RU2251591C2 - Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки холла - Google Patents

Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки холла Download PDF

Info

Publication number
RU2251591C2
RU2251591C2 RU2002113645/02A RU2002113645A RU2251591C2 RU 2251591 C2 RU2251591 C2 RU 2251591C2 RU 2002113645/02 A RU2002113645/02 A RU 2002113645/02A RU 2002113645 A RU2002113645 A RU 2002113645A RU 2251591 C2 RU2251591 C2 RU 2251591C2
Authority
RU
Russia
Prior art keywords
inert anode
anode according
metal
phase
cermet
Prior art date
Application number
RU2002113645/02A
Other languages
English (en)
Other versions
RU2002113645A (ru
Inventor
Сиба П. РЭЙ (US)
Сиба П. РЭЙ
Ксингхуа ЛИУ (US)
Ксингхуа ЛИУ
Дуглас А. Младший УАЙРОХ (US)
Дуглас А. Младший УАЙРОХ
Original Assignee
Алкоа Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/428,004 external-priority patent/US6162334A/en
Priority claimed from US09/431,756 external-priority patent/US6217739B1/en
Application filed by Алкоа Инк. filed Critical Алкоа Инк.
Publication of RU2002113645A publication Critical patent/RU2002113645A/ru
Application granted granted Critical
Publication of RU2251591C2 publication Critical patent/RU2251591C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Изобретение относится к области металлургии, а именно к электролитическому получению металлов, например алюминия. Предложены варианты керметных инертных анодов, используемых при электролитическом получении металлов в ванне электролитической ячейки Холла, содержащие металлическую фазу и керамическую фазу, включающую оксид никеля и оксид железа, при этом керамическая фаза дополнительно может содержать оксид цинка или кобальта при следующем соотношении компонентов, мол.%: NiO от 20 до 99, Fe2O3 от 0,01 до 80, ZnO от 0,01 до 30 или NiO от 25 до 55, Fe2О3 от 45 до 55, СоО до 20. Металлическая фаза может содержать в качестве основного металла Cu и, по меньшей мере, один благородный металл, выбранный из Ag, Pd, Pt, Au, Rh, Ru, Ir, Os, или Ag и, по меньшей мере, один благородный металл, выбранный из Pd, Pt, Au, Rh, Ru, Ir, Os. Технический результат - получение керметного инертного анода, обладающего хорошей механической прочностью, коррозионной стойкостью, термостабильностью при температуре около 1000°С, высокой электропроводностью при температурах процесса плавления в камере, чтобы падение напряжения на аноде было низким, а также обеспечивающего получение алюминия высокой чистоты по примесям железа, меди и/или никеля. 3 с. и 46 з.п. ф-лы, 11 ил., 7 табл.

Description

Настоящее изобретение относится к электролитическому способу получения металлов, например алюминия. Более конкретно, изобретение относится к электролизу в камере, в которой имеется инертный анод из металлокерамики (керметный), содержащий керамическую фазу и металлическую фазу.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Энергетические и финансовые затраты на выплавление алюминия могут быть существенно снижены за счет применения инертных, не подвергающихся расходованию и стабильных в пространственном отношении анодов. Замена традиционных угольных анодов инертными анодами в камере обеспечивает высокую производительность процесса и вследствие этого уменьшение капитальных затрат. Такая замена существенно улучшает состояние окружающей среды, поскольку инертные аноды практически не дают выделения СO2 или CF4. Другие примеры составов инертных анодов представлены в патентах US №№4374050, 437461, 4399008, 4455211, 4582585, 4584172, 4620905, 5279715, 5794112 и 5865980, поданных заявителем данной заявки. Все эти патенты включены здесь как ссылки.
В качестве аналога включен патент США (US) 43997723, в котором описан керметный анод, используемый при электролитическом получении металлов в ванне расплава солей (в ванне электролитической ячейки), материал которого содержит металлическую и керамическую фазу, включающую оксид никеля и оксид железа.
Существенной проблемой при стремлении извлечь коммерческую выгоду в результате разработки и производства инертных анодов является анодный материал. Еще с тех пор, как стал известен метод Hall-Heroult'a, ученые ведут поиск подходящих материалов для инертных анодов. Материал для анода должен соответствовать целому ряду серьезных условий. Например, этот материал не должен растворяться (разрушаться) до какой-либо существенной степени в криолитовом электролите или вступать с ним в реакцию. Он не должен взаимодействовать с кислородом или подвергаться коррозии в атмосфере, содержащей кислород. Он должен быть термостабилен при температурах около 1000°С. Он должен быть относительно недорогим и обладать хорошей механической прочностью. Он должен обладать высокой электропроводностью при температурах процесса плавления в камере, например, около 900-1000°С, так, чтобы падение напряжения на аноде было низким.
Помимо вышеперечисленных условий, алюминий, полученный с использованием таких инертных анодов, не должен быть в заметной степени загрязнен примесями веществ, входящих в состав анода. Несмотря на то что применение инертных анодов в камерах для электролитического восстановления алюминия предлагалось еще в прошлые годы, использование таких инертных анодов еще не было реализовано с коммерческой целью. Одна причина нереализованности данной технологии заключается в том, что долгие годы не могли наладить производство алюминия с использованием инертных анодов, которое обеспечивало бы надлежащую с коммерческой точки зрения степень его чистоты. Например, было установлено, что уровень загрязнений Fe, Сu и/или Ni в алюминии, полученном с помощью известных инертных анодных материалов, оказался неожиданно высоким.
В связи с вышеизложенным и для устранения других недостатков предшествующего уровня техники было разработано настоящее изобретение.
РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Данное изобретение касается инертного анода, включающего керамическую фазу и металлическую фазу. Керамическая фаза предпочтительно включает оксиды железа, никеля и, по крайней мере, еще одного металла, такого как цинк или кобальт. Металлическая фаза предпочтительно включает, по крайней мере, один металл, выбранный из Сu, Ag, Pd, Pt, Au, Rh, Ru, Ir и Os.
Задача изобретения - разработать состав керметного инертного анода, пригодный для использования в ванне с расплавленной солью, представляющую собой ванну электролитической ячейки Холла. Этот состав включает, по меньшей мере, одну керамическую фазу формулы NixFe2yMzO(3y+x+z)±δ, где М представляет собой, по крайней мере, один металл, выбранный из Zn, Co, Аl, Li, Сu, Ti, V, Cr, Zr, Nb, Та, W, Mo, Hf и редкоземельных элементов, х равен от приблизительно 0,1 до приблизительно 0,99, у равен от приблизительно 0,0001 до приблизительно 0,9, a z равен от приблизительно 0,0001 до приблизительно 0,5. Стехиометрия кислорода может варьировать под влиянием фактора δ, который может изменяться от 0 до 0,3. В этой формуле кислород может быть частично замещен F и/или N. Состав керметного инертного анода включает также по меньшей мере одну металлическую фазу. Предпочтительная металлическая фаза включает Сu и/или Ag и может также содержать, по меньшей мере, один из благородных металлов, выбранный из Pd, Pt, Au, Rh, Ru, Ir и Os.
Другой аспект данного изобретения - способ приготовления композиции керметного инертного анода. Способ включает стадии смешивания, по меньшей мере, одного металла с керамическим материалом формулы NixFe2yMzO(3y+x+z)±δ, где М - по крайней мере, один металл, выбранный из Zn, Co, Al, Li, Сu, Ti, V, Сr, Zr, Nb, Та, W, Mb, Hf и редкоземельных элементов, х равен от приблизительно 0,1 до приблизительно 0,99, у равен от приблизительно 0,0001 до приблизительно 0,9, z равен от приблизительно 0,0001 до приблизительно 0,5, а δ равно от 0 до приблизительно 0,3, прессования смеси и спекания смеси.
Преимущества изобретения могут быть установлены специалистами в данной области исходя из нижеследующего подробного описания.
На фиг.1 показано схематическое изображение сечения капсулы для электролитического получения алюминия, включающей керметный инертный анод согласно воплощению настоящего изобретения.
На фиг.2 представлена фазовая диаграмма состояния для трехкомпонентной системы, показывающая диапазоны содержания оксидов никеля, железа и цинка, используемые в составах для инертных анодов при осуществлении настоящего изобретения.
На фиг.3 представлена фазовая диаграмма состояния для трехкомпонентной системы, дающая представление о количествах оксидов никеля, железа и цинка, использованных в определенных составах для инертных анодов при осуществлении настоящего изобретения.
На фиг.4 представлен график, показывающий конкретные количества (в мас.%) растворенных металлов в ванне электролитической ячейки Холла, используемой обычно при производстве алюминия в электролизной камере, после того как аноды, содержащие в своем составе оксид никеля, оксид железа и различные количества оксида цинка, были подвергнуты воздействию в упомянутой ванне.
На фиг.5 и 6 представлены графики, показывающие конкретные количества (в мас.%) растворенных оксидов в ванне электролитической ячейки Холла (ванне расплава солей), обычно применяемой в камере для электролитического восстановления алюминия, после того, как анодные составы, содержащие оксид никеля, оксид железа и различные количества оксида цинка, были подвергнуты воздействию в упомянутой ванне электролитической ячейки.
На фиг.7 показана вычерченная диаграмма для растворенных оксидов NiO, Fe2О3 и ZnO в стандартной ванне электролитической ячейки восстановления алюминия для различных по количественному составу Ni-Fe-Zn-O-содержащих анодных материалов.
На фиг.8 показана вычерченная диаграмма растворимости NiO в стандартной ванне электролитической ячейки для восстановления алюминия для различных по количественному составу Ni-Fe-Zn-O-содержащих анодных материалов.
На фиг.9 представлена фазовая диаграмма состояния для трехкомпонентной системы, показывающая количественные диапазоны оксидов никеля, железа и кобальта, используемые в составах инертных анодов согласно другому варианту осуществления данного изобретения.
На фиг.10 представлена фазовая диаграмма состояния для трехкомпонентной системы, иллюстрирующая конкретные количества оксидов никеля, железа и кобальта, используемые в определенных составах для инертных анодов при осуществлении настоящего изобретения.
На фиг.11 представлен график, показывающий примеры конкретных количеств (в мас.%) растворенных оксидов железа, кобальта и никеля в соляной бане, обычно используемой при производстве алюминия в электролизной камере, после того как аноды, содержащие в своем составе оксид никеля, оксид железа и различные количества оксида кобальта, были подвергнуты воздействию в ванне электролитической ячейки.
Фиг.1 схематически иллюстрирует электролитическую камеру для получения алюминия, которая содержит керметный инертный анод в соответствии с настоящим изобретением. Камера включает внутренний тигель 10 внутри защитного тигля 20. Криолитовая ванна электролитической ячейки 30 находится внутри внутреннего тигля 10, а катод 40 находится в самой ванне 30. В ванне 30 размещен также и керметный инертный анод 50. Трубопровод 60 для загрузки алюминия частично располагается внутри внутреннего тигля 10, размещаясь над ванной 30. Катод 40 и инертный анод 50 находятся друг от друга на расстоянии 70, называемом анодно-катодным пространством (АСД). Алюминий 80, полученный за одну операцию (один прогон), скапливается на катоде 40 и на дне тигля 10. Керметные инертные аноды данного изобретения могут применяться для производства алюминия и других металлов, например, свинца, магния, цинка, циркония, титана, лития, кальция, кремния, бария, стронция, скандия, ниобия, ванадия, тантала, олова, германия, индия, гафния, молибдена и др. путем электролитического восстановления оксида или другой соли металла.
В соответствии с используемым здесь значением термин “инертный анод” означает практически нерасходуемый анод, который обладает удовлетворительной устойчивостью в отношении коррозии и стабильностью в течение процесса получения алюминия. По крайней мере, часть инертного анода включает керметный материал настоящего изобретения. Например, инертный анод может быть полностью изготовлен из заявляемого здесь керметного материала или же может содержать поверхностное покрытие или слой из керметного материала поверх внутренней, сердцевидной части. Если кермет применяется в виде покрытия на наружной поверхности, предпочтительно, чтобы толщина его была от 0,1 до 50 мм, более предпочтительно - от 1 до 10 или 20 мм.
Используемый здесь термин “алюминий коммерческой степени чистоты” означает алюминий, который соответствует коммерческим стандартам чистоты при производстве способом электролитического восстановления. Алюминий коммерческой степени чистоты, производимый с использованием керметных инертных анодов настоящего изобретения, предпочтительно содержит максимум 0,2 мас.% Fe, 0,1 мас.% Сu и 0,034 мас.% Ni. В более предпочтительном варианте алюминий с коммерческой степенью чистоты содержит максимум 0,15 мас.% Fe, 0,034 мас.% Сu и 0,03 мас.% Ni. В еще более предпочтительном варианте алюминий с коммерческой степенью чистоты содержит максимум 0,13 мас.% Fe, 0,03 мас.% Сu и 0,03 мас.% Ni. Алюминий коммерческой степени чистоты также предпочтительно соответствует следующим стандартам количественного содержания других типов примесей (в мас. процентах): Si – максимально 0,2, Zn - максимально 0,03, Со - максимально 0,034. Более предпочтительно, когда уровни содержания примесей Zn и Со поддерживаются ниже 0,03 мас.% для каждой примеси. Более предпочтительным является поддержание уровня содержания Si ниже 0,15 или 0,10 мас.%
Составы для инертных анодов настоящего изобретения обычно содержат от приблизительно 1 до приблизительно 99,9 мас.%, по меньшей мере, одной керамической фазы и от приблизительно 0,1 до приблизительно 99 мас.%, по меньшей мере, одной металлической фазы. Керамическая фаза предпочтительно включает от около 50 до около 95 мас.% керметного материала, а металлическая фаза включает от около 5 до около 50 мас.% кермета. Более предпочтительно керамическая фаза включает от около 80 до около 90 мас.% кермета, а металлическая фаза включает от около 10 до около 20 мас.% (кермета). Отметим, что для каждого указанного здесь количественного диапазона или предела все количественные значения внутри этого диапазона или по направлению к указанным пределам, включая каждую (простую) или десятичную дробь внутри установленных их минимальных и максимальным значений, считаются обозначенными (указанными) и раскрытыми в данном описании.
Керамическая фаза предпочтительно содержит оксиды железа и никеля и, по крайней мере, еще один оксид, например, оксид цинка и/или оксид кобальта. Керамическая фаза предпочтительно имеет формулу NixFe2yMzO(3y+x+z)±δ, где М - по крайней мере, один металл, выбранный из Zn, Co, Al, Li, Сu, Ti, V, Cr, Zr, Mb, Та, W, Mo, Hf и редкоземельных элементов, предпочтительно, Zn и/или Со, х равен от приблизительно 0,1 до приблизительно 0,99, у равен от приблизительно 0,0001 до приблизительно 0,9, a z равен от приблизительно 0,0001 до приблизительно 0,5. В вышеприведенной формуле стехиометрия кислорода не обязательно равна 3у+х+z, но может немного отклоняться в ту или иную сторону, в зависимости от, например, условий обжига, выражаемых через фактор 5. Величина 5 может варьировать от 0 до приблизительно 0,3, предпочтительно от 0 до около 0,2.
В предпочтительном варианте изобретения керамическая фаза включает оксид железа, никеля и цинка. В этом варианте керамическая фаза включает оксиды никеля, железа и цинка и соответствует формуле NixFe2yMzO(3y+x+z)±δ, где х - мольная доля NiO, у – мольный % Fе2О3, Z – мольный % ZnO.
В этом варианте мольный % NiO обычно варьирует от ~0,2 до ~0,99, мольный % Fе2О3 обычно варьирует от ~0,0001 до ~0,3.
В предпочтительной композиции мольная доля NiO варьирует от ~0,45 до ~0,8, мольный % Fе2О3 варьирует от ~0,05 до ~0.499, а мольный % ZnO варьирует от ~0,001 до ~0,26. В более предпочтительной композиции мольная доля NiO варьирует от ~0,45 до ~0,65, мольный % Fе2O3 варьирует от ~0,2 до ~0,49, а мольный % ZnO варьирует от ~0,001 до ~0,22.
В таблице 1 приведены диапазоны обычных, предпочтительных и более предпочтительных значений NiO, Fе2О3 и ZnO. Перечисленные мольные доли могут быть умножены на 100 для перевода в мольные проценты. Внутри этих диапазонов растворимость составляющих оксидов в растворе электролитов существенно уменьшена. Полагают, что более низкая растворимость оксидов в растворе электролитов ведет к повышению чистоты произведенного в этом растворе алюминия.
Таблица 1
Мольные % NiO, Fе2O3 и ZnO
  NiO 2O3 ZnO
Обычные 0,2-0,99 0,0001-0,8 0,0001-0,3
Предпочтительные 0,45-0,8 0,05-0,499 0,001-0,26
Более предпочтительные 0,45-0,65 0,2-0,49 0,001-0,22
На фиг.2 представлена фазовая диаграмма состояния для трехкомпонентной системы, показывающая обычные, предпочтительные и более предпочтительные диапазоны содержания исходных NiO, Fe2O3 и ZnO, используемых для получения составов для инертных анодов согласно этому варианту осуществления настоящего изобретения. Несмотря на то, что мольные проценты, показанные на фиг.2, касаются NiO, Fе2O3 и ZnO как исходных материалов, в качестве исходных могут использоваться и другие оксиды никеля, железа и цинка, а также иные соединения, образующие оксиды при прокаливании.
В таблице 2 перечислены некоторые трехкомпонентные Ni-Fe-Zn-O-материалы, которые могут подходить для использования в качестве керамической фазы заявленных керметных инертных анодов, а также некоторые материалы для сравнения. В дополнение к фазам, перечисленным в таблице 2, могут присутствовать минорные или следовые количества других фаз.
Таблица 2
Ni-Fe-Zn-O-композиции.
Образец I.D. Заданная композиция Определенные масс. проценты для элементов Fe, Ni, Zn Типы структур (определенные с помощью дифракции в рентгеновских лучах)
5412 NiF2O4 48, 23.0, 0.15 NiF2O4
5324 NiFe2O4+NiO 34, 36, 0.06 NiFe2O4, NiO
Е4 Zn0.05Ni0.95Fe2O4 43, 22, 1.4 NiF2O4
Е3 Zn0.1Ni0.9Fe2O4 43, 20, 2.7 NiF2O4
Е2 Zn0.25Ni0.75Fe2O4 40, 15, 5.9 NiF2O4
E1 Zn0.25Ni0.75Fe1.9O4 45, 18, 7.8 NiF2O4
E Zn0.5Ni0.5Fe2O4 45, 12,13 (ZnNi)Fe2O4, ZnOS
F ZnFe2O4 43, 0.03, 24 ZnFe2O4, ZnO
H Zn0.05NiFe1.5O4 33, 23, 13. (ZnNi)Fe2O4, NiOS
J Zn0.05Ni1.5FeO4 26, 39.10 NiFe2O4, NiO
L ZnNiFeO4 22, 23. 27 (ZnNi)Fe2O4, NiOS, ZnO
ZD6 Zn0.05Ni1.05Fe1.9O4 40, 24, 1.3 NiF2O4
ZD5 Zn0.1Ni1.1Fe1.8O4 29, 18, 2.3 NiF2O4
ZD3 Zn0.12Ni0.94Fe1.88O4 43. 23, 3.2 NiF2O4
ZD1 Zn0.5Ni0.75Fe1.5O4 40, 20, 11 (ZnNi)Fe2O4
DH Zn0.18Ni0.96Fe1.8O4 42, 23, 4.9 NiF2O4, NiO
DI Zn0.08Ni1.17Fe1.5O4 38, 30, 2.4 NiF2O4, NiO
DJ Zn0.17Ni1.1Fe1.5O4 36, 29, 4.8 NiF2O4, NiO
BC2 Zn0.33Ni0.67O 0.11, 52, 25 NiOS
S означает сдвинутый пик.
На фиг.3 представлена фазовая диаграмма состояния для трехкомпонентной системы, показывающая количества исходных NiO, Fе2O3 и ZnO, используемых для получения составов, перечисленных в таблице 2, которые могут использоваться как керамическая фаза (фазы) керметных инертных анодов. Такие инертные аноды могут, в свою очередь, использоваться для получения алюминия с коммерческой степенью чистоты (5) в соответствии с настоящим изобретением.
Ni-Fe-Zn-O-композиции, перечисленные в таблице 2 и показанные на фиг.3, могут быть получены и опробованы, как указано ниже. Порошкообразные оксиды могут быть получены химическим методом мокрого измельчения или традиционными рентабельными способами. Исходные химические вещества включают один или смесь солей - оксидов, хлоридов, ацетатов, нитратов, тартратов, цитратов и сульфатов Ni, Fe и Zn. Эти предшественники являются продажными препаратами от Aldrich и Fisher. Гомогенный раствор может быть приготовлен путем растворения желаемых количеств химикатов в деионизированной воде. рН раствора доводят до 6-9 добавлением гидроксида аммония при перемешивании. Предпочтителен рН от 7 до 8. Вязкий раствор высушивают в печи, сушкой замораживанием, сушкой распылением и т.п. Получившееся в результате твердое вещество является аморфным. Кристаллические порошкообразные оксиды получают прокаливанием сухого твердого остатка, например, при температуре от 600 до 800°С в течение 2 часов. Порошки оксидов затем прессуют - одноосно или изостатически - для придания грануловидной формы под давлением от 68947,6 до 206842,8 кПа, обычно - 137895,2 кПа. Отпрессованные гранулы подвергают спеканию в воздухе при температуре 1000-1500°С, обычно - 1200°С, в течение 2-4 часов. Кристаллический тип структуры и состав спекшихся оксидных гранул можно исследовать с помощью дифракции 20 в рентгеновских лучах (XRD) и индуктивно-связанных плазменных методов (ICP).
Была исследована растворимость Ni-Fe-Zn-O составов керамической фазы. Растворимость каждой керамической смеси определяли путем выдерживания приблизительно 3 г подвергнутых спеканию гранул оксидов в 160 г стандартной криолитической ванне электролитической ячейке при 960°С в течение 96 часов. Стандартная ванна находилась в тигле из платины, ее готовили, загрузив NaF, AlF, Greenland криолит, CaF2 и Аl2О3 так, чтобы NaF:АlF3=1,1 Аl2О3=5 мас.%, СаF2=5 мас.% В этих опытах над ванной электролитической ячейки пропускали сухой воздух с невысокой скоростью 100 см3/мин и барботировали его в солевой расплав, поддерживая условия для окисления. Периодически отбирали пробы расплава для анализа химической среды в упомянутой ванне.
На фиг.4 показаны уровни содержания примесей Fe, Zn и Ni, измеряемые периодически для состава Е3. Спустя 50 часов растворимость Fe была 0,075 мас.%, соответствующая растворимости Fе2О3, равной 0,1065 мас.% Растворимость Zn была 0,008 мас.%, что соответствует растворимости ZnO, равной 0,010 мас.% Растворимость Ni была 0,004 мас.%, что соответствует растворимости NiO, равной 0,005 мас.%
При использовании вышеуказанного способа определения растворимости доля всех растворенных оксидов предпочтительно ниже 0,1 мас.%, более предпочтительно - ниже 0,08 мас.% Количество всех растворенных оксидов, т.е. Fе2О3, NiO и ZnO, при измерении вышеописанным способом, определяют здесь как “растворимость в растворе ванны ячейки Холла (Hall)”. Растворимость в растворе ванны ячейки Наll’а предпочтительно ниже, чем растворимость стехиометрического феррита никеля.
В таблице 3 перечислены заданные составы каждого тестируемого образца керамической фазы, средняя доля в масс. процентах растворенного металла (Fe, Ni и Zn) в растворе электролитов и средняя доля в масс. процентах растворенного оксида (Fе2O3, NiO и ZnO) в растворе электролитов. Уровни содержания растворенных металлов и оксидов определяли после того, как композиция в ванне достигала насыщения компонентами исследуемых образцов оксидов. Результаты также выражают в виде величин, характеризующих насыщение расплава оксидами. Общее содержание растворенных оксидов в растворе представляет собой сумму величин насыщения оксидами, причем низкое содержание всех растворенных оксидов желательно.
Таблица 3
Растворимость керамической фазы в стандартном солевом растворе при 960°C
Заданный состав Образец ID Средняя масс. доля в % растворенного металла Средняя масс.доля в % растворенного оксида
Ni Zn FeA NiO ZnO Total
NiO X 0.014* 0.032 <0.004* 0.020* 0.041 0.006* 0.068
Fe2O3 Z 0.097 na na 0.139 0.003* 0.006* 0.148
NiFe2O4 5412 (D) 0.052 0.009 0.004 0.074 0.011 0.005* 0.090
NiFe2O4+NiO 5324 0.033 0.018 <0.004* 0.047 0.023 0.006* 0.076
ZnO Y na na 0.082 0.020* 0.003* 0.102 0.125
ZnO Y na na 0.085 0.020* 0.003* 0.106 0.129
ZnFe2O4 F 0.075 na 0.039 0.107 0.003* 0.049 0.159
ZnFe2O4 F 0.087 0.001* 0.052 0.124 0.001 0.065 0.190
Ni0.67Zn0.33O BC2 na 0.033 0.053 0.020* 0.042 0.066 0.128
Ni0.67Zn0.33O BC2 na 0.011 0.056 0.020* 0.014 0.070 0.104
Ni0.5Zn0.5Fe2O4 E 0.086 0,002 0.031 0.123 0.003 0.038 0.164
Ni0.75Zn0.25Fe1.90O4 E1 0.086 0.005 0.022 0.123 0.006 0.027 0.156
Ni0.75Zn0.25Fe2O4 E2 0.082 0.004 0.018 0.117 0.005 0.022 0.144
Ni0.90Zn0.10Fe2O4 E3 0.075 0.004 0.008 0.107 0.005 0.010 0.122
Ni0.95Zn0.05Fe2O4 34 0.070 0.004 0.005 0.100 0.006 0.006 0.112
NiZnFeO4 L 0.006 0.004 0.102 0.009 0.005 0.127 0.141
Заданный состав Образец ID Средняя масс. доля в % растворенного металла Средняя масс. доля в % растворенного оксида
Fe Ni Zn FeA NiO ZnO Total
NiZn0.5Fe1.5O4 Н 0.018 0.011 0.052 0.026 0.014 0.065 0.105
Ni1.5Zn0.5FeO4 J 0.011 0.007 0.029 0.016 0.009 0.036 0.061
Ni1.05Zn0.05Fe1.9O4 ZD6 0.049 0.004 0.008 0.070 0.004 0.008 0.085
NiFe1.5O4+5% ZnO - 0.054 0.005 0.014 0.077** 0.006 0.017** 0.100
Ni0.95Zn0.12Fe1.9O4 - 0.034 0.008 0.014 0.049 0.010 0.018 0.077
Ni0.94Zn0.12Fe1.88O4 ZD3 0.062** 0.005 0.010 0.089** 0.006 0.012 >0.107
Ni0.94Zn0.12Fe1.88O4 ZD3 0.044** 0.005 0.019 0.063** 0.006 0.024 >0.093
Ni1.17Zn0.08Fe1.50O4 D1 0.019 0.012 0.009 0.027 0.015 0.011 0.053
Ni0.75Zn0.50Fe1.50O4 ZD1 0.052 0.065 0.042 0.074 0.008 0.052 0.134
Ni0.10Zn0.17Fe1.50O4 DJ 0.024 0.004 0.014 0.034 0.005 0.017 0.056
Ni0.96Zn0.17Fe1.50O4 DH 0.044 0.007 0.022 0.063 0.009 0.027 0.099
Ni1.10Zn0.10Fe1.80O4 ZD5 0.039 0.006 0.012 0.056 0.0076 0.015 0.079
Примечание: nа - не анализировали,
* означает при фоновом уровне содержания соли,
** означает недостижение степени насыщения спустя 96 часов.
Фиг.5 и 6 графически иллюстрируют количество растворенных оксидов для образцов, включающих различные количества NiO, Fе2О3 и ZnO. Составы, показанные на фиг.5, показывают очень низкую степень растворения оксидов, особенно составы, содержащие от 1 до 30 мольных процентов ZnO. Концентрации оксида цинка от 5 до 25% мол. соответствуют исключительно низкой растворимости оксидов. Составы, показанные на фиг.5, расположены сверху вниз вдоль линии от точки ВС2 к точке D на фиг.3. Составы, показанные на фиг.6, обладают более высокой растворимостью оксидов по сравнению с составами фиг.5. Составы фиг.6 расположены сверху вниз вдоль срединной (вертикальной) линии от точки F к точке D на фиг.3. В отличие от композиций, “падающих” вдоль линии BC2-D, те, что расположены вдоль линии D-F, не показывают минимума растворимости оксидов, как проиллюстрировано на фиг.6. Общее содержание растворенных оксидов в растворе увеличивается, так как композиция оксида движется от NiFe2O4 к ZnFe2O4. Составы оксидов улучшенного качества настоящего изобретения, которые показывают существенно более низкую растворимость в электролитах, показаны в зонах композиций фиг.2.
Имеющееся в продаже программное обеспечение (JMR) использовали для подгонки контуров результатов, характеризующих растворимость, перечисленных в таблице 3. Фиг.7 представляет собой график всех растворимых оксидов (NiO, Fе3О3 и ZnO) для керамических составов, включающих различные количества NiO, Fе3О3 и ZnO. Область, в которой уровень всех растворенных оксидов ниже 0,10 мас.%, показана на фиг.7, а также и область, в которой уровень всех растворенных оксидов меньше 0,075 мас.%
Фиг.8 представляет собой график для растворенного NiO для составов керамической фазы, включающих различные количества NiO, Fе3О3 и ZnO. Как показано в нижнем правом углу диаграммы фиг.8, керамические составы, которые обогащены NiO, дают самые высокие уровни растворенного NiO. Например, области, в которых уровни растворенного NiO гораздо выше, чем 0,025, 0,030, 0,035 и 0,040 мас.%, показаны на фиг.8. Такие высокие уровни растворенного NiO особенно неблагоприятны в процессе производства алюминия с коммерческой степенью чистоты из-за норм коммерческой чистоты, которые диктуют, что максимально допустимые количества примесей никеля находятся в очень узком интервале значений, например, максимально 0,03 или 0,34 мас.% Ni. Предпочтительные составы керамической фазы данного изобретения не только показывают существенно пониженные величины общей растворимости оксидов, но и показывают также существенно пониженные величины растворимости NiO.
В другом варианте данного изобретения керамическая фаза керметного материала включает оксиды железа, никеля и кобальта. В этом варианте керамическая фаза предпочтительно включает оксид никеля, железа и кобальта и соответствует формуле NixFe2yMzO(3y+x+z)±δ. В вышеприведенной формуле стехиометрия кислорода не обязательно равна 3у+x+z, но может немного отклоняться в ту или иную сторону, в зависимости от, например, условий обжига, выражаемых через фактор δ. Величина δ может варьировать от 0 до приблизительно 0,3, предпочтительно от 0 до около 0,2.
В этом варианте мольная доля NiO обычно варьирует от ~0,15 до ~0,99, мольная доля Fe2O3 обычно варьирует от ~0,0001 до ~0,85, а мольная доля СоО обычно варьирует от ~0,0001 до ~0,45. В предпочтительной композиции мольная доля NiO варьирует от ~0,15 до ~0,6, мольная доля Fе2О3 варьирует от ~0,4 до ~0,6, а мольная доля СоО варьирует от ~0,001 до ~0,25. В более предпочтительной композиции мольная доля NiO варьирует от ~0,25 до ~0,55, мольная доля Fе2O3 варьирует от ~0,45 до ~0,55, а мольная доля СоО варьирует от ~0,001 до ~0,2. В таблице 4 приведены диапазоны обычных, предпочтительных и более предпочтительных значений NiO, Fе2О3 и СоО. Перечисленные мольные доли могут быть умножены на 100 для перевода в мольные проценты. Внутри этих диапазонов растворимость составляющих оксидов в растворе электролитов существенно уменьшена. Полагают, что более низкая растворимость оксидов в растворе электролитов ведет к повышению чистоты произведенного в этом растворе алюминия.
Таблица 4
Мольные % NiO, Fе2О3 и СоО
  NiO 2O3 СоО
Обычные 0,15-0,99 0,0001-0,85 0,0001-0,45
Предпочтительные 0,15-0,6 0,4-0,6 0,001-0,25
Более предпочтительные 0,25-0,55 0,45-0,55 0,001-0,2
На фиг.9 представлена фазовая диаграмма состояния для трехкомпонентной системы, показывающая обычные, предпочтительные и более предпочтительные диапазоны содержания исходных NiO, Fе2О3 и СоО, используемых для получения составов для инертных анодов согласно этому варианту осуществления настоящего изобретения. Несмотря на то что мольные проценты, показанные на фиг.9, касаются NiO, Fе2O3 и СоО как исходных материалов, в качестве исходных могут использоваться и другие оксиды никеля, железа и кобальта, а также иные соединения, образующие оксиды при прокаливании.
В таблице 5 перечислены некоторые Ni-Fe-Co-O-материалы, которые могут подходить для использования в качестве керамической фазы заявленных керметных инертных анодов, а также Co-Fe-O и Ni-Fe-O материалы для сравнения. В дополнение к фазам, перечисленным в таблице 5, могут присутствовать незначительные или следовые количества других фаз.
Figure 00000002
На фиг.10 представлена фазовая диаграмма состояния для трехкомпонентной системы, показывающая количества исходных NiO, Fе2О3 и СоО, используемых для получения составов, перечисленных в таблице 2, которые могут использоваться как керамическая фаза (фазы) керметных инертных анодов. Такие инертные аноды могут, в свою очередь, использоваться для получения алюминия с коммерческой степенью чистоты в соответствии с настоящим изобретением.
Растворимость Ni-Fe-Co-O составов керамической фазы определяли путем выдерживания приблизительно 3 г подвергнутых спеканию гранул оксидов в соляной бане с 160 г стандартного расплава криолита при 960°С в течение 96 часов. Стандартная ванна электролитической ячейки находилась в тигле из платины, ее готовили, загрузив NaF, АlF3, Greenland криолит, CaF2 и Аl2О3 так, чтобы NaF: АlF3=1,1, Аl2О3=5 мас.%, CaF2=5 мас.% Над соляной баней пропускали сухой воздух с невысокой скоростью 100 см3/мин, а также барботировали его в расплав солей, поддерживая условия для окисления. Периодически отбирали пробы расплава для анализа химической среды в ванне. При использовании вышеуказанного способа определения растворимости доля всех растворенных оксидов предпочтительно ниже 0,1 мас.%, более предпочтительно - ниже 0,08 мас.% Растворимость в расплаве ванны ячейки Холла, т.е. количество всех растворенных оксидов Fе2O3, NiO и Со3O4, при измерении вышеописанным способом предпочтительно ниже, чем растворимость стехиометрического феррита никеля.
В таблице 6 указаны величины растворимости в расплаве ванны ячейки Холла для Ni-Fe-Co-O-составляющих керамической фазы данного изобретения в сравнении с величинами растворимости композиций из феррита никеля и феррита кобальта. Уровни растворимости, приведенные в таблице 6, определяли после того, как композиция в бане достигала насыщения. Содержание всех растворенных оксидов в каждом расплаве представляет собой сумму величин насыщения оксидами, причем низкое содержание всех растворенных оксидов желательно.
Таблица 6
  Растворимости оксидов
  Насыщение в расплаве (в масс. процентах)
Образец I.D. Заданная композиция Nio Fe2O3 Со3О4 Всего
CF CoFe2O4 0.003 0.110 0.055 0.168
NCF1 Ni0.5Co0.5Fe2O4 0.005 0.089 0.026 0.120
NCF3 Ni0.7Co0.3Fe195O4 0.006 0.040 0.007 0.053
NCF4 Ni0.85Co0.15Fe1.95O4 0.011 0.056 0.006 0.073
NCF5 Ni0.8Co0.3Fe1.9O4 0.006 0.086 0.017 0.109
NF NiFe2O4 0.011 0.074 <0.001 0.085
NF NiFe2O4 0.010 0.090 <0.001 0.10
На фиг.11 показаны уровни растворимости оксидов Fe, Co и Ni, представленные в таблице 6. Составы керамической фазы настоящего изобретения, перечисленные в таблице 6 и показанные на фиг.11, демонстрируют очень низкие величины растворимости оксидов, особенно - составы NCF3 и NCF4, у которых растворимости в расплаве ячейки Холла менее 0,08 мас.% от общего содержания растворенных оксидов.
Помимо вышеописанных материалов, составляющих керамическую фазу, керметные инертные аноды настоящего изобретения включают, по крайней мере, одну металлическую фазу.
Металлическая фаза может быть сплошной и несплошной и предпочтительно содержит неблагородный металл (основной металл сплава) и, по меньшей мере, один благородный металл. Если металлическая фаза является сплошной (непрерывной) она образует содержащую внутренние связи сеть или каркас, которые могут существенно повышать удельную электропроводность керметного анода. Если металлическая фаза является несплошной, дискретные частицы металла, по крайней мере, частично окружены керамической фазой (фазами), что может повышать противокоррозионную устойчивость керметного анода.
Предпочтительными основными металлами металлической фазы являются медь и серебро. Тем не менее, и другие металлы могут в каких-то случаях использоваться для полной или частичной замены меди или серебра. Кроме того, в качестве легирующих добавок к основному металлу или металлической фазе в сплав могут быть добавлены такие металлы Со, Ni, Fe, Al, Sn, Nb, Та, Сr, Мо, W. Эти металлы, относящиеся к основе сплава, могут быть использованы как индивидуальные металлы или легирующие порошкообразные добавки, так и в виде оксидов или других соединений, например, CuO, Cu2O и т.п.
Благородный металл металлической фазы предпочтительно представляет собой, по меньшей мере, один металл, выбранный из Ag, Pd, Pt, Au, Rh, Ru, Ir и Os. Более предпочтительно, когда благородный металл представляет собой Ag, Pd, Pt, Ag и/или Rh. Наиболее предпочтительно, когда благородный металл представляет собой Ag, Pd или их сочетание. Благородный металл может применяться как индивидуально или в виде легирующей порошкообразной добавки металла, так и в виде оксидов или других соединений этих металлов, например, оксида серебра, оксида палладия и т.д.
В предпочтительном варианте металлическая фаза обычно включает от приблизительно 50 до приблизительно 99,99 мас.% основного металла и от около 0,01 до около 50 мас.%. благородного металла (металлов). Предпочтительно металлическая фаза включает от приблизительно 70 до приблизительно 99,95 мас.% основного металла и от около 0,05 до около 30 мас.% благородного металла (металлов). Более предпочтительно, металлическая фаза включает от приблизительно 90 до приблизительно 99,99 мас.% основного металла и от около 0,1 до около 10 мас.%. благородного металла (металлов).
Типы и количества основного и благородного металлов, содержащихся в металлической фазе инертного анода, выбирают таким образом, чтобы в существенной степени предотвратить нежелательную коррозию, растворение или реакционную способность инертного анода и обеспечить устойчивость к высоким температурам, воздействию которых инертные аноды подвергаются в процессе электролитического восстановления металлов. Например, при электролитическом производстве алюминия рабочая камера, как правило, работает при поддержании температур плавления свыше 800°С, обычно при температурах 900-980°С. Соответственно инертные аноды, используемые в таких камерах, предпочтительно должны содержать металлическую фазу с точками плавления свыше 800°С, более предпочтительно свыше 900°С, и оптимально - свыше почти 1000°С.
В одном варианте изобретения металлическая фаза анода включает медь как основной металл и относительно небольшое количество серебра как благородного металла. В этом варианте содержание серебра предпочтительно менее приблизительно 10 или 15 мас.%. Например, Ag может содержаться в количестве от приблизительно 0,2 до приблизительно 9 мас.%. или может содержаться от около 0,5 до около 8 мас.%, остальное - медь. В результате комбинирования таких относительно невысоких количеств Ag с такими относительно большими количествами Сu точка плавления Cu-Ag-сплава может быть значительно повышена. Например, сплав, содержащий 95 мас.% Сu и 5 мас.%. Ag, имеет точку плавления приблизительно 1000°С, несмотря на то, что сплав, содержащий 90 мас.% Сu и 10 мас.%. Ag, образует эвтектику с точкой плавления приблизительно 780°С. Такая разница по уровню точек плавления особенно заметна в случаях, когда сплавы предназначены для использования в составах инертных анодов при электролитическом восстановлении алюминия, которые, как правило, работают при температурах плавления свыше 800°С.
В другом варианте изобретения металлическая фаза включает медь в качестве основного металла и относительно небольшое количество палладия как благородного металла. В этом варианте содержание палладия предпочтительно менее приблизительно 20 мас.%, более предпочтительно - от около 0,1 до около 10 мас.%.
В другом варианте изобретения металлическая фаза включает серебро в качестве основного металла и относительно небольшое количество палладия как благородного металла. В этом варианте содержание Pd предпочтительно менее около 50 мас.%, более предпочтительно - от около 0,05 до около 30 мас.% и оптимально - от около 0,1 до около 20 мас.%. Или же может быть использовано только одно серебро - в качестве металлической фазы анода.
В другом варианте изобретения металлическая фаза анода включает Сu, Ag и Pd. В этом варианте количества Сu, Ag и Pd подбираются таким образом, чтобы обеспечить сплав с точкой плавления выше 800°С, более предпочтительно - свыше 900°С и оптимально - свыше приблизительно 1000°С. Содержание серебра составляет предпочтительно от около 0,5 до около 30 мас.% металлической фазы, тогда как содержание Pd предпочтительно составляет от около 0,01 до около 10 мас.%. Более предпочтительно, содержание Ag составляет от приблизительно 1 до приблизительно 20 мас.%. металлической фазы, а содержание Pd составляет от около 0,1 до приблизительно 10 мас.%. Весовое соотношение Ag к Pd предпочтительно равно от около 2:1 до около 100:1, более предпочтительно от около 5:1 до около 20:1.
Согласно другому варианту осуществления настоящего изобретения типы и количества основного и благородного металлов, содержащихся в металлической фазе, подбираются таким образом, что получившийся в результате материал образует, по крайней мере, одну фазу сплава, имеющую более высокую температуру плавления, выше эвтектической точки плавления данного совокупного сплава. Например, аналогично с обсуждаемой ранее системой бинарного Cu-Ag сплава количество добавки Ag может контролироваться для того, чтобы существенно повысить точку плавления, сделать ее выше эвтектической точки плавления Cu-Ag сплава. Другие благородные металлы, например, Pd и аналогичные, могут быть добавлены в систему бинарного Cu-Ag сплава в контролируемых количествах для создания сплавов, у которых точки плавления будут выше эвтектических точек плавления соответствующих совокупных систем сплавов. Таким образом, согласно данному изобретению могут быть получены бинарные (двухкомпонентные), трехкомпонентные, четырехкомпонентные и т.д. сплавы с существенно более высокими точками плавления для использования в качестве составляющей части в керметных инертных анодах, применяемых в электролизных камерах при получении металлов электролизом.
Керметные инертные аноды данного изобретения могут быть изготовлены различными способами, например, спеканием порошков, с помощью методов зольгелеобразования, литьем из шликера и напылением. Предпочтительно инертные аноды изготавливают с помощью порошковых технологий, когда порошки, в состав которых входят оксиды и металлы, подвергают прессованию и спеканию. Инертный анод может включать монолитный компонент из таких материалов. Или же инертный анод может включать подложку, содержащую, по крайней мере, одно покрытие или поверхностный слой из заявляемого керметного материала, или включать ядро из заявляемого керметного материала, покрытие материалом или иной композицией, например, керамикой, которая не содержит металлической фазы или включает уменьшенное количество металлической фазы.
Перед объединением порошков керамики и металла керамические порошки, например, имеющиеся в продаже порошки NiO, Fe2O3 и ZnO или СоО, могут быть смешаны в миксере. Необязательно смешанные керамические порошки могут быть растерты до еще меньшего размера частиц прежде, чем они будут перенесены в печь для обжига, где их подвергают прокаливанию? например, в течение 12 часов при 1250°С. При таком прокаливании получают смесь на основе оксидов, например, как показано на фиг.2, 3, 9 и 10. Если требуется, в смесь можно включить порошки других оксидов, например, Сr2O3 или оксид - образующие металлы, такие как Аl.
Оксидная смесь может быть запущена в шаровую мельницу, где она размельчается до частиц со средним размером приблизительно 10 микрон.
Тонко измельченные оксидные частицы смешивают с полимерным связующим и водой до получения шлама в распылительной сушилке. Шлам содержит, например, около 60 мас.% твердых веществ и около 40% воды. При сушке шлама распылением получаются сухие агломераты оксидов, которые можно перенести в V-смеситель и смешать с порошками металлов. Или же компоненты на основе оксидов и металлов могут быть вместе подвергнуты сушке распылением. Металлические порошки могут включать практически чистые металлы и их сплавы или могут включать оксиды основного металла и/или благородного металла.
В предпочтительном варианте около 0,1-10 мас. частей органического полимерного связующего, пластификаторов и диспергаторов добавляют к 100 масс. частям частиц, состоящих из керамики и металлов. К подходящим связующим относятся поливиниловый спирт, акриловые полимеры, полигликоли, поливинилацетат, олиизобутилен, поликарбонаты, полистирол, полиакрилаты и их смеси и сополимеры. Предпочтительно около 0,3-6 маc. частей связующего добавляют к 100 масс. частям смеси на основе керамики и металлов.
Перемешанная смесь порошков керамики и металлов может быть направлена в аппарат для прессования, где она изостатически прессуется, например, при 68947,6-275790,4 кПа, принимая форму анода. Давление свыше 137895,2 кПа является особенно подходящим для такого применения. Отпрессованные заготовки прокаливают в печи для обжига при контролируемой температуре с использованием аргон-кислородной газовой смеси, азот-кислородной готовой смеси или других подходящих смесей. Подходящими для обжига температурами являются 1000-1400°С. Печь для обжига обычно работает при 1350-1385°С в течение 2-4 часов. В процессе обжига в анодных заготовках выжигается полимерное связующее.
Газ, используемый в процессе обжига, предпочтительно содержит около 5-3000 1 ч/млн кислорода, более предпочтительно около 5-700 1 ч/млн и наиболее предпочтительно - около 10-350 1 ч/млн. Меньшие концентрации кислорода приводят к получению продукта с большей металлической фазой, чем нужно, а избыток кислорода приводит к получению продукта, содержащего слишком много фазы оксидов металлов (керамической фазы). Остальная часть газовой среды предпочтительно включает газ, такой как аргон, который инертен по отношению к данному металлу при температуре реакции.
Спекание анодных композиций в атмосфере контролируемого содержания кислорода обычно снижает пористость до приемлемых уровней и дает возможность избежать истечения металлической фазы. Атмосфера может быть преимущественно аргоновой при контролируемом содержании кислорода в пределах от 17 до 350 ppm. Аноды можно прокаливать в печи цилиндрической формы при 1350°С в течение 2 часов. Анодные композиции, подвергнутые обжигу при этих условиях, обычно имеют менее 0,5% пористость, если эти композиции обжигали в атмосфере аргона с содержанием кислорода 70-150 1 ч/млн.
Подвергнутый обжигу анод может быть соединен с электропроводящим элементом основания конструкции внутри электролизной камеры для получения металлов с помощью таких способов, как сварка, диффузная сварка, паяние, механическое скрепление, скрепление с помощью цемента и т.п. Например, инертный анод может включать кермет, как описано выше, последовательно присоединенный к участку перемещения с более высоким содержанием металла и к границе металла или границе металлического сплава, например, никеля или Inconel. Стержень из никеля или из сплава никеля с хромом может быть припаян к границе металла. Область перехода (участок перемещения), например, может включать четыре слоя рассортированной (различающейся по составу) композиции, начиная с 25% Ni, примыкающего к границе кермета, и затем - 50,75 и 100% Ni, сохранять равновесие смеси порошков оксидов и металлов, описанной выше.
Нами получено несколько составов для керметных инертных анодов согласно вышеописанным способам с диаметрами или около 1,6 см, или около 5,08 см и длиной около 12,1 см. Эти композиции испытывали в камере Hall-Heroult'a, аналогичной той, что представлена на фиг.1. Камера работала в течение 100 часов при 960°С при соотношении фторида алюминия к фториду натрия в расплаве около 1:1 и при поддержании концентрации алюминия около 7-7,5 мас.% Составы для анодов и содержание примесей в алюминии, полученном с помощью такой камеры, показаны в таблице 7. Величины содержания примесей, приведенные в таблице 7, являются средними значениями испытаний четырех проб полученного металла, отобранных в четырех разных точках после 100-часового периода испытания. Предварительные пробы получаемого алюминия были логично ниже качеством по сравнению с указанными значениями конечного уровня примесей.
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Результаты в таблице 7 показывают низкие уровни загрязнения алюминия керметными инертными анодами. Кроме того, скорость износа инертного анода исключительно низка у каждого испытуемого образца. Оптимизация параметров процесса и условий работы камеры еще более улучшает чистоту алюминия, полученного согласно изобретению.
Инертные аноды особенно удобно использовать в электролизных камерах для получения алюминия, производимого при температурах около 800-1000°С. Особенно предпочтительная камера работает при температуре около 900-980°С, предпочтительно около 930-970°С. Электрический ток пропускают между инертным анодом и катодом через ванну электролитической ячейки с расплавом солей, включающую электролит и оксид того металла, который хотят получить. В предпочтительной камере для получения алюминия электролит включает фторид алюминия и фторид натрия, а оксид металла представляет собой оксид алюминия. Массовое соотношение фторида натрия и фторида алюминия составляет около 0,7-1,25, предпочтительно около 1,0-1,20. Электролит может также содержать фторид кальция, фторид лития и/или фторид магния.
Несмотря на то, что изобретение описано в виде предпочтительных вариантов его осуществления, возможны некоторые изменения, дополнения или модификации без ущерба для объема данного изобретения, как оно изложено в нижеследующей формуле изобретения.

Claims (49)

1. Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки Холла, содержащий металлическую фазу и керамическую фазу, включающую оксид никеля и оксид железа, отличающийся тем, что керамическая фаза дополнительно содержит оксид цинка при следующем соотношении компонентов, мол.%:
NiO от 20 до 99
2О3 от 0,01 до 80
ZnO от 0,01 до 30
2. Керметный инертный анод по п.1, отличающийся тем, что он содержит от 50 до 95 мас.% керамической фазы и от 5 до 50 мас.% металлической фазы.
3. Керметный инертный анод по п.1, отличающийся тем, что он содержит от 80 до 90 мас.% керамической фазы и от 10 до 20 мас.% металлической фазы.
4. Керметный инертный анод по п.1, отличающийся тем, что керамическая фаза дополнительно содержит оксид кобальта, хрома, алюминия и их двух- и более компонентные смеси.
5. Керметный инертный анод по п.1, отличающийся тем, что керамическая фаза имеет растворимость в ванне электролитической ячейки Холла менее 0,1 мас.% оксидов керметного анода.
6. Керметный инертный анод по п.1, отличающийся тем, что керамическая фаза имеет растворимость в ванне электролитической ячейки Холла менее 0,08 мас.% оксидов керметного анода.
7. Керметный инертный анод по п.1, отличающийся тем, что керамическая фаза имеет растворимость в ванне электролитической ячейки Холла менее 0,075 мас.% оксидов керметного анода.
8. Керметный инертный анод по п.1, отличающийся тем, что керамическая фаза имеет растворимость в ванне электролитической ячейки Холла менее 0,03 мас.% NiO.
9. Керметный инертный анод по п.1, отличающийся тем, что керамическая фаза имеет растворимость в ванне электролитической ячейки Холла менее 0,025 мас.% NiO.
10. Керметный инертный анод по п.1, отличающийся тем, что металлическая фаза содержит, по крайней мере, один металл, выбранный из Сu, Ag, Pd, Pt, Au, Rh, Ru, Ir и Os.
11. Керметный инертный анод по п.1, отличающийся тем, что металлическая фаза содержит в основном Сu, Ag, Pd, Pt или их комбинацию.
12. Керметный инертный анод по п.1, отличающийся тем, что металлическая фаза содержит в качестве основного металла Си и, по меньшей мере, один благородный металл, выбранный из Ag, Pd, Pt, Au, Rh, Ru, Ir, Os, или Ag и, по меньшей мере, один благородный металл, выбранный из Pd, Pt, Au, Rh, Ru, Ir, Os.
13. Керметный инертный анод по п.12, отличающийся тем, что металлическая фаза содержит основной металл, представляющий собой Си, и, по меньшей мере, один благородный металл, выбранный из группы Ag, Pd, Pt, Au, Rh, или их сочетания.
14. Керметный инертный анод по п.13, отличающийся тем, что в качестве благородного металла используют Ag.
15. Керметный инертный анод по п.14, отличающийся тем, что содержание Ag составляет менее 15 мас.% металлической фазы.
16. Керметный инертный анод по п.14, отличающийся тем, что содержание Ag составляет менее 10 мас.% металлической фазы.
17. Керметный инертный анод по п.14, отличающийся тем, что содержание Ag составляет от 0,2 до 9 мас.% металлической фазы.
18. Керметный инертный анод по п.14, отличающийся тем, что металлическая фаза имеет температуру плавления выше 800°С.
19. Керметный инертный анод по п.13, отличающийся тем, что в качестве благородного металла используют Pd.
20. Керметный инертный анод по п.19, отличающийся тем, что содержание Pd составляет менее 20 мас.% металлической фазы.
21. Керметный инертный анод по п.19, отличающийся тем, что содержание Pd составляет от 0,1 до 10 мас.% металлической фазы.
22. Керметный инертный анод по п.13, отличающийся тем, что в качестве благородного металла используют сочетание Ag и Pd.
23. Керметный инертный анод по п.13, отличающийся тем, что содержание Ag составляет от 0,5 до 30 мас.% металлической фазы, а содержание Pd составляет от 0,01 до 10 мас.% металлической фазы.
24. Керметный инертный анод по п.12, отличающийся тем, что металлическая фаза в качестве основного металла содержит Ag и, по меньшей мере, один благородный металл, выбранной из группы Pd, Pt, Au, Rh, или их сочетание.
25. Керметный инертный анод по п.24, отличающийся тем, что благородный металл представляет собой Pd.
26. Керметный инертный анод по п.1, отличающийся тем, что температура плавления металлической фазы выше 800°С.
27. Керметный инертный анод по п.1, отличающийся тем, что температура плавления металлической фазы выше 900°С.
28. Керметный инертный анод по п.1, отличающийся тем, что температура плавления металлической фазы выше 1000°С.
29. Керметный инертный анод по п.1, отличающийся тем, что соотношение компонентов в керамической фазе составляет, мол.%:
NiO от 45 до 80
2О3 от 5 до 49,9
ZnO от 0,1 до 26
30. Керметный инертный анод по п.1, отличающийся тем, что соотношение компонентов в его материале следующее, мол.%:
NiO от 45 до 65
2O3 от 20 до 49
ZnO от 0,1 до 22
31. Керметный инертный анод по п.1, отличающийся тем, что содержание ZnO в керамической фазе составляет от 5 до 30 мол.%.
32. Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки Холла, содержащий металлическую фазу и керамическую фазу, включающую оксид никеля и оксид железа, отличающийся тем, что керамическая фаза дополнительно содержит оксид кобальта при следующем соотношении компонентов, мол.%:
NiO от 25 до 55
2O3 от 45 до 55
СоО до 20
33. Керметный инертный анод по п.32, отличающийся тем, что он содержит от 50 до 95 мас.% керамической фазы и от 5 до 50 мас.% металлической фазы.
34. Керметный инертный анод по п.32, отличающийся тем, что соотношение компонентов в керамической фазе составляет, мол.%:
NiO 35
2О3 50
СоО 15
35. Керметный инертный анод по п.32, отличающийся тем, что керамическая фаза дополнительно содержит оксиды Zn, Сr и/или Аl.
36. Керметный инертный анод по п.32, отличающийся тем, что керамическая фаза имеет растворимость в ванне электролитической ячейки Холла менее 0,1 мас.% оксидов керметного анода.
37. Керметный инертный анод по п.32, отличающийся тем, что металлическая фаза содержит, по крайней мере, один металл, выбранный из Сu, Ag, Pd, Pt, Au, Rh, Ru, Ir и Os.
38. Керметный инертный анод по п.32, отличающийся тем, что металлическая фаза содержит в качестве основного металла Си и, по меньшей мере, один благородный металл, выбранный из Ag, Pd, Pt, Au, Rh, Ru, Ir, Os, или Ag и, по меньшей мере, один благородный металл, выбранный из Pd, Pt, Au, Rh, Ru, Ir, Os.
39. Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки Холла, содержащий металлическую фазу и керамическую фазу, отличающийся тем, что металлическая фаза содержит в качестве основного металла Си и, по меньшей мере, один благородный металл, выбранный из Ag, Pd, Pt, Au, Rh, Ru, Ir, Os, или Ag и, по меньшей мере, один благородный металл, выбранный из Pd, Pt, Au, Rh, Ru, Ir, Os.
40. Керметный инертный анод по п.39, отличающийся тем, что он содержит от 50 до 95 мас.% керамической фазы и от 5 до 50 мас.% металлической фазы.
41. Керметный инертный анод по п.39, отличающийся тем, что он содержит от 80 до 90 мас.% керамической фазы и от 10 до 20 мас.% металлической фазы.
42. Керметный инертный анод по п.39, отличающийся тем, что металлическая фаза содержит основной металл, представляющий собой Сu, и, по меньшей мере, один благородный металл, выбранный из группы Ag, Pd, Pt, Au, Rh, или их сочетание.
43. Керметный инертный анод по п.42, отличающийся тем, что, по меньшей мере, один благородный металл представляет собой Ag.
44. Керметный инертный анод по п.43, отличающийся тем, что содержание Ag составляет менее 15 мас.% металлической фазы.
45.Керметный инертный анод по п.43, отличающийся тем, что содержание Ag составляет менее 10 мас.% металлической фазы.
46. Керметный инертный анод по п.43, отличающийся тем, что, по меньшей мере, один благородный металл представляет собой Pd.
47. Керметный инертный анод по п.43, отличающийся тем, что, по меньшей мере, в качестве благородного металла используют сочетание Ag и Pd.
48. Керметный инертный анод по п.39, отличающийся тем, что керамическая фаза содержит оксид никеля, оксид железа и оксид цинка при следующем соотношении компонентов, мол.%:
NiO от 20 до 99
2O3 от 0,01 до 80
ZnO от 0,01 до 30
49. Керметный инертный анод по п.39, отличающийся тем, что керамическая фаза содержит оксид никеля, оксид железа и оксид кобальта при следующем соотношении компонентов, мол.%:
NiO от 25 до 55
2O3 от 45 до 55
СоО от 0,01 до 20
RU2002113645/02A 1999-10-27 2000-10-27 Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки холла RU2251591C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/428,004 1999-10-27
US09/428,004 US6162334A (en) 1997-06-26 1999-10-27 Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum
US09/431,756 1999-11-01
US09/431,756 US6217739B1 (en) 1997-06-26 1999-11-01 Electrolytic production of high purity aluminum using inert anodes
US09/629,332 2000-08-01
US09/629,332 US6423204B1 (en) 1997-06-26 2000-08-01 For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals
PCT/US2000/029826 WO2001031090A1 (en) 1999-10-27 2000-10-27 Cermet inert anode for use in the electrolytic production of metals

Publications (2)

Publication Number Publication Date
RU2002113645A RU2002113645A (ru) 2003-12-20
RU2251591C2 true RU2251591C2 (ru) 2005-05-10

Family

ID=27411574

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002113645/02A RU2251591C2 (ru) 1999-10-27 2000-10-27 Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки холла

Country Status (14)

Country Link
US (1) US6423204B1 (ru)
EP (2) EP1666640A3 (ru)
KR (1) KR20020091046A (ru)
CN (3) CN1289713C (ru)
AR (1) AR026287A1 (ru)
AT (1) ATE356230T1 (ru)
AU (1) AU774817B2 (ru)
BR (1) BR0015087A (ru)
CA (1) CA2385776C (ru)
DE (1) DE60033837T2 (ru)
ES (1) ES2283328T3 (ru)
MX (1) MXPA02004141A (ru)
RU (1) RU2251591C2 (ru)
WO (1) WO2001031090A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496922C2 (ru) * 2008-09-08 2013-10-27 Рио Тинто Алкан Интернэшнл Лимитед Металлический анод выделения кислорода, работающий при высокой плотности тока, для электролизеров восстановления алюминия
RU2691290C2 (ru) * 2014-06-26 2019-06-13 Рио Тинто Алкан Интернэшнл Лимитед Электродный материал и его применение для получения инертного анода

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209426A1 (en) * 2000-12-08 2003-11-13 Slaugenhaupt Michael L. Insulating lid for aluminum production cells
NO326214B1 (no) * 2001-10-25 2008-10-20 Norsk Hydro As Anode for elektrolyse av aluminium
CN1301344C (zh) * 2002-06-28 2007-02-21 东北大学 尖晶石型铝酸镍基金属陶瓷惰性电极
US6866766B2 (en) * 2002-08-05 2005-03-15 Alcoa Inc. Methods and apparatus for reducing sulfur impurities and improving current efficiencies of inert anode aluminum production cells
US20040038805A1 (en) * 2002-08-21 2004-02-26 Meissner David G. Cast cermet anode for metal oxide electrolytic reduction
NO20024049D0 (no) * 2002-08-23 2002-08-23 Norsk Hydro As Materiale for bruk i en elektrolysecelle
US6758991B2 (en) 2002-11-08 2004-07-06 Alcoa Inc. Stable inert anodes including a single-phase oxide of nickel and iron
US7033469B2 (en) * 2002-11-08 2006-04-25 Alcoa Inc. Stable inert anodes including an oxide of nickel, iron and aluminum
US20040163967A1 (en) * 2003-02-20 2004-08-26 Lacamera Alfred F. Inert anode designs for reduced operating voltage of aluminum production cells
FR2852331B1 (fr) * 2003-03-12 2005-04-15 Procede de fabrication d'une anode inerte pour la production d'aluminium par electrolyse ignee
US6830605B2 (en) * 2003-03-14 2004-12-14 World Resources Company Recovery of metal values from cermet
US6855234B2 (en) * 2003-04-02 2005-02-15 Alcoa Inc. Sinter-bonded direct pin connections for inert anodes
US6805777B1 (en) * 2003-04-02 2004-10-19 Alcoa Inc. Mechanical attachment of electrical current conductor to inert anodes
FR2860520B1 (fr) * 2003-10-07 2006-01-13 Pechiney Aluminium Anode inerte destinee a la production d'aluminium par electrolyse ignee et procede d'obtention de cette anode
CN1295379C (zh) * 2003-11-04 2007-01-17 中南大学 一种铝电解用惰性阳极
US7235161B2 (en) * 2003-11-19 2007-06-26 Alcoa Inc. Stable anodes including iron oxide and use of such anodes in metal production cells
US7169270B2 (en) 2004-03-09 2007-01-30 Alcoa, Inc. Inert anode electrical connection
CN102206837B (zh) * 2010-03-31 2014-03-19 比亚迪股份有限公司 一种惰性阳极及其制备方法
CN102489700B (zh) * 2011-12-23 2013-06-19 长沙理工大学 Cu-Ni-Al合金粉末及其制备方法
WO2013122693A1 (en) * 2012-02-14 2013-08-22 Wisconsin Alumni Research Foundation Electrocatalysts having mixed metal oxides
CN103820816B (zh) * 2013-12-11 2016-11-02 中国铝业股份有限公司 一种铝电解惰性阳极的表面处理方法
KR20160065277A (ko) 2014-11-28 2016-06-09 한국원자력연구원 전도성 산화물 세라믹 양극을 이용하는 금속산화물의 전해환원 장치 및 전해환원 방법
FR3034433B1 (fr) * 2015-04-03 2019-06-07 Rio Tinto Alcan International Limited Materiau cermet d'electrode
KR101723919B1 (ko) 2016-08-08 2017-04-06 한국원자력연구원 전도성 산화물 세라믹 양극을 이용하는 금속산화물의 전해환원 장치 및 전해환원 방법
CN113174615B (zh) * 2021-04-30 2024-02-13 中南大学 一种铝电解惰性阳极用金属陶瓷材料及其制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT978528B (it) 1973-01-26 1974-09-20 Oronzio De Nora Impianti Elettrodi metallici e procedimen to per la loro attivazione
US3996117A (en) 1974-03-27 1976-12-07 Aluminum Company Of America Process for producing aluminum
JPS6047352B2 (ja) 1977-06-27 1985-10-21 株式会社トクヤマ 陰極の製造法
JPS54112785A (en) 1978-02-24 1979-09-03 Asahi Glass Co Ltd Electrode and manufacture thereof
US4552630A (en) 1979-12-06 1985-11-12 Eltech Systems Corporation Ceramic oxide electrodes for molten salt electrolysis
GB2069529A (en) 1980-01-17 1981-08-26 Diamond Shamrock Corp Cermet anode for electrowinning metals from fused salts
US4374050A (en) 1980-11-10 1983-02-15 Aluminum Company Of America Inert electrode compositions
US4399008A (en) 1980-11-10 1983-08-16 Aluminum Company Of America Composition for inert electrodes
US4374761A (en) 1980-11-10 1983-02-22 Aluminum Company Of America Inert electrode formulations
US4582585A (en) 1982-09-27 1986-04-15 Aluminum Company Of America Inert electrode composition having agent for controlling oxide growth on electrode made therefrom
US4584172A (en) 1982-09-27 1986-04-22 Aluminum Company Of America Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties
US4455211A (en) 1983-04-11 1984-06-19 Aluminum Company Of America Composition suitable for inert electrode
US4472258A (en) 1983-05-03 1984-09-18 Great Lakes Carbon Corporation Anode for molten salt electrolysis
US4462889A (en) 1983-10-11 1984-07-31 Great Lakes Carbon Corporation Non-consumable electrode for molten salt electrolysis
US4620905A (en) 1985-04-25 1986-11-04 Aluminum Company Of America Electrolytic production of metals using a resistant anode
US5019225A (en) 1986-08-21 1991-05-28 Moltech Invent S.A. Molten salt electrowinning electrode, method and cell
WO1988001311A1 (en) * 1986-08-21 1988-02-25 Eltech Systems Corporation Cermet material, cermet body and method of manufacture
US5137867A (en) 1987-08-14 1992-08-11 Aluminum Company Of America Superconducting cermet formed in situ by reaction sintering
EP0306100A1 (en) 1987-09-02 1989-03-08 MOLTECH Invent S.A. A composite ceramic/metal material
US4871437A (en) 1987-11-03 1989-10-03 Battelle Memorial Institute Cermet anode with continuously dispersed alloy phase and process for making
US4871438A (en) 1987-11-03 1989-10-03 Battelle Memorial Institute Cermet anode compositions with high content alloy phase
US5279715A (en) 1991-09-17 1994-01-18 Aluminum Company Of America Process and apparatus for low temperature electrolysis of oxides
US5378325A (en) 1991-09-17 1995-01-03 Aluminum Company Of America Process for low temperature electrolysis of metals in a chloride salt bath
US5254232A (en) 1992-02-07 1993-10-19 Massachusetts Institute Of Technology Apparatus for the electrolytic production of metals
US5284562A (en) 1992-04-17 1994-02-08 Electrochemical Technology Corp. Non-consumable anode and lining for aluminum electrolytic reduction cell
US5626914A (en) 1992-09-17 1997-05-06 Coors Ceramics Company Ceramic-metal composites
US5904828A (en) 1995-09-27 1999-05-18 Moltech Invent S.A. Stable anodes for aluminium production cells
US5865980A (en) 1997-06-26 1999-02-02 Aluminum Company Of America Electrolysis with a inert electrode containing a ferrite, copper and silver
US6030518A (en) 1997-06-26 2000-02-29 Aluminum Company Of America Reduced temperature aluminum production in an electrolytic cell having an inert anode
US5794112A (en) 1997-06-26 1998-08-11 Aluminum Company Of America Controlled atmosphere for fabrication of cermet electrodes
US6162334A (en) 1997-06-26 2000-12-19 Alcoa Inc. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum
US5938914A (en) 1997-09-19 1999-08-17 Aluminum Company Of America Molten salt bath circulation design for an electrolytic cell
US5977567A (en) 1998-01-06 1999-11-02 Lightlogic, Inc. Optoelectronic assembly and method of making the same
US6113758A (en) 1998-07-30 2000-09-05 Moltech Invent S.A. Porous non-carbon metal-based anodes for aluminium production cells
WO1999036594A1 (en) * 1998-01-20 1999-07-22 Moltech Invent S.A. Non-carbon metal-based anodes for aluminium production cells
US6077415A (en) 1998-07-30 2000-06-20 Moltech Invent S.A. Multi-layer non-carbon metal-based anodes for aluminum production cells and method
EP1069198A4 (en) 1999-01-28 2002-02-06 Sumitomo Metal Ind STEEL PRODUCT FOR STRUCTURAL PARTS OF MACHINERY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496922C2 (ru) * 2008-09-08 2013-10-27 Рио Тинто Алкан Интернэшнл Лимитед Металлический анод выделения кислорода, работающий при высокой плотности тока, для электролизеров восстановления алюминия
RU2691290C2 (ru) * 2014-06-26 2019-06-13 Рио Тинто Алкан Интернэшнл Лимитед Электродный материал и его применение для получения инертного анода

Also Published As

Publication number Publication date
US6423204B1 (en) 2002-07-23
CN1865511A (zh) 2006-11-22
EP1226287A1 (en) 2002-07-31
CN1289713C (zh) 2006-12-13
MXPA02004141A (es) 2003-04-10
BR0015087A (pt) 2002-07-16
CN1865510A (zh) 2006-11-22
AU774817B2 (en) 2004-07-08
WO2001031090A1 (en) 2001-05-03
CA2385776A1 (en) 2001-05-03
DE60033837T2 (de) 2007-11-22
AU1352001A (en) 2001-05-08
CA2385776C (en) 2006-10-17
CN1384891A (zh) 2002-12-11
DE60033837D1 (de) 2007-04-19
AR026287A1 (es) 2003-02-05
ES2283328T3 (es) 2007-11-01
EP1666640A2 (en) 2006-06-07
EP1666640A3 (en) 2006-06-28
EP1226287B1 (en) 2007-03-07
KR20020091046A (ko) 2002-12-05
ATE356230T1 (de) 2007-03-15

Similar Documents

Publication Publication Date Title
RU2251591C2 (ru) Керметный инертный анод, используемый при электролитическом получении металлов в ванне электролитической ячейки холла
CA2388206C (en) Inert anode containing oxides of nickel, iron and cobalt useful for the electrolytic production of metals
US6416649B1 (en) Electrolytic production of high purity aluminum using ceramic inert anodes
US5865980A (en) Electrolysis with a inert electrode containing a ferrite, copper and silver
EP1230437B1 (en) Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metal
EP1230438A1 (en) Electrolytic production of high purity aluminum using inert anodes
AU2002338623A1 (en) Electrolytic production of high purity aluminum using ceramic inert anodes
AU2004222545B2 (en) Method for the manufacture of an inert anode for the production of aluminium by means of fusion electrolysis
US20060231410A1 (en) Stable anodes including iron oxide and use of such anodes in metal production cells
US7033469B2 (en) Stable inert anodes including an oxide of nickel, iron and aluminum
US6758991B2 (en) Stable inert anodes including a single-phase oxide of nickel and iron
AU2007221833B2 (en) Stable anodes including iron oxide and use of such anodes in metal production cells

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091028