RU2259328C2 - Эмаль (варианты) - Google Patents

Эмаль (варианты) Download PDF

Info

Publication number
RU2259328C2
RU2259328C2 RU2003133379/03A RU2003133379A RU2259328C2 RU 2259328 C2 RU2259328 C2 RU 2259328C2 RU 2003133379/03 A RU2003133379/03 A RU 2003133379/03A RU 2003133379 A RU2003133379 A RU 2003133379A RU 2259328 C2 RU2259328 C2 RU 2259328C2
Authority
RU
Russia
Prior art keywords
enamel
sio
cao
mno
enamels
Prior art date
Application number
RU2003133379/03A
Other languages
English (en)
Other versions
RU2003133379A (ru
Inventor
К.В. Казак (RU)
К.В. Казак
А.А. Сиротинский (RU)
А.А. Сиротинский
В.В. Диденко (RU)
В.В. Диденко
А.К. Казак (RU)
А.К. Казак
н М.Г. Карам (RU)
М.Г. Карамян
Original Assignee
ЗАО "Научно-техническая фирма "Ставан-Комплекс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЗАО "Научно-техническая фирма "Ставан-Комплекс" filed Critical ЗАО "Научно-техническая фирма "Ставан-Комплекс"
Priority to RU2003133379/03A priority Critical patent/RU2259328C2/ru
Publication of RU2003133379A publication Critical patent/RU2003133379A/ru
Application granted granted Critical
Publication of RU2259328C2 publication Critical patent/RU2259328C2/ru

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

Изобретение относится к области защиты металлов от коррозии и может быть использовано в производстве силикатных эмалей для стальных углеродистых (до 0,5% C) изделий бытового и технического назначения. Предложены варианты составов эмалей, содержащие оксиды кремния, натрия, бора, алюминия, кальция, кобальта, марганца, железа и фтор, содержащих дополнительно оксиды лития, калия и магния или оксиды лития, хрома и ванадия при следующем соотношении компонентов, мас.%: SiO2 37-47; Na2O 17-22; В2О3 14-21; Al2О3 5-8; CaO 1-3; Со2O3 0,6-0,9; MnO 1,0-2,5; Fe2O3 1,5-3,0; Li2O 0,8-2,0; К2О 0,5-3,0; MgO 0,15-2,0; и F 0,5-3,0 или SiO2 37-51; Na2O 16-24; В2О3 17-22; Al2О3 5-10; CaO 1-5; Со2O3 1,1-1,6; MnO 1-3; Fe2O3 2-4; Li2O 1-2; Cr2О3 1-3; V2О3 1-4; F 1-4. В качестве шихтовых материалов при сплавлении эмалей использованы кобальтовые и алюминийхромовые концентраты из техногенных отходов состава (мас.%) соответственно: Со2O3 45-80; MnO 0,05-6,0; Fe2O3 2-12; SiO2 6-24; Al2О3 3-12; CaO 2-8; Na2O 3-11; Cr2О3 0,05-6,0 и Al2О3 60-75; Cr2О3 10-20; SiO2 2-8; К2О 2-5; Fe2O3 0,05-3,0. Техническая задача изобретения - создание эмалей и покрытий из них с высоким комплексом технологических, механических и эксплуатационных свойств, в том числе кислотостойкостью и абразивной стойкостью. 2 н.п. ф-лы, 5 табл.

Description

Изобретение относится к области защиты металлов от коррозии и может быть использовано в производстве силикатных эмалей для стальных изделий бытового и технического назначения, в том числе для эмалирования труб различного назначения из малоуглеродистой и высокоуглеродистой стали.
Известны составы эмалей для покрытия изделий бытового назначения, содержащие в основе значительное количество оксидов кремния (59-73%), алюминия (10-18%), кальция (7-15%) в различных вариантах по содержанию компонентов [1]. Выплавка и использование известных составов эмалей связаны с большими затратами электроэнергии из-за высокой температуры их расплавления и обжига в процессе формирования эмалевого покрытия на изделии. Покрытия из таких эмалей имеют высокую твердость, но имеют склонность к разрушению из-за низкой эластичности, поэтому непригодны для использования при эмалировании изделий технического назначения, испытывающих знакопеременные нагрузки.
Известна эмаль [2] химического состава, мас.%: SiO2 36-38; Al2О3 4-6; Na2O 22-24; В2O3 20-23; Со2О3 0,5-0,6; NiO 0,7-1,5; CaF2 2-4; CaO 1-3; Fe2О3 3-6.
Эмаль обеспечивает прочное сцепление покрытия со сталью. Имеет относительно низкую температуру обжига 860-890°С. Недостаток эмали - низкая плотность покрытия и она может быть использована только для формирования грунтового слоя на изделии из малоуглеродистых сталей (до 0,12% С), что ограничивает сферу ее применения.
Известна эмаль [3] химического состава, мас.%: SiO2 38-57; Na2O 16-24; В2О3 13-22; Al2O3 4-7; CaO 2-7; NiO3 1,5-2,0; Со2О3 0,6-1,0; F 2-3; Fe2О3 1-3; MnO 1-3; CuO 0,25-1,0; МоО3 0,25-1,0; ZnO 0,25-1,0; CdO 0,25-1,0.
Достоинством известной эмали является высокая прочность сцепления с поверхностью стального изделия, что позволяет использовать ее не только в качестве грунтовой при двухслойном эмалировании, но и безгрунтовой при однослойном эмалировании, обеспечивая коррозионную стойкость защитного покрытия преимущественно изделий из малоуглеродистых сталей. Недостатком известной эмали является высокая температура ее сплавления (1300-1380°С), обусловленное содержанием в ней тугоплавких элементов (Мо, Ni, Cd, Cu). Учитывая, что температура отжига при формировании эмалевого покрытия составляет 830-840°С при выдержке 8-12 мин, суммарные энергетические затраты технологического процесса и использования дорогостоящих компонентов (Со, Мо, Ni, Cu, Cd) отрицательно влияют на рентабельность производства. Кроме этого, химическая стойкость известной эмали не удовлетворяет современным требованиям к эмалированным стальным изделиям из углеродистых сталей (более 0,12% С), работающих в контакте с химически активными и агрессивными средами. В этом случае эмаль должна иметь высокую плотность, растекаемость, механическую прочность, в том числе на истирание. Кроме того, содержание в известной эмали токсичных элементов (Cd и Ni) не позволяет их использовать для покрытий изделий для пищевой, медицинской промышленности, в водоснабжении.
Наиболее близкой по технической сущности и достигаемому результату является эмаль химического состава, мас.%: SiO2 10-80; Na2O 0-30; В2О3 0-35; Al2O3 0-40,CaO 0-25; СоО 0-10; MnO2 0-10; FeO 0-10; Li2O 0-20, K2O 0-40; MgO 0-10; F 0-10; Cr2О3 0-10; V2O5 0-5 [4].
Известная эмаль используется для защиты от коррозии стальных изделий, но и ей присущи отмеченные выше недостатки известных эмалей.
Целью данного изобретения является создание высококачественных эмалей для широкой области использования с заданным комплексом технологических параметров (пониженная температура сплавления и обжига в более широком температурном интервале и меньшем времени выдержки при обжиге); механических свойств (высокая прочность на удар, изгиб, растяжение, сжатие; прочное сцепление, высокая плотность и растекаемость); эксплуатационных характеристик (высокая химическая стойкость и водостойкость, повышенная стойкость к истиранию, к термоциклическим и знакопеременным нагрузкам).
Поставленная задача достигается тем, что в известную эмаль, в состав которой входят оксиды кремния, натрия, бора, алюминия, кальция, кобальта, лития, магния, калия, железа и фтор, для производства эмали при соотношении компонентов, мас.% : SiO2 37-47; Na2О 17-22; В2О3 14-21; Al2О3 5-8; CaO 1-3; Со2О3 0,6-0,9; MnO 1,0-2,5; Fe2О3 1,5-3,0; Li20 0,8-2,0; MgO 0,15-2,0; К2О 0,5-3,0; F 0,5-3,0, используют кобальтовые концентраты из техногенных отходов, преимущественно содержащие, мас.%: Со2O3 45-80; MnO 0,05-6,0; Fe2О3 2-12; SiO2 6-24; Al2О3 3-12; CaO 2-8; Na2O 3-11; Cr2О3 0,05-6,0; К2O 0,05-4,0.
По второму варианту в известную эмаль, в состав которой входят оксиды кремния, натрия, бора, алюминия, кобальта, марганца, лития, хрома, ванадия, железа и фтор для производства эмали при соотношении компонентов, мас.%: SiO2 37-51; Na2O 16-24; В2O3 17-22; Al2О3 5-10; CaO 1-5; Со2O3 1,1-1,6; MnO 1-3; Fe2O3 2-4; Li2O 1-2; Cr2O3 1-3; V2O5 1-4; F 1-4 используют механическую смесь кобальтового концентрата приведенного выше состава и алюминий-хромового концентрата (диалюминий триоксида и дихромтриоксида) из техногенных отходов, преимущественно содержание, мас.%: Al2О3 60-75; Cr2O3 10-20; SiO2 6-8; К20 2-5; Fe2О3 0,05-3,0.
Предлагаемые составы эмалей установлены на основании анализа системы эмаль-металл, которую следует рассматривать как новый композиционный материал. Силикатно-эмалевое покрытие в результате сложного физико-химического воздействия с металлом, проходящего при температуре обжига, приобретает прочность сцепления с металлом, превышающую прочность самого покрытия. Изучение физико-химических и механических свойств различных составов сплавленных эмалей выявило технологические параметры производства эмали и ее характеристики (понижение температуры сплавления и обжига; плотная микро- и макроструктура в виде новых сложных химических соединений и связей), регулируя которые можно сплавлять эмали с заданным химическим составом и требуемым комплексом механических и эксплуатационных свойств эмалевого покрытия с учетом материала эмалируемого изделья, в том числе содержания в стальном изделии углерода.
Оптимизация состава известной эмали по содержанию оксидов лития, калия и магния при выбранных соотношениях остальных компонентов улучшает технологические параметры сплавления эмали и ее свойства. Экспериментально установлено, что оксид лития в количестве 0,8-2,0% снижает температуру сплавления эмали, способствует формированию однородного покрытия с повышенной химстойкостью, придает покрытию блеск. Оксиды калия (0,5-3,0%) и магния (0,5-2,0) усиливают достижение отмеченных показателей. Кроме этого, оксид магния повышает прочность и твердость покрытия. В целом заявленный состав имеет более низкую температуру сплавления (1200-1280°С против 1300-1380°С для известной) и обжига (750-780°С против 830-840°С для известной). Эмаль пригодна для нанесения покрытия на стальные изделия с содержанием углерода до 0,5%. Покрытие стальных изделий из предлагаемой эмали водостойкое и кислотостойкое в умеренных растворах и соответствуют санитарно-гигиеническим требованиям по миграции вредных для здоровья веществ. Эмаль может использоваться для покрытия стальных изделий бытового и технического назначения.
Экспериментально установлено, что при содержании в известной эмали оксидов лития (1-2%), хрома (1-3%) и ванадия (1-4%) при соотношении остальных компонентов по второму варианту достигается высокий комплекс технологических и эксплуатационных свойств эмали и покрытия из нее, в том числе на стальных изделиях, содержащих 0,10-0,5% углерода. Оксиды хрома и ванадия инициируют и интенсифицируют объемную кристаллизацию эмалей, расширяя ее температурную границу. При охлаждении расплава эмали кристаллизация осуществляется с формированием однородной плотной мелкокристаллической структуры. Кроме этого, ванадий и хром как карбидообразующие элементы связывают свободный углерод, поступающий в эмаль покрытия из эмалируемого стального изделия в процессе обжига, образуя мелкодисперсные карбиды ванадия и хрома.
В целом формируется плотное, прочное на удар, растяжение, сжатие и истирание покрытие с высокой химической стойкостью в сильных кислотных средах. Эмаль предлагаемого состава имеет (по сравнению с известной) более низкую температуру сплавления (1200-1280°С) и обжига (750-780°С). Достигнутые характеристики эмали и покрытия предопределяют выбор оптимального технологического процесса эмалирования и его экономику.
Прочность сцепления предлагаемых составов эмалей со сталью при пониженных температурах обжига была достигнута и усилена тем, что при сплавлении эмалей в составе шихты использовали не только химически чистые тугоплавкие оксиды кобальта, кремния, алюминия, бора, но и упомянутые концентраты техногенных отходов, в которых оксиды находятся во взаимосвязи между собой в виде сложных химических связей с переходной валентностью. Поэтому в процессе синтеза эмали при переходе из одного физического состояния в другое изменение состава и строение композиционного соединения (фаз) происходит и завершается при более низких температурах обжига.
Примеры выполнения.
В полупромышленных печах сплавлены эмали с содержанием известных компонентов в пределах заявленного состава по первому варианту с различным содержанием оксидов лития, магния и калия, существенно влияющих на качество эмалевого покрытия (табл. 1). При расчете заданного состава сплавляемой эмали (табл. 1, п.1-3) в качестве части шихтового материала использовали кобальтовый концентрат из техногенных отходов химического состава, мас.%: Со2O3 45-80; SiO2 6-24; Na2O 3-11; Al2О3 3-12; Fe2O3 2-12; CaO 2-8; MnO 0,05-6,0; Cr2O3 0,05-6,0.
Температура сплавления шихтовых материалов заявленных составов эмалей находилась в интервале 1210-1250°С против 1380°С для известной эмали (табл. 1, п.4).
В таблице 2 приведены технологические свойства сплавленных эмалей и механические свойства эмалевого покрытия, нанесенного на стальные листы с содержанием углерода 0,5%.
Анализ свойств эмали и покрытия на представительной партии образцов подтвердил преимущества заявленного состава перед известным:
Показатели Заявленная эмаль* Известная
Температура размягчения, °С 580 620
Температура обжига, °С 740-790 830-840
Продолжительность обжига, мин. 7-8 10-12
Растекаемость, мм 51-65 40-50
Термостойкость, цикл 14-20 6-8
Водостойкость, % 0,15-0,30 0,6-0,9
Прочность сцепления, балл** 4,5-5 3-4
* Выплавлена с использованием кобальтового и алюмохромового концентратов, полученных из техногенных отходов.
** Увеличение прочности сцепления эмали со сталью достигнуто за счет повышения термодинамической активности оксида кобальта без его увеличения содержания эмали.
По химическому составу и комплексу свойств эмаль может быть использована при эмалировании бытовой посуды, контактирующей с пищевыми продуктами и средами. Образцы с эмалевым покрытием выдержали все испытания, требуемые ГОСТ 24788-2001 для этого вида продукции. Кроме того, покрытие из эмали, нанесенное на листовую сталь с содержанием углерода до 0,5%, подтвердило его длительную стойкость в умеренных кислотных средах, что дает основание рекомендовать эмаль для использования в трубопроводных сетях ЖКХ, химического оборудования, нефтепроводов и др. системах.
В полупромышленных печах сплавлены эмали с содержанием известных компонентов в пределах заявленного состава по второму варианту с различным содержанием оксидов лития, хрома и ванадия (табл. 3). При расчете заданного состава сплавляемой эмали (табл. 3, п. 1-3) в качестве части шихтового материала использовали механическую смесь кобальтового концентрата из техногенных отходов химического состава, мас.%: Со2Oз 45-80; SiO2 6-24; Na2O 3-11; Al2О3 3-12; Fe2О3 2-12; CaO 2-8; MnO 0,05-6,0; Cr2О3 0,05-6,0 и алюминийхромового концентрата (диалюминий триоксид и дихромтриоксид) из техногенных отходов по ТУ 3980-093-16810126-2003 химического состава, мас.%: Al2О3 60-75; Cr2O2 10-20; SiO2 2-8; К2О 2-5; Fe2O3 0,05-3,0.
Температура сплавления шихтовых материалов заявленных составов эмалей находилась в интервале 1230-1270°С против 1380°С для известной эмали (табл. 3, п.4). Составы сплавленной эмали использовали для нанесения однослойного покрытия на образцы стальных изделий из углеродистой стали с содержанием углерода 0,5%.
Испытания свойств сплавленных составов новой эмали и покрытия из нее подтвердили их высокий комплекс технологических и эксплуатационных показателей, значения которых не ниже аналогичных показателей, приведенных в таблице 2.
Помимо отмеченных преимуществ покрытия и эмали с добавками оксидов лития, хрома и ванадия имеют высокие показатели на истираемость, на устойчивость в сильных кислотных средах при прочном сцеплении с углеродистым металлом (табл. 4). Достигнутый модуль упругости и коэффициент температурного линейного расширения (107×10-7 1/°С) гарантируют сплошность эмалевого покрытия до значений упругой деформации металла изделий.
Для промышленных испытаний сплавлена эмаль, содержащая оксиды лития, хрома и ванадия, для внутреннего эмалирования толстостенных углеродистых (0,5% С) труб для насосно-компрессорных станций нефтедобывающей отрасли.
Насосно-компрессорные трубы работают в условиях разнородной по интенсивности и составам коррозионных (в том числе кислотных) и абразивных сред при больших знакопеременных нагрузках и температурных перепадов.
Эмалирование насосно-компрессорных труб составами новой эмали позволило:
- исключить отложения парафина и солей на внутренней поверхности труб;
- гарантировать стойкость эмалевого покрытия в пределах упругой деформации металла трубы;
- снизить энергетические затраты за счет уменьшения гидравлического сопротивления трубы;
- экономить затраты на ингибиторную защиту по борьбе с парафином, коррозией и солеотложениями:
- сократить затраты на профилактические обработки с целью депарафинизации скважин;
- экономить затраты за счет сокращения капитальных ремонтов скважин и оборудования;
- повысить стойкость покрытия к истиранию и абразивному износу (на установленных трубах износа под действием песка не наблюдалось).
Производство заявленных составов эмалей и их применение для покрытий металлических изделий в промышленных масштабах не требует изготовления специального оборудования, а использование техногенных отходов улучшает экологию окружающей среды и снижает энергетические и материальные затраты при производстве и эксплуатации эмалированных изделий.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент РФ №2208002.
2. А.с. СССР №451649.
3. Патент РФ №2203234.
4. WO 9835917 A1 (TECHNOLOGY PARTNERS INC), 20.08.1998.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004

Claims (2)

1. Эмаль, содержащая оксиды кремния, натрия, бора, алюминия, кальция, кобальта, марганца, лития, магния, калия, железа и фтор, отличающаяся тем, что она содержит указанные компоненты в следующем соотношении, мас.%: SiO2 37-47; Na2O 17-22; В2O3 14-21; Al2О3 5-8; CaO 1-3; Со2О3 0,6-0,9; MnO 1,0-2,5; Fe2Oз 1,5-3,0; Li2O 0,8-2,0; К2О 0,5-3,0; MgO 0,15-2,0 и F 0,5-3,0, причем для ее производства используют кобальтовые концентраты из техногенных отходов, содержащие, мас.%: Со2О3 45-80; MnO 0,05-6,0; Fe2O3 2-12; SiO2 6-24; Al2О3 3-12; CaO 2-8; Na2O 3-11; Cr2O3 0,05-6,0.
2. Эмаль, содержащая оксиды кремния, натрия, бора, алюминия, кальция, кобальта, марганца, лития, хрома, ванадия, железа и фтор, отличающаяся тем, что она содержит указанные компоненты в следующем соотношении, мас.%: SiO2 37-51; Na2O 16-24; В2O3 17-22; Al2О3 5-10; CaO 1-5; Со2O3 1,1-1,6; MnO 1-3; Fe2O3 2-4; Li2O 1-2; Cr2O3 1-3; V2О3 1-4 и F 1-4, причем для ее производства используют механическую смесь кобальтовых и алюминийхромовых концентратов из техногенных отходов, при этом в качестве кобальтового используют концентраты, содержащие, мас.%: Со2O3 45-80; MnO 0,05-6,0; Fe2O3 2-12; SiO2 6-24; Al2О3 3-12; CaO 2-8; Na2O 3-11; Cr2O3 0,05-6,0, а в качестве алюминийхромового используют концентраты диалюминий триоксида с примесью дихромтриоксида, содержащие мас.%: Al2О3 60-75; Cr2O3 10-20; SiO2 2-8; K2O 2-5; Fe2O3 0,05-3,0.
RU2003133379/03A 2003-11-18 2003-11-18 Эмаль (варианты) RU2259328C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003133379/03A RU2259328C2 (ru) 2003-11-18 2003-11-18 Эмаль (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003133379/03A RU2259328C2 (ru) 2003-11-18 2003-11-18 Эмаль (варианты)

Publications (2)

Publication Number Publication Date
RU2003133379A RU2003133379A (ru) 2005-04-20
RU2259328C2 true RU2259328C2 (ru) 2005-08-27

Family

ID=35634668

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003133379/03A RU2259328C2 (ru) 2003-11-18 2003-11-18 Эмаль (варианты)

Country Status (1)

Country Link
RU (1) RU2259328C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750530C2 (ru) * 2018-10-31 2021-06-29 Общество с ограниченной ответственностью "ХимЭмаль" Состав стеклокристаллического покрытия для стальной химической аппаратуры

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750530C2 (ru) * 2018-10-31 2021-06-29 Общество с ограниченной ответственностью "ХимЭмаль" Состав стеклокристаллического покрытия для стальной химической аппаратуры

Also Published As

Publication number Publication date
RU2003133379A (ru) 2005-04-20

Similar Documents

Publication Publication Date Title
CN106893945B (zh) 一种低温用奥氏体不锈钢及其铸件和铸件的制造方法
CS200491B2 (en) Austenitic antirusting steel alloy
CN101596583B (zh) 轴瓦轴套的离心复合制造方法
RU2259328C2 (ru) Эмаль (варианты)
CN102286706B (zh) 一种防咬合磨损的马氏体不锈钢
CN109454357A (zh) 一种镍基焊条及其制备方法
CN112609134A (zh) 一种新型奥氏体易切削不锈钢材料
CN102242319B (zh) 铬基钨镍钼高耐磨合金配方
JP2002336991A (ja) 二相ステンレス鋼のサブマージアーク溶接方法
CN104439759A (zh) 一种焊接双相不锈钢的钛钙焊条
CN1594633A (zh) 一种抗湿硫化氢应力腐蚀钢及其制备方法
JPH10287924A (ja) マルテンサイト単相のステンレス鋼管の製造方法
CN1262407A (zh) 一种可焊接双金属复合管道
WO1986007096A1 (en) Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance
CN108048755A (zh) 一种用于流体输送的高硬度耐蚀铸造不锈钢
JP4013301B2 (ja) 耐硫酸露点腐食性に優れた溶接構造用鋼及びその製造方法
JP3529946B2 (ja) 排ガス伝熱部材用フェライト系ステンレス鋼及び製造方法
JP2000178697A (ja) 耐食性と溶接性に優れたマルテンサイト系ステンレス鋼
CN1025422C (zh) 连铸辊堆焊用陶质焊剂
CA1067702A (en) Low cost method of fluidizing cupola slag (b)
KR100272191B1 (ko) 회전압축기용롤러의열처리방법
JPS61243157A (ja) 高Al耐熱合金鋼
CN109468542B (zh) 一种07Cr25Ni20Si2W奥氏体合金钢材料及其制备方法
JPS61186166A (ja) 溶接部の浸炭防止法
WO2022138572A1 (ja) 耐食性・溶接性・耐酸化性に優れるFe-Ni-Cr合金とその製造方法

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20051220

PC41 Official registration of the transfer of exclusive right

Effective date: 20110331

MM4A The patent is invalid due to non-payment of fees

Effective date: 20121119

BF4A Cancelling a publication of earlier date [patents]

Free format text: PUBLICATION IN JOURNAL SHOULD BE CANCELLED

MM4A The patent is invalid due to non-payment of fees

Effective date: 20171119