RU2233913C1 - Способ электролитического рафинирования меди - Google Patents

Способ электролитического рафинирования меди Download PDF

Info

Publication number
RU2233913C1
RU2233913C1 RU2003101026/02A RU2003101026A RU2233913C1 RU 2233913 C1 RU2233913 C1 RU 2233913C1 RU 2003101026/02 A RU2003101026/02 A RU 2003101026/02A RU 2003101026 A RU2003101026 A RU 2003101026A RU 2233913 C1 RU2233913 C1 RU 2233913C1
Authority
RU
Russia
Prior art keywords
copper
concentration
electrolyte
sulfuric acid
cathode
Prior art date
Application number
RU2003101026/02A
Other languages
English (en)
Other versions
RU2003101026A (ru
Inventor
А.А. Рюмин (RU)
А.А. Рюмин
О.И. Скирда (RU)
О.И. Скирда
Н.А. Ладин (RU)
Н.А. Ладин
Г.Н. Дылько (RU)
Г.Н. Дылько
А.Н. Логойко (RU)
А.Н. Логойко
Original Assignee
Открытое акционерное общество "Горно-металлургическая компания "Норильский никель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Горно-металлургическая компания "Норильский никель" filed Critical Открытое акционерное общество "Горно-металлургическая компания "Норильский никель"
Priority to RU2003101026/02A priority Critical patent/RU2233913C1/ru
Publication of RU2003101026A publication Critical patent/RU2003101026A/ru
Application granted granted Critical
Publication of RU2233913C1 publication Critical patent/RU2233913C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к области гидрометаллургии меди, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике. Способ электролитического рафинирования меди включает электрохимическое растворение анодов и катодное осаждение меди из электролита, содержащего серную кислоту, медь, никель, при этом концентрацию серной кислоты поддерживают из расчета
Figure 00000001
где
Figure 00000002
- концентрация серной кислоты; CCu - концентрация меди; СNi - концентрация никеля, обеспечивается снижение удельного расхода энергии на производство катодной меди и повышение ее качества. 1 табл.

Description

Изобретение относится к области гидрометаллургии меди, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике.
Известен способ электролитического рафинирования меди, включающий электрохимическое растворение анодов и катодное осаждение меди из электролита, содержащего серную кислоту, медь и никель. При этом в случае концентрации никеля более 20 г/дм3, во избежание возникновения солевой пассивности анодов и снижения качества катодной меди, обусловленных превышением допустимой суммы сульфат-ионов, процесс осуществляют при низкой концентрации кислоты, что приводит к повышению электросопротивления электролита и снижению его рассеивающей способности [1].
Недостатком известного способа является значительный расход электроэнергии на производство катодной меди и снижение ее качества, связанные с повышением электросопротивления и уменьшением рассеивающей способности электролита, вызванные низкой концентрацией кислоты в случае превышения концентрации никеля 20 г/дм3 или меди 50 г/дм3. Кроме того, известный способ отличается низкой 190-240 А/м2 плотностью тока и соответственно низкой интенсивностью процесса.
Наиболее близкий к предлагаемому способу по совокупности признаков и достигаемому результату является способ электролитического рафинирования меди, включающий электролитическое растворение анодной меди, катодное осаждение меди из электролита, содержащего серную кислоту, медь и никель. При этом во избежание возникновения солевой пассивности анодов и снижения качества катодной меди, обусловленных превышением допустимой суммы сульфат-ионов, процесс, учитывая значительную концентрацию никеля 25-30 г/дм3 в электролите, осуществляют при низкой концентрации 120-130 г/дм3 серной кислоты, что приводит к повышению электросопротивления и снижению рассеивающей способности электролита [2].
Недостатком известного способа-прототипа является значительный расход электроэнергии на производство катодной меди и снижение ее качества, связанные с повышением электросопротивления и уменьшением рассеивающей способности электролита, вызванные низкой концентрацией кислоты в нем.
Задача изобретения заключается в совершенствовании способа электрорафинирования меди.
Технический результат от использования изобретения заключается в снижении удельного расхода электроэнергии на производство катодной меди и повышении ее качества, что связанно со снижением электросопротивления и повышением рассеивающей способности электролита, а также с обеспечением допустимого уровня суммы сульфат-ионов в нем. Указанные факторы обеспечиваются поддержанием концентрации кислоты на максимально возможном для любых концентраций меди и никеля уровне, характеризующемся отсутствием солевой пассивации анодов. Впервые управление электросопротивлением электролита и факторами, определяющими электрохимическое растворение анодов и катодное осаждение меди, осуществляется путем поддержания концентрации кислоты в электролите в зависимости от концентраций меди и никеля по определенному алгоритму.
Сущность изобретения заключается в том, что в способе электролитического рафинирования меди, включающем электрохимическое растворение анодов и катодное осаждение меди из электролита, содержащего серную кислоту, медь, никель, согласно изобретению концентрацию серной кислоты поддерживают из расчета
Figure 00000003
где
Figure 00000004
- концентрации серной кислоты;
CСu - концентрации меди;
СNi - концентрации никеля.
Предлагаемый способ электролитического рафинирования меди, устанавливающий алгоритм зависимости концентрации серной кислоты от концентраций меди и никеля в электролите, позволяет поддерживать в нем оптимальный уровень концентрации кислоты, обеспечивающий минимально возможный расход электроэнергии и допустимую сумму сульфат-ионов. В свою очередь, предельно допустимая сумма сульфат-ионов в электролите обеспечивает отсутствие солевой пассивации анодов и высокое качество катодной меди. Поддержание концентрации серной кислоты в пределах, рассчитанных по экспериментально установленной формуле, приводит к снижению электросопротивления электролита и увеличению его рассеивающей способности, что позволяет достичь максимального снижения удельного расхода электроэнергии и содействует повышению качества катодной меди.
Состав электролита должен обладать низким электросопротивлением и обеспечивать необходимое качество катодной меди. Величина электросопротивления электролита имеет обратную зависимость от концентрации серной кислоты и прямую зависимость от концентрации меди и никеля. Концентрация серной кислоты в электролите ограничивается допустимой суммой сульфат-ионов, что напрямую связано с концентрациями ионов меди и никеля. Предельно допустимая концентрация сульфат-ионов является одним из определяющих факторов получения качественной меди и возникновения солевой пассивности анодов. В свою очередь, концентрация ионов меди в электролите должна быть достаточно высокой, так как является одним из факторов, регулирующих качество катодного осадка.
Повышение концентрации серной кислоты в электролите для электролитического рафинирования меди выше предлагаемых границ увеличивает сумму сульфат-ионов более допустимого уровня, что может привести к возникновению солевой пассивности анодов и снижению качества катодного осадка за счет образования дендритных наростов.
Понижение концентрации серной кислоты в электролите при электролитическом рафинировании меди ниже предлагаемых границ увеличивает удельный расход электроэнергии на производство катодной меди, обусловленный увеличением электросопротивления электролита, и может привести к снижению качества катодной меди, связанному с уменьшением рассеивающей способности электролита.
Сведений об известности отличительного признака предлагаемого технического решения для процесса электролитического рафинирования меди при изучении патентной и технической литературы не выявлено, что свидетельствует о соответствии заявляемого объекта критерию “изобретательский уровень”.
Способ осуществляется следующим образом.
Способ электролитического рафинирования меди включает электрохимическое растворение анодов и катодное осаждение меди из электролита. Электрохимические окислительно-восстановительные реакции на границе раздела электрод-раствор протекают при прохождении постоянного электрического тока. Эффективность процесса электрорафинирования меди определяют величиной удельного расхода электроэнергии на производство катодной меди и уровнем ее качества. В свою очередь, удельный расход электроэнергии определяется величиной удельного электросопротивления электролита, а высокое качество катодной меди зависит от суммы сульфат-ионов и рассеивающей способности электролита. Перечисленные факторы обеспечивают составом электролита. Электролизные ванны заполняют электролитом, содержащим серную кислоту, медь и никель. Для обеспечения оптимального состава электролита концентрацию серной кислоты устанавливают и поддерживают на основании предлагаемого расчета
Figure 00000005
где
Figure 00000006
- концентрации серной кислоты;
CСu - концентрации меди;
СNi - концентрации никеля.
В электролизные ванны на токоподводящие анодную и катодную шины завешивают соответственно электроды. В качестве анодов используют литые пластины из анодной меди, в качестве катодов - тонкие листы из электролитной меди (основа) или матрицы из титана (или нержавеющей стали). На электролизную ванну подают постоянный электрический ток из расчета катодной плотности тока 290-350 А/м2.
Электрохимическое растворение медных анодов и катодное осаждение меди из электролита осуществляют при его постоянной циркуляции и температуре 60-65°С.
Предлагаемый способ описан в конкретных примерах.
Пример 1 (прототип)
Электролитическое рафинирование меди по прототипу проводили на лабораторной установке, состоящей из электролизной ванны емкостью 4 дм3 и напорного бачка емкостью 10 л. Ванну обеспечивали индивидуальной системой циркуляции и оборудовали анодной и катодной шинами, подключенными через лабораторный автотрансформатор (ЛАТР) к выпрямителю ВСА-5. В опытную ванну и напорный бак заливали электролит, содержащий, г/дм3: серной кислоты - 120; меди - 52; никеля - 25. В течение эксперимента поддерживали температуру электролита 60-65°С и скорость циркуляции 4 дм3/ч.
В ванну загружали один катод и два медных анода на межэлектродном расстоянии 4 см, завешенных соответственно на катодную и анодную шины, и пропускали постоянный ток. Катодная плотность тока составляла 310 А/м2. Добавки ПАВ в течение испытаний вводили с равной периодичностью в количестве, исходя из расхода, г/т: тиомочевины - 70; клея - 60; хлор-иона - 50 мг/л. Эксперимент проводили в течение 90 ч.
В результате электролитического рафинирования получили значительный удельный расход электроэнергии 415 кВт·ч/тСu и недостаточно высокое качество катодной меди. Катодная медь имела некоторое количество (~20%) дендритных наростов округлой формы по полотну и сумму примесей 64 г/т, по химическому составу соответствовала марке М0к. Средняя величина напряжения на электролизной ванне составляла 0,47 В, выход по току - 95,4%.
Пример 2 (заявляемый способ)
Электролитическое рафинирование меди проводили на лабораторной установке, состоящей из электролизной ванны емкостью 4 дм3 и напорного бачка емкостью 10 л. Ванну обеспечивали индивидуальной системой циркуляции и оборудовали анодной и катодной шинами, подключенными через лабораторный автотрансформатор (ЛАТР) к выпрямителю ВСА-5.
В электролизную ванну на расстоянии 4 см загружали один катод и два медных анода, завешенных соответственно на катодную и анодную шины, и пропускали постоянный ток. Катодная плотность тока составляла 310 А/м2.
Для приготовления исходного раствора, используя заданные значения концентраций меди и никеля и среднюю величину константы, равную 390, рассчитали необходимую концентрацию серной кислоты по формуле
Figure 00000007
.
Приготовленный раствор состава, г/дм3: серной кислоты - 159,2; меди - 52,0; никеля - 25,0, заливали в качестве электролита в опытную электролизную ванну. Добавки ПАВ в течение испытаний вводили в одинаковом количестве, с равной периодичностью, исходя из расхода, г/т: тиомочевины - 70, клея - 60, хлор-иона - 50 мг/л. В ходе эксперимента поддерживали температуру электролита 60-65°С и скорость циркуляции 4 л/ч. Эксперимент проводили в течение 90 ч.
В результате эксперимента по электролитическому рафинированию получили снижение на 26% относительно примера 1 (прототипа) удельного расхода электроэнергии, равного 308 кВт·ч/тСu, и высокое качество катодной меди. Катодная медь имела плотную мелкокристаллическую структуру, содержание примесей 27 г/т, гладкое полотно и по химическому составу соответствовала марке М00к. Средняя величина напряжения на электролизной ванне составляла 0,36 В, катодный выход по току - 98,4%.
Пример 3 (заявляемый способ)
Электролитическое рафинирование меди, включающее электрохимическое растворение анодов и катодное осаждение меди, осуществляли в электролизной ванне лабораторного блока в течение 90 ч при тех же условиях, что и пример 2.
Пример 3 отличался от примера 2 составом электролита. Для расчета исходного раствора использовали заданные значения концентраций меди и никеля и минимальную величину константы, равную 370. Необходимую концентрацию серной кислоты определили из расчета
Figure 00000008
Приготовленный раствор состава, г/дм3: серной кислоты - 139,2; меди - 52,0; никеля - 25,0 использовали в качестве электролита при проведении эксперимента по примеру 3.
В результате электролитического рафинирования получили снижение на 22% относительно примера 1 (прототипа) удельного расхода электроэнергии, равного 328 кВт·ч/тСu и высокое качество катодной меди. Катодная медь имела плотную мелкокристаллическую структуру, содержание примесей 32 г/т, гладкое полотно и по химическому составу соответствовала марке М00к. Средняя величина напряжения на электролизной ванне составляла 0,38 В, катодный выход по току - 97,6%.
Пример 4 (заявляемый способ)
Электролитическое рафинирование меди, включающее электрохимическое растворение анодов и катодное осаждение меди, осуществляли в электролизной ванне лабораторного блока в течение 90 ч при тех же условиях, что и пример 2.
Пример 4 отличался от примера 2 составом электролита. Используя максимальную величину коэффициента по предлагаемому расчету и заданные величины концентраций меди и никеля, определили концентрацию серной кислоты для исходного раствора по формуле
Figure 00000009
Приготовленный раствор состава, г/дм: серной кислоты - 179,2; меди - 52,0; никеля - 25,0 использовали в качестве электролита при проведении эксперимента по примеру 4.
В результате электролитического рафинирования получили снижение на 28% относительно примера 1 (прототипа) удельного расхода электроэнергии, равного 302 кВт·ч/тСu, и высокое качество катодной меди. Катодная медь имела плотную мелкокристаллическую структуру, содержание примесей 29 г/т, гладкое полотно и по химическому составу соответствовала марке М00к. Средняя величина напряжения на электролизной ванне составляла 0,35 В, катодный выход по току - 97,7%.
Пример 5
Электролитическое рафинирование меди, включающее электрохимическое растворение анодов и катодное осаждение меди, осуществляли в электролизной ванне лабораторного блока в течение 90 ч при тех же условиях, что и пример 2. Пример 5 отличался от примера 2 составом электролита.
Концентрацию серной кислоты в электролите, используемом для осуществления примера 5, поддерживали ниже диапазона, рассчитанного по предлагаемой формуле.
Приготовленный раствор состава, г/дм3: серной кислоты - 138,0; меди - 52,0; никеля - 25,0 использовали в качестве электролита при проведении эксперимента по примеру 5.
В результате электролитического рафинирования получили увеличение на 6% относительно примера 3 (заявляемый способ) удельного расхода электроэнергии, равного 346 кВт·ч/тСu, и снижение качества катодной меди. Катодная медь, хотя соответствовала марке М00к и имела плотную мелкокристаллическую структуру, но отличалась от полученной в результате экспериментов по заявляемому способу (примеры 2-4) наличием редких мелких округлой формы дендритных наростов, содержание суммы примесей составляло 40 г/т. Средняя величина напряжения на электролизной ванне составляла 0,40 В, катодный выход по току - 97,2%.
Полученные результаты, в т.ч. увеличение удельного расхода электроэнергии и снижение качества катодной меди относительно примеров 2-4, показывают, что поддерживаемая в примере 5 концентрация серной кислоты находится за пределами оптимальной величины.
Пример 6
Электролитическое рафинирование меди проводили на лабораторной установке в тех же условиях, что и пример 2, при катодной плотности тока 310 А/м2 в течение 90 ч. Пример 6 отличался от примера 2 составом электролита. Концентрацию серной кислоты в электролите, используемом для осуществления примера 6, установили выше предлагаемого диапазона концентраций, т.е. выше максимальной границы предлагаемой формулы.
В качестве электролита при проведении эксперимента по примеру 6 использовали раствор, содержащий, г/дм3: серной кислоты - 181,2; меди - 52,0; никеля - 25,0.
В результате эксперимента по электролитическому рафинированию получили увеличение на 12% относительно примера 4 (заявляемый способ) удельного расхода электроэнергии, равного 339 кВт·ч/тСu, и снижение качества катодной меди. Полученная катодная медь соответствовала марке М0к, имела содержание суммы примесей 49 г/т и отличалась от полученной в результате экспериментов по заявляемому способу (примеры 2-4) наличием мелких округлой формы дендритных наростов по полотну около 10%. В ходе эксперимента наблюдали резкие скачки напряжения, что говорит о возникновении солевой пассивации анодов. По этой причине, несмотря на низкое электросопротивление электролита, средняя величина напряжения на электролизной ванне составляла 0,39 В. Катодный выход по току составлял 97,2%.
Результаты эксперимента, а именно увеличение удельного расхода электроэнергии и снижение качества катодной меди относительно примеров 2-4 показывают, что поддерживаемая в примере 6 концентрация серной кислоты находится за пределами оптимальной величины.
Результаты проведенных экспериментов представлены в таблице.
Таким образом, предлагаемый способ поддержания концентрации серной кислоты в зависимости от малейших изменений концентрации никеля и/или меди действительно является эффективным. Осуществление способа по примерам 2-4 позволяет снизить удельный расход электроэнергии на получение катодной меди до 28% за счет уменьшения электросопротивления раствора и значительно повысить качество катодной меди. Этим подтверждается, что выбранные границы поддержания концентрации серной кислоты в пределах, рассчитанных по предлагаемой формуле, являются правильными.
Таким образом, технический результат, достигаемый использованием предлагаемого способа, заключается в снижении удельного расхода электроэнергии на производство катодной меди, в зависимости от состава используемого электролита, до 28% по сравнению с прототипом; повышении качества катодной меди по внешнему виду и химическому составу.
Источники информации
1. Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. - М.: Металлургия, 1977, с.59.
2. Совершенствование технологии электрорафинирования меди. т.1, Отчет, рег. №70061954. Норильск, 1976, с.60.
Figure 00000010

Claims (1)

  1. Способ электролитического рафинирования меди, включающий электрохимическое растворение анодов и катодное осаждение меди из электролита, содержащего серную кислоту, медь и никель, отличающийся тем, что концентрацию серной кислоты поддерживают из расчета
    Figure 00000011
    где
    Figure 00000012
    - концентрация серной кислоты;
    CCu - концентрация меди;
    CNi - концентрация никеля.
RU2003101026/02A 2003-01-14 2003-01-14 Способ электролитического рафинирования меди RU2233913C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003101026/02A RU2233913C1 (ru) 2003-01-14 2003-01-14 Способ электролитического рафинирования меди

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003101026/02A RU2233913C1 (ru) 2003-01-14 2003-01-14 Способ электролитического рафинирования меди

Publications (2)

Publication Number Publication Date
RU2003101026A RU2003101026A (ru) 2004-07-20
RU2233913C1 true RU2233913C1 (ru) 2004-08-10

Family

ID=33413780

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003101026/02A RU2233913C1 (ru) 2003-01-14 2003-01-14 Способ электролитического рафинирования меди

Country Status (1)

Country Link
RU (1) RU2233913C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733768C2 (ru) * 2019-12-03 2020-10-06 Геннадий Леонидович Багич Устройство для рафинирования меди электролизом электролита и способ рафинирования меди электролизом

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Отчет "Совершенствование технологии электрорафинирования меди", т.1, Рег. №70061954. - Норильск, 1976, с.60. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733768C2 (ru) * 2019-12-03 2020-10-06 Геннадий Леонидович Багич Устройство для рафинирования меди электролизом электролита и способ рафинирования меди электролизом

Similar Documents

Publication Publication Date Title
Saba et al. Continuous electrowinning of zinc
TW202009330A (zh) 不溶性陽極酸性電鍍銅製程的電鍍液或電鍍補液的生產方法和裝置
CN1418265A (zh) 调整电解液中金属离子浓度的方法与装置及其应用
RU2233913C1 (ru) Способ электролитического рафинирования меди
JP5688145B2 (ja) ニッケルのpHを調整する方法及び装置
JPS5844157B2 (ja) ニツケル電解液の精製方法
CN1071382C (zh) 用于铜电解制取的聚丙烯酸及其盐类添加剂
CN107587169A (zh) 一种调节熔融电解质中Ti2+和Ti3+比例的方法
US2358029A (en) Process of electrodepositing indium
RU2361967C1 (ru) Способ электроизвлечения компактного никеля
EP0058506B1 (en) Bipolar refining of lead
RU2280106C2 (ru) Способ подготовки электролита для электролитического рафинирования меди
RU2420613C1 (ru) Способ получения электролитических порошков металлов
CN102230197B (zh) 一种镁电解槽的启动方法
JP2017214612A (ja) 銅の電解精製方法
JPS6133918B2 (ru)
US2579551A (en) Electrolytic process and apparatus for making copper dust
JIANG et al. Effect of current densities on the electrochemical behavior of a flat plate Pb-Ag anode for zinc electrowinning
JP2019178351A (ja) 電解槽、電解装置、電解方法、および金属インジウム
RU2815375C1 (ru) Способ обезмеживания сернокислых растворов медеэлектролитного производства
JP6750186B1 (ja) めっき液の亜鉛濃度の上昇を抑制する方法および亜鉛系めっき部材の製造方法
RU2690773C1 (ru) Способ нанесения гладких гальванических железных покрытий в проточном электролите с крупными дисперсными частицами
JPS5834552B2 (ja) 多価金属生成用電解槽
JPH0625882A (ja) 銅電解精製法
JPH0853799A (ja) 電気めっき液中の金属濃度の低下方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100115