RU2224808C2 - Металл для электроники и способ его получения - Google Patents
Металл для электроники и способ его получения Download PDFInfo
- Publication number
- RU2224808C2 RU2224808C2 RU99124811/02A RU99124811A RU2224808C2 RU 2224808 C2 RU2224808 C2 RU 2224808C2 RU 99124811/02 A RU99124811/02 A RU 99124811/02A RU 99124811 A RU99124811 A RU 99124811A RU 2224808 C2 RU2224808 C2 RU 2224808C2
- Authority
- RU
- Russia
- Prior art keywords
- metal
- electronics
- wire
- tantalum
- nickel
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 177
- 239000002184 metal Substances 0.000 title claims abstract description 177
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 60
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims description 28
- 229910052715 tantalum Inorganic materials 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 26
- 229940123973 Oxygen scavenger Drugs 0.000 claims description 15
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 229910052758 niobium Inorganic materials 0.000 claims description 12
- 239000010955 niobium Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- -1 salt anion Chemical class 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims 1
- 239000002516 radical scavenger Substances 0.000 claims 1
- 150000002739 metals Chemical class 0.000 abstract description 8
- 230000002745 absorbent Effects 0.000 abstract 1
- 239000002250 absorbent Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000005245 sintering Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000004484 Briquette Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 229920000379 polypropylene carbonate Polymers 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- VIESAWGOYVNHLV-UHFFFAOYSA-N 1,3-dihydropyrrol-2-one Chemical compound O=C1CC=CN1 VIESAWGOYVNHLV-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- LAIZPRYFQUWUBN-UHFFFAOYSA-L nickel chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ni+2] LAIZPRYFQUWUBN-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
- H01G9/012—Terminals specially adapted for solid capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/902—Metal treatment having portions of differing metallurgical properties or characteristics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12458—All metal or with adjacent metals having composition, density, or hardness gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12819—Group VB metal-base component
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Powder Metallurgy (AREA)
Abstract
Изобретение относится к металлу для электроники и изделиям из него. В предложенном металле, содержащем второй металл, концентрация которого выше на поверхности или вблизи поверхности металла для электроники, согласно изобретению второй металл диффундирован в указанный металл для электроники, причем соотношение между общим количеством второго металла и общим количеством металла для электроники составляет 5 - 2000 частей на миллион. Предложенная танталовая проволока согласно изобретению содержит никель на поверхности или вблизи от поверхности металла для электроники. В предложенном способе введения второго металла в металл для электроники согласно изобретению наносят покрытие на поверхность металла для электроники из раствора второго металла и нагревают металл для электроники и покрытия в присутствии поглотителя кислорода при температуре, достаточной для удаления кислорода из этого металла для электроники для обеспечения присутствия второго металла в периферийной области этого металла для электроники. Обеспечивает равномерное покрытие из второго металла на металле для электроники. 4 с. и 14 з.п. ф-лы.
Description
Металлы для электроники, например тантал и ниобий, характеризуются стабильным оксидным покрытием, которое придает им полезные свойства, такие как коррозионная стойкость и электрическое сопротивление, что делает такие металлы привлекательными в различных областях применения, например, в качестве анодного материала в электролитических конденсаторах и в качестве конструкционного материала для работы в определенных коррозионных средах. Это оксидное покрытие может препятствовать связыванию металлов для электроники, например при спекании прессованных порошков металла для электроники в брикеты, связанные с проволочным выводом или контактом проводника из металла для электроники. Поскольку более мелкие порошки металла для электроники используются для того, чтобы добиться повышенной емкости, применяются пониженные температуры спекания для предотвращения чрезмерного уменьшения площади поверхности под действием температуры спекания. Более того, поскольку в прессованном порошке достигается удовлетворительная связь между частицами, связь частицы с проводником может быть недостаточной при пониженной температуре спекания, что позволяет легко вытянуть спеченные брикеты из проволочного вывода или контакта проводника в процессе изготовления или использования конденсатора.
Известен металл для электроники, включающий второй металл, концентрация которого выше на поверхности или вблизи поверхности металла для электроники (GB 1011715, С 23 С 10/22, 01.12.1965).
Кроме того, известна танталовая проволока, содержащая никель (US 4574333, H 01 G 9/00, 04.03.1986).
Предложенный металл для электроники, включающий второй металл, концентрация которого выше на поверхности или вблизи поверхности металла для электроники, отличается тем, что второй металл диффундирован в указанный металл для электроники, причем соотношение между общим количеством второго металла и общим количеством металла для электроники составляет от 5 до 2000 частей на миллион.
Кроме того, из этого металла для электроники может быть изготовлено изделие, отличающееся тем, что оно содержит металл для электроники по п. 1 формулы изобретения.
Согласно предпочтительной форме выполнения изделия оно может быть выполнено из металла для электроники, содержащего тантал, ниобий или их сплав, а второй металл выбирают из группы, состоящей из тантала, ниобия, никеля, титана, циркония, вольфрама и железа;
второй металл образует сплав с металлом для электроники;
изделие может быть выполнено в виде проволоки, листа или порошка.
второй металл образует сплав с металлом для электроники;
изделие может быть выполнено в виде проволоки, листа или порошка.
Танталовая проволока согласно изобретению отличается тем, что она содержит никель на поверхности или вблизи поверхности металла для электроники, при этом отношение количества никеля к общему количеству тантала составляет от 5 до 200 частей на миллион.
Согласно предпочтительным формам выполнения отношение количества никеля к общему количеству тантала может составлять от 5 до 50 частей на миллион; проволока может быть выполнена упрочненной с предельной прочностью на разрыв больше, чем 830 МПа; она может иметь прочность на разрыв, приблизительно, от 378 до 620 МПа или, приблизительно, от 723 до 1102 МПа или, приблизительно, от 895 до 1480 МПа.
Данное изобретение относится также к способу введения второго металла в металл для электроники, отличительной особенностью которого является то, что наносят покрытие на поверхность металла для электроники из раствора второго металла и нагревают металл для электроники и покрытия в присутствии поглотителя кислорода при температуре, достаточной для удаления кислорода из этого металла для электроники для обеспечения присутствия второго металла на поверхности или вблизи от поверхности этого металла для электроники.
Согласно предпочтительным выполнениям способа согласно изобретению нанесение покрытия включает нанесение раствора соли второго металла в растворителе на поверхность металла для электроники и выпаривание растворителя;
металл для электроники представляет собой тантал, ниобий или их сплав, а второй металл выбирают из группы, состоящей из тантала, ниобия, никеля, титана, циркония, вольфрама и железа;
металл для электроники, включающий второй металл, дополнительно обрабатывают раствором кислоты для удаления остатка поглотителя кислорода и металл для электроники выполняют в форме проволоки, которую упрочняют при обработке волочением до меньшего диаметра;
второй металл образует сплав для электроники.
металл для электроники представляет собой тантал, ниобий или их сплав, а второй металл выбирают из группы, состоящей из тантала, ниобия, никеля, титана, циркония, вольфрама и железа;
металл для электроники, включающий второй металл, дополнительно обрабатывают раствором кислоты для удаления остатка поглотителя кислорода и металл для электроники выполняют в форме проволоки, которую упрочняют при обработке волочением до меньшего диаметра;
второй металл образует сплав для электроники.
Подходящие вторые металлы можно найти в Группах IVB, VB, VIB, VIIB и VIII Периодической таблицы, и они включают тантал, ниобий, никель, титан, цирконий, вольфрам и железо. Предпочтительным вторым металлом для изделий из тантала является никель, который может связываться со спеченными порошками тантала.
В способе согласно изобретению второй металл вводят в металл для электроники путем покрытия поверхности металла для электроники соединением второго металла и нагревания покрытого металла для электроники в присутствии поглотителя кислорода при температуре, достаточной для удаления кислорода из этого металла для электроники, и для того, чтобы обеспечить наличие второго металла в периферийной области металла для электроники. Этот поглотитель должен быть также эффективен при удалении анионов, связанных со вторым металлом в покрытии. Этот способ особенно подходит для получения проволоки, порошка и листа металла для электроники, содержащего второй металл.
Когда такую проволоку, содержащую второй металл, используют в качестве проволочного вывода при получении спеченных анодов из гранулированного порошка металла для электроники, может быть достигнута повышенная прочность связи между спеченным порошком и проволочным выводом. Такой вывод, как полагают, будет применяться с порошком металла для электроники, который предпочтительно спекают при низких температурах, например, ниже чем 1500oС для танталовых порошков или при более низкой температуре, например в интервале от 1200 до 1400oС.
Полагают, что улучшенное связывание анодных брикетов с проволочным выводом анода согласно изобретению может снизить (и тем самым улучшить) восприимчивость анода к пусковому выбросу тока. Не вдаваясь в теорию процесса, можно полагать, что пусковой выброс тока, который возникает при первоначальной зарядке разряженного контура, может вызвать разрушение танталовых конденсаторов при плохих контактах между порошком и проволокой вследствие малой общей площади поперечного сечения. Мгновенный высокий ток, вызванный пересекающимися слабо развитыми связями, приводит к высокой плотности тока и омическому разогреву в области соединения проволоки с анодом. Этот ток высокой плотности и выделение тепла могут привести к повреждению конденсатора и, возможно, даже к сгоранию брикета металла для электроники. Полагают, что улучшенная связь проволоки с брикетом, обеспечиваемая изобретением, снизит вероятность повреждений, связанных с пусковым выбросом тока.
Кроме того, ожидается, что лист металла для электроники согласно изобретению может быть применен при получении контактов проводников для спеченных анодов из высокоемкостного порошка металла для электроники. Таким образом, изобретение является предпочтительным для таких изделий, как проволока и листы из металла для электроники, содержащего второй металл, который улучшает свойства поверхности, например, связывание со спеченной массой порошка металла для электроники. Обычно такие проволоки имеют диаметр в интервале, приблизительно, от 100 до 1000 микрометров (мкм), листы могут быть тоньше, например, порядка 50 мкм, а фольга - еще тоньше. Порошки, содержащие второй металл согласно изобретению, могут применяться в качестве связывающих материалов для соединения частей металла для электроники, или для низкотемпературного спекания порошков металла для электроники, или просто для обеспечения добавки металлов, например диффузантов в периферийных областях металла для электроники.
Является предпочтительным, что в проволоке и листе согласно изобретению второй металл концентрируется в периферийной области изделия из металла для электроники, причем толщина его в периферийной области будет зависеть от скорости диффузии второго металла в металл для электроники. Считается, что факторы, влияющие на диффузию, включают концентрацию на единицу площади поверхности второго металла в покрытии, время и температуру, при которой металл для электроники подвергают термической обработке в присутствии поглотителя кислорода. Во многих случаях является предпочтительным, чтобы периферийная область была как можно тоньше, чтобы обеспечить улучшенные свойства поверхности, не воздействуя на свойства остального объема металла для электроники. Другое преимущество тонкой периферийной области концентрированного второго металла состоит в том, что концентрацию второго металла можно снизить до минимального уровня после использования улучшенных свойств поверхности, например, под действием термической обработки, которая облегчает диффузию второго металла в объем металла для электроники, в котором концентрация второго металла мала (если вообще не равна нулю), например, в центральную область проволоки для листа. В предпочтительном выполнении изобретения периферийная область концентрированного второго металла может находиться на расстоянии от 1 до 2 мкм от поверхности. Для некоторых областей применения концентрация второго металла в периферийной области может составлять приблизительно до 1 вес.% или более. В расчете на общий вес металла для электроники в изделии объемная концентрация второго металла может находиться в интервале от 2 до 2000 частей на миллион (ч/млн). Для некоторых областей применения концентрация второго металла может составлять от 5 до 200 ч/млн. Для других областей применения объемная концентрация второго металла может составлять от 5 до 50 ч/млн.
Проволока из металла для электроники согласно изобретению может быть твердой после отпуска (378-620 МПа), может быть твердой без отпуска (723-1102 МПа) или твердой без отпуска (895-1480 МПа).
Полезным вторым металлом для тантала является никель, который является стабильным и коррозионно стойким. Количество никеля, используемое в танталовой проволоке, предпочтительно является минимальным, которое обеспечивает улучшенные свойства, т.е. улучшенное связывание со спеченным порошком металла для электроники при минимальном вредном воздействии на электрические свойства целевых анодов. Преимущества этого изобретения заключаются в том, что в процессе термического спекания концентрация второго металла, например никеля, сначала будет выше в периферийной области, что способствует связыванию порошка с проволокой; а по мере протекания спекания второй металл будет стремиться продиффундировать от поверхности к центру проволоки, в результате снижается его концентрации в периферийной области и, таким образом, второй металл не оказывает вредного воздействия на электрические свойства электролитического конденсатора.
В способе согласно изобретению предпочтительно обеспечивается равномерное покрытие второго металла за счет использования раствора, содержащего растворимую соль второго металла. Такой раствор можно нанести на поверхность металла для электроники, пассивированную кислородом. Этот второй металл может быть нанесен из органического или водного раствора. Подходящие анионы для таких растворимых солей указанного второго металла включают хлорид, сульфат, карбонат и нитрат. Подходящие органические растворители включают ацетон, ксилол, метанол, ацетонитрил, хлористый метилен, N-пирролидон, диметилсульфоксид, диметилацетамид, диметилформамид, метилэтилкетон, этиловый эфир гликоля и т. п. Для облегчения формирования и сохранения равномерного покрытия на поверхности этот раствор предпочтительно может также содержать вспомогательные агенты, такие как связывающие загустители, выравнивающие агенты, поверхностно-активные вещества и другие агенты, которые обычно применяются в покрытиях. Подходящие вспомогательные связывающие агенты включают полипропиленкарбонат, гидроксипропилметилцеллюлозу, поливиниловый спирт, поливинилбутираль и полимерный латекс; предпочтительным вспомогательным связывающим агентом является полипропиленкарбонат. Концентрация второго металла и вспомогательного агента зависит от толщины равномерного покрытия, которое можно нанести, и от желаемой концентрации второго металла. Такие растворы можно наносить на металл для электроники любым известным способом, например, распылением, нанесением кистью, маканием и др. Эффективное нанесение покрытия на проволоку включает протягивание проволоки через пористую среду, насыщенную раствором, или через емкость с раствором. Покрытие фиксируется при испарении раствора и/или отвержении, например посредством образования геля или сшивания вспомогательным связывающим агентом. Эффективным способом фиксации покрытия на проволоке является протягивание проволоки через зону конвекционного нагрева, для того чтобы облегчить удаление растворителя. Эта эффективная зона конвекционного нагрева может быть вертикальной или горизонтальной трубчатой камерой с потоком нагретого газа в направлении движения проволоки через камеру или в противотоке.
В способе согласно изобретению после фиксации покрытия из второго металла изделие из металла для электроники нагревают в присутствии поглотителя кислорода при температуре, достаточной для удаления оксидного покрытия с металла для электроники и для обеспечения пониженного содержания второго металла в металле для электроники. Эффективными поглотителями кислорода являются металлы, обладающие повышенным сродством к кислороду, по сравнению с металлом для электроники. К таким поглотителям кислорода относятся магний, кальций, натрий, алюминий, углерод, титан и цирконий. Поглотитель кислорода также должен обладать более высоким сродством к кислороду, чем второй металл, например, когда второй металл представляет собой титан или цирконий. Поглотитель кислорода также может быть эффективным для удаления аниона из соли второго металла. Предпочтительным поглотителем кислорода является магний, когда в качестве соединения второго металла используется хлористый никель. Если изделие представляет собой проволоку, ее можно легко намотать на катушку, например, на катушку металла для электроники, чтобы обеспечить воздействие газовой фазы, содержащей материал поглотителя, на намотанную проволоку. Предпочтительно изделие подвергают воздействию материала поглотителя в вакуумной печи, в которой обеспечивается откачка атмосферного кислорода и относительно высокая концентрация поглотителя кислорода в инертной газовой фазе, например, газовой фазе, содержащей аргон и пары магния. Когда в качестве поглотителя кислорода используется магний, то для удаления кислорода с поверхности металла для электроники эффективная температура составляет выше 800oС. Способы удаления кислорода из металла для электроники описаны в патентах США 3647420, 4722756 и 5241481, которые используются в качестве ссылок.
Обычно проволоку из металла для электроники, полученную согласно изобретению, отпускают в результате термической обработки в присутствии поглотителя кислорода. Прочность на разрыв такой прошедшей отпуск проволоки часто является неудовлетворительной при использовании проволоки в качестве выводящего провода при производстве анодов металла для электролитических конденсаторов. Термическая обработка и закалка для упрочнения проволоки обычно ухудшает ее свойства при использовании в конденсаторах из-за поглощения кислорода при такой обработке. Было установлено, что поверхность и периферийная область проволоки из металла для электроники этого изобретения, содержащей второй металл, являются стойкими в отличие от других покрытий поверхностей, причем эта проволока может выдержать протяжку до меньшего диаметра, при которой она эффективно охлаждается, приобретая достаточную прочность для применения в качестве проводников конденсатора. В случае, если покрытие солью второго металла нанесено неравномерно, например полосами, что приводит к низкой концентрации второго металла в некоторой периферийной области, то может быть полезным нанесение оксидного покрытия на проволоку до ее волочения, для того чтобы свести к минимуму истирание поверхности при волочении.
Описанный выше способ также может быть модифицирован, для того чтобы ввести второй металл в порошки металла для электроники, например, порошки с размером частиц порядка от 1 до 10 мкм. Например, порошок металла для электроники может быть покрыт раствором соли второго металла и высушен, например в кипящем слое. Такой порошок металла для электроники, покрытый солью металла, можно обрабатывать поглотителем кислорода, получая порошок металла для электроники, содержащий второй металл. Порошок металла для электроники согласно изобретению может включать никельсодержащий порошок тантала, ниобийсодержащий порошок тантала и танталсодержащий порошок ниобия. Никельсодержащий порошок тантала может применяться в качестве связывающего материала для деталей из тантала. Танталсодержащий порошок ниобия может улучшать электрические свойства порошков ниобия.
Следующие примеры приведены с целью иллюстрации некоторых аспектов данного изобретения.
Пример 1
Раствор для нанесения покрытия, содержащий 0,8 вес.% никеля, получают путем растворения 32,4 г гексагидрата хлористого никеля в 200 мл метанола с медленным добавлением этого раствора хлористого никеля в метаноле к 800 мл раствора полипропиленкарбоната (5 вес.%) в ацетоне, который получают путем добавления ацетона в раствор полипропиленкарбоната QPAC-40-M (20 вес.%), поставляемый фирмой РАС Polymers, Аллентаун, шт. Пенсильвания. На танталовую проволоку, диаметром, приблизительно, 710 мкм, наносят покрытие посредством пропускания проволоки сквозь губку, насыщенную раствором, содержащим 0,8 вес. % никеля, с последующим пропусканием проволоки через длинную трубку из сплава инконель в направлении движении потока теплого воздуха для облегчения испарения растворителя. Проволоку с высушенным покрытием свободно наматывают на танталовую катушку и в вакуумной печи размещают достаточное количество порошка магния в танталовой емкости. Количество порошка магния является достаточным для удаления кислорода с поверхности тантала (проволоки, катушки и емкости) и удаления ионов хлора из покрытия. Откачивают из печи воздух и заменяют его на аргон при низком давлении (приблизительно 13 Па). В течение 2 часов повышают температуру печи до 925oС, чтобы обеспечить контакт паров магния с поверхностью проволоки, имеющей покрытие. После охлаждения печи в нее вводят воздух, удаляют проволоку и промывают ее в кислотной ванне со смесью, приблизительно, 20% азотной кислоты и 2% фтористоводородной кислоты, чтобы удалить остатки магния, оксида магния и хлористого магния. Проволоку отпускают под действием термической обработки, она имеет прочность на разрыв 530 МПа (77000 фунт/кв. дюйм). В результате объемного анализа проволоки найдено, что общее содержание никеля в ней составляет 45 ч/млн. Несмотря на то что на проволоке нет никелевого покрытия, это количество никеля эквивалентно покрытию поверхности никелем толщиной 319 Ангстрем. Анализ поверхности проволоки методом сканирующей электронной микроскопии (СЭМ) на глубину, приблизительно, от 1,5 до 2 мкм показывает наличие никеля и тантала. Проволоку вновь наматывают и осуществляют волочение до диаметра 240 мкм, чтобы получить проволоку, упрочненную при обработке, которая имеет прочность на разрыв 1190 МПа (173000 фунт/кв. дюйм). Анализ поверхности проволоки после волочения методом СЭМ также показывает наличие никеля и тантала. Отображение поверхности проволоки методом рентгеновского анализа свидетельствует о равномерном распределении никеля и тантала. Свитый в спираль отрезок проволоки после волочения анодируют в условиях, аналогичных тем, что применяются для анодирования спеченных брикетов танталового порошка в производстве электролитических конденсаторов. Пропускание электрического тока через свитый в спираль отрезок проволоки после волочения, погруженный в раствор 0,13 вес. % фосфорной кислоты, приводит к выделению пузырьков, что указывает на короткое замыкание через оксид тантала на поверхности проволоки, которое предотвращает образование оксидного слоя. Другой свитый в спираль отрезок проволоки нагревают до 1300oС в течение 30 мин, чтобы моделировать условия спекания для спрессованного брикета танталового порошка. Обработанную термически проволоку анодируют в течение 30 мин в растворе 0,13 вес.% фосфорной кислоты при 93oС и постоянном токе, увеличивая напряжение на клеммах до 200 В, которое поддерживают в течение 5,5 мин. Отрезки анодированной проволоки погружают в раствор 0,1 вес.% фосфорной кислоты, при 25oС, прилагая напряжение 180 В в течение 2 мин; утечка постоянного тока для анодированных сегментов проволоки находится в пределах от 0,25 до 1 мА на квадратный сантиметр (приблизительно 1,5-7 мА/кв. дюйм). Утечка постоянного тока для стандартной танталовой проволоки (без второго металла) составляет приблизительно 0,04 мА на квадратный сантиметр.
Раствор для нанесения покрытия, содержащий 0,8 вес.% никеля, получают путем растворения 32,4 г гексагидрата хлористого никеля в 200 мл метанола с медленным добавлением этого раствора хлористого никеля в метаноле к 800 мл раствора полипропиленкарбоната (5 вес.%) в ацетоне, который получают путем добавления ацетона в раствор полипропиленкарбоната QPAC-40-M (20 вес.%), поставляемый фирмой РАС Polymers, Аллентаун, шт. Пенсильвания. На танталовую проволоку, диаметром, приблизительно, 710 мкм, наносят покрытие посредством пропускания проволоки сквозь губку, насыщенную раствором, содержащим 0,8 вес. % никеля, с последующим пропусканием проволоки через длинную трубку из сплава инконель в направлении движении потока теплого воздуха для облегчения испарения растворителя. Проволоку с высушенным покрытием свободно наматывают на танталовую катушку и в вакуумной печи размещают достаточное количество порошка магния в танталовой емкости. Количество порошка магния является достаточным для удаления кислорода с поверхности тантала (проволоки, катушки и емкости) и удаления ионов хлора из покрытия. Откачивают из печи воздух и заменяют его на аргон при низком давлении (приблизительно 13 Па). В течение 2 часов повышают температуру печи до 925oС, чтобы обеспечить контакт паров магния с поверхностью проволоки, имеющей покрытие. После охлаждения печи в нее вводят воздух, удаляют проволоку и промывают ее в кислотной ванне со смесью, приблизительно, 20% азотной кислоты и 2% фтористоводородной кислоты, чтобы удалить остатки магния, оксида магния и хлористого магния. Проволоку отпускают под действием термической обработки, она имеет прочность на разрыв 530 МПа (77000 фунт/кв. дюйм). В результате объемного анализа проволоки найдено, что общее содержание никеля в ней составляет 45 ч/млн. Несмотря на то что на проволоке нет никелевого покрытия, это количество никеля эквивалентно покрытию поверхности никелем толщиной 319 Ангстрем. Анализ поверхности проволоки методом сканирующей электронной микроскопии (СЭМ) на глубину, приблизительно, от 1,5 до 2 мкм показывает наличие никеля и тантала. Проволоку вновь наматывают и осуществляют волочение до диаметра 240 мкм, чтобы получить проволоку, упрочненную при обработке, которая имеет прочность на разрыв 1190 МПа (173000 фунт/кв. дюйм). Анализ поверхности проволоки после волочения методом СЭМ также показывает наличие никеля и тантала. Отображение поверхности проволоки методом рентгеновского анализа свидетельствует о равномерном распределении никеля и тантала. Свитый в спираль отрезок проволоки после волочения анодируют в условиях, аналогичных тем, что применяются для анодирования спеченных брикетов танталового порошка в производстве электролитических конденсаторов. Пропускание электрического тока через свитый в спираль отрезок проволоки после волочения, погруженный в раствор 0,13 вес. % фосфорной кислоты, приводит к выделению пузырьков, что указывает на короткое замыкание через оксид тантала на поверхности проволоки, которое предотвращает образование оксидного слоя. Другой свитый в спираль отрезок проволоки нагревают до 1300oС в течение 30 мин, чтобы моделировать условия спекания для спрессованного брикета танталового порошка. Обработанную термически проволоку анодируют в течение 30 мин в растворе 0,13 вес.% фосфорной кислоты при 93oС и постоянном токе, увеличивая напряжение на клеммах до 200 В, которое поддерживают в течение 5,5 мин. Отрезки анодированной проволоки погружают в раствор 0,1 вес.% фосфорной кислоты, при 25oС, прилагая напряжение 180 В в течение 2 мин; утечка постоянного тока для анодированных сегментов проволоки находится в пределах от 0,25 до 1 мА на квадратный сантиметр (приблизительно 1,5-7 мА/кв. дюйм). Утечка постоянного тока для стандартной танталовой проволоки (без второго металла) составляет приблизительно 0,04 мА на квадратный сантиметр.
Пример 2
Танталовую проволоку, содержащую никель, получают по способу Примера 1 за исключением того, что раствор соли никеля наносят губкой на подвешенную вертикально проволоку. Проволоку упрочняют при обработке волочением ее до диаметра 250 мкм и используют в качестве проволочных выводов для анодов из спеченного танталового порошка для электролитических конденсаторов. Танталовый порошок прессуют в форме вокруг конца проволоки, и проволоку с напрессованным танталовым порошком спекают в обычных условиях производства. Качество связывания порошка с проволочным выводом проверяют путем вытягивания проволоки из спеченного брикета. Проволочные выводы, содержащие никель согласно этому изобретению, вытягиваются из спеченных брикетов с приложением большего усилия (на 50%) по сравнению с усилием, необходимым при использовании стандартной танталовой проволоки.
Танталовую проволоку, содержащую никель, получают по способу Примера 1 за исключением того, что раствор соли никеля наносят губкой на подвешенную вертикально проволоку. Проволоку упрочняют при обработке волочением ее до диаметра 250 мкм и используют в качестве проволочных выводов для анодов из спеченного танталового порошка для электролитических конденсаторов. Танталовый порошок прессуют в форме вокруг конца проволоки, и проволоку с напрессованным танталовым порошком спекают в обычных условиях производства. Качество связывания порошка с проволочным выводом проверяют путем вытягивания проволоки из спеченного брикета. Проволочные выводы, содержащие никель согласно этому изобретению, вытягиваются из спеченных брикетов с приложением большего усилия (на 50%) по сравнению с усилием, необходимым при использовании стандартной танталовой проволоки.
Claims (18)
1. Металл для электроники, содержащий второй металл, концентрация которого выше на поверхности или вблизи поверхности металла для электроники, отличающийся тем, что второй металл диффундирован в указанный металл для электроники, причем отношение общего количества второго металла к общему количеству металла для электроники составляет от 5 до 2000 млн-1.
2. Изделие, отличающееся тем, что оно содержит металл для электроники по п.1.
3. Изделие по п.2, отличающееся тем, что металл для электроники содержит тантал, ниобий или их сплав, а второй металл выбирают из группы, состоящей из тантала, ниобия, никеля, титана, циркония, вольфрама и железа.
4. Изделие по п.3, отличающееся тем, что второй металл образует сплав с металлом для электроники.
5. Изделие по п.2, отличающееся тем, что оно выполнено в виде проволоки, листа или порошка.
6. Танталовая проволока, отличающаяся тем, что она содержит никель на поверхности или вблизи от поверхности металла для электроники.
7. Проволока по п.6, отличающаяся тем, что отношение количества никеля к общему количеству тантала составляет от 5 до 200 млн-1.
8. Проволока по п.7, отличающаяся тем, что отношение количества никеля к общему количеству тантала составляет от 5 до 50 млн-1.
9. Проволока по п.6, отличающаяся тем, что она выполнена упрочненной с предельной прочностью на разрыв больше 830 МПа.
10. Проволока по п.6, отличающаяся тем, что она имеет прочность на разрыв приблизительно от 378 до 620 МПа.
11. Проволока по п.6, отличающаяся тем, что она имеет прочность на разрыв приблизительно от 723 до 1102 МПа.
12. Проволока по п.6, отличающаяся тем, что она имеет прочность на разрыв приблизительно от 895 до 1480 МПа.
13. Способ введения второго металла в металл для электроники, отличающийся тем, что наносят покрытие на поверхность металла для электроники из раствора второго металла и нагревают металл для электроники и покрытия в присутствии поглотителя кислорода при температуре, достаточной для удаления кислорода из этого металла для электроники, для обеспечения присутствия второго металла в периферийной области этого металла для электроники.
14. Способ по п.13, отличающийся тем, что нанесение покрытия включает нанесение раствора соли второго металла в растворителе на поверхность металла для электроники и выпаривание растворителя.
15. Способ по п.13, отличающийся тем, что металл для электроники представляет собой тантал, ниобий или их сплав, а второй металл выбирают из группы, состоящей из тантала, ниобия, никеля, титана, циркония, вольфрама и железа.
16. Способ по п.13, отличающийся тем, что металл для электроники, включающий второй металл, дополнительно обрабатывают раствором кислоты для удаления остатка поглотителя кислорода и продуктов взаимодействия поглотителя с кислородом и анионом соли.
17. Способ по п.13, отличающийся тем, что металл для электроники выполняют в форме проволоки, которую упрочняют при обработке волочением до меньшего диаметра.
18. Способ по п.13, отличающийся тем, что второй металл образует сплав с металлом для электроники.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/845,736 | 1997-04-26 | ||
US08/845,736 US6051326A (en) | 1997-04-26 | 1997-04-26 | Valve metal compositions and method |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99124811A RU99124811A (ru) | 2001-09-20 |
RU2224808C2 true RU2224808C2 (ru) | 2004-02-27 |
Family
ID=25295982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99124811/02A RU2224808C2 (ru) | 1997-04-26 | 1998-04-23 | Металл для электроники и способ его получения |
Country Status (11)
Country | Link |
---|---|
US (3) | US6051326A (ru) |
EP (1) | EP0977899A1 (ru) |
JP (1) | JP2002514268A (ru) |
KR (1) | KR20010012119A (ru) |
CN (1) | CN1149296C (ru) |
AU (1) | AU7150898A (ru) |
BR (1) | BR9815473A (ru) |
IL (1) | IL132563A0 (ru) |
RU (1) | RU2224808C2 (ru) |
TW (1) | TW398016B (ru) |
WO (1) | WO1998049356A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2507309C1 (ru) * | 2012-10-22 | 2014-02-20 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ нанесения пленки металла |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051326A (en) * | 1997-04-26 | 2000-04-18 | Cabot Corporation | Valve metal compositions and method |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6462934B2 (en) | 1998-09-16 | 2002-10-08 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
AU2571200A (en) * | 1999-02-16 | 2000-09-04 | Showa Denko Kabushiki Kaisha | Niobium powder, niobium sintered body, capacitor comprised of the sintered body,and method for manufacturing the capacitor |
US6224990B1 (en) * | 1999-09-23 | 2001-05-01 | Kemet Electronics Corporation | Binder systems for powder metallurgy compacts |
IL132291A0 (en) * | 1999-10-08 | 2001-03-19 | Advanced Alloys Technologies L | A method for production of tantalum powder with highly developed surface |
DE19953946A1 (de) * | 1999-11-09 | 2001-05-10 | Starck H C Gmbh Co Kg | Kondensatorpulver |
JP4827294B2 (ja) * | 1999-11-29 | 2011-11-30 | 株式会社半導体エネルギー研究所 | 成膜装置及び発光装置の作製方法 |
US6576099B2 (en) | 2000-03-23 | 2003-06-10 | Cabot Corporation | Oxygen reduced niobium oxides |
JP3718412B2 (ja) * | 2000-06-01 | 2005-11-24 | キャボットスーパーメタル株式会社 | ニオブまたはタンタル粉末およびその製造方法 |
US6652619B2 (en) * | 2000-08-10 | 2003-11-25 | Showa Denko K.K. | Niobium powder, sintered body thereof, and capacitor using the same |
EP2221840B1 (en) † | 2000-08-10 | 2013-10-09 | Showa Denko K.K. | Niobium powder, sintered body and capacitor using the body |
JP2004513514A (ja) | 2000-11-06 | 2004-04-30 | キャボット コーポレイション | 酸素を低減した改質バルブ金属酸化物 |
KR20030002582A (ko) * | 2001-06-29 | 2003-01-09 | 주식회사 두리메탈 | 체크밸브 |
US7442227B2 (en) * | 2001-10-09 | 2008-10-28 | Washington Unniversity | Tightly agglomerated non-oxide particles and method for producing the same |
US7324307B2 (en) * | 2002-02-20 | 2008-01-29 | Intri-Plex Technologies, Inc. | Plated base plate for suspension assembly in hard disk drive |
US7304824B2 (en) * | 2002-09-10 | 2007-12-04 | Intri-Plex Technologies, Inc. | Plated base plate for suspension assembly in disk drive |
US20060289311A1 (en) * | 2002-09-10 | 2006-12-28 | Brink Damon D | Method for making a base plate for suspension assembly in hard disk drive |
US7866343B2 (en) * | 2002-12-18 | 2011-01-11 | Masco Corporation Of Indiana | Faucet |
US7655214B2 (en) * | 2003-02-26 | 2010-02-02 | Cabot Corporation | Phase formation of oxygen reduced valve metal oxides and granulation methods |
US7157073B2 (en) | 2003-05-02 | 2007-01-02 | Reading Alloys, Inc. | Production of high-purity niobium monoxide and capacitor production therefrom |
US7445679B2 (en) * | 2003-05-16 | 2008-11-04 | Cabot Corporation | Controlled oxygen addition for metal material |
CN101676217A (zh) | 2003-05-19 | 2010-03-24 | 卡伯特公司 | 生产铌金属氧化物的方法和氧还原的铌氧化物 |
US7149076B2 (en) * | 2003-07-15 | 2006-12-12 | Cabot Corporation | Capacitor anode formed of metallic columns on a substrate |
US7803235B2 (en) * | 2004-01-08 | 2010-09-28 | Cabot Corporation | Passivation of tantalum and other metal powders using oxygen |
US20050225927A1 (en) * | 2004-04-06 | 2005-10-13 | Tagusagawa Solon Y | Processes for the production of niobium oxides with controlled tantalum content and capacitors made therefrom |
US20080011124A1 (en) * | 2004-09-08 | 2008-01-17 | H.C. Starck Gmbh & Co. Kg | Deoxidation of Valve Metal Powders |
SE0402439L (sv) * | 2004-10-07 | 2006-02-28 | Sandvik Intellectual Property | Metod för att kontrollera syrehalten i ett pulver och metod att framställa en kropp av metallpulver |
DE102004049039B4 (de) * | 2004-10-08 | 2009-05-07 | H.C. Starck Gmbh | Verfahren zur Herstellung feinteiliger Ventilmetallpulver |
US7099143B1 (en) | 2005-05-24 | 2006-08-29 | Avx Corporation | Wet electrolytic capacitors |
DE202005010449U1 (de) * | 2005-06-30 | 2006-11-09 | Mann + Hummel Gmbh | Zylinderkopfhaube für einen Zylinderkopf einer Brennkraftmaschine |
EP1922739A1 (en) * | 2005-08-19 | 2008-05-21 | Avx Limited | Solid state capacitors and method of manufacturing them |
GB0517952D0 (en) * | 2005-09-02 | 2005-10-12 | Avx Ltd | Method of forming anode bodies for solid state capacitors |
US7511943B2 (en) * | 2006-03-09 | 2009-03-31 | Avx Corporation | Wet electrolytic capacitor containing a cathode coating |
US7480130B2 (en) * | 2006-03-09 | 2009-01-20 | Avx Corporation | Wet electrolytic capacitor |
BRPI0715961A2 (pt) * | 2006-08-16 | 2013-08-06 | Starck H C Gmbh | produtos semiacabados com uma superfÍcie ativa sinterizada estruturada e um processo para sua produÇço |
GB0622463D0 (en) * | 2006-11-10 | 2006-12-20 | Avx Ltd | Powder modification in the manufacture of solid state capacitor anodes |
US7554792B2 (en) * | 2007-03-20 | 2009-06-30 | Avx Corporation | Cathode coating for a wet electrolytic capacitor |
US7460356B2 (en) * | 2007-03-20 | 2008-12-02 | Avx Corporation | Neutral electrolyte for a wet electrolytic capacitor |
US7649730B2 (en) | 2007-03-20 | 2010-01-19 | Avx Corporation | Wet electrolytic capacitor containing a plurality of thin powder-formed anodes |
US7760487B2 (en) * | 2007-10-22 | 2010-07-20 | Avx Corporation | Doped ceramic powder for use in forming capacitor anodes |
US7812691B1 (en) | 2007-11-08 | 2010-10-12 | Greatbatch Ltd. | Functionally graded coatings for lead wires in medical implantable hermetic feedthrough assemblies |
US7852615B2 (en) * | 2008-01-22 | 2010-12-14 | Avx Corporation | Electrolytic capacitor anode treated with an organometallic compound |
US7768773B2 (en) * | 2008-01-22 | 2010-08-03 | Avx Corporation | Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor |
US7760488B2 (en) * | 2008-01-22 | 2010-07-20 | Avx Corporation | Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor |
CN101477897B (zh) | 2009-01-20 | 2012-05-23 | 宁夏东方钽业股份有限公司 | 钽电容器阳极引线用钽丝及其制造方法 |
US8203827B2 (en) * | 2009-02-20 | 2012-06-19 | Avx Corporation | Anode for a solid electrolytic capacitor containing a non-metallic surface treatment |
US8298478B2 (en) | 2009-04-24 | 2012-10-30 | Medtronic, Inc. | Method of preparing an electrode |
US8760852B2 (en) | 2012-04-24 | 2014-06-24 | Avx Corporation | Solid electrolytic capacitor containing multiple sinter bonded anode leadwires |
US8947858B2 (en) | 2012-04-24 | 2015-02-03 | Avx Corporation | Crimped leadwire for improved contact with anodes of a solid electrolytic capacitor |
US8842419B2 (en) | 2012-05-30 | 2014-09-23 | Avx Corporation | Notched lead tape for a solid electrolytic capacitor |
US9776281B2 (en) | 2012-05-30 | 2017-10-03 | Avx Corporation | Notched lead wire for a solid electrolytic capacitor |
CN103255330B (zh) * | 2013-04-28 | 2015-07-08 | 江苏美特林科特殊合金有限公司 | 一种镍铌中间合金及其制备方法 |
US9269499B2 (en) | 2013-08-22 | 2016-02-23 | Avx Corporation | Thin wire/thick wire lead assembly for electrolytic capacitor |
WO2015093154A1 (ja) * | 2013-12-20 | 2015-06-25 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体、及び電解コンデンサ |
US9837216B2 (en) | 2014-12-18 | 2017-12-05 | Avx Corporation | Carrier wire for solid electrolytic capacitors |
US9905368B2 (en) | 2015-08-04 | 2018-02-27 | Avx Corporation | Multiple leadwires using carrier wire for low ESR electrolytic capacitors |
US9842704B2 (en) | 2015-08-04 | 2017-12-12 | Avx Corporation | Low ESR anode lead tape for a solid electrolytic capacitor |
JP7350653B2 (ja) * | 2017-11-13 | 2023-09-26 | 日東電工株式会社 | 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ |
CN111524707B (zh) * | 2020-04-28 | 2022-07-08 | 北京安邦特资源技术有限公司 | 钽电容器阳极引线用复合丝材及制备方法 |
KR102532068B1 (ko) * | 2020-09-22 | 2023-05-11 | 서울대학교산학협력단 | 고강도 고성형성 탄탈륨 합금 및 그 제조방법 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1030004A (en) * | 1963-08-22 | 1966-05-18 | Telegraph Condenser Co Ltd | Improvements in and relating to electrolytic capacitors |
US3265540A (en) * | 1963-11-19 | 1966-08-09 | American Radiator & Standard | Production of arg hardenable tantalum-based alloys |
US3497402A (en) * | 1966-02-03 | 1970-02-24 | Nat Res Corp | Stabilized grain-size tantalum alloy |
CH515996A (de) * | 1968-06-06 | 1971-11-30 | Starck Hermann C Fa | Verfahren zur Herstellung von hochreinem Niob und/oder Tantal |
US4062679A (en) * | 1973-03-29 | 1977-12-13 | Fansteel Inc. | Embrittlement-resistant tantalum wire |
JPS5339029B2 (ru) * | 1973-04-06 | 1978-10-19 | ||
US4067735A (en) * | 1976-05-03 | 1978-01-10 | Viktor Ivanovich Bezruk | Method of making bulk porous anodes for electrolytic capacitors |
US4097347A (en) * | 1976-08-23 | 1978-06-27 | Packer Elliot L | Electrolytic recovery of metals |
US4235629A (en) * | 1977-10-17 | 1980-11-25 | Fansteel Inc. | Method for producing an embrittlement-resistant tantalum wire |
DD200766A1 (de) * | 1981-07-31 | 1983-06-08 | Eberhard Kasper | Verfnhren zur herstellung von ventilmetallsinterkoerpern fuer elektrolytkondensatoren |
DE3130392C2 (de) * | 1981-07-31 | 1985-10-17 | Hermann C. Starck Berlin, 1000 Berlin | Verfahren zur Herstellung reiner agglomerierter Ventilmetallpulver für Elektrolytkondensatoren, deren Verwendung und Verfahren zur Herstellung von Sinteranoden |
DE3336453C2 (de) * | 1983-10-06 | 1985-11-28 | Hermann C. Starck Berlin, 1000 Berlin | Verfahren zur Oberflächenvergrößerung von Niob und Tantal in Form von agglomerierten oder nicht agglomerierten Pulvern |
US4574333A (en) * | 1985-06-12 | 1986-03-04 | Union Carbide Corporation | Low density tantalum anode bodies |
US4646197A (en) * | 1985-12-23 | 1987-02-24 | Supercon, Inc. | Tantalum capacitor lead wire |
US4859257A (en) * | 1986-01-29 | 1989-08-22 | Fansteel Inc. | Fine grained embrittlement resistant tantalum wire |
US4722756A (en) * | 1987-02-27 | 1988-02-02 | Cabot Corp | Method for deoxidizing tantalum material |
US5100486A (en) * | 1989-04-14 | 1992-03-31 | The United States Of America As Represented By The United States Department Of Energy | Method of coating metal surfaces to form protective metal coating thereon |
US5242481A (en) * | 1989-06-26 | 1993-09-07 | Cabot Corporation | Method of making powders and products of tantalum and niobium |
US4960471A (en) * | 1989-09-26 | 1990-10-02 | Cabot Corporation | Controlling the oxygen content in tantalum material |
EP0468130A1 (de) * | 1990-07-04 | 1992-01-29 | W.C. Heraeus GmbH | Verfahren zur Herstellung von Halbzeug aus Tantal, Niob oder aus einer Basis-Legierung eines dieser Metalle und Verwendung des nach dem Verfahren hergestellten Halbzeugs |
GB9316926D0 (en) * | 1993-08-13 | 1993-09-29 | Ici Plc | Electrode |
JPH0897096A (ja) * | 1994-09-28 | 1996-04-12 | Sutaruku Buitetsuku Kk | タンタル粉末及びそれを用いた電解コンデンサ |
DE19711046A1 (de) * | 1997-03-04 | 1998-09-10 | Brose Fahrzeugteile | Seilfensterheber |
AUPO638897A0 (en) * | 1997-04-23 | 1997-05-22 | Monash University | Modulation of cell growth and methods relating thereto |
US6051326A (en) * | 1997-04-26 | 2000-04-18 | Cabot Corporation | Valve metal compositions and method |
-
1997
- 1997-04-26 US US08/845,736 patent/US6051326A/en not_active Expired - Fee Related
-
1998
- 1998-04-23 EP EP98918612A patent/EP0977899A1/en not_active Withdrawn
- 1998-04-23 BR BR9815473-7A patent/BR9815473A/pt not_active IP Right Cessation
- 1998-04-23 IL IL13256398A patent/IL132563A0/xx not_active IP Right Cessation
- 1998-04-23 CN CNB988054639A patent/CN1149296C/zh not_active Expired - Fee Related
- 1998-04-23 RU RU99124811/02A patent/RU2224808C2/ru not_active IP Right Cessation
- 1998-04-23 KR KR19997009908A patent/KR20010012119A/ko not_active Application Discontinuation
- 1998-04-23 AU AU71508/98A patent/AU7150898A/en not_active Abandoned
- 1998-04-23 JP JP54711998A patent/JP2002514268A/ja active Pending
- 1998-04-23 WO PCT/US1998/008170 patent/WO1998049356A1/en not_active Application Discontinuation
- 1998-04-24 TW TW087106356A patent/TW398016B/zh not_active IP Right Cessation
-
1999
- 1999-10-25 US US09/426,020 patent/US6231689B1/en not_active Expired - Lifetime
-
2001
- 2001-03-21 US US09/813,440 patent/US6517645B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2507309C1 (ru) * | 2012-10-22 | 2014-02-20 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ нанесения пленки металла |
Also Published As
Publication number | Publication date |
---|---|
US20010030005A1 (en) | 2001-10-18 |
US6517645B2 (en) | 2003-02-11 |
TW398016B (en) | 2000-07-11 |
BR9815473A (pt) | 2002-02-19 |
EP0977899A1 (en) | 2000-02-09 |
US6051326A (en) | 2000-04-18 |
WO1998049356A1 (en) | 1998-11-05 |
US6231689B1 (en) | 2001-05-15 |
KR20010012119A (ko) | 2001-02-15 |
IL132563A0 (en) | 2001-03-19 |
AU7150898A (en) | 1998-11-24 |
CN1149296C (zh) | 2004-05-12 |
CN1257552A (zh) | 2000-06-21 |
JP2002514268A (ja) | 2002-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2224808C2 (ru) | Металл для электроники и способ его получения | |
US4537641A (en) | Process for producing valve-metal anodes for electrolytic capacitors | |
JPS617537A (ja) | 多孔質非蒸発型ゲツタ装置の改善された製造方法及びそれにより製造されたゲツタ装置 | |
US5622746A (en) | Tantalum capacitor impregnation process | |
US4105513A (en) | Solid electrolyte capacitor having metallic cathode collector in direct contact with manganese dioxide electrolyte and method of producing same | |
TW201539502A (zh) | 鋁電解電容器用電極箔及其製造方法 | |
JP2003512531A (ja) | タンタル粉末を陽極酸化する方法 | |
JP2001081522A (ja) | 高密度非磁性合金及びその製造方法 | |
JP2021535055A (ja) | 金属−cnt複合体、それらの製造方法及び材料 | |
JP4655689B2 (ja) | 固体電解コンデンサ及びその用途 | |
US3446607A (en) | Iridium coated graphite | |
JPH0449773B2 (ru) | ||
TWI592962B (zh) | 用於生產電解電容之陽極的方法及由該方法所得到的陽極、適合使用當作鉭電解電容的陽極及包含該陽極的電解電容及包含該電解電容的電子電路、及由閥金屬粉末生產電解電容之陽極的用途 | |
US9892862B2 (en) | Solid electrolytic capacitor containing a pre-coat layer | |
US3325698A (en) | Electrical capacitor electrode and method of making the same | |
JP2011192688A (ja) | 固体電解コンデンサ及びその製造方法 | |
US3356912A (en) | Porous electrode | |
CN115376757B (zh) | 一种抗氧化的铜纳米线透明电极及其制备方法和应用 | |
JP3163074B2 (ja) | 表面被覆ニッケル微粉末 | |
CZ302587B6 (cs) | Tantalový drát, ventilový kov, výrobek a zpusob pridávání druhého kovu do ventilového kovu | |
JPH02267915A (ja) | 固体電解コンデンサの製造方法 | |
JPWO2021220975A5 (ru) | ||
JPH01184206A (ja) | 板状多孔質焼結体の製造方法 | |
JP2005277301A (ja) | 固体電解コンデンサ用粉末または燒結体の製造方法 | |
TWI469163B (zh) | Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20060424 |