RU2225070C2 - Способ и устройство для снижения частотно-модулированных помех в системе цифрового звукового радиовещания внутриполосного канального типа - Google Patents

Способ и устройство для снижения частотно-модулированных помех в системе цифрового звукового радиовещания внутриполосного канального типа Download PDF

Info

Publication number
RU2225070C2
RU2225070C2 RU2001115102/09A RU2001115102A RU2225070C2 RU 2225070 C2 RU2225070 C2 RU 2225070C2 RU 2001115102/09 A RU2001115102/09 A RU 2001115102/09A RU 2001115102 A RU2001115102 A RU 2001115102A RU 2225070 C2 RU2225070 C2 RU 2225070C2
Authority
RU
Russia
Prior art keywords
signal
composite signal
composite
interference
normalized
Prior art date
Application number
RU2001115102/09A
Other languages
English (en)
Other versions
RU2001115102A (ru
Inventor
Брайан Вилль м КРЕГЕР (US)
Брайан Вилльям КРЕГЕР
Джеффри Скотт БЭЙРД (US)
Джеффри Скотт БЭЙРД
Original Assignee
Айбиквити Диджитал Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Айбиквити Диджитал Корпорейшн filed Critical Айбиквити Диджитал Корпорейшн
Publication of RU2001115102A publication Critical patent/RU2001115102A/ru
Application granted granted Critical
Publication of RU2225070C2 publication Critical patent/RU2225070C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/18Aspects of broadcast communication characterised by the type of broadcast system in band on channel [IBOC]
    • H04H2201/183FM digital or hybrid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

Изобретение предлагает способ снижения ЧМ помех в системе цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа. Способ заключается в том, что принимают составной сигнал, содержащий искомый сигнал и сигнал помехи и нормализуют составной сигнал для получения нормализованного составного сигнала. Затем составной сигнал умножают на комплексно-сопряженную величину нормализованного составного сигнала для получения действительного сигнала, действительный сигнал фильтруют и результирующий отфильтрованный сигнал умножают на нормализованный составной сигнал для получения выходного сигнала. Технический результат - уменьшение воздействия сигнала помехи на выходной сигнал, что облегчает детектирование искомого сигнала. 2 с. и 16 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к обработке сигнала и, более конкретно, к методам обработки сигнала для использования в системах цифрового звукового радиовещания (ЦЗР).
Уровень техники
Цифровое звуковое радиовещание является средством обеспечения воспроизведения звука цифрового качества, превосходящего существующие аналоговые форматы радиовещания. Как амплитудно-модулированные, так и частотно-модулированные сигналы цифрового звукового радиовещания (ЦЗР) могут передаваться в гибридном формате, в котором цифровой модулируемый сигнал сосуществует с аналоговым AM или ЧМ сигналом текущей радиопередачи, или в полностью цифровом формате без аналогового сигнала. Системы радиовещания внутриполосного канального типа не требуют новых спектральных распределений, поскольку каждый сигнал ЦЗР одновременно передается в пределах одной и той же спектральной маски существующего распределения AM или ЧМ каналов. Системы радиовещания внутриполосного канального типа содействует экономии спектра, при этом позволяя радиовещателям обеспечивать цифровое качество воспроизведения звука для их основных слушателей в данный момент. Было предложено несколько подходов цифрового звукового радиовещания внутриполосного канального типа.
ЧМ системы цифрового звукового радиовещания уже были предметом нескольких патентов США, включая патенты 5465396, 5315583, 5278844 и 5278826. Прежде, для передачи ЧМ сигнала цифрового звукового радиовещания внутриполосного канального типа поднесущие, мультиплексированные с ортогональным частотным разделением (МОЧР), помещались в пределах приблизительно от 129 до 199 кГц с обеих сторон от ЧМ центральной частоты, обе выше или ниже спектра, занятого аналоговой модулированной главной ЧМ несущей. Некоторые опции радиовещания внутриполосного канального типа (например, полностью цифровые опции) допускают начало поднесущих на расстоянии 100 кГц от центральной частоты.
Цифровая часть сигнала ЦЗР подвергается помехам, например, со стороны первых смежных ЧМ сигналов или главных сигналов в гибридных системах цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа. Для выделения искомых сигналов при наличии мешающих передатчиков требуются методы обработки сигналов.
Для выделения узкополосного сигнала из широкополосного ЧМ сигнала может быть использован метод ЧМ выделения, называемый непрерывный просмотр (COLT). Этот метод описан в патентах США 5263191, 5428834 и 5355533. Способ, описанный в этих патентах, в действительности описывает узкополосный режекторный фильтр, который отслеживает и подавляет частотно-модулированную мгновенную частоту сигнала помехи.
Патент США 5465396 раскрывает систему цифрового звукового радиовещания внутриполосного канального типа, которая обеспечивает одновременную передачу сигнала цифрового звукового радиовещания и ЧМ сигнала по существующим ЧМ каналам.
ЧМ сигналы цифрового звукового радиовещания внутриполосного канального типа подвергаются влиянию различных условий замирания и широкополосных свойств, которые ограничивают эффективность известных методов непрерывного просмотра (COLT). Необходим метод выделения сигнала, который является эффективным для сигналов цифрового звукового радиовещания внутриполосного канального типа в условиях замирания.
Сущность изобретения
Настоящее изобретение предлагает способ снижения ЧМ помех в системе цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа. Способ заключается в том, что принимают составной сигнал, содержащий искомый сигнал и сигнал помехи, и отличается тем, что нормализуют составной сигнал для получения нормализованного составного сигнала; умножают составной сигнал на комплексно-сопряженную величину нормализованного составного сигнала для получения действительного сигнала; фильтруют действительный сигнал и умножают результирующий отфильтрованный сигнал на нормализованный составной сигнал для получения выходного сигнала. Неблагоприятные воздействия сигнала помехи на выходной сигнал снижают относительно искомого сигнала в исходном составном сигнале, таким образом облегчая детектирование искомого сигнала. В этом контексте неблагоприятные воздействия относятся к таким воздействиям, как искажение детектированных символов, приводящее к увеличенной частоте ошибок по битам (ЧОБ).
Кроме того, изобретение включает в себя радиоприемники, которые используют вышеупомянутый способ выделения искомого сигнала из составного сигнала и для плавного сопряжения отфильтрованного и составного сигналов.
Хотя описанный здесь метод хорошо подходит для уменьшения воздействий первого смежного ЧМ сигнала помехи, он также может быть использован для уменьшения воздействий главного ЧМ сигнала, когда сигнал ЦЗР располагается ближе к его главному ЧМ сигналу. Однако в последнем случае ограничивающий фактор стремится быть помехой сигнала ЦЗР на его главный ЧМ сигнал.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием конкретных вариантов его осуществления со ссылками на сопровождающие чертежи, на которых:
фиг. 1 изображает диаграмму спектральной плотности мощности ЧМ сигнала цифрового звукового радиовещания внутриполосного канального типа,
фиг. 2 изображает диаграмму спектральной плотности мощности двух ЧМ сигналов цифрового звукового радиовещания внутриполосного канального типа в смежных каналах,
фиг. 3 изображает блок-схему, которая иллюстрирует способ обработки сигналов настоящего изобретения,
фиг. 4 изображает блок-схему, которая иллюстрирует работу устройства подавления первых смежных сигналов (ППС) согласно настоящему изобретению, и
фиг. 5 изображает блок-схему приемника, сконструированного согласно настоящему изобретению.
Подробное описание предпочтительных вариантов осуществления
Фиг. 1 изображает схематическое представление распределения частот (размещение по спектру) и относительную спектральную плотность мощности составляющих сигнала для гибридного частотно-модулированного сигнала 10 цифрового звукового радиовещания внутриполосного канального типа. Гибридный формат содержит известный ЧМ стереоаналоговый сигнал 12, имеющий спектральную плотность мощности, представленную в форме треугольника 14, расположенного в центральной или в центральной частотной полосе 16 части канала. Спектральная плотность мощности (СПМ) обычного аналогового ЧМ радиовещательного сигнала близка к треугольной форме с крутизной приблизительно 0,35 дБ/кГц от центральной частоты. Множество цифромодулированных равноотстоящих поднесущих расположено на любой стороне аналогового ЧМ сигнала - в верхней боковой полосе 18 и в нижней боковой полосе 20 и передается совместно с аналоговым ЧМ сигналом. Все несущие передаются на уровне мощности, который находится в пределах канальной маски 22 по стандарту федеральной комиссии по связи США.
В одном примере гибридного формата модуляции ЧМ сигналов радиовещания внутриполосного канального типа 95 цифромодулированных равноотстоящих поднесущих, мультиплексированных с ортогональным частотным разделением (МОЧР), располагаются на каждой стороне главного аналогового ЧМ сигнала, занимающего спектр приблизительно от 129 до 199 кГц с обеих сторон от главной ЧМ центральной частоты, что иллюстрируется верхней боковой полосой 18 и нижней боковой полосой 20 на фиг.1. В гибридной системе полная ЦЗР мощность цифромодулированных поднесущих, мультиплексированных с ортогональным частотным разделением (МОЧР), в каждой боковой полосе устанавливается на уровне приблизительно 25 дБ относительно мощности их главного аналогового ЧМ сигнала.
Сигналы от смежного ЧМ канала (т.е. первые смежные ЧМ сигналы), если они вообще есть, могли бы быть расположены на расстоянии 200 кГц от центра канала, представляющего интерес. Фиг. 2 изображает спектральный график гибридного сигнала 10 ЦЗР с верхним первым смежным мешающим передатчиком 24, имеющим аналоговый модулированный сигнал 26 и множество цифромодулированных поднесущих в боковых полосах 28 и 30, которые находятся на уровне приблизительно 6 дБ относительно искомого сигнала (цифромодулированные поднесущие сигнала 10). Фигура показывает, что верхняя боковая полоса 18 ЦЗР искажается аналоговым модулированным сигналом в первом смежном мешающем передатчике. Настоящее изобретение обеспечивает устройство подавления первых смежных сигналов (ППС), которое способно подавлять действие помех в этой ситуации. Было продемонстрировано, что устройство подавления первых смежных сигналов (ППС) способно справляться с первыми смежными сигналами помех на обоих нижних и верхних боковых полосах ЦЗР и успешно восстанавливать сигнал ЦЗР, скрытый под ними. Сигнал ЦЗР выделяется из-под ЧМ несущей помехи, хотя процесс выделения искажает сигнал ЦЗР. Предполагается, что сигнал ЦЗР мал относительно первого смежного аналогового ЧМ сигнала помехи, так что ЧМ отслеживание и подавление могут быть эффективными.
В отсутствие замирания составной аналоговый ЧМ сигнал и сигнал ЦЗР могут быть смоделированы так:
s(t) = a•ej·θ(t)+d(t)
где а - амплитуда; θ(t) - мгновенная фаза ЧМ сигнала; d(t) - сигнал ЦЗР. Без потери общности можно предположить, что средняя мощность d(t) равна единице. Кроме того, можно предположить, что а >>1, так что осуществляется эффект захвата ЧМ сигнала. Заметим, что амплитуда сигнала предполагается постоянной, поскольку предполагается, что в этой части анализа нет замирания. Также заметим, что это идеальный случай без шума. Если сигнал обрабатывается с использованием методов, известных в патентах США 5263191, 5428834 и 5355533, тогда выходной сигнал будет аппроксимироваться следующим выражением:
COLT_OUT(t)≈d(t)+d*(t)•ej·2·θ(t)
Первый член выходного сигнала непрерывного просмотра (COLT) является желательным членом, тогда как второй член является помехой. Хотя член помехи имеет такую же мощность, как первый член, его спектр сворачивается с квадратом ЧМ сигнала, который имеет вдвое большую ширину полосы ЧМ модуляции.
Если ширина полосы сигнала ЦЗР равна ширине полосы ЧМ сигнала помехи и если сигнал ЦЗР располагается по центру на ЧМ сигнале, то отношение результирующего сигнала к помехе может быть снижено самое большее до нескольких дБ с использованием известного метода непрерывного просмотра (COLT). Другим большим источником искажения является замирание при многолучевом распространении сигнала. Замирание приводит к амплитудной модуляции мгновенной ЧМ несущей. Селективное замирание может привести к ширине полосы амплитудной модуляции порядка ширины ЧМ основной полосы (то есть 53 кГц), хотя ширина полосы, обусловленная динамическим гладким замиранием, ограничивается приблизительно до 13 кГц при максимальных скоростях движения автомобиля с автомобильным приемником. Поскольку процесс выделения в патентах США 5263191, 5428834 и 5355533 использует входной сигнал непосредственно для управления центральной частотой режекции, то амплитудная модуляция входного сигнала, обусловленная замиранием, будет ухудшать работу.
При замирании составной аналоговый ЧМ сигнал плюс сигналы цифромодулированных поднесущих могут быть смоделированы как:
s(t) = [a+f(t)]•ej·θ(t)+d(t),
где f(t) - член динамического замирания, который обусловлен амплитудной модуляцией ЧМ несущей, когда она перемещается по ширине полосы девиации с селективным замиранием. Амплитудная модуляция имеет ширину полосы порядка ширины ЧМ основной полосы (то есть 53 кГц). Составляющая медленного замирания, обусловленная рэлеевским замиранием, ограничивается приблизительно до 13 Гц при максимальных скоростях движения на несущей частоте в диапазоне 100 МГц. Эта составляющая медленного замирания опускается из этой модели, поскольку по данному окну анализа она предполагается почти постоянной. При селективном замирании становятся значительными дополнительные составляющие помех.
Известный из уровня техники метод узкополосной режекторной фильтрации предполагает, что сам по себе входной сигнал является хорошей аппроксимацией ЧМ сигнала, поскольку отношение мощности аналогового ЧМ сигнала к мощности сигнала ЦЗР является высоким. Однако в случае, если входной сигнал подвергается замиранию и не является хорошей аппроксимацией ЧМ сигнала, тогда операции обработки могут создавать изображение, которое не может быть удалено на последующих стадиях.
Настоящее изобретение решает эту проблему, используя процесс выделения нормализованных сигналов. Мы наблюдаем, что первое умножение сигнала сдвигает мгновенную ЧМ частоту к нулю, тогда как второе умножение должно выполнить инверсию первого умножения. В идеальном случае мы замечаем, что, если первое и второе являются комплексно сопряженными величинами и если произведение их амплитуд остается фиксированным постоянным значением, то сигнал должен быть совершенно восстановлен по фазе и амплитуде (за минусом отфильтрованной ЧМ несущей). К сожалению, динамическое замирание и селективное замирание приводят к изменениям амплитуды со скоростью замирания и шириной полосы сигнала основной полосы. Дополнительная операция нормализации амплитуды опорного сигнала устраняет генерацию некоторых нежелательных помех, связанных с исходным методом непрерывного просмотра (COLT). Этот процесс выделения нормализованных сигналов показан на фиг.3.
Составной сигнал:
s(t) = a•ej·θ(t)+d(t),
принимается на линии 32. Блок 34 иллюстрирует, что входной сигнал нормализуется посредством деления его абсолютного значения для получения нормализованного сигнала на линии 36. При замирании составной аналоговый ЧМ сигнал плюс сигналы ЦЗР после нормализации могут быть приблизительно смоделированы как:
Figure 00000002

где предполагается, что аналоговый ЧМ сигнал намного больше, чем цифровой сигнал ЦЗР. Комплексно-сопряженная величина нормализованного сигнала получается, как иллюстрируется, посредством блока 38, а составной сигнал умножается на комплексно-сопряженную величину, что иллюстрируется блоком умножителя 40, для получения промежуточного сигнала:
Figure 00000003

на линии 42. Операция режекции постоянного тока, иллюстрируемая блоком 44, удаляет постоянный член, а для получения:
Figure 00000004

на линии 46. Фильтр 48 нижних частот с импульсной характеристикой конечной длительности (ФНЧ КИХ-фильтр) производит оценку постоянного члена на линии 50. Сигнал на линии 42 задерживается, как иллюстрируется блоком 52, для согласования задержки фильтра и выходной сигнал фильтра вычитается из задержанного сигнала, как показано сумматором 54, для создания промежуточного сигнала на линии 46. Следует отметить, что сигнал ЦЗР в окрестности режекции также подавляется и режекторная фильтрация наносит некоторый вред целостности сигнала ЦЗР. Наконец, этот промежуточный сигнал умножается умножителем 56 на нормализованный исходный составной сигнал, который был задержан, как показано блоком 58, для получения выходного сигнала на линии 60:
Figure 00000005

Предположим, что ЧМ сигнал намного больше сигнала ЦЗР, как обычно бывает, тогда выходной сигнал можно аппроксимировать выражением:
Figure 00000006

Приведенное выше уравнение показывает, что, если член амплитудной модуляции, наведенной селективным замиранием, f(t)=0, то достигается результат исходного метода непрерывного просмотра (COLT). Однако при селективном замирании дополнительные члены помех можно сравнивать с таковыми метода непрерывного просмотра (COLT) в условиях селективного замирания. Определенно, если:
Figure 00000007

то самонаведенный шум при использовании способа настоящего изобретения будет ниже. Приведенное выше неравенство может быть аппроксимировано посредством дополнительного исключения менее значительных членов, которые намного меньше единицы, для получения:
ej·θ(t)<2•ej·θ(t)
Оно показывает потенциальное улучшение, заключающееся в уменьшении на 6 дБ шума, обусловленного селективным замиранием, с использованием метода нормализации.
Теперь должно быть очевидно, что настоящее изобретение снижает вредное влияние сигнала помехи на выходной сигнал, например, путем увеличения величины или спектральной плотности мощности искомого сигнала относительно сигнала помехи.
Процесс ЧМ подавления, описанный выше, непосредственно применим к системе ЧМ цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа всегда, когда имеется первый смежный ЧМ сигнал помехи. Первые смежные ЧМ сигналы помех могут обрабатываться и эффективно подавляться/режектироваться из цифровой части сигнала ЦЗР с достаточно малой величиной искажения, приводя к сигналу ЦЗР. Искажение будет довольно малым, если перед началом процесса ЧМ подавления будут выполнены три условия:
1) Единственными присутствующими сигналами, которые имеют значительную мощность, являются первые смежные ЧМ сигналы и цифровая часть сигнала ЦЗР, на которые действует помеха (т.е. верхняя или нижняя цифровая боковая полоса сигнала ЦЗР). Это может быть выполнено просто путем смещения ЧМ сигнала помехи до 0 Гц и фильтрации нижних частот результирующего сигнала или путем полосовой фильтрации результирующего сигнала.
2) Цифровой сигнал полностью содержится либо на верхней, либо на нижней половине первого смежного ЧМ сигнала. Это в принципе делается в рамках компоновки системы цифрового звукового радиовещания внутриполосного канального типа, в которой край цифрового сигнала располагается почти в пределах +/- 200 кГц, что является центром первого смежного ЧМ сигнала. Следовательно, цифровой сигнал содержится на одной половине ЧМ сигнала помехи. Это важно, поскольку нежелательное искажение или изображение, производимое посредством этого процесса выделения, появляется на стороне спектра, противоположной местоположению сигнала ЦЗР относительно ЧМ сигнала.
3) Первый смежный ЧМ сигнал приблизительно на 6 дБ сильнее по мощности, чем цифровой сигнал. Когда мощность первого смежного ЧМ сигнала становится слишком низкой, то лучше не выполнять подавление первых смежных сигналов (ППС). Это гарантирует, что ЧМ сигнал значительно больше по сравнению с сигналом ЦЗР, так что осуществляется эффект захвата. При многолучевом распространении с замираниями ЧМ сигнал будет иногда падать ниже порога мощности более чем на 6 дБ, таким образом, рекомендуется выключение алгоритма.
В пределах одной предложенной системы цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа три условия могут присутствовать часть времени, особенно в областях на краю зоны обслуживания ЧМ станций. Подавление первых смежных ЧМ сигналов будет обеспечивать ослабление помех и таким образом расширять зону обслуживания станций.
Один способ включения/отключения подавления первых смежных сигналов (ППС) заключается в том, чтобы производить плавное сопряжение между сигналом, обработанным путем подавления первых смежных сигналов, и сигналом, не обработанным путем подавления первых смежных сигналов. Измерение величины мощности, которая режектируется, может быть выполнено посредством получения разности между мощностью, которая входит в режекцию, и мощностью, которая выходит из режекции. Два сигнала сглаживаются перед вычислением разности с использованием простого интегратора с потерями. Фиг.4 изображает блок-схему, которая иллюстрирует функции подавления первых смежных сигналов (ППС) и плавного сопряжения, которые могут быть выполнены на обоих - верхнем и нижнем первых смежных ЧМ сигналах помех. Составной сигнал вводится на линии 62 и смешивается в смесителе 64 с сигналом гетеродина для создания модулирующего сигнала на линии 66, в которой первый смежный сигнал помех преобразуется в постоянный ток. Сигнал фильтруется фильтром 68 нижних частот с импульсной характеристикой конечной длительности для удаления сигналов, находящихся вне ширины полосы ЧМ сигнала помехи. Затем результирующий сигнал на линии 70 подвергается ЧМ отслеживанию и подавлению, как иллюстрируется в блоке 72. Подавление выполняется так, как иллюстрируется на фиг.3, на которой сигнал перед и после режекторного фильтра передается по линиям 42 и 46. В блоке 74 управления плавным сопряжением режектированная мощность в дБ сравнивается с верхним и нижним порогами, которые представляют собой диапазон, в котором происходит плавное сопряжение. Диапазон нормализуется таким образом, что там, где величина режектированной мощности заключается в пределах ненормализованного диапазона, она может быть представлена прямым процентом диапазона. Управляющий сигнал на линии 76 представляет процентное число, которое используется для умножения сигнала, обработанного посредством подавления первых смежных сигналов (ППС) в умножителе 78. Управляющий сигнал на линии 80 представляет единицу минус процентное число и используется для умножения сигнала, не обработанного посредством подавления первых смежных сигналов (ППС), который был задержан, как показано в блоке 82. Выходные сигналы умножителей 78 и 84 объединяются в сумматоре 86 для создания сигнала на линии 88, который фильтруется фильтром 90 с импульсной характеристикой конечной длительности. Результирующий отфильтрованный сигнал на линии 92 снова смешивается в смесителе 94 с сигналом гетеродина для создания выходного сигнала на линии 96. Затем этот выходной сигнал подвергается дополнительной обработке согласно известным методам для получения выходного звукового сигнала от приемника. Это плавное сопряжение производит плавный переход между сигналом, обработанным посредством подавления первых смежных сигналов (ППС), и сигналом, не обработанным посредством подавления первых смежных сигналов (ППС), и применимо для приемников, осуществляющих различные методы подавления помех, включая иллюстрируемые на фиг.3, а также описанные в вышеупомянутых патентах.
Фиг. 5 изображает блок-схему радиоприемника 98, сконструированного согласно настоящему изобретению. Антенна 100 служит средством для приема сигнала цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа, содержащего искомый сигнал в виде множества цифромодулированных поднесущих, мультиплексированных с ортогональным частотным разделением (МОЧР), и аналогового ЧМ сигнала помехи несущей. Приемник включает в себя схемы входных каскадов, которые конструируются согласно хорошо известным методам. После обработки входными каскадами составной сигнал на линии 102 подвергается подавлению первых смежных сигналов и плавному сопряжению согласно вышеизложенному способу, что иллюстрирует блок 104. Сопряженный сигнал на линии 106 подвергается дополнительной обработке согласно известным методам для создания выходного сигнала на линии 108 и звукового выходного сигнала из громкоговорителя 110.
Процесс нормализации, используемый в настоящем изобретении, улучшает работу в условиях селективного замирания. Помимо удобства для масштабирования амплитуды, нормализация имеет вторичный эффект уменьшения изменений амплитуды сигнала ЦЗР, который отслеживается посредством устройств оценки информации о состоянии канала (ИСК) в последующих каскадах приемника ЦЗР. Коэффициент улучшения зависит от типа процесса оценки информации о состоянии канала (ИСК) и от ширины полосы этих фильтров оценки. Более того, нормализованный сигнал использует меньший динамический диапазон, поскольку усиление, полученное в процессе подавления первых смежных сигналов (ППС), равно единице вместо а2. Для хорошей работы также важно согласование задержки составного сигнала с задержкой режекторного фильтра.
Настоящее изобретение обеспечивает подавление и/или режекторную фильтрацию мгновенной частоты ЧМ сигналов помех для подавления действия помех со стороны ЧМ радиовещательных сигналов. Изобретение особенно применимо к системам ЧМ цифрового звукового радиовещания (ЦЗР) внутриполосного канального типа, в которых первые смежные ЧМ сигналы действуют на цифровую часть сигнала ЦЗР, как сигналы помех. Устройство, которое выполняет эту функцию, называется устройством подавления первых смежных сигналов (ППС). Этот метод также может быть использован в гибридных ЧМ системах ЦЗР внутриполосного канального типа для подавления действия помех со стороны главного ЧМ сигнала на цифровую часть сигнала ЦЗР.
Хотя настоящее изобретение было описано с точки зрения предпочтительного варианта осуществления, специалистам в данной области техники должно быть понятно, что к раскрытым вариантам осуществления изобретения можно сделать различные модификации, не отступая от объема настоящего изобретения, который определяется приложенной формулой изобретения. Например, использование в процессе режекторной фильтрации фильтра с импульсной характеристикой конечной длительности (КИХ- фильтра) вместо простого фильтра с импульсной характеристикой бесконечной длительности (БИХ-фильтра) может незначительно улучшить работу. БИХ-фильтр может дать адекватную работу со значительным снижением сложности вычислений.

Claims (18)

1. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа, заключающийся в том, что принимают составной сигнал, содержащий искомый сигнал (10) и сигнал (24) помехи, отличающийся тем, что нормализуют составной сигнал для получения нормализованного составного сигнала, умножают составной сигнал на комплексно-сопряженную величину нормализованного составного сигнала для получения действительного сигнала, фильтруют действительный сигнал для получения отфильтрованного сигнала и умножают отфильтрованный сигнал на нормализованный составной сигнал для получения выходного сигнала, при этом снижают неблагоприятные воздействия сигнала помехи на выходной сигнал.
2. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.1, отличающийся тем, что при фильтрации получают сигнал оценки амплитуды несущей, задерживают действительный сигнал для получения задержанного действительного сигнала и вычитают сигнал оценки амплитуды несущей из задержанного действительного сигнала для получения отфильтрованного сигнала.
3. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.2, отличающийся тем, что при получении оценки амплитуды несущей пропускают действительный сигнал через фильтр нижних частот.
4. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.1, отличающийся тем, что фильтрация приводит к задержке сигнала, при этом дополнительно задерживают нормализованный составной сигнал перед умножением отфильтрованного сигнала на нормализованный составной сигнал.
5. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.1, отличающийся тем, что при нормализации составного сигнала осуществляют деление составного сигнала на абсолютное значение составного сигнала.
6. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.1, отличающийся тем, что составной сигнал содержит множество цифромодулированных поднесущих и аналого-модулированную несущую.
7. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.6, отличающийся тем, что приблизительно половина частот, содержащихся в аналого-модулированной несущей, служит помехой множеству цифромодулированных поднесущих.
8. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.1, отличающийся тем, что дополнительно плавно сопрягают выходной сигнал с составным сигналом для получения сопряженного выходного сигнала.
9. Способ снижения ЧМ помех в системе цифрового звукового радиовещания внутриполосного канального типа по п.8, отличающийся тем, что при плавном сопряжении выходного сигнала с составным сигналом для получения сопряженного выходного сигнала определяют разность уровня мощности между действительным сигналом и отфильтрованным сигналом и управляют величиной выходного сигнала и величиной составного сигнала в ответ на упомянутую разность.
10. Радиочастотный приемник, содержащий средство (100) для приема составного сигнала, включающего в себя искомый сигнал (10) и сигнал (24) помехи, отличающийся тем, что содержит средство для уменьшения ЧМ помех, включающее в себя средство (34) для нормализации составного сигнала для получения нормализованного составного сигнала, средство (40) для умножения составного сигнала на комплексно-сопряженную величину нормализованного составного сигнала для получения действительного сигнала, средство (44) для фильтрации действительного сигнала для получения отфильтрованного сигнала и средство (58) для умножения отфильтрованного сигнала на нормализованный составной сигнал для получения выходного сигнала.
11. Радиочастотный приемник по п.10, отличающийся тем, что средство (44) для фильтрации содержит средство (48) для получения сигнала оценки амплитуды несущей, средство (52) для задержки действительного сигнала для получения задержанного действительного сигнала и средство (54) для вычитания сигнала оценки амплитуды несущей из задержанного сигнала для получения отфильтрованного сигнала.
12. Радиочастотный приемник по п.11, отличающийся тем, что средство (48) для получения оценки амплитуды несущей содержит фильтр нижних частот.
13. Радиочастотный приемник по п.10, отличающийся тем, что дополнительно содержит средство (56) для задержки нормализованного составного сигнала.
14. Радиочастотный приемник по п.10, отличающийся тем, что средство (34) для нормализации составного сигнала содержит средство для деления составного сигнала на абсолютное значение составного сигнала.
15. Радиочастотный приемник по п.10, отличающийся тем, что составной сигнал содержит множество цифромодулированных поднесущих и аналого-модулированную несущую.
16. Радиочастотный приемник по п.10, отличающийся тем, что дополнительно содержит средство (74) для плавного сопряжения выходного сигнала с составным сигналом для получения сопряженного выходного сигнала.
17. Радиочастотный приемник по п.16, отличающийся тем, что средство для плавного сопряжения выходного сигнала с составным сигналом для получения сопряженного выходного сигнала содержит средство для определения разности уровня мощности между действительным сигналом и отфильтрованным сигналом и средство для управления величиной выходного сигнала и величиной составного сигнала в ответ на упомянутую разность.
18. Радиочастотный приемник по п.15, отличающийся тем, что приблизительно половина частот, содержащихся в аналого-модулированной несущей, служит помехой множеству цифромодулированных поднесущих.
RU2001115102/09A 1998-11-03 1999-10-28 Способ и устройство для снижения частотно-модулированных помех в системе цифрового звукового радиовещания внутриполосного канального типа RU2225070C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/192,555 1998-11-03
US09/192,555 US6259893B1 (en) 1998-11-03 1998-11-03 Method and apparatus for reduction of FM interference for FM in-band on-channel digital audio broadcasting system

Publications (2)

Publication Number Publication Date
RU2001115102A RU2001115102A (ru) 2003-05-27
RU2225070C2 true RU2225070C2 (ru) 2004-02-27

Family

ID=22710162

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001115102/09A RU2225070C2 (ru) 1998-11-03 1999-10-28 Способ и устройство для снижения частотно-модулированных помех в системе цифрового звукового радиовещания внутриполосного канального типа

Country Status (14)

Country Link
US (2) US6259893B1 (ru)
EP (1) EP1125384B1 (ru)
JP (1) JP4201303B2 (ru)
KR (1) KR100590372B1 (ru)
CN (1) CN1126299C (ru)
AT (1) ATE277463T1 (ru)
AU (1) AU762982B2 (ru)
BR (1) BR9914990B1 (ru)
CA (1) CA2348283C (ru)
DE (1) DE69920498T2 (ru)
ID (1) ID29531A (ru)
MX (1) MXPA01004450A (ru)
RU (1) RU2225070C2 (ru)
WO (1) WO2000027040A2 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259893B1 (en) * 1998-11-03 2001-07-10 Ibiquity Digital Corporation Method and apparatus for reduction of FM interference for FM in-band on-channel digital audio broadcasting system
US7058086B2 (en) * 1999-05-26 2006-06-06 Xm Satellite Radio Inc. Method and apparatus for concatenated convolutional encoding and interleaving
US6154452A (en) * 1999-05-26 2000-11-28 Xm Satellite Radio Inc. Method and apparatus for continuous cross-channel interleaving
US6603826B1 (en) * 1999-09-15 2003-08-05 Lucent Technologies Inc. Method and receiver for dynamically compensating for interference to a frequency division multiplex signal
US7187947B1 (en) 2000-03-28 2007-03-06 Affinity Labs, Llc System and method for communicating selected information to an electronic device
US6671340B1 (en) * 2000-06-15 2003-12-30 Ibiquity Digital Corporation Method and apparatus for reduction of interference in FM in-band on-channel digital audio broadcasting receivers
US6831907B2 (en) * 2001-08-31 2004-12-14 Ericsson Inc. Digital format U.S. commercial FM broadcast system
US7327765B1 (en) * 2002-02-15 2008-02-05 Broadcom Corporation Home phone line networking next generation enhancements
US7221917B2 (en) * 2002-05-01 2007-05-22 Ibiquity Digital Corporation Adjacent channel interference mitigation for FM digital audio broadcasting receivers
RU2330379C2 (ru) * 2002-09-27 2008-07-27 Айбиквити Диджитал Корпорейшн Способ и устройство для перемежения битов сигналов в системе цифрового звукового радиовещания
WO2007066551A1 (ja) 2005-12-09 2007-06-14 Pioneer Corporation 受信装置及び復調方法
US20080159448A1 (en) * 2006-12-29 2008-07-03 Texas Instruments, Incorporated System and method for crosstalk cancellation
US7945225B2 (en) * 2007-07-09 2011-05-17 Myat, Inc. Medium loss high power IBOC combiner
US8374556B2 (en) * 2007-11-01 2013-02-12 National Public Radio, Inc. Method for determining audio broadcast transmission signal coverage
US8155042B2 (en) * 2008-10-24 2012-04-10 Sony Ericsson Mobile Communications Ab Method and arrangement relating communication devices
US8965290B2 (en) * 2012-03-29 2015-02-24 General Electric Company Amplitude enhanced frequency modulation
US9252899B2 (en) * 2012-06-26 2016-02-02 Ibiquity Digital Corporation Adaptive bandwidth management of IBOC audio signals during blending
US9094139B2 (en) 2012-06-26 2015-07-28 Ibiquity Digital Corporation Look ahead metrics to improve blending decision
CN102970087B (zh) * 2012-11-28 2014-10-29 苏州威士达信息科技有限公司 基于人耳感知的iboc系统的数字频谱检测方法
CN103023849B (zh) * 2012-11-28 2015-05-13 中国传媒大学 基于心理声学模型的iboc系统的数据发送方法
US9191256B2 (en) 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
US8595590B1 (en) 2012-12-03 2013-11-26 Digital PowerRadio, LLC Systems and methods for encoding and decoding of check-irregular non-systematic IRA codes
US8948272B2 (en) 2012-12-03 2015-02-03 Digital PowerRadio, LLC Joint source-channel decoding with source sequence augmentation
EP2876851B1 (en) 2013-11-21 2016-07-27 Nxp B.V. Ofdm signal processing method and apparatus in a (h)iboc receiver
US9178548B1 (en) * 2014-04-21 2015-11-03 Ibiquity Digital Corporation First adjacent canceller (FAC) with improved blending using a parametric filter
US20150358040A1 (en) * 2014-06-04 2015-12-10 Nxp B.V. Communications with interference suppression
EP3197058A1 (en) * 2016-01-25 2017-07-26 Nxp B.V. A receiver circuit
FR3050849B1 (fr) * 2016-04-28 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et dispositif de reduction de bruit dans un signal module
EP3276900B1 (en) 2016-07-29 2020-02-19 Nxp B.V. A receiver circuit
EP3297179A1 (en) 2016-09-16 2018-03-21 Nxp B.V. A receiver circuit for suppression of co-channel interference
CN108667503B (zh) * 2018-04-19 2021-06-22 京信通信系统(中国)有限公司 提高设备阻塞指标的方法、装置以及设备
US10581476B2 (en) 2018-05-17 2020-03-03 Nxp B.V. Beam forming for first adjacent cancellation

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379947A (en) * 1979-02-02 1983-04-12 Teleprompter Corporation System for transmitting data simultaneously with audio
US4534054A (en) * 1980-11-28 1985-08-06 Maisel Douglas A Signaling system for FM transmission systems
US4425642A (en) * 1982-01-08 1984-01-10 Applied Spectrum Technologies, Inc. Simultaneous transmission of two information signals within a band-limited communications channel
US4881245A (en) * 1983-07-01 1989-11-14 Harris Corporation Improved signalling method and apparatus
US4660193A (en) * 1983-10-11 1987-04-21 Regency Electronics, Inc. Digital modulation method for standard broadcast FM subcarrier
US4817116A (en) * 1984-04-17 1989-03-28 Nec Corporation Digital radio communication system utilizing quadrature modulated carrier waves
US5128933A (en) * 1985-07-29 1992-07-07 Baranoff Rossine Dimitri Process and device for the radio transmission of coded data superimposed on a traditional frequency-modulated broadcast
US4881241A (en) * 1988-02-24 1989-11-14 Centre National D'etudes Des Telecommunications Method and installation for digital communication, particularly between and toward moving vehicles
CH675514A5 (ru) 1988-04-07 1990-09-28 Ascom Zelcom Ag
ES2065409T3 (es) 1988-10-21 1995-02-16 Thomson Csf Emisor, procedimiento de emision y receptor.
US5134630A (en) 1989-04-12 1992-07-28 National Research Development Corporation Method and apparatus for transparent tone-in-band transmitter, receiver and system processing
US5134634A (en) 1989-08-31 1992-07-28 Nec Corporation Multilevel quadrature amplitude demodulator capable of compensating for a quadrature phase deviation of a carrier signal pair
FR2658016B1 (fr) 1990-02-06 1994-01-21 Etat Francais Cnet Procede de diffusion de donnees numeriques, notamment pour la radiodiffusion a haut debit vers des mobiles, a entrelacement temps-frequence et demodulation coherente, et recepteur correspondant.
US5179576A (en) 1990-04-12 1993-01-12 Hopkins John W Digital audio broadcasting system
US5020076A (en) * 1990-05-21 1991-05-28 Motorola, Inc. Hybrid modulation apparatus
JP2749456B2 (ja) 1991-03-06 1998-05-13 三菱電機株式会社 無線通信機
US5278844A (en) 1991-04-11 1994-01-11 Usa Digital Radio Method and apparatus for digital audio broadcasting and reception
DE4111855C2 (de) 1991-04-11 1994-10-20 Inst Rundfunktechnik Gmbh Verfahren zum rundfunkmäßigen Übertragen eines digital codierten Datenstroms
US5278826A (en) 1991-04-11 1994-01-11 Usa Digital Radio Method and apparatus for digital audio broadcasting and reception
US5315583A (en) 1991-04-11 1994-05-24 Usa Digital Radio Method and apparatus for digital audio broadcasting and reception
US5117195A (en) * 1991-05-17 1992-05-26 General Instrument Corporation Data referenced demodulation of multiphase modulated data
US5280525A (en) * 1991-09-27 1994-01-18 At&T Bell Laboratories Adaptive frequency dependent compensation for telecommunications channels
ATE163114T1 (de) 1991-11-01 1998-02-15 Thomson Consumer Electronics Rundfunkübertragungssystem und rundfunkempfänger
US5339456A (en) 1991-12-11 1994-08-16 Xetron Corporation Method and circuit for non-cooperative interference suppression of radio frequency signals
US5428834A (en) 1991-12-11 1995-06-27 Xetron Corporation Method and circuit for processing and filtering signals
US5355533A (en) 1991-12-11 1994-10-11 Xetron Corporation Method and circuit for radio frequency signal detection and interference suppression
US5263191A (en) 1991-12-11 1993-11-16 Westinghouse Electric Corp. Method and circuit for processing and filtering signals
JP2904986B2 (ja) 1992-01-31 1999-06-14 日本放送協会 直交周波数分割多重ディジタル信号送信装置および受信装置
US5465396A (en) * 1993-01-12 1995-11-07 Usa Digital Radio Partners, L.P. In-band on-channel digital broadcasting
US5424638A (en) * 1994-03-30 1995-06-13 Seagate Technology, Inc. Sampled data flaw detection for magnetic media
US5697086A (en) * 1994-04-15 1997-12-09 Gte Government Systems Corporation Co-channel FM signal/interference canceller
US5592471A (en) 1995-04-21 1997-01-07 Cd Radio Inc. Mobile radio receivers using time diversity to avoid service outages in multichannel broadcast transmission systems
US5717717A (en) 1995-09-11 1998-02-10 Motorola, Inc. Device and method for adaptive narrow band interference suppression in multiple-access communications
US5724657A (en) * 1995-09-29 1998-03-03 Rockwell International Corporation Adaptive frequency correction burst detector for GSM handset system
WO1997015991A1 (fr) * 1995-10-26 1997-05-01 Ntt Mobile Communications Network Inc. Reemetteur
US5930305A (en) * 1996-02-23 1999-07-27 Northern Telecom Limited Signal demodulation and diversity combining in a communications system using orthogonal modulation
US5949796A (en) 1996-06-19 1999-09-07 Kumar; Derek D. In-band on-channel digital broadcasting method and system
US5991334A (en) 1996-11-12 1999-11-23 Lucent Technologies Inc. Technique for simultaneous communications of analog frequency-modulated and digitally modulated signals using postcanceling scheme
US6075813A (en) * 1997-03-18 2000-06-13 Lucent Technologies Inc. Band insertion and precancellation technique for simultaneous communication of analog frequency modulated and digitally modulated signals
US6151373A (en) * 1997-04-03 2000-11-21 At&T Corp. Weak signal resolver
US6005894A (en) * 1997-04-04 1999-12-21 Kumar; Derek D. AM-compatible digital broadcasting method and system
US6185195B1 (en) * 1997-05-16 2001-02-06 Qualcomm Incorporated Methods for preventing and detecting message collisions in a half-duplex communication system
US6058101A (en) * 1997-06-11 2000-05-02 Industrial Technology Research Institute Synchronization method and system for a digital receiver
US6006083A (en) * 1997-09-11 1999-12-21 Nortel Networks Corporation Tone detection
US6021156A (en) * 1997-09-24 2000-02-01 Trimble Navigation Limited Apparatus and method for improving signal-to-jamming ratio in a spread spectrum receiver
US6178317B1 (en) * 1997-10-09 2001-01-23 Ibiquity Digital Corporation System and method for mitigating intermittent interruptions in an audio radio broadcast system
US6259893B1 (en) * 1998-11-03 2001-07-10 Ibiquity Digital Corporation Method and apparatus for reduction of FM interference for FM in-band on-channel digital audio broadcasting system
US6560293B1 (en) * 1999-05-04 2003-05-06 3Com Corporation Apparatus and method for FM remodulation of envelope modulated data signals

Also Published As

Publication number Publication date
US6259893B1 (en) 2001-07-10
CN1325572A (zh) 2001-12-05
CA2348283A1 (en) 2000-05-11
CA2348283C (en) 2010-02-02
AU762982B2 (en) 2003-07-10
WO2000027040A3 (en) 2000-11-23
ID29531A (id) 2001-09-06
WO2000027040A2 (en) 2000-05-11
CN1126299C (zh) 2003-10-29
JP2002529955A (ja) 2002-09-10
DE69920498D1 (de) 2004-10-28
ATE277463T1 (de) 2004-10-15
AU2144200A (en) 2000-05-22
KR100590372B1 (ko) 2006-06-15
WO2000027040A9 (en) 2000-10-19
EP1125384A2 (en) 2001-08-22
DE69920498T2 (de) 2005-10-13
BR9914990A (pt) 2001-07-24
US6622008B2 (en) 2003-09-16
BR9914990B1 (pt) 2013-04-09
US20010023175A1 (en) 2001-09-20
KR20010100966A (ko) 2001-11-14
EP1125384B1 (en) 2004-09-22
JP4201303B2 (ja) 2008-12-24
MXPA01004450A (es) 2005-07-13

Similar Documents

Publication Publication Date Title
RU2225070C2 (ru) Способ и устройство для снижения частотно-модулированных помех в системе цифрового звукового радиовещания внутриполосного канального типа
RU2260908C2 (ru) Способ и устройство для снижения помех в приемниках чм внутриполосного канального цифрового аудиовещания
JP4131483B2 (ja) 単一送信装置による音声のアナログ・デジタル混合放送方法およびそのための装置
RU2001115102A (ru) Способ и устройство для снижения частотно-модулированных помех в системе цифрового звукового радиовещания внутриполосного канального типа
EP0184923B1 (en) Single-sideband communication system
US6192226B1 (en) Carrier squelch processing system and apparatus
JP2004260528A (ja) 音声放送受信装置および音声放送受信方法
JPS5845217B2 (ja) Fm波信号同士の干渉によつて復調信号中に生じる干渉歪の除去方式
JP3622014B2 (ja) デジタル信号処理付き放送受信機
JPS6130347Y2 (ru)
JP7113438B2 (ja) Fm中継装置
JP7113437B2 (ja) Fm中継装置、遅延プロファイル生成方法
JP2022136738A (ja) Fm中継装置
JP3594657B2 (ja) Fm多重放送受信装置
JPS59190747A (ja) Fm受信機のマルチパス歪軽減装置
JP2531377B2 (ja) 変調方式識別回路
JP2845201B2 (ja) 合成方式のダイバーシティ受信機
JPH11239303A (ja) 高周波信号の受信装置
JPS61167235A (ja) 周波数変調方式用受信機におけるマルチパス妨害検出装置
JPS59190746A (ja) Fm受信機のマルチパス歪軽減装置
JPH04316232A (ja) Fmステレオ受信装置
JPH01108802A (ja) Fm信号復調装置
JPH0622290B2 (ja) Ssb変復調方式
JPH04360322A (ja) 複合変調波によるダイバーシチ方式