора | |
RU2382999C1 (ru) | Способ динамической балансировки ротора | |
US3805623A (en) | Balancing apparatus for measurement of want of balance | |
KR20090102057A (ko) | 선형 시변 각속도 모델을 이용한 동적 발란싱 장치 및 방법 | |
JPH07103815A (ja) | 非繰返し回転精度測定装置 | |
US4532803A (en) | Non-spinning dynamic balancing machine and method | |
JP6370239B2 (ja) | 回転体の動的不釣り合いの測定方法並びにその測定装置 | |
JP2016080622A (ja) | 回転アンバランス測定装置 | |
RU2299409C1 (ru) | Станок для балансировки роторов | |
KR20020063646A (ko) | 관성 모멘트 측정 기구 | |
RU2310178C1 (ru) | Устройство для определения величины и фазы дисбаланса | |
SU712708A1 (ru) | Способ определени дисбаланса ротора | |
JP5257762B2 (ja) | 高速回転体の回転バランス計測装置及び方法 | |
RU2077038C1 (ru) | Способ определения величины и угла дисбаланса | |
CN204575249U (zh) | 一种封闭空间内转子不平衡量的快速调节装置 | |
JPS62127639A (ja) | バランサ | |
RU2105962C1 (ru) | Станок для балансировки роторов | |
RU2185609C2 (ru) | Способ динамической балансировки | |
JP6229240B2 (ja) | 不釣合い測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC4A | Invention patent assignment |
Effective date: 20061130 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20081007 |