RU2199723C2 - Источник света с регулируемой длиной волны для оксигемометра - Google Patents

Источник света с регулируемой длиной волны для оксигемометра Download PDF

Info

Publication number
RU2199723C2
RU2199723C2 RU98100085/28A RU98100085A RU2199723C2 RU 2199723 C2 RU2199723 C2 RU 2199723C2 RU 98100085/28 A RU98100085/28 A RU 98100085/28A RU 98100085 A RU98100085 A RU 98100085A RU 2199723 C2 RU2199723 C2 RU 2199723C2
Authority
RU
Russia
Prior art keywords
wavelength
led
light
specified
current
Prior art date
Application number
RU98100085/28A
Other languages
English (en)
Other versions
RU98100085A (ru
Inventor
Мохамед Кеир Диэб
Есмаел Киани-Азарбайджани
Чарлз Роберт Рагсдэйл
Джеймз Леппер
Original Assignee
Масимо Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23900172&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2199723(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Масимо Корпорейшн filed Critical Масимо Корпорейшн
Publication of RU98100085A publication Critical patent/RU98100085A/ru
Application granted granted Critical
Publication of RU2199723C2 publication Critical patent/RU2199723C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0275Details making use of sensor-related data, e.g. for identification of sensor parts or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/08Sensors provided with means for identification, e.g. barcodes or memory chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3144Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths for oxymetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Mathematical Physics (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electrotherapy Devices (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Led Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Holo Graphy (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Lasers (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

Изобретение относится к калибровке светодиодов и их использованию, в частности, в неинвазивных оксигемометрах. Изобретение позволяет настроить светодиоды (СД) (162) в данном диапазоне путем выбора их тока возбуждения в целях получения точной длины волны. Изобретение обеспечивает способ калибровки и использования зонда (150) СД, чтобы сдвиг в длине волны для известного изменения в токе возбуждения имел известную величину. В общем случае принцип сдвига длины волны для изменений тока возбуждения для СД используется в целях обеспечения более точной калибровки и дополнительной гибкости в использовании датчиков СД, особенно в применениях, где точная длина волны необходима для получения точных измерений. Кроме того, изобретение обеспечивает систему, в которой нет необходимости знать точные длины волн СД, когда точные длины волн были нужны в прошлом, а также способ и устройство для определения рабочей длины волны светоизлучающего элемента, такого как светодиод. 7 с. и 24 з.п. ф-лы, 15 ил.

Description

Изобретение относится в общем случае к более эффективной калибровке и использованию светодиодов. В частности, настоящее изобретение относится к устройству и способу калибровки и использования светодиодов в датчике для использования с оксигемометрической системой.
Светодиоды (СД) используются во многих применениях. В определенных применениях для получения точных измерений требуется знание конкретной длины волны работы СД. Одним из таких применений являются неинвазивные оксигемометры, обычно используемые для наблюдения за насыщением артерий кислородом.
В традиционной для оксигемометрии операции по определению насыщения артерий кислородом световая энергия передается от СД, каждый из которых имеет соответствующую длину волны, через человеческие ткани, несущие кровь. В общем случае СД являются частью датчика, прикрепленного к оксигемометрической системе. При обычном использовании датчик прикреплен к пальцу или к мочке уха. Световая энергия, которая поглощается кровью, обнаруживается фотодетектором и анализируется для определения насыщения кислородом. Дополнительные составные элементы и характеристики крови, такие как насыщение карбоксигемоглобином и рассеяние, могут наблюдаться с использованием дополнительных СД с дополнительными длинами волн.
Патент США 4653498, выданный New Jr. et al., раскрывает импульсный оксигемометр, который использует два СД для обеспечения энергии падающего света с двумя различными, но тщательно выбранными длинами волн.
В традиционных оксигемометрах длина волны каждого СД в датчике должна быть точно известна в целях точного вычисления насыщения кислородом. Однако датчики могут отсоединяться от оксигемометрической системы, чтобы допустить их замену или дезинфекцию.
Когда датчик заменяется, СД нового датчика могут иметь немного отличающуюся длину волны для заранее заданного тока возбуждения СД из-за допусков на изготовление. Соответственно, традиционные оксигемометры снабжены индикацией на оксигемометре конкретной длины волны СД для данного датчика. В одной известной системе для кодирования каждой передачи СД используется резистор. Резистор выбирается так, чтобы иметь значение, указывающее длину волны СД. Оксигемометр считывает величину резистора в датчике и использует величину резистора для определения действительной длины волны СД. Эта процедура калибровки описана в патенте США 4621643, выданном Nellcor, Inc. Такой известный датчик изображен на фиг.1.
В традиционных оксигемометрах, которые обеспечивают индикацию рабочей длины волны каждого СД на каждый датчик, оксигемометрические системы запрограммированы на выполнение требуемых подсчетов для различных длин волн. Это усложняет конструкцию оксигемометрической системы и, следовательно, увеличивает стоимость оксигемометрической системы. Соответственно, было бы выгодно обеспечить датчики, которые проявляют одинаковые характеристики длины волны от датчика к датчику.
Кроме того, традиционные датчики требуют дополнительного СД для каждой дополнительной требуемой длины волны. Для заменяемых датчиков каждый СД может прибавить значительную общую дополнительную цену из-за большого количества датчиков, которые используются в больницах и т.п. Поэтому было бы желательно получить датчик, который обеспечивает более чем одну длину волны от одного СД.
У многих СД наблюдается проявление сдвига длины волны в ответ на изменения в токе возбуждения, рабочем напряжении, температуре или других параметрах настройки, таких как свет, направляемый на СД. Настоящее изобретение включает усовершенствованные способ и устройство для калибровки СД путем использования этого сдвига длины волны. Кроме того, настоящее изобретение включает использование сдвига длины волны, чтобы позволить единственному СД обеспечить более чем одну рабочую длину волны. Добавление длины волны дает возможность наблюдения дополнительных элементов в крови без прибавления дополнительных СД в оксигемометрический датчик.
Настоящее изобретение также включает применение сдвига длины волны в СД для получения физиологических данных относительно насыщения крови кислородом без знания точной рабочей длины волны СД в датчике.
Один аспект настоящего изобретения обеспечивает настроенную светопередающую цепь для передачи световой энергии на заранее выбранной длине волны. Цепь имеет источник тока, сконфигурированный для обеспечения заранее выбранного тока источника со светодиодом, подключенным к этому источнику тока. Светодиод выбран такого типа, в котором проявляется сдвиг в длине волны при сдвиге в выбранном параметре настройки. Выгодно, чтобы параметром настройки являлся ток возбуждения или рабочее напряжение. Резистор настройки, подключенный параллельно светодиоду, имеет величину, выбранную для пропускания по меньшей мере первой части заранее выбранного тока источника, так что вторая часть заранее выбранного тока источника проходит через светодиод. Вторая часть заранее выбранного тока источника выбирается такой, чтобы заставить светодиод вырабатывать световую энергию заранее выбранной длины волны.
В настоящем выполнении настроенная светопередающая цепь содержит также детектор, реагирующий на световую энергию от светодиода для выработки выходного сигнала, индицирующего интенсивность световой энергии.
Другой аспект настоящего изобретения включает способ предварительной калибровки генерирующего свет датчика. Способ включает определенное количество операций. Определяется первый уровень тока, проходящего через источник света, что требуется для работы источника света на заранее выбранной длине волны. Затем определяется второй уровень тока. Второй уровень тока выше, чем первый уровень тока. Второй уровень тока формирует ток возбуждения. Затем выбирается резистор, который при подключении параллельно источнику света формирует настроенную цепь источника света. Резистор выбирается так, что при подключении параллельно источнику света он пропускает значительное количество тока возбуждения, чтобы первый уровень тока проходил через источник света.
Другим аспектом настоящего изобретения является способ обеспечения двух длин волн от одного светодиода. Светодиод выбирается такого типа, который проявляет сдвиг длины волны с изменением в токе возбуждения через светодиод для диапазона токов возбуждения. Источник электрической энергии подключен к светодиоду для обеспечения токов возбуждения. Светодиод приводится в действие первым уровнем тока возбуждения в диапазоне тока возбуждения, чтобы заставить светодиод стать активным и работать на первой длине волны в ответ на первый уровень токов возбуждения. Светодиод затем приводится в действие вторым уровнем тока возбуждения в диапазоне тока возбуждения, отличающимся от первого уровня тока возбуждения, чтобы заставить светодиод стать активным и работать на второй длине волны в ответ на второй уровень тока возбуждения.
В выполнении, где светодиод сконфигурирован для передачи световой энергии к тестируемой среде, способ содержит следующие операции. Когда светодиод работает на первой длине волны, свет передается как первая световая энергия на первой длине волны через тестируемую среду. Первая длина волны выбирается для первого заранее заданного параметра ослабления световой энергии, когда она распространяется через тестируемую среду. Ослабленная световая энергия от светодиода измеряется фотодетектором. Кроме того, когда светодиод работает на второй длине волны, световая энергия передается через тестируемую среду на второй длине волны. Вторая длина волны выбирается для второго заранее заданного параметра ослабления световой энергии, когда она распространяется через тестируемую среду. Ослабленная световая энергия измеряется на второй длине волны от светодиода.
В одном выгодном выполнении способ используется для определения насыщения крови кислородом, и среда при тестировании содержит часть человеческого тела с циркулирующей кровью. В этом выполнении способ включает в себя подключение источника энергии ко второму светодиоду, который работает на третьей длине волны, отличающейся от первой и второй длин волн. Далее, изменение в длине волны между первой и второй длинами волн имеет заранее выбранное значение. Третья световая энергия передается на третьей длине волны через тестируемую среду, и третья световая энергия измеряется после распространения через тестируемую среду. На основании этих измерений определяется насыщение крови кислородом.
В одном выполнении дополнительно к насыщению кислородом могут также определяться параметры, относящиеся к тестируемой среде, когда первая длина волны имеет известное значение, и изменение длины волны между первой и второй длинами волн имеет заранее выбранное значение. В этом выполнении определяется значение второй длины волны и вычисляется другой параметр, относящийся к крови. В одном выполнении этим другим параметром является насыщение карбоксигемоглобином. Альтернативно, другим параметром является рассеяние. Еще одним параметром является метгемоглобин.
При использовании вышеописанных устройств для настройки выгодно, чтобы первый светодиод регулировался регулировочным резистором так, чтобы изменение в длине волны для нарастающего изменения в токе совпадало с изменением заранее выбранной длины волны. Предпочтительно, чтобы регулировка включала в себя помещение регулировочного резистора параллельно первому светодиоду и выбор величины регулировочного резистора, чтобы заставить первый светодиод проявлять заранее выбранное изменение для нарастающего изменения в токе.
Еще один аспект настоящего изобретения обеспечивает оксигемометрический датчик, имеющий первый светоизлучающий прибор, сконфигурированный для выработки света на первой известной длине волны, и резистор параллельно с первым светоизлучающим прибором. Предпочтительно, чтобы первый светоизлучающий прибор содержал светодиод. В одном выполнении резистор содержит кодирующий резистор, имеющий величину, индицирующую первое известное значение длины волны. Величина кодирующего резистора имеет достаточно высокое значение, так что кодирующий резистор эффективно пропускает незначительный ток во время активной работы первого светоизлучающего прибора.
В другом выполнении резистор содержит резистор безопасности, имеющий величину, индицирующую, что оксигемометрический датчик выбран заранее заданного типа. Кроме того, величина резистора безопасности имеет достаточно высокое значение, так что резистор безопасности эффективно пропускает незначительный ток во время активной работы первого светоизлучающего прибора.
Еще один аспект настоящего изобретения включает в себя способ настройки светодиода для работы на заранее заданной длине волны в диапазоне длин волн. Способ включает выбор светодиода, который проявляет сдвиг длины волны в ответ на изменение в токе возбуждения в диапазоне тока возбуждения и приведение светодиода в действие первым током возбуждения. Измеряется длина волны светодиода во время работы на первом токе возбуждения, и если светодиод не работает на заранее выбранной длине волны, ток возбуждения регулируется в диапазоне тока возбуждения до второго тока возбуждения так, чтобы светодиод работал на заранее выбранной длине волны.
Другой аспект настоящего изобретения включает в себя датчик, сконфигурированный для передачи и обнаружения света. Датчик имеет по меньшей мере один светоизлучающий элемент, этот светоизлучающий элемент имеет излучение с центроидной длиной волны передачи. Датчик далее имеет первый и второй фотодетекторы, излучение света светодиодом происходит в процессе ответа первого и второго фотодетекторов. Светоизлучающий элемент сконфигурирован так, чтобы направлять свет от по меньшей мере одного светоизлучающего элемента на первый и второй фотодетекторы. Фильтр, расположенный между вторым фотодетектором и по меньшей мере одним светоизлучающим элементом, имеет диапазон передачи, выбранный так, чтобы включить в себя центроидную длину волны передачи.
В одном выполнении датчик содержит оксигемометрический датчик, а по меньшей мере один светоизлучающий элемент содержит первый и второй светодиоды. Выгодно, чтобы первый светодиод имел центроидную длину волны в красном диапазоне, а второй светодиод имел центроидную длину волны в инфракрасном диапазоне. Выгодно, чтобы фильтр имел диапазон передачи, который включает в себя центроидную длину волны первого светодиода.
В одном выгодном выполнении светонаправляющий элемент содержит собирающую оптическую сферу с первым и вторым фотодетекторами, расположенными вокруг сферы так, чтобы принимать достаточно равные части света от по меньшей мере одного светоизлучающего элемента.
В другом выполнении светонаправляющий элемент содержит светоделительный элемент, расположенный так, чтобы достаточно ровно разделять свет от по меньшей мере одного светоизлучающего элемента и направлять достаточно равные части света на первый и второй фотодетекторы.
Еще один аспект настоящего изобретения включает в себя способ определения центроидной длины волны светоизлучающего элемента. Способ включает обеспечение набора из множества заранее заданных отношений, каждое из этого множества заранее заданных отношений соответствует связанной с ним центроидной длине волны. Свет передается от светоизлучающего элемента на первый элемент обнаружения света для получения первой интенсивности, и свет передается от светоизлучающего элемента через фильтр, который ослабляет свет, на второй элемент обнаружения света для получения второй интенсивности. Затем вычисляется отношение второй интенсивности к первой интенсивности. Это отношение сравнивается с набором заранее заданных отношений для указания центроидной длины волны светоизлучающего элемента.
В одном выполнении первый и второй элементы обнаружения света содержат один и тот же элемент обнаружения света.
Фиг. 1 представляет откалиброванный существующий оксигемометрический зонд.
Фиг. 2 показывает график, иллюстрирующий отношения между коэффициентами затухания трех составных элементов крови по отношению к длине волны передачи света, передаваемого через кровь.
Фиг.3А и 3В показывают примерные характеристики СД.
Фиг. 4А представляет настроенный оксигемометрический датчик в соответствии с одним аспектом настоящего изобретения.
Фиг.4В показывает оксигемометрическую систему с пальцем для наблюдения.
Фиг. 5А и 5В показывают диаграмму одного выполнения резистора для использования в соответствии с настоящим изобретением.
Фиг. 6 показывает усредняющий эффект в длине волны двух одновременно активных СД с близкими длинами волн передачи.
Фиг. 7 показывает выполнение оксигемометрического датчика в соответствии с другим аспектом настоящего изобретения.
Фиг. 8 и 8А показывают примерные выполнения улучшенных откалиброванных оксигемометрических датчиков.
Фиг.9А и 9В показывают альтернативные выполнения датчиков в соответствии с одним аспектом настоящего изобретения, относящиеся в обнаружению длины волны светодиодов.
Фиг. 10А, 10В, 10С и 10D показывают графики, относящиеся к аспекту обнаружения длины волны настоящего изобретения.
Фиг.11 и 11А показывают графики кривых ответов фильтра для различных фильтров в соответствии с аспектом обнаружения длины волны настоящего изобретения.
Фиг. 12-15 показывают четыре различных конфигурации зонда для использования в настоящем изобретении.
Настоящее изобретение в общем случае применимо для использования медицинских зондов и СД. Однако понимание облегчается следующим описанием применения принципов настоящего изобретения к оксигемометрии.
Хорошо известны преимущества неинвазивных методов в наблюдении за насыщением артерий пациента кислородом (или другими составными элементами). В оксигемометрии свет с известной длиной волны передается через тестируемую среду (например, человеческий палец). Световая энергия частично поглощается и рассеивается составными элементами, которые составляют среду, когда свет распространяется через среду. Поглощение и рассеяние световой энергии любым данным составным элементом зависят от длины волны света, проходящего через этот составной элемент, равно как и от нескольких других параметров. Поглощение составным элементом характеризуется тем, что известно как коэффициент затухания.
Фиг.2 представляет примерный график 100 соотношений между коэффициентами затухания трех составных элементов крови по отношению к длине волны света. В частности, кривая 102 иллюстрирует соотношение между коэффициентом затухания оксигемоглобина (гемоглобина, насыщенного кислородом) по отношению к длине волны передачи; вторая кривая 104 иллюстрирует соотношение между коэффициентом затухания восстановленного гемоглобина по отношению к длине волны передачи и третья кривая 106 иллюстрирует отношение между коэффициентом затухания карбоксигемоглобина (гемоглобина, содержащего моноокись углерода) по отношению к длине волны передачи. Это соотношение хорошо известно в уровне техники. Одна длина волны требуется для каждого отдельного составного элемента в среде. Длины волн, использованных для оксигемометрии, выбраны для максимальной чувствительности измерений (например, насыщения кислородом и т. д.). Эти принципы хорошо известны в уровне техники.
Амплитуда энергии, падающей на гомогенные среды, имеющие по меньшей мере один составной элемент при тестировании, примерно относится к амплитуде энергии, передаваемой через среды, следующим образом:
Figure 00000002

где I0 - энергия, падающая на среду, I - ослабленный сигнал, di - толщина i-го составного элемента, через который проходит световая энергия, εi - коэффициент затухания (поглощения) i-го составного элемента, через который проходит световая энергия (длина оптического пути i-го составного элемента), и сi - концентрация i-го составного элемента в толщине di. Как хорошо известно в уровне техники, это основное соотношение используется для получения насыщения кислородом с использованием традиционных техник оксигемометрии.
Следует понимать, что приведенное выше уравнение упрощено в целях обсуждения. Другие факторы, такие как множественное рассеяние, также способствуют результирующему ослаблению световой энергии. Множественное рассеяние обсуждено в печати Джозефом М. Шмиттом (Joseph M. Schmitt) под названием "Simple Photon Diffusion Analysis of the Effects of Multiple Scattering on Pulse Oximetry" ("Простой фотонный диффузионный анализ эффектов множественного рассеяния в пульсовой оксигемометрии") в IEEE Transactions on Biomedical Engineering, том 38, 12 за декабрь 1991 г.
Однако в целях дальнейшего обсуждения будет использоваться упрощенное уравнение (1). В процедурах, основанных на технике оксигемометрии, на точность физиологического измерения влияет точность длины волны светодиодов передачи, поскольку, как показано на фиг.2, коэффициент затухания зависит от длины волны СД передачи. Для получения насыщения кислородом обычно используются два СД, один в красном диапазоне длин волн и один в инфракрасном диапазоне длин волн для получения измерения насыщения для пациента. Как установлено в уравнении (1), коэффициент затухания является критической переменной в уравнении. Соответственно, важно, чтобы оксигемометр был обеспечен информацией о конкретной длине волны СД передачи для датчика. Однако длина волны различных СД, хотя и изготовленных для конкретных длин волн, меняется для одного и того же тока возбуждения от СД к СД из-за допусков на изготовление.
СД, настроенные по длине волны
Один аспект настоящего изобретения обеспечивает устройство и способ настройки каждого СД в датчике так, что прочие длины волн для СД не будут значительно изменяться от датчика к датчику. Настройка выполняется путем использования сдвига длины волны, проявляющегося во многих СД в ответ на изменение в токе возбуждения. Фиг.3А и 3В иллюстрируют этот принцип сдвига длины волны двумя графиками. График 110 фиг.3А показывает (с помощью кривой 112) ток по вертикальной оси и напряжение по горизонтальной оси для обычного СД. График 110 фиг. 3А хорошо известен в уровне техники. В области между осями, обозначенными как А и В, прямо за изгибом кривой 112 длина волны определенных СД сдвигается достаточно линейно в ответ на соответствующее изменение в токе возбуждения или в напряжении. Величина сдвига длины волны на увеличивающееся изменение в токе возбуждения обычно разнится для каждого СД (разработанных для одной и той же длины волны), равно как рабочие длины волн для СД (разработанных для конкретных длин волн) меняются для одного и того же тока от СД к СД.
Фиг. 3В показывает примерный график 120 длины волны СД в ответ на ток возбуждения в области изгиба, показанного на фиг.3А. Этот график показывает в кривой 122 примерный сдвиг длины волны для СД в красном диапазоне в ответ на изменения тока возбуждения. Наклон кривой 122, показанной на фиг.3В, меняется от СД к СД, равно как и диапазон длин волн. Однако для традиционных СД, используемых в оксигемометрии крови, увеличивающийся сдвиг в токе возбуждения через СД вызывает некоторый увеличивающийся сдвиг в длине волны. Поскольку это отношение достаточно линейно в области прямо за изгибом кривой 112, показанной на фиг.3А, в одном предпочтительном выполнении, сдвиг достигается в области за изгибом. График фиг.3В не предназначен для представления всех СД, но лишь для представления одного возможного сдвига длины волны, соответствующего конкретному изменению в токе возбуждения.
Соответственно, одним путем для получения выбранной длины волны является приведение СД в действие с помощью тока, необходимого для получения этой длины волны. Однако это выполнение будет требовать такой конструкции оксигемометра, которая меняет ток возбуждения СД для каждого датчика.
В одном выгодном выполнении во избежание дополнительной сложности конструкции оксигемометрической системы резистор помещается параллельно СД в целях регулировки тока возбуждения через СД до уровня, который отразится в выбранной длине волны. В таком выполнении оксигемометрическая система разработана для работы на выбранной длине волны для каждого СД в датчике. И оксигемометр требует лишь обеспечения фиксированного тока возбуждения. Соответственно, в одном выполнении конструкция оксигемометра проще в том, что она не требует принимать во внимание изменения длин волн от датчика к датчику. Оксигемометр может быть просто разработан для работы на выбранных длинах волн и иметь фиксированный ток возбуждения.
Каждый датчик с СД, изготовленный для оксигемометра, настроен с использованием сдвига длины волны так, что СД в датчике вырабатывают свет с выбранными длинами волн для оксигемометра. Фиг.4А показывает одно выполнение настроенного датчика 150, подключенного к примерной оксигемометрической системе 152, в соответствии с аспектом настройки СД настоящего изобретения.
Датчик 150 проиллюстрирован первым источником 160 света и вторым источником 170 света, обычно светодиодами. Первый настраивающий резистор 162, подключенный параллельно первому СД 160, формирует первую настроенную цепь 164 СД. Аналогично, второй настраивающий резистор 172 подключен параллельно второму СД 170 для формирования второй настроенной цепи 174 СД. Датчик 150 содержит фотодетектор 180. Источник энергии в оксигемометрической системе, такой как устройство 182 возбуждения СД, подключен к настроенным сетям 164, 174 СД для обеспечения заранее заданного тока возбуждения на входе настроенных цепей 164, 174 СД. Выгодно, чтобы устройство 182 возбуждения СД обеспечивало ток только на одну из настроенных цепей 164, 174 СД в любое данное время. Фотодетектор 180 подключен к приемной и согласующей схеме 184 в оксигемометрической системе 152. При работе фотодетектор получает ослабленную световую энергию и отвечает выходным сигналом, представляющим интенсивность измененной световой энергии. Оксигемометрическая система 152 содержит контроллер 190 с поддерживающими ресурсами и дисплеем 192. Оксигемометрическая система принимает сигналы, полученные от датчика 150, и анализирует сигналы, чтобы определить информацию, относящуюся к среде, через которую была передана световая энергия. Следует понять, что оксигемометрическая система показана в упрощенной форме в целях обсуждения. Оксигемометрические системы хорошо известны в уровне техники. Одна возможная оксигемометрическая система содержит оксигемометрическую систему, раскрытую в международной заявке WO 96/12435, опубликованной 2 мая 1996 г. Хорошо известны и другие оксигемометрические системы, и они могут быть использованы для работы на выбранных длинах волн.
Как показано на фиг.4В, для оксигемометрии обычная среда может включать палец 200 или мочку уха, что хорошо известно в уровне техники. Среды, такие как палец и мочка уха, обычно содержат некоторое количество составных элементов, таких как кожа, ткани, мышцы, артериальную и венозную кровь (каждая из которых имеет несколько составных элементов) и жир. Каждый составной элемент поглощает и рассеивает световую энергию конкретной длины волны по-разному из-за различных коэффициентов затухания. При работе в общем случае первый СД 160 излучает падающий свет в ответ на ток возбуждения от устройства 182 возбуждения СД. Свет распространяется через тестируемую среду. Когда передаваемый свет распространяется через среду, он частично поглощается этой средой. Ослабленный свет, выходящий из среды, принимается фотодетектором 180. Фотодетектор 180 вырабатывает электрический сигнал, индицирующий интенсивность ослабленной световой энергии, падающей на фотодетектор 180. Этот сигнал подается в оксигемометрическую систему 152, которая анализирует сигнал для определения характеристик выбранного составного элемента среды, через которую прошла световая энергия.
Настройка теперь объясняется со ссылкой на первый СД 160. Настройка также применима ко второму СД 170. Как объяснено выше, в ответ на конкретный ток возбуждения различные СД отвечают различными длинами волн, хотя бы даже СД были изготовлены для выработки одинаковой длины волны. Настройка первого СД 160 в соответствии с настоящим изобретением включает в себя определение величины тока, требуемого для работы первого СД 160 на выбранной длине волны, и регулировку тока через первый СД 160 для получения выбранной длины волны.
Например, обычные рабочие величины для красных СД, используемых в оксигемометрии, находятся в диапазоне между 645 и 670 нм. Для конкретного выполнения оксигемометра оксигемометр может быть разработан для работы на выбранной длине волны внутри этого диапазона, например 670 нм. Однако СД, изготовленные для выработки выбранной длины волны 670 нм, включают допуски на изготовление обычно ±2-10 нм для одного и того же тока возбуждения. Однако для обычного СД, используемого в оксигемометрии, ток возбуждения может меняться для получения желаемой выходной длины волны для СД. Например, как показано на фиг.3В, представленный СД имеет рабочую длину волны 600 нм для обычного тока возбуждения 50 мА. Если ток возбуждения увеличивается примерно до 85 мА, рабочая длина волны становится выбранной длиной волны настоящего примера (670 нм). Настоящее изобретение получает выгоду от наблюдаемого сдвига длины волны в ответ на изменение тока возбуждения для настройки каждого СД для получения выбранной длины волны, такой как 670 нм.
В целях обсуждения первый СД 160 определен для проявления характеристики длины волны, показанной на фиг.3В. Для настройки первого СД 160 предполагается, что ток возбуждения от устройства 182 возбуждения СД установлен заранее или зафиксирован. В настоящем выполнении ток возбуждения предпочтительно несколько сильнее, чем ток возбуждения, необходимый для приведения одного первого СД 160 в действие (например, 100 мА или больше). Это сделано потому, что первый настраивающий резистор 162 пропускает часть фиксированного тока возбуждения от устройства 182 возбуждения СД. Первый настраивающий резистор 162 выбирается для пропускания должного количества фиксированного тока возбуждения для регулировки некоторого количества тока, текущего через первый СД 160, что в результате дает выбранную выходную длину волны. В настоящем примере резистор выбирается для пропускания примерно 15 мА (из 100 мА от устройства 182 возбуждения СД) для уменьшения тока через первый СД 160 примерно до 85 мА для получения выбранной длины волны 670 нм. Соответственно, каждый СД может быть приведен в действие одним и тем же фиксированным током возбуждения от устройства 182 возбуждения СД, тогда как ток через любой отдельный СД отличается в соответствии с величиной связанного с ним настраивающего резистора. В этом случае устройство 182 возбуждения СД может быть разработано для обеспечения одного и того же фиксированного тока возбуждения для каждого датчика, подключенного к оксигемометру. Оксигемометрическая система 152, таким образом, разработана для выполнения его подсчета, выполняемого на основе предположения, что соответствующие длины волн останутся постоянными от датчика к датчику.
Один конкретный выгодный способ выбора и настройки резистора включает в себя использование резистора на полупроводниковой подложке, такого как резистор 210, показанный на фиг.5А и 5В. Резистор 210, показанный на фиг.5, содержит полупроводниковую подложку 212, резистивную покрывающую площадку 214 и соединительные проводники 216, 218. В одном выполнении настраиваемый СД 220 (например, СД, проявляющий сдвиг длины волны при изменении тока возбуждения) подключен параллельно резистору 210 на полупроводниковой подложке. Фиксированный (заранее установленный) ток возбуждения затем подается источником 222 тока в цепь, сформированную полупроводниковым резистором 210 и настраиваемым СД 220. Измеряется рабочая длина волны настраиваемого СД 220. Предпочтительно, чтобы резистор первоначальной подложки имел меньшее сопротивление, чем это будет необходимо для получения желаемой выходной длины волны. Лазер используется для скрайбирования резистивной площадки 214, как показано линией 224 на фиг.5В. Нанесенная линия 224 эффективно удаляет часть резистивной подложки 214, как хорошо известно в уровне техники. При использовании лазера увеличение в сопротивлении может контролироваться очень точно. Резистивная площадка 214 может быть подогнана лазером, пока ток через настраиваемый СД 220 не заставит настраиваемый СД 220 вырабатывать выбранную рабочую длину волны. Получающиеся пары резистор/СД формируют настроенную цепь СД. Этот способ настройки выгоден из-за точности и получающейся низкой стоимости настроенного СД.
Также могут быть использованы другие способы выбора первого настраивающего резистора 162, такие как вычисление сдвига длины волны для данного изменения тока для первого СД 160, а затем выбор должного резистора, чтобы заставить нужное количество тока течь через СД для получения выбранной рабочей длины волны. Аналогично, может быть использован потенциометр. Предпочтительно, чтобы каждый СД для каждого датчика был настроен одинаковым образом так, чтобы рабочая длина волны являлась выбранной рабочей длиной волны для датчика. Например, работающий оксигемометр с двумя длинами волн может иметь выбранные длины волн для двух СД 670 нм и 905 нм. Для каждого датчика первый СД настраивается для выбранной длины волны 670 нм, а второй СД настраивается на выбранную длину волны 905 нм.
В итоге, аспект настройки настоящего изобретения включает использование принципа сдвига длины волны в СД для настройки каждого СД для получения соответствующей рабочей длины волны.
Следует понять, что для некоторых СД допуск на изготовление может быть слишком далек от соответствующей выбранной длины волны, чтобы разрешить использование сдвига в длине волны для должной настройки СД; либо сдвиг длины волны может быть недостаточен для получения выбранной длины волны. В одном выполнении такие СД не будут использоваться, а будут рассматриваться вне допуска. Альтернативно, если сдвиг длины волны, который возможно получить, недостаточен для должной настройки, возможно использовать два СД, имеющие длины волн, очень близкие друг к другу и к выбранной длине волны. Один СД имеет длину волны ниже выбранной длины волны, и один СД имеет длину волны выше выбранной длины волны. Как показывает график фиг.6, когда два СД активны одновременно и расположены рядом друг с другом, свет от двух СД объединяется для формирования объединенной длины волны, которая является средней длиной волны двух СД. Объединенная длина волны имеет более широкий диапазон длин волн, но имеет известное среднее значение. Предпочтительно, для точной настройки средней длины волны сдвиг длины волны одного или обоих СД может быть использован с использованием настраивающих резисторов, как описано выше, так что средняя длина волны будет выбранной длиной волны. Соответственно, два СД (предпочтительно настроенные в соответствии с настоящим изобретением как пара) могут быть использованы для получения выбранной длины волны для работы в данном оксигемометре.
В качестве другого варианта, если не доступен достаточный сдвиг длины волны, чтобы позволить настройку всех СД на выбранные длины волн, могут использоваться несколько выбранных длин волн. Например, для определения насыщения кислородом выбранные длины волн могут быть 660, 670 и 680 нм. Выбранные инфракрасные длины волн могут быть 900, 920 и 940 нм независимо от красных длин волн. Каждый датчик будет настроен с использованием настраивающих резисторов, описанных выше, так что красные и инфракрасные СД работают на одной из выбранных красной и инфракрасной длин волн соответственно. Затем датчик будет снабжен индикатором или проводником, прикрепленным к датчику, чтобы позволить оксигемометру определять, какая из выбранных длин волн присутствует в датчике, прикрепленном к оксигемометру. Альтернативно, устройство обнаружения длин волн может быть обеспечено оксигемометрической системой для определения, какая из выбранных длин волн присутствует в датчике, прикрепленном к оксигемометрической системе. Хотя это выполнение и требует некоторого средства для оксигемометра, чтобы определить, какая из выбранных длин волн присутствует в прикрепленном датчике, выбранные длины волн точны от датчика к датчику.
СД с двумя длинами волн
Другой аспект настоящего изобретения включает в себя использование принципа сдвига длины волны в СД для данного изменения в токе при использовании одиночного СД для обеспечения двух рабочих длин волн. Это выгодно при проведении физиологических измерений, таких как оксигемометрические измерения крови, потому что для каждой прибавляемой дополнительной длины волны может быть измерен дополнительный составной элемент в крови. Например, для оксигемометра с двумя длинами волн может точно показываться только отношение одного из двух составных элементов к общему из этих двух составных элементов (например, насыщению кислородом). Если насыщение кислородом показывается двумя длинами волн, другие составные элементы, которые значительно представлены в крови, влияют на измерение насыщения кислородом.
Если дополнительный составной элемент, находящийся в крови, имеет значительное воздействие на измерение насыщения кислородом для конкретного пациента, неспособность обнаружить этот составной элемент может быть очень вредной для пациента. Примером составного элемента, который при нахождении в крови будет значительно влиять на измерение насыщения кислородом, получаемое оксигемометром с двумя длинами волн, является моноокись углерода. Это происходит потому, что величина коэффициента затухания для карбоксигемоглобина (показанная кривой 106 на фиг.2) достигает коэффициента затухания оксигемоглобина (показанного кривой 102 на фиг.2) для световой энергии в диапазоне 660 нм. Следовательно, карбоксигемоглобин может быть обнаружен как оксигемоглобин. Это ведет к неверной индикации насыщения кислородом (то есть, переоценке) крови при использовании оксигемометра с двумя длинами волн. В этом случае лечащий врач может неверно обнаружить недостаток кислорода и увеличение моноокиси углерода в пациенте. Если в датчике обеспечена дополнительная длина волны передачи, оксигемометр может показывать другой составной элемент, такой как карбоксигемоглобин.
В соответствии с настоящим изобретением принцип сдвига длины волны в СД используется для приведения СД в действие двумя соответствующими уровнями тока возбуждения для обеспечения двух различающихся длин волн. В простейшем виде это выполняется путем первоначального приведения в действие СД (который проявляет сдвиг длины волны при изменении тока возбуждения) первым известным током возбуждения на первую известную длину волны, а затем приведения того же СД в действие вторым известным током на вторую длину волны.
Фиг. 7 показывает одно выгодное выполнение датчика 250 для оксигемометрических измерений крови, подключенного к оксигемометрической системе 252, разработанной в соответствии с этим аспектом настоящего изобретения. Датчик 250 содержит первый СД 254 и второй СД 256. Для оксигемометрии крови первый СД 254 предпочтительно работает в красном диапазоне длин волн, и второй СД 256 предпочтительно работает в инфракрасном диапазоне длин волн. Датчик 250 содержит фотодетектор 258. Фотодетектор 258 подключен к приемной и согласующей схеме 262. Оксигемометрическая система находится под управлением контроллера 264 и имеет дисплей 266. Как хорошо известно в уровне техники, устройство 260 возбуждения СД последовательно приводит в действие СД 254, 256 заранее определенным током возбуждения. Фотодетектор 258 обнаруживает световую энергию, ослабленную тестируемой средой. Оксигемометр 252 принимает и анализирует сигнал от фотодетектора для определения информации, относящейся в среде, через которую была передана световая энергия. Как и с выполнением на фиг. 4, оксигемометрическая система показана в упрощенной форме. Должные оксигемометрические системы включают систему, раскрытую в международной заявке WO 96/12435, опубликованной 2 мая 1996 г. Существуют также другие мониторы, хорошо известные в уровне техники. Оксигемометрическая система 252 модифицируется в соответствии с настоящим изобретением для приведения в действие сдвигающего СД, как описано ниже.
В настоящем примере для оксигемометрии крови первый СД 254 является сдвигающим СД и используется для обеспечения двух длин волн. Для точного обеспечения двух длин волн используется принцип сдвига длин волн. В соответствии с одним выполнением СД оцениваются в то время, когда изготавливаются датчики, и датчику обеспечивается индикатор, который может быть считан оксигемометрической системой 252 для индикации изменения тока возбуждения, необходимого для выполнения желаемого сдвига в длине волны. Индикаторы могут содержать резистор на датчике или проводнике датчика, память на датчике или проводнике датчика или аналогичное устройство. Альтернативно, индикатор может обеспечивать индикацию для оксигемометра некоторой величины сдвига длины волны, которая достигается из-за заранее установленного изменения тока возбуждения. Другим вариантом является обеспечение детектора 268 длины волны оксигемометру, который позволит оксигемометрической системе 252 обнаруживать длину волны передачи активного СД. Детекторы длины волны, такие как монохрометры, хорошо известны в уровне техники.
Однако традиционные монохрометры дороги и громоздки. Это описание устанавливает ниже более практичный подход к обнаружению длины волны. В этом выполнении устройство 260 возбуждения СД меняет ток возбуждения, пока не будет получена желаемая длина волны, с использованием детектора 268 длины волны для наблюдения за длиной волны.
В одном предпочтительном выполнении, позволяющем получить более простую конструкцию оксигемометра в целях точного обеспечения двух длин волн с одним СД, таким как первый СД 254, цепь 270 из регулирующего наклон резистора 272 первого СД 254 регулирует наклон так, что заранее выбранное изменение (ΔI) в токе возбуждения, входящее в первую регулирующую наклон цепь, вызывает заранее выбранный сдвиг (Δλ) в длине волны в первом СД 254. Другими словами, как показано на фиг.3В, каждый СД проявляет присущий ему наклон кривой 122. Однако наклон этой кривой часто отличается от СД к СД, даже для СД с конкретной длиной волны. Чтобы разработать оксигемометр для простоты в получении повторяемого заранее выбранного сдвига длины волны, выгодно иметь заранее выбранный сдвиг (Δλ) длины волны для каждого первого СД в различных датчиках, соответствующих одному и тому же заранее выбранному изменению (ΔI) в токе возбуждения. Соответственно, желательно, чтобы первый СД (в настоящем примере) в различных зондах отвечал одинаковым заранее выбранным изменением в длине волны на одинаковое изменение в токе возбуждения, выдаваемом устройством 260 возбуждения СД. Другими словами, выгодно, чтобы наклон кривой 122 на фиг. 3В был одинаков для каждой соответствующей цепи СД, хотя это обычно не одинаково для каждого отдельного СД. В этом случае оксигемометр разработан для приведения СД в действие двумя уровнями тока возбуждения, где два уровня тока возбуждения заранее выбираются и остаются постоянными от датчика к датчику.
Как только первый настраивающий резистор 162 настраивает первый СД 160 на конкретную выбранную длину волны для выбранного тока возбуждения, регулирующий наклон резистор, такой как регулирующий наклон резистор 272, может быть использован для изменения наклона кривой 122, проявившегося в конкретной соответствующей цепи СД (например, первая регулирующая наклон цепь 270 СД). В большинстве примеров регулирующий наклон резистор 272 при использовании для изменения наклона не может также быть использован для настройки точной длины волны первого СД 254. Однако могут использоваться другие способы и операции для индикации оксигемометру конкретной длины волны работы первого СД для данного тока возбуждения. Например, датчику 250 может быть придан индикатор (такой как резистор или недорогостоящее запоминающее устройство), который может считываться оксигемометром 252, причем индикатор обеспечивает начальную рабочую длину волны регулирующей наклон цепи 270 СД.
Регулировка наклона может быть выполнена тем же образом, как описано выше по отношению к резистору 210 на полупроводниковой подложке. Однако резистор подложки работает скорее как регулирующий наклон резистор, а не резистор настройки длины волны (то есть резистор подложки отрегулирован, чтобы вызывать заранее выбранное изменение в длине волны для заранее выбранного изменения в токе возбуждения для цепи СД/резисторов). Другими словами, для первого СД 254 резистор 210 подложки, показанный на фиг.5А и 5В, подключен к первому СД 254 для формирования регулирующего наклон резистора 272. Лазер используется для подгонки резистора до тех пор, пока заранее выбранное изменение в токе возбуждения для цепи 270 не отразится в заранее выбранном изменении в длине волны для первого СД 254.
Следует отметить, что, если доступны СД, которые проявляют одинаковый сдвиг длины волны по отношению к одинаковому изменению в токе возбуждения, первый регулирующий наклон резистор 272 не нужен.
Для определения насыщения кислородом второй СД 256 работает на фиксированной инфракрасной длине волны (например, 905 нм). Предпочтительно, если инфракрасные СД имеют допуски на изготовление, инфракрасные СД могут быть настроены с использованием настраивающего резистора 274, такого же как и настраивающий резистор 162 на фиг.4, для работы на выбранной инфракрасной длине волны. При настроенном втором (инфракрасном) СД 256 и настроенном по наклону первом СД 254 (сконфигурированным для обеспечения двух длин волн) измерения по трем длинам волн могут производиться с использованием датчика 250.
При своем использовании датчик 250 на фиг. 7 сначала приводится в действие начальным током возбуждения, чтобы заставить первый СД 254 вырабатывать световую энергию первой длины волны (например, 680 нм). Ослабленный сигнал на этой первой длине волны обнаруживается фотодетектором 258 и принимается оксигемометром 252. Далее, первый отрегулированный по наклону СД 254 приводится в действие новым током возбуждения, отличающимся на заранее выбранное изменение в токе возбуждения, чтобы заставить заранее выбранный сдвиг длины волны получить вторую длину волны (например, 675 нм). Пока начальная длина волны обеспечена для оксигемометрической системы 252 и наклон (изменение в длине волны из-за изменения в токе) первой цепи 270 СД должным образом регулируется для совпадения с заранее выбранным наклоном, вторая длина волны также будет иметь известную величину. Третье измерение производится путем приведения в действие второго СД 256 и приема ослабленного сигнала фотодетектором 258. Измерения хранятся в оксигемометрической системе 252. На основании проведенных трех измерений может быть определено артериальное насыщение двумя составными элементами крови (например, оксигемоглобином и карбоксигемоглобином), таким образом обеспечивая более точную информацию, относящуюся к физиологическому составу крови тестируемого пациента.
В оксигемометрической системе, где желательно наблюдение за моноокисью углерода и кислородом, первая длина волны может быть 660 нм, вторая длина волны может быть 675 нм или 680 нм, а третья дина волны будет инфракрасной длиной волны, такой как 900 или 905 нм. С этими тремя длинами волн, обеспеченными двумя СД, может быть определено насыщение оксигемоглобина и карбоксигемоглобина в крови. Использование двух СД для проведения измерений на трех длинах волн уменьшает стоимость датчика, что особенно выгодно, если датчик является одноразовым или заменяемым датчиком.
В дополнение к вышеописанным использованиям следует также отметить, что принцип сдвига длины волны, описанный выше, может быть использован для получения дополнительной длины волны с одним СД.
Измерения без точной информации о длине волны
Следующий аспект настоящего изобретения включает в себя устройство и способ измерения насыщения выбранного составного элемента в тестируемой среде (например, оксигемоглобина в крови) без знания точной рабочей длины одного СД. В соответствии с этим аспектом настоящего изобретения, если сдвиг длины волны для СД известен для известного изменения в токе возбуждения, не требуется знать рабочую длину волны для СД, если также доступна другая информация, что будет объяснено ниже.
Как объяснено выше, получение известного сдвига длины волны для выбранного изменения в токе может достигаться путем регулировки имеющихся в настоящий момент СД, так что СД реагируют на заранее выбранное изменение (ΔI) в токе возбуждения вместе с заранее выбранным изменением (Δλ) в длине волны. Альтернативно, если доступны СД, имеющие повторяемое (от СД к СД) изменение в длине волны для выбранного изменения в токе, эти СД могут быть использованы без регулировки. Понимание этого аспекта настоящего изобретения объяснено со ссылками на определение насыщения артерий кислородом с использованием оксигемометров с двумя длинами волн.
Как объяснено выше, фиг.2 показывает график, иллюстрирующий соотношение между обычным коэффициентом затухания для трех составных элементов крови по отношению к длине волны передачи света, передаваемого через кровь. Для целей определения насыщения кислородом интересны первая кривая 102 и вторая кривая 104.
Как показано первой кривой 102, коэффициент затухания оксигемоглобина для света, передаваемого между примерно 665 нм (показано как λ1 на графике) и 690 нм (показано как λ2 на графике), в значительной степени постоянен (это видно яснее, когда ось Y на фиг.2 не является осью логарифмической шкалы). Когда свет внутри этого некоторого диапазона (например, λ12) передается через восстановленный гемоглобин (вторая кривая 104), коэффициент затухания восстановленного гемоглобина проявляет достаточно линейную зависимость от длины волны передачи. Эти известные свойства составных элементов крови используются в устройстве и способе по настоящему изобретению для получения информации, относящейся к насыщению крови кислородом (или насыщению другим составным элементом) без знания конкретной длины волны одного из двух СД.
Предполагая, что падающий свет представлен позицией I0, a ослабленный сигнал представлен позицией I, ослабленный сигнал представлен выше уравнением (1). Другим словами, для датчика 250 СД на фиг.7 ослабленный сигнал I принимается фотодетектором 258 и является функцией передачи окружающей среды, как установлено в уравнении (1).
Если свет с длиной λ волны передается через ткань с циркулирующей кровью, содержащей два вида гемоглобина (оксигемоглобин и восстановленный гемоглобин), уравнение (1) может быть расширено для этих двух составных элементов крови:
Figure 00000003

где d - толщина среды,
ε - коэффициент поглощения восстановленного гемоглобина на длине λ волны,
ε - коэффициент поглощения оксигемоглобина на длине λ волны,
с1 - концентрация восстановленного гемоглобина,
с2 - концентрация оксигемоглобина,
εj - коэффициент поглощения j-го слоя ослабляющего материала (не включая оксигемоглобин и восстановленный гемоглобин),
dj - толщина j-го слоя ослабляющего материала (не включая оксигемоглобин и восстановленный гемоглобин),
сj - концентрация j-го слоя ослабляющего материала (не включая оксигемоглобин и восстановленный гемоглобин).
Уравнение (2) может быть далее выражено следующим образом:
Figure 00000004

Figure 00000005

где S - значение, полученное путем измерения I фотодетектором и вычисления отношения I и IBL после вычисления натурального логарифма.
Для определения насыщения кислородом, когда свет передается на первой красной длине λ1 волны, уравнение (3) выражается следующим образом:
Figure 00000006

Когда свет передается на инфракрасной длине λ1R волны, уравнение (3) выражается следующим образом:
Figure 00000007

Когда известны как длина λ1 волны, так и длина λ1R волны, может быть определено насыщение кислородом, как хорошо известно в уровне техники. Это кратко иллюстрируется следующим дифференцированием.
Пусть N1=S1/d и N2=S1R/d. (6)
Уравнения (4) и (5) принимают следующий вид:
Figure 00000008

Figure 00000009

В матричном представлении уравнения (7) и (8) принимают следующий вид:
Figure 00000010

Figure 00000011

или
Figure 00000012

Откуда
Figure 00000013

Как хорошо известно в уровне техники, насыщение кислородом определяется следующим отношением:
Кислород:
Figure 00000014

или
Figure 00000015

Следовательно:
Figure 00000016

Подставляя N1= S1/d и N2=S1R/d и умножая числитель и знаменатель на -1, получаем
Figure 00000017
.
Умножаем числитель и знаменатель на d:
Figure 00000018

Подставляем уравнение (12) в вышеприведенное уравнение (11):
Figure 00000019

Упрощая:
Figure 00000020
.
И наконец:
Figure 00000021

Когда известны как длина λ1 волны, так и длина λ1R волны, известны также коэффициенты
Figure 00000022
для соответствующих составных элементов на λ1 и λ1R. Как объяснено выше, S1 и S1R могут быть получены путем измерения I и I0 и вычисления натурального логарифма этого отношения на различных длинах волн во время работы. Соответственно, все переменные в уравнении насыщения известны или достижимы через измерение.
Однако, если длины волн для передающих СД конкретно неизвестны, коэффициенты ε затухания не будут известны. В соответствии с одним аспектом настоящего изобретения насыщение кислородом может быть вычислено без знания точной длины волны одного из СД. Здесь, в целях обсуждения, для иллюстрации этого аспекта настоящего изобретения выбран СД в красном диапазоне. В соответствии с настоящим изобретением, как объяснено выше, красный СД может быть отрегулирован для проявления заранее выбранного сдвига длины волны, хотя точная длина волны может быть даже неизвестна. Соответственно, красный СД может быть приведен в действие двумя различными токами возбуждения для получения двух отдельных длин волн, сдвиг между которыми заранее выбран и известен. Однако, как объяснено выше, точная длина волны может быть неизвестна без некоторой индикации по меньшей мере начальной длины волны. В соответствии с настоящим изобретением, пока известен заранее выбранный сдвиг длины волны, нет необходимости знать начальную длину волны.
В применении, где коэффициенты затухания меняются по отношению к сдвигам в длине волны порядка 1-3 нм, нужно иметь возможность определить длину волны без предварительной информации, относящейся к длине волны или сдвигу длины волны. Это будет выполнено путем вычисления желаемого измерения (например, насыщения кислородом) при нескольких (например, двух или более) различных токах возбуждения СД и использования изменения в измерении совместно с эмпирически выработанным набором данных (то есть кривых) измерений по отношению к длинам волн для определения длины волны СД.
Если использован заранее выбранный сдвиг длины волны, оксигемометрическая система может производить измерения по трем длинам λ12 и λ1R волн. Таким образом, получается третье уравнение в добавление к уравнениям (3) и (4).
Когда свет передается на второй красной длине λ2 волны, уравнение (3) выражается следующим образом:
Figure 00000023

Как показано на фиг. 2, внутри диапазона 650 нм - 700 нм коэффициент затухания не изменяется значительно. Конкретнее, внутри диапазона λ12 = 665 нм - 690 нм
Figure 00000024

Кроме того, внутри того же диапазона
Figure 00000025

Δε1 известен для известного сдвига длины волны внутри описанного диапазона, поскольку изменение в коэффициенте Δε1 затухания в значительной степени линейно.
Подстановка уравнений (14) и (15) в уравнения (4), (5) и (14) выразится в следующих уравнениях:
Figure 00000026

Figure 00000027

Figure 00000028

Как объяснено выше, S1, S2 и S1R вычисляются путем измерения I и IBL. Соответственно, S1, S2 и S1R являются известными величинами. Предполагается, что коэффициенты ε1 и ε2 для СД инфракрасной длины волны известны, поскольку в интересующих инфракрасных длинах волн (например, 850 нм - 920 нм и конкретнее 890 нм - 910 нм) коэффициент затухания в значительной степени постоянен для обеих кривых 102 и 104. В другом выполнении точность будет постепенно улучшаться путем настройки СД. Также известны коэффициенты затухания для оксигемоглобина на λ1 и λ2, пока длина волны остается в диапазоне, где коэффициент затухания остается постоянным. В настоящем примере этот диапазон определен от 665 нм до 690 нм. Более того, поскольку изменение в коэффициенте Δε1 затухания для восстановленного гемоглобина известно для известного сдвига длины волны между λ12 = 665 нм - 690 нм, Δε1 также является известной величиной, поскольку ε1 линейно связано с λ. Общая толщина d среды обычно неизвестна для большинства применений. Однако для определения насыщения кислородом, как показано выше, толщина (d) устранена, поскольку насыщение является отношением.
Соответственно, для определения насыщения кислородом уравнения (17), (18) и (19) обеспечивают три уравнения с тремя неизвестными (
Figure 00000029
c1 и с2). Алгебраические приемы, следующие за этими уравнениями (6) - (13), могут быть применены для решения трех уравнений для получения отношения c2/(c1 + c2) насыщения кислородом. Соответственно, нет необходимости знать точную рабочую длину волны первого СД 254, пока рабочая длина волны для первого СД 254 находится в известном диапазоне, где заранее выбранное изменение в токе возбуждения вызывает заранее выбранное изменение в длине волны и где коэффициент затухания одного составляющего элемента постоянен и коэффициент затухания второго составляющего элемента в значительной степени линеен так, что также известно изменение в коэффициенте затухания для заранее выбранного изменения в длине волны.
Соответственно, этот аспект настоящего изобретения позволяет пользователю получить физиологические данные без знания точной рабочей частоты СД.
Улучшенная калибровка датчика СД
Дополнительный аспект настоящего изобретения включает метод улучшенной калибровки для оксигемометрического датчика, где резистор используется скорее для кодировки СД, чем для настройки СД. Как показано в существующем откалиброванном оксигемометрическом зонде на фиг.1, кодирующий резистор 300 использует отдельный вывод электрического соединения и соединяется с общим заземляющим выводом 304. При увеличении использования заменяемых или одноразовых датчиков любое уменьшение сложности заменяемого датчика может каждый раз выражаться в значительной экономии средств. В соответствии с настоящим изобретением характеристики СД, как показано на фиг.3А, могут быть использованы для обеспечения более выгодного по стоимости закодированного или откалиброванного оксигемометрического зонда, где кодирование или калибровка обеспечивается путем использования кодирующего резистора.
В соответствии с этим аспектом настоящего изобретения одно из электрических соединений СД также может быть использовано для кодирующего резистора. Фиг.8 показывает условную схему примерного оксигемометрического датчика, где кодирующий резистор 332 может считываться с использованием скорее одного из электрических соединений СД, чем отдельного электрического соединения. Датчик 310 содержит первый СД 312, второй СД 314 и фотодетектор 316. Первый СД 312 имеет первое соответствующее электрическое соединение 318, второй СД 314 имеет второе соответствующее электрическое соединение 320 и фотодетектор 316 имеет соответствующее электрическое соединение 322. Каждый из СД 312, 314 и фотодетектор 316 подключены на своих выходах к общему заземляющему электрическому соединению 330. В настоящем выполнении кодирующий резистор 332 подключен параллельно первому СД 312 или второму СД 314. В этом выполнении кодирующий резистор 332 не предназначен для настройки первого СД 312 или для регулировки наклона первой цепи СД, но предназначен в качестве индикатора, который может быть считан прикрепленной оксигемометрической системой 340. Резистор может быть использован для индикации рабочей длины волны первого и второго СД 312, 314 или, более выгодно, для индикации типа зонда. Другими словами, величина кодирующего резистора 332 может быть выбрана для индикации того, что зонд является зондом для взрослых, педиатрическим зондом, зондом для новорожденных, одноразовым зондом или зондом с возможностью повторного использования. В одном предпочтительном выполнении кодирующие резисторы могут быть обеспечены параллельно каждому СД 312, 314, чтобы допустить дополнительную информацию о зонде, подлежащем кодированию без дополнительных выводов. Однако любой резистор или устройство импеданса может быть использовано без его использования параллельно СД для кодирования изменения в длине волны или другой информации для СД.
Например, кодирующий резистор может быть использован для целей безопасности. Другими словами, величина кодирующего резистора и размещение его параллельно СД 312 могут быть использованы для гарантии того, что зонд сконфигурирован должным образом для оксигемометра. Например, кодирующий резистор может быть использован для индикации того, что зонд выпущен авторизованным поставщиком, такие зонды, как стандартный зонд "Masimo", зонд "Patient Monitoring Company 1", зонд "Patient Monitoring Company 2" и т.д.
Кроме того, должно быть отмечено, что резистору не требуется быть пассивным элементом. Кодирование информации также может быть обеспечено через активную схему, такую как транзисторная цепь, микросхема памяти или другое устройство идентификации, например Dallas Semiconductor DS 1990 или DS 2401 или другую микросхему автоматической идентификации.
Для считывания кодирующего резистора 332 оксигемометрическая система 340 приводит в действие сочетание первый СД 312/кодирующий резистор 332 на уровне, который достаточно низок для того, чтобы СД эффективно пропускал незначительный ток из-за экспоненциального отношения между I и V, как показано на графике на фиг.3А. Как хорошо известно в уровне техники, СД становится активным в области изгиба, обозначенного осевым указателем А. Ниже уровня А напряжения СД эффективно неактивен и эффективно пропускает незначительный ток. Другим словами, ток через первый СД 312 ничтожно мал. Практически весь ток через первое электрическое соединение 318 течет через кодирующий резистор 332.
Ток, который течет через кодирующий резистор для примененного напряжения, измеряется оксигемометрической системой путем измерения тока через первое электрическое соединение 318. В свою очередь, оксигемометрическая система 340 определяет величину кодирующего резистора 332, которая выбрана заранее для индикации типа зонда, рабочей длины волны или других параметров о зонде. По сути дела, путем уменьшения рабочего напряжения параллельно первому электрическому соединению 318 и заземления на низкий уровень, который не приводит в действие первый СД 312, первый СД 312 эффективно устраняется из электрической схемы. В настоящем выполнении обнаружено, что для обычных СД в красном и инфракрасном диапазонах особенно выгодным напряжением является напряжение в 0,5 В. При напряжении 0,5 В ток через СД в общем случае меньше 1 мкА (незначительная величина).
Предпочтительно выбирать кодирующий резистор 332, чтобы он имел достаточно большую величину, так что, когда подача тока на первое электрическое соединение 318 значительно увеличивается для приведения в действие первого СД 312, кодирующий резистор 332 эффективно устраняется из электрической схемы из-за его высокого сопротивления по сравнению с сопротивлением первого СД 312 на активных токах возбуждения.
Соответственно, кодирующий резистор может быть использован в соединении с оксигемометрическим датчиком СД без добавления электрического соединителя, предназначенного для кодирующего резистора. Это уменьшает стоимость датчика в соответствии с настоящим изобретением.
В одном выгодном выполнении оксигемометр может наблюдать за кодирующим резистором непрерывно путем обеспечения сигнала считывания кодирующего резистора в 0,5 В на частоте, отличающейся от тока возбуждения СД, например, если ток возбуждения СД включается и выключается на частоте 625 Гц, напряжение считывания кодирующего резистора в 0,5 В может быть обеспечено на частоте, гораздо меньшей чем 625 Гц, так что сигнал на 625 Гц может быть легко отфильтрован фильтром нижних частот с частотой отсечки существенно ниже 625 Гц, но с такой полосой пропускания, которая позволяет сигналу в 0,5 В пройти. Это позволит оксигемометру непрерывно наблюдать за кодирующим резистором 332 в случае изменения в датчике оператором системы.
Это особенно выгодное выполнение использования кодирующего резистора 332 может также использоваться с обычной конфигурацией "задняя сторона к задней стороне" для красных и инфракрасных СД, что обычно делается в оксигемометрах. Такая конфигурация показана на фиг.8А. Фиг.8А одинакова с фиг.8, исключая то, что первый СД 312 и второй СД 314 соединены в конфигурации "задняя сторона к задней стороне" так, что требуется первое электрическое соединение 318 и напряжение может быть изменено с положительного на отрицательное для пропускания тока либо через второй СД 314, либо через первый СД 312. Это устраняет необходимость в электрическом соединении с оксигемометрическим зондом, тем самым уменьшается стоимость зонда. В конфигурации "задняя сторона к задней стороне" на фиг.8А, если второй СД 314 является красным СД с изломом характеристик примерно в 2,0 В и первый СД 312 является инфракрасным (ИК) СД с изломом характеристик примерно в 1,5 В, положительное напряжение выгодно подается на первое электрическое соединение 318 примерно на 0,5 В в целях измерения кодирующего резистора 332. Поскольку изломом характеристики красного СД является 2,0 В, очень слабый ток (меньше чем 1 мкА) будет течь через красный СД и практически никакого тока не будет течь через инфракрасный СД 312 (поскольку инфракрасный СД 312 имеет напряжение обратного смещения). При таком развитии событий ток, который проходит через цепь первого СД 312, второго СД 314 и кодирующий резистор 332, примерно равен току через кодирующий резистор 332. Сопротивление кодирующего резистора 332 затем легко определяется по закону Ома путем деления напряжения, поданного в цепь, на ток, который течет через цепь. Следует быть внимательным, чтобы быть уверенным, что элемент (активный или пассивный) не создает электромагнитных помех, которые могут привести к уменьшенному отношению сигнала к шуму в системе.
Обнаружение длины волны
Как вкратце обсуждено выше, в определенных обстоятельствах полезно прямо получать информацию, относящуюся к длине волны СД, соединенного с оксигемометром. Как показано на фиг.7, может быть обеспечен детектор 268 длины волны. Однако детектор длины волны требует проведения оператором некоторых работ по его конфигурированию. В больничных условиях выгодно упрощать использование оксигемометра. Соответственно, в другом выполнении каждый датчик СД скомпонован в конфигурацию для обнаружения длины волны. Фиг.9А и 9В показывают диаграммы возможных выполнений датчиков СД, сконфигурированных с фильтрами. Эти конфигурации с фильтрами могут быть использованы для получения длины волны СД для датчика.
Как показано на фиг.9А, датчик 400 содержит цепь 402 передачи СД, первый фотодетектор 404, второй фотодетектор 406, рассеиватель 407, светоделительный элемент 408, оптический фильтр 410 и необязательный оптический фильтр 411. Цепь 402 передачи СД, первый фотодетектор 404 и второй фотодетектор 406 подключены к оксигемометрической системе 412. Третий фотодетектор 413 также показан для оксигемометрических измерений. Этот третий фотодетектор 413 не рассматривается в нижеследующем обсуждении, которое относится к части калибровки оксигемометрического зонда 400. Цепь 402 передачи СД предпочтительно содержит по меньшей мере два СД, один в красном диапазоне длин волн (например, 660 нм) и один в инфракрасном диапазоне длин волн (например, 905 нм). Ниже описывается определение длины волны одного из СД в цепи 402 СД с использованием конфигурации датчика 400, показанного на фиг.9А.
Как видно из фиг. 9А, цепь 402 СД передает свет 414, который сначала проходит через рассеиватель 407. Рассеиватель 407 выгодно обеспечен в предпочтительном выполнении в целях устранения поляризации света, поскольку светоделительный элемент 408 чувствителен к поляризованному свету, и большинство СД передают определенный процент поляризованного света. Свет затем проходит на светоделительный элемент 408, где он расщепляется. Светоделительный элемент 408 предпочтительно покрыт материалом, который частично отражает свет интересующей длины волны СД в цепи 402 СД. Выгодно, чтобы светоделительный элемент 408 отражал примерно половину света 414 и направлял его на первый фотодетектор 404. Остаток света проходит через светоделительный элемент 408 и через фильтр 410 и принимается вторым фотодетектором 406. Оксигемометрическая система 412 принимает показания интенсивности от первого и второго фотодетекторов 404, 406 и использует относительные интенсивности из первого и второго фотодетекторов 404, 406 для определения центроидной длины волны излучения для СД цепи 402, как будет объяснено ниже.
Как хорошо известно в уровне техники, использование светоделительного элемента для точного деления света по 50% будет дорого для изготовления. Однако нет необходимости получать разделение света на 50%, поскольку погрешность может быть исправлена калибровкой. В выполнении, где не обеспечен второй фильтр 411, система может быть откалибрована путем активации инфракрасного СД. Это возможно потому, что первый фильтр 410 прозрачен для инфракрасных длин волн и, таким образом, каждый фотодетектор 404, 406 принимает один и тот же сигнал. В таком выполнении выходные сигналы интенсивности от первого и второго фотодетекторов 404, 406 могут быть сравнены и уравнены через постоянные калибровки во время работы. Это компенсирует погрешности в фотодетекторах, светоделительном элементе 408 и рассеивателе 407.
В выполнении, где инфракрасный свет не используется для калибровки, фотодетекторы 404, 406, светоделительный элемент 408 и рассеиватель 407 могут быть откалиброваны перед установкой пассивного или активного кодирующего элемента 415 на каждое устройство. Следует понять, что позиция 415 представляет один или более кодирующих элементов. Также следует понять, что одиночный кодирующий элемент может быть использован для всех оптических устройств внутри позиции 515. Предпочтительно, чтобы элементы, обеспеченные для калибровки (находящиеся внутри прямоугольника из пунктирных линий, обозначенного как 515), в этом выполнении были расположены в части зонда, подлежащей повторному применению, так что увеличенная стоимость не слишком велика.
Фильтр 410 может также иметь погрешность из-за чувствительности к температуре и погрешность от процесса изготовления. Следовательно, в целях калибровки погрешности по отношению к фильтру 410 (предпочтительно фотопластинка) из-за сдвига в температуре в предпочтительном выполнении обеспечен детектор 405 температуры. Поскольку чувствительность к температуре в фильтрах из фотопластинки хорошо известна, также может быть определен сдвиг в характеристиках фильтра путем обнаружения температуры. По отношению к погрешности при изготовлении пассивный или активный кодирующий элемент 415 может быть обеспечен на зонде для обеспечения информации об отклонениях от выбранных (идеальных) характеристик фильтра (полосы передачи для фильтра).
Другое предпочтительное выполнение, использующее конфигурацию фильтра, показано на фиг.9В. Фиг.9В показывает датчик, имеющий цепь 420 передачи СД, рассеиватель 421, первый фотодетектор 422 и второй фотодетектор 424. Как и на фиг. 9А, показан третий фотодетектор 431, используемый для оксигемометрических измерений. Первый и второй фотодетекторы 422, 424 расположены на внутренней поверхности собирающей оптической сферы 426 или схожей с ней. Как видно из фиг.9В, собирающая оптическая сфера 426 имеет отверстие 428, через которое свет 429 от цепи 420 СД направляется для наблюдения и для определения длины волны. Свет, проходящий через отверстие, отражается от внутренней поверхности оптической сферы 426 без значительного поглощения. Выгодно, чтобы внутренняя поверхность собирающей оптической сферы отражала длины волн света от цепи 420 СД. Кроме того, внутренняя поверхность собирающей оптической сферы 426 рассеивает свет. Выгодно, чтобы первый и второй фотодетекторы 422, 424 были расположены на собирающей оптической сфере диаметрально противоположно, с отверстием 428, расположенным равноудаленно между первым и вторым фотодетекторами 422, 424. В этом случае каждый из первого и второго фотодетекторов 422, 424 принимает достаточно одинаковое количество света, исходящего из цепи 420 СД.
Как и в выполнении по фиг.9А, второй фотодетектор 424 имеет связанный с ним оптический фильтр 430 нижних частот, через который проходит свет, падающий на второй фотодетектор 424, перед тем, как достичь второго фотодетектора 424. Соответственно, как и в выполнении по фиг.9А, второй фотодетектор 424 на фиг. 9В принимает свет, ослабленный фильтром 430, и первый фотодетектор 422 принимает свет, ослабленный фильтром 430.
Как и в выполнении на фиг.9А, как хорошо известно в уровне техники, если собирающая оптическая сфера будет точно собирать свет, это увеличит стоимость изготовления. Однако, опять-таки, нет необходимости получать совершенную собирающую оптическую сферу, поскольку погрешность в сфере (как и в других элементах) может быть устранена с помощью калибровки. Например, система по фиг. 9В может быть откалибрована путем активации инфракрасного СД, если не используется никакого инфракрасного фильтра (соответствующего фильтру 411 на фиг.9А). Это возможно потому, что фильтр 430 прозрачен для инфракрасных длин волн и, таким образом, каждый фотодетектор 422, 424 чувствует неотфильтрованный сигнал (который в идеале будет одинаковым). В таком выполнении выходные сигналы интенсивности от первого и второго фотодетекторов 422, 424 могут быть сравнены и уравнены через постоянные калибровки во время работы. Это компенсирует погрешности в фотодетекторах, оптической сфере и рассеивателе.
Как и в выполнении на фиг.9А, если инфракрасный свет не используется для калибровки, фотодетекторы 422, 424, оптическая сфера 426 и рассеиватель 421 могут быть откалиброваны перед установкой пассивного или активного кодирующего элемента 432 на каждое устройство.
Как и в выполнении на фиг.9А, фильтр 430 может иметь погрешность из-за чувствительности к температуре и погрешность из-за изготовления. Следовательно, в целях калибровки погрешности по отношению к фильтру 430 (предпочтительно фотопластинка) из-за сдвига в температуре и допусков на изготовление в предпочтительном выполнении обеспечен детектор 425 температуры, как и выполнении на фиг.9А. По отношению к погрешности при изготовлении пассивный или активный кодирующий элемент 432 может быть обеспечен на зонде для обеспечения информации об отклонениях от выбранных (идеальных) характеристик фильтра (полосы передачи для фильтра).
Также следует понять, что в одном выполнении единичный элемент памяти или другой активный или пассивный элемент (415, 432) может быть обеспечен с достаточной идентификационной способностью для обеспечения информации о характеристиках для каждого из рассеивателя, фотодетекторов, фильтров и светоделительного элемента (или оптической сферы). Например, могут быть обеспечены устройство памяти или цепь передачи с несколькими разрядами информации для устройства.
В настоящем выполнении с красным (например, 640-680 нм) и инфракрасным (например, 900-940 нм) СД в сетях 402, 420 СД на фиг.9А и 9В, длина волны красного СД является наиболее критичным моментом для оксигемометрии крови. Соответственно, желательно точное определение центроидной рабочей длины волны красного СД в сетях 402, 420 СД. В этом случае фильтры 410, 430 выгодно выбирать для частичного ослабления света в красном диапазоне длин волн и пропускания света в инфракрасном диапазоне неослабленным.
Теперь будет описан принцип, по которому датчики на фиг.9А и 9В могут быть использованы для идентификации длины волны СД для этих датчиков. Как хорошо известно в уровне техники, для использования в оксигемометрии крови и т. п. СД имеют характеристику излучения, одинаковую с кривой излучения, показанной кривой 440 на фиг.10А. Как показано на фиг.10А, идеальный СД имеет центроидную длину λ0 волны (например, 660 нм). Однако, как хорошо известно, действительная центроидная длина волны для группы СД с целевой центроидной длиной λ0 волны отличается из-за допусков на изготовление. Например, кривая излучения может быть сдвинута направо, как пунктирная кривая 440А излучения на фиг.10А. Действительная центроидная длина волны существенна в точных оксигемометрических измерениях.
Фильтры 410, 430 предпочтительно имеют отклик, как показано кривой 450 на фиг.10В. Когда фильтр выбран в середине его полосы передачи, выбранной на целевой центроидной длине λ0 волны, полоса передачи фильтра выгодно увеличивается от меньшей предполагаемой длины λ1 волны к большей предполагаемой длине λ2 волны. Диапазон (λ12) предпочтительно включает в себя предполагаемое изменение в длинах волн для СД из-за допусков на изготовление. Другими словами, диапазон допусков на изготовление для СД, изготовленного, чтобы иметь целевую длину λ0 волны, не должен выходить за верхнюю и нижнюю границы полосы передачи фильтра.
Для СД, имеющего центроидную длину волны в области полосы передачи фильтра, отношение общей интенсивности, обнаруженной от датчика СД без фильтрации, к интенсивности того же датчика СД, обнаруженной с фильтрацией, обеспечивает пригодную для использования информацию, как будет объяснено ниже.
Фиг. 10С иллюстрирует отношение для СД, имеющего длину волны прямо над целевой длиной λ0/ волны. Излучение СД без фильтрации представлено кривой 440А излучения СД. Излучение с фильтрацией показано кривой 441 отфильтрованного излучения. Кривая 441 отфильтрованного излучения представляет отклик фильтра, умноженный на излучение СД без фильтрации, как хорошо известно для отфильтрованного излучения. Значительное отношение является отношением области под кривой 441 отфильтрованного излучения СД (показана штриховкой) к области под кривой 440А неотфильтрованного излучения СД. Будет понятно, что это отношение будет меняться от 0 до 1 для СД с центроидом в диапазоне λ12, предполагая одинаковый отклик фильтра.
Это отношение двух областей может быть определено из отношения интенсивностей от фотодетекторов 404, 406 или 422, 424 следующим образом. Пусть нормализованная интенсивность неотфильтрованного света IL(λ) и интенсивность отфильтрованного света If(λ) будут представлены следующими уравнениями:
Figure 00000030

Figure 00000031

Энергия неотфильтрованного света, принятого фотодетекторами 404, 422, может быть выражена как интеграл в диапазоне длин волн излучения СД следующим образом:
Figure 00000032

где IL(λ) - излучение СД в функции длины (λ) волны, а P(λ) - отклик фотодиода.
Для простоты, там, где отклик фотодиода равен "1" (P(λ) = 1) в интересующем диапазоне (λ12) (другими словами, свет, излучаемый от СД, попадает в диапазон СД), сигнал первого фотодетектора 404, 422 (без фильтра) будет выглядеть следующим образом:
Figure 00000033

Аналогично, энергия света, принятого вторым фотодетектором 406, 424, который прошел через фильтр 410, 430, может быть выражена следующим образом:
Figure 00000034

Если все СД для группы датчиков имеют одинаковое пиковое излучение и ширину диапазона в интересующей области (λ12) и могут быть представлены одним и тем же уравнением (30), исключая увеличивающуюся постоянную I0, то нормализованное отношение энергий может быть определено следующим образом:
Figure 00000035

Figure 00000036

Обобщенное отношение уравнения (34) является отношением всей области излучения СД, ослабленной фильтрацией (обозначена штриховкой на фиг.10С), к области под кривой всего излучения СД.
Функция Е(норм) имеет одно значение, монотонна в области
Figure 00000037
и зависит только от центроидного сдвига длины волны СД по отношению к центру λ0 полосы передачи фильтра.
Соответственно, для фильтра с центром λ0 полосы передачи отношение энергии, обнаруженной вторым фотодетектором (когда фильтр присутствует), к энергии, обнаруженной первым фотодетектором (когда фильтр отсутствует), в диапазоне (λ12) длин волн будет значение между 0 и 1. Точное отношение зависит от центроидной длины волны для СД при тестировании. Как видно из фиг. 10С, когда центроидная длина волны увеличивается к λ2, отношение достигает 1, а когда центроидная длина волны достигает λ1, отношение достигает 0. Это отношение показано на фиг.10D для λ1 ≅ 610 и λ2 ≅ 710 нм.
При использовании отношение может быть вычислено для соответствия каждой возможной длине волны СД в диапазоне (λ12). Например, тестовая группа СД, представляющая диапазон (λ12) длин волн, может быть использована для получения соответствующего отношения интенсивности отфильтрованного света к неотфильтрованному свету. Устройство точного обнаружения длины волны, такое как монохрометр, может быть использовано для измерения центроидной длины волны для каждого тестируемого СД. Центроидная длина волны может храниться для каждого тестируемого СД совместно с измеренным отношением для каждого тестируемого СД. Это приводит к нормализованному отклику фотодиода, который может быть приведен как ссылка для получения длины волны СД, имеющего неизвестную длину в диапазоне (λ12) длин волн.
Другими словами, для любого СД, имеющего центроидную длину волны в диапазоне (λ12), с датчиком, как показано на фиг.9А и 9В, длина волны СД для датчика может быть определена путем вычисления отношения интенсивностей второго и первого фотодетекторов и путем использования этого отношения для ссылки на нормализованный отклик фотодиода при нахождении длины волны. В настоящем выполнении это достигается с помощью справочной таблицы, хранящейся в памяти для оксигемометрической системы. Справочная таблица хранит значения отношений, соответствующие связанным с ними значениям длин волн.
Соответственно, с выполнениями датчиков по фиг.9А и 9В оксигемометр просто непрерывно начинает измерения для целей калибровки. Оксигемометр при использовании описанного выше способа вычисляет отношение между двумя интенсивностями (отфильтрованной и неотфильтрованной) и получает соответствующую длину волны для датчика. Это выполняется в целях тестирования. Соответственно, СД или фотопластинка, выгодно продаваемая, должны вырабатывать отношение, меньшее 1 и большее 0, иначе длину волны СД будет невозможно определить. В случае, когда отношение равно 1 или 0, система либо не должна работать, либо должна использовать уравнение калибровки, самое близкое к экстремуму (например, в настоящем выполнении для отношения, равного 0, предполагается длина волны 630 нм и для отношения, равного 1, предполагается длина волны 670 нм).
Как было упомянуто выше, знание точной длины волны красного СД в оксигемометрическом зонде в общем случае более критично, чем знание точной длины волны инфракрасного СД. Соответственно, фильтры датчиков на фиг.9А и 9В выбираются с центром λ0 их полосы передачи в красном диапазоне длин волн. Как видно из кривой отклика датчика на фиг.10В, если центр полосы передачи находится в красном диапазоне, инфракрасный свет не будет ослабляться фильтром.
Примеры предпочтительных откликов фильтра показаны на фиг.11. Фиг.11 показывает кривую отклика для трех фильтров, пригодных для настоящего изобретения, в зависимости от ожидаемых длин волн. Первый фильтр имеет центр своей полосы передачи на 645 нм, второй фильтр имеет центр своей полосы передачи на 665 нм и третий фильтр имеет центр своей полосы передачи на 695 нм.
Однако следует понять, что принцип, объясненный выше, также может быть использован для инфракрасного СД, если фильтры выбраны с центром λ0 их полосы передачи, выбранным на предсказанной или целевой инфракрасной длине волны (например, 905 нм). Кроме того, второй фильтр 411 (фиг.9А) может быть обеспечен как фильтр с центром его полосы передачи, выбранным на предсказанной или целевой инфракрасной длине волны для калибровки инфракрасного СД как такового. Другими словами, второй фильтр 411 будет пропускать красные длины волн (будет прозрачен для света красного СД) и будет иметь свою полосу пропускания, отцентрованную вокруг 900 или 905 нм. Такой фильтр показан на фиг. 11А.
Обнаружение длины волны, описанное выше, может быть также выполнено датчиком, имеющим только один фотодетектор, и удаляемым фильтром. Оператор будет запускать измерение интенсивности, как предлагается, оксигемометром без фильтра. Затем оператор поместит фильтр в канал света между СД и фотодетектором и запустит второе считывание. Отношение второго считывания к первому считыванию обеспечивает отношение Iнорм, которое используется для ссылки на рабочую длину волны.
Примеры зонда
Фиг. 12-14 показывают три различных зонда, используемые для медицинского обследования пациентов.
Фиг.12 показывает зонд 500 оборачиваемого типа со связанным с ним соединителем 502, подключенным к кабелю 504, который подключается к оксигемометрической системе (не показана на фиг.12). Фиг.12А показывает дно соединителя 502. Фиг.12В показывает вид снизу оборачиваемого зонда по фиг.12, а фиг. 12С показывает вид сбоку оборачиваемого зонда по фиг.12. Оборачиваемый зонд 500 имеет излучатель 506 СД, фотодетектор 508 на конце углубления 509, гибкую схему 510, фрикционные электрические контакты 512. Зонд 500 также имеет соединительный порт 519. В одном выполнении, когда зонд будет использоваться для поддающегося калибровке зонда по фиг.9А, оборачиваемый зонд будет также иметь световой туннель 514 (фиг.12В) для передачи части света по каналу от излучателя 506 на соединитель 502. В таком выполнении все калибровочные элементы зонда, помеченные пунктирной линией 515, 515А на фиг.9А и 9В, расположены в углублении 516 (фиг.12А), которое принимает свет, переданный по каналу через световой туннель 514 и подключенный к соединителю 502 через отверстие 518 на конце светового туннеля 514. Как видно на фиг.12А, фрикционные электрические соединители 520 на соединителе сконфигурированы для подключения к электрическим соединителям 512 оборачиваемого зонда 500. Гибкая схема соединяет излучатели 506 и детектор 508 с контактами 512.
При использовании оборачиваемый зонд расположен на пальце пациента, и фотодетектор 508 расположен напротив излучателя 506 так, чтобы принимать свет от излучателя 506, ослабленный передачей через мягкие ткани.
Фиг.13 показывает другое выполнение оборачиваемого зонда 530 для медицинского обследования детей. Зонд имеет первую гибкую часть 532, сконфигурированную так, чтобы быть обернутой вокруг пальца новорожденного. К первой гибкой части 532 прикреплен второй гибкий элемент, содержащий излучатели 534 (СД) и фотодетектор 536. В одном выполнении, где зонд калибровки по фиг.9А выполнен в виде зонда по фиг.13, для проведения части света от излучателя 534 к соединительному порту 540 зонда 530 обеспечена волоконная оптика 538. В этом случае тот же самый соединитель 502, имеющий фотодетектор, может быть использован с зондом детского типа по фиг.13. Альтернативно, световой канал или туннель могут быть использованы вместо волоконной оптики для проведения части света от излучателя 534 к соединительному порту 540. Тот же самый соединитель 542 используется для зонда 530 новорожденных. Соответственно, как и в выполнении по фиг.12, все элементы калибровки внутри прямоугольника 515, 515А из пунктирных линий по фиг.9А и 9В расположены внутри соединителя 502.
Фиг. 14 показывает еще один зонд для использования в медицинском обследовании. Зонд по фиг.14 содержит зажимной зонд 550, который подключен через кабель 552 к соединительному порту 554, одинаковому с соединительным портом 540 по фиг. 13 и соединительным портом 519 по фиг.12. Зажимной зонд несет излучатели 556 и фотодетектор 558. В этом выполнении часть света от излучателей 556 входит в волоконную оптику 560, которая передает свет по каналу на соединительный порт 554, как и в выполнении по фиг.13. Снова элементы калибровки зонда внутри того же самого соединителя 502 предпочтительно находятся внутри соединителя 502, который преимущественно такой же, как и соединители для выполнений по фиг.12 и 13.
Фиг.15-15D показывают еще одно выполнение оборачиваемого зонда 600, содержащего гибкую оборачиваемую часть 602 со связанным соединителем 604, подключенным к кабелю 606, который подключается к оксигемометрической системе (не показана на фиг. 15). Фиг.15 показывает вид в перспективе всего зонда 600. Фиг.15А показывает нижнюю часть соединителя 604. Фиг.15С показывает вид сверху оборачиваемой части 602 и фиг.15D показывает вид снизу оборачиваемой части 602. Часть 610 излучателя преимущественно содержит излучатели (такие как СД) на выбранных длинах волн. Эта часть 610 излучателя может быть использована снова в течение некоторого периода времени, предпочтительно от недель до месяцев, тем самым обеспечивая дальнейшее уменьшение стоимости оборачиваемой части 602, которую необходимо заменять после каждого использования. Другими словами, нет необходимости снабжать излучателями каждую оборачиваемую часть 602. Кроме того, часть 610 излучателя удаляемо подключена к соединительной части 612 соединителя 604, позволяя соединительной части 612 быть использованной снова в течение гораздо большего периода времени.
В этом выполнении оборачиваемая часть 602 гибкая и заменяемая после каждого использования и с очень маленькой стоимостью. Оборачиваемая часть имеет гибкий слой 626, выполненный из полимера или других гибких материалов, и имеет соединительный порт 614 на гибком слое 626. Соединительный порт 614 имеет электрические фрикционные контакты 616, которые приспособлены для подключения к электрическим фрикционным контактам 620 (фиг.15А) на дне соединительной части 612 соединителя 604. Электрические фрикционные контакты 616 для оборачиваемой части 602 подключены к гибкой схеме 618, которая соединена с экранированным (не показано) детектором 622. Два соединения подключены к детектору 622, а третье предназначено для экрана, который предпочтительно является обычным экраном Фарадея, для защиты детектора от электромагнитных помех и т.п.
Оборачиваемый зонд 600 имеет отверстие 624, которое обеспечивает окно для передачи световой энергии от излучателей в части 610 излучателя. Излучатели расположены для передачи света через отверстие 628 (фиг.15А) в части 610 излучателя, которая сконфигурирована так, чтобы совпадать с отверстием 624 в оборачиваемой части 602, когда соединитель 604 расположен в соединительном порте 614. Таким образом, свет передается от излучателей в части 610 излучателя через отверстие 628 в части 610 излучателя и через отверстие 624 в оборачиваемой части 602, когда соединитель 604 введен в соединительный порт 614 и излучатели активированы.
При использовании оборачиваемая часть 602 оборачивается вокруг пальца пациента, и детектор 622 располагается для приема света, переданного через отверстие 624 и по меньшей мере через часть пальца. Например, оборачиваемая часть 602 может быть обернута вокруг пальца таким образом, что детектор 622 находится напротив отверстия 624, через которое передается световая энергия.
В одном выполнении зонд 600 используется для поддающегося калибровке зонда по фиг.9А и 9В. В этом выполнении соединительная часть 612 имеет элементы в прямоугольниках 515 и 515А из пунктирных линий по фиг.9А и 9В, расположенные в соединительной части 612. В этом случае элементы калибровки можно использовать снова, но работать с СД в части 610 излучателя для формирования поддающегося калибровке выполнения. В таком выполнении излучатели расположены в части 610 излучателя так, что большая часть световой энергии передается через отверстие 628, а часть световой энергии передается через отверстие 620 света на конце соединительной части 612 (фиг.15В). Соединительная часть 612 содержит элементы калибровки, показанные в прямоугольниках 515 и 515А (фиг.9А и 9В), находящиеся в соединительной части 612.
Фиг. 15В показывает вид соединительной части 612, изображающий световой канал 620 и два электрических соединителя 613А, 613В, которые обеспечивают соединения с СД (красным и инфракрасным, соединенным "задней частью к задней части") в части излучателя.
Следует понять, что устройство и способ по настоящему изобретению могут быть использованы в любых обстоятельствах, где требуется измерение переданной или отраженной энергии, включая, но не ограничиваясь измерениями, проводящимися над пальцем, мочкой уха или губой. Таким образом, существует множество других выполнений, которые будут очевидны для специалиста. Более того, устройство и способ по настоящему изобретению могут быть использованы для любого применения СД, которое чувствительно к длине волны. Настоящее изобретение может, таким образом, быть выражено в других конкретных формах без отхода от его духа или существенных характеристик. Описанные выполнения следует рассматривать во всех аспектах только как иллюстративные, а не ограничивающие. Объем настоящего изобретения показан в формуле изобретения. Все изменения, которые делаются в значениях и диапазонах эквивалентности этой формулы изобретения, должны входить в их объем.

Claims (31)

1. Источник света с регулируемой длиной волны, содержащий источник электрического тока и светодиод, подключенный к источнику тока, отличающийся тем, что он дополнительно содержит элемент настройки, подключенный параллельно указанному светодиоду, способный регулировать световой поток в заданных пределах, причем указанный элемент настройки выбран таким образом, что часть электрического тока от указанного источника электрического тока проходит через указанный элемент настройки, а часть электрического тока проходит через указанный светодиод, приводя к выработке световой энергии заранее заданной длины волны, при этом источник электрического тока выполнен с возможностью подачи питания на указанный светодиод, который выполнен с возможностью изменения длины волны при изменении параметра настройки.
2. Источник света по п. 1, отличающийся тем, что указанный элемент настройки содержит резистор.
3. Источник света по п.1, отличающийся тем, что он выполнен таким образом, что в качестве параметра настройки использован ток возбуждения.
4. Источник света по п.1, отличающийся тем, что он выполнен таким образом, что в качестве параметра настройки использовано рабочее напряжение.
5. Источник света по п.1, отличающийся тем, что он дополнительно содержит детектор, реагирующий на световую энергию указанного светодиода и вырабатывающий выходной сигнал, характеризующий интенсивность световой энергии.
6. Способ предварительной калибровки источника света с регулируемой длиной волны для оксигемометра, включающий определение первого уровня тока, проходящего через светоизлучающий элемент для приведения в действие указанного светоизлучающего элемента, отличающийся тем, что указанный первый уровень тока выбирают так, что указанный светоизлучающий элемент генерирует свет с заданной длиной волны, определяют второй уровень тока, причем указанный второй уровень тока выше, чем указанный первый уровень тока, выбирают настроечный элемент, соединяя его параллельно с указанным светоизлучающим элементом с образованием системы настройки, причем указанный настроечный элемент выбирают так, что первый уровень тока проходит через светоизлучающий элемент, когда на систему настройки подается второй уровень тока.
7. Способ получения двух длин волн от одного светодиода, отличающийся тем, что производят выбор светодиода, способного дать сдвиг длины волны при изменении тока возбуждения в диапазоне величин тока возбуждения, проходящего через светодиод, соединяют регулирующий элемент параллельно со светодиодом для образования сети светодиода, подключают источник электрического тока к этой сети, возбуждают сеть первым уровнем тока в указанном диапазоне величин тока возбуждения, чтобы заставить указанный светодиод работать на первой длине волны, и возбуждают сеть вторым уровнем тока, отличающимся от указанного первого уровня, чтобы заставить указанный светодиод работать на второй длине волны.
8. Способ по п.7, отличающийся тем, что указанный светодиод выполнен с возможностью передачи световой энергии в тестируемую среду, причем первую длину волны светового излучения выбирают таким образом, чтобы произошло первое ослабление характеристик указанной световой энергии при распространении ее через указанную среду, измеряют указанное первое ослабление световой энергии указанного светодиода, вторую длину волны светового излучения выбирают таким образом, чтобы произошло второе ослабление характеристик указанной световой энергии при распространении ее через указанную среду, при этом измеряют указанное второе ослабление световой энергии указанного светодиода.
9. Способ по п.8, отличающийся тем, что при измерении насыщения крови кислородом в качестве указанной среды используют часть человеческого тела с циркулирующей кровью, причем дополнительно подключают источник энергии ко второму светодиоду, который генерирует световое излучение на третьей длине волны, отличной от двух первых длин волн, при этом изменение в длинах волн между первой и второй длинами имеет заранее заданную величину, передают третью световую энергию на указанной третьей длине волны через указанную тестируемую среду, измеряют указанную третью световую энергию после прохождения через тестируемую среду и вычисляют насыщение кислородом указанной крови.
10. Способ по п.9, отличающийся тем, что при дополнительном вычислении другого параметра крови, относящегося к указанной тестируемой среде, с использованием указанной известной первой длины волны, а указанное изменение в длине волны между первой и второй длинами волн имеет заранее выбранную величину дополнительно определяют величину указанной второй длины волны с вычислением указанного другого параметра крови.
11. Способ по п.10, отличающийся тем, что в качестве другого параметра определяют насыщение карбоксигемоглобином.
12. Способ по п.10, отличающийся тем, что в качестве другого параметра определяют рассеяние.
13. Способ по п.7, отличающийся тем, что он дополнительно включает регулировку светодиода указанным регулирующим элементом так, что изменение длины волны для увеличивающегося изменения тока совпадает с заданным изменением длины волны.
14. Способ по п.13, отличающийся тем, что в качестве элемента настройки используют резистор.
15. Способ по п.14, отличающийся тем, что устанавливают указанный резистор параллельно указанному светодиоду и выбирают величину этого резистора такой, чтобы заставить светодиод дать указанное изменение длины волны генерированного излучения для указанного увеличивающегося изменения тока.
16. Оксигемометрический датчик, отличающийся тем, что он содержит первый светоизлучающий прибор, предназначенный для выработки света с первой известной длиной волны при первом уровне напряжения, индикатор, подключенный параллельно первому светоизлучающему прибору, и датчик светового излучения.
17. Датчик по п.16, отличающийся тем, что указанный индикатор выполнен с возможностью работы на уровне напряжения ниже указанного первого уровня напряжения.
18. Датчик по п.16, отличающийся тем, что указанный индикатор содержит резистор.
19. Датчик по п.16, отличающийся тем, что указанный индикатор имеет набор резисторов.
20. Датчик по п.16, отличающийся тем, что указанный индикатор содержит устройство памяти.
21. Датчик по п. 16, отличающийся тем, что светоизлучающий прибор содержит светодиод.
22. Датчик по п.16, отличающийся тем, что указанный индикатор содержит кодирующий резистор, величина сопротивления которого задает указанную первую длину волны, причем эта указанная величина сопротивления эффективно противодействует прохождению тока через указанный кодирующий резистор при активной работе первого светоизлучающего прибора.
23. Датчик по п.16, отличающийся тем, что индикатор содержит предохранитель, выполненный с возможностью эффективной передачи незначительного тока во время активной работы указанного первого светоизлучающего прибора.
24. Датчик по п.23, отличающийся тем, что указанный предохранитель содержит резистор с величиной сопротивления, которая достаточна велика для передачи незначительного тока во время активной работы первого светоизлучающего прибора.
25. Способ настройки светодиода для работы на заданной длине волны в диапазоне длин волн, отличающийся тем, что производят выбор светодиода, способного давать сдвиг длины волны в ответ на изменение тока возбуждения в заданном диапазоне его величин, соединяют настроечный элемент параллельно светодиоду, возбуждают указанный светодиод первым током возбуждения, измеряют длину волны указанного светодиода во время работы на указанном первом токе возбуждения и, если указанный светодиод не генерирует свет на заданной длине волны, регулируют ток указанным настроечным элементом до тех пор, пока на светодиоде не будет обеспечен второй ток возбуждения, при котором указанный светодиод генерирует свет на заданной длине волны.
26. Датчик, выполненный с возможностью передачи и обнаружения света, отличающийся тем, что он содержит по меньшей мере один светоизлучающий элемент, который генерирует излучение, первый и второй фотодетекторы, причем длина волны указанного излучения лежит между длинами волн откликов первого и второго фотодетекторов, направляющий световое излучение элемент, выполненный с возможностью направления светового излучения от по меньшей мере указанного одного светоизлучающего элемента на указанные первый и второй фотодетекторы, и фильтр, расположенный между указанным вторым детектором и указанным по меньшей мере одним светоизлучающим элементом, причем указанный фильтр имеет полосу пропускания, предназначенную для пропускания указанного излучения.
27. Датчик по п.26, отличающийся тем, что при использовании его в качестве оксигемометрического датчика, указанный светоизлучающий элемент содержит первый и второй светодиоды, причем указанный первый светодиод генерирует излучение в красном диапазоне, а указанный второй светодиод генерирует излучение в инфракрасном диапазоне, при этом фильтр предназначен для пропускания излучения первого светодиода.
28. Датчик по п.26, отличающийся тем, что указанный направляющий световое излучение элемент содержит собирающую оптическую сферу, имеющую первый и второй фотодетекторы, расположенные таким образом, что способны принимать равные части света от указанного по меньшей мере одного светоизлучающего элемента.
29. Датчик по п.26, отличающийся тем, что указанный направляющий элемент содержит расщепляющий лучи элемент, расположенный таким образом, чтобы равномерно распределять световое излучение от по меньшей мере одного светоизлучающего элемента на первый и второй фотодетекторы.
30. Способ определения длины волны светоизлучающего элемента, отличающийся тем, что получают набор заранее заданных отношений, каждое из которых характеризует определенную длину волны, передают световое излучение от указанного светоизлучающего элемента на первый элемент обнаружения света с регистрацией первого значения интенсивности, передают световое излучение от указанного первого светоизлучающего элемента через фильтр, ослабляющий световое излучение, на второй элемент обнаружения света с регистрацией второго значения интенсивности, вычисляют отношение упомянутых второй и первой интенсивностей и сравнивают вычисленное значение с указанным набором заранее заданных отношений с определением длины волны.
31. Способ по п. 30, отличающийся тем, что указанные первый и второй элементы обнаружения света содержат один и тот же элемент обнаружения света, а операции передачи происходят последовательно.
RU98100085/28A 1995-06-07 1996-06-04 Источник света с регулируемой длиной волны для оксигемометра RU2199723C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/478,493 1995-06-07
US08/478.493 1995-06-07
US08/478,493 US5758644A (en) 1995-06-07 1995-06-07 Manual and automatic probe calibration

Publications (2)

Publication Number Publication Date
RU98100085A RU98100085A (ru) 1999-10-27
RU2199723C2 true RU2199723C2 (ru) 2003-02-27

Family

ID=23900172

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98100085/28A RU2199723C2 (ru) 1995-06-07 1996-06-04 Источник света с регулируемой длиной волны для оксигемометра

Country Status (14)

Country Link
US (10) US5758644A (ru)
EP (3) EP1238627B1 (ru)
JP (2) JP3837161B2 (ru)
CN (1) CN1113225C (ru)
AT (2) ATE223035T1 (ru)
AU (1) AU704383B2 (ru)
CA (2) CA2637855A1 (ru)
DE (2) DE69637999D1 (ru)
DK (2) DK0832421T3 (ru)
ES (2) ES2330196T3 (ru)
HK (2) HK1009848A1 (ru)
PT (2) PT832421E (ru)
RU (1) RU2199723C2 (ru)
WO (1) WO1996041138A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457704B2 (en) 2005-10-27 2013-06-04 Smiths Medical Asd, Inc. Single use pulse oximeter
RU2501522C2 (ru) * 2012-03-07 2013-12-20 Белорусский Государственный Университет (Бгу) Способ определения концентрации гемоглобина в биологических тканях
US9788735B2 (en) 2002-03-25 2017-10-17 Masimo Corporation Body worn mobile medical patient monitor

Families Citing this family (755)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
MX9702434A (es) 1991-03-07 1998-05-31 Masimo Corp Aparato de procesamiento de señales.
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
DE69229994T2 (de) * 1991-03-07 2000-04-27 Masimo Corp Gerät und verfahren zur signalverarbeitung
US5995855A (en) * 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US5638818A (en) * 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US7758503B2 (en) * 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US6662033B2 (en) * 1994-04-01 2003-12-09 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US6517283B2 (en) 2001-01-16 2003-02-11 Donald Edward Coffey Cascading chute drainage system
US5758644A (en) * 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5853364A (en) * 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US5827182A (en) * 1997-03-31 1998-10-27 Ohmeda Inc. Multiple LED sets in oximetry sensors
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6002952A (en) * 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
IL121079A0 (en) * 1997-06-15 1997-11-20 Spo Medical Equipment Ltd Physiological stress detector device and method
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US20080287756A1 (en) * 1997-07-14 2008-11-20 Lynn Lawrence A Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
GB9717858D0 (en) * 1997-08-23 1997-10-29 Electrode Company Ltd The Electrode Company Ltd
US5987343A (en) * 1997-11-07 1999-11-16 Datascope Investment Corp. Method for storing pulse oximetry sensor characteristics
US20090140660A1 (en) * 1998-02-04 2009-06-04 Aptina Imaging Corporation Pulse-controlled light emitting diode source
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5999271A (en) * 1998-06-01 1999-12-07 Shih; Ishiang Methods and devices to determine the wavelength of a laser beam
AU4214199A (en) * 1998-06-03 1999-12-20 Masimo Corporation Stereo pulse oximeter
ATE464555T1 (de) * 1998-06-12 2010-04-15 Radiometer Medical Aps Verfahren zur qualitätskontrolle eines spektrophotometers
EP1117327A1 (en) 1998-09-29 2001-07-25 Mallinckrodt Inc. Multiple-code oximeter calibration element
US6298252B1 (en) * 1998-09-29 2001-10-02 Mallinckrodt, Inc. Oximeter sensor with encoder connected to detector
US6356774B1 (en) * 1998-09-29 2002-03-12 Mallinckrodt, Inc. Oximeter sensor with encoded temperature characteristic
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
JP4986324B2 (ja) 1999-01-25 2012-07-25 マシモ・コーポレイション 汎用/アップグレード用パルス酸素濃度計
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US8103325B2 (en) * 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
ATE422838T1 (de) * 1999-03-08 2009-03-15 Nellcor Puritan Bennett Llc Verfahren und schaltung zur speicherung und bereitstellung von historischen physiologischen daten
US7047054B2 (en) * 1999-03-12 2006-05-16 Cas Medical Systems, Inc. Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring
US6360114B1 (en) * 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6305804B1 (en) 1999-03-25 2001-10-23 Fovioptics, Inc. Non-invasive measurement of blood component using retinal imaging
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
EP1199977A2 (en) 1999-06-18 2002-05-02 Masimo Corporation Pulse oximeter probe-off detection system
US20030018243A1 (en) * 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
US6515273B2 (en) * 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6377829B1 (en) * 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
JP4441974B2 (ja) * 2000-03-24 2010-03-31 ソニー株式会社 半導体装置の製造方法
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
CA2405825C (en) 2000-04-17 2010-11-09 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with piece-wise function
EP1259791B1 (en) 2000-05-02 2013-11-13 Cas Medical Systems, Inc. Method for non-invasive spectrophotometric blood oxygenation monitoring
EP1158775A1 (en) 2000-05-15 2001-11-28 EASTMAN KODAK COMPANY (a New Jersey corporation) Self-illuminating colour imaging device
US6430525B1 (en) * 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US7359748B1 (en) * 2000-07-26 2008-04-15 Rhett Drugge Apparatus for total immersion photography
US6889153B2 (en) 2001-08-09 2005-05-03 Thomas Dietiker System and method for a self-calibrating non-invasive sensor
DE60129332T2 (de) * 2000-08-11 2008-04-03 Elekon Industries, Inc., Torrance System und verfahren für einen nicht invasiven selbstkalibrierenden sensor
US6640116B2 (en) * 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
DK1309270T3 (da) 2000-08-18 2009-08-03 Masimo Corp Pulsoximeter med to modi
US6606510B2 (en) * 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
US6553241B2 (en) * 2000-08-31 2003-04-22 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor expiration data
US6591123B2 (en) * 2000-08-31 2003-07-08 Mallinckrodt Inc. Oximeter sensor with digital memory recording sensor data
US6628975B1 (en) 2000-08-31 2003-09-30 Mallinckrodt Inc. Oximeter sensor with digital memory storing data
US6600940B1 (en) * 2000-08-31 2003-07-29 Mallinckrodt Inc. Oximeter sensor with digital memory
US6571113B1 (en) 2000-09-21 2003-05-27 Mallinckrodt, Inc. Oximeter sensor adapter with coding element
US6490466B1 (en) 2000-09-21 2002-12-03 Mallinckrodt Inc. Interconnect circuit between non-compatible oximeter and sensor
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
US20020083461A1 (en) 2000-11-22 2002-06-27 Hutcheson Stewart Douglas Method and system for providing interactive services over a wireless communications network
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
JP2004532526A (ja) * 2001-05-03 2004-10-21 マシモ・コーポレイション フレックス回路シールド光学センサ及び該フレックス回路シールド光学センサを製造する方法
US20070093721A1 (en) * 2001-05-17 2007-04-26 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US6850787B2 (en) * 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
IL145445A (en) * 2001-09-13 2006-12-31 Conmed Corp A method for signal processing and a device for improving signal for noise
US6650915B2 (en) 2001-09-13 2003-11-18 Fovioptics, Inc. Non-invasive measurement of blood analytes using photodynamics
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US20050010091A1 (en) * 2003-06-10 2005-01-13 Woods Joe W. Non-invasive measurement of blood glucose using retinal imaging
US7052180B2 (en) * 2002-01-04 2006-05-30 Kelvin Shih LED junction temperature tester
US20030212312A1 (en) * 2002-01-07 2003-11-13 Coffin James P. Low noise patient cable
US6934570B2 (en) * 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
WO2003065557A2 (en) * 2002-01-25 2003-08-07 Masimo Corporation Power supply rail controller
US20030156288A1 (en) * 2002-02-20 2003-08-21 Barnum P. T. Sensor band for aligning an emitter and a detector
EP1478265B1 (en) * 2002-02-22 2010-04-14 Masimo Corporation Active pulse spectrophotometry
US7509494B2 (en) * 2002-03-01 2009-03-24 Masimo Corporation Interface cable
RU2234242C2 (ru) * 2002-03-19 2004-08-20 Федеральное государственное унитарное предприятие Научно-исследовательский институт "Полюс" Способ определения состояния биологической ткани и диагностическая система для его реализации
AT410844B (de) * 2002-03-25 2003-08-25 Christian Stockinger Messvorrichtung und methode zur ermittlung von ungenauem anlegen von sensoren und reduzierung von messfehlern für robuste messsysteme für z.b. physiologische messgrössen
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
DE10225670A1 (de) * 2002-06-10 2003-12-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Ansteuerschaltung für mindestens einen LED-Strang
JP4465271B2 (ja) 2002-07-26 2010-05-19 シーエーエス・メディカル・システムズ・インコーポレイテッド 対象組織内の血液酸素飽和度を非侵襲的に決定する装置
US7096054B2 (en) * 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US6895264B2 (en) * 2002-08-26 2005-05-17 Fovioptics Inc. Non-invasive psychophysical measurement of glucose using photodynamics
DE10240083A1 (de) * 2002-08-30 2004-03-11 Austriamicrosystems Ag Verfahren zur Kalibrierung einer Fotodiode, Halbleiterchip und Betriebsverfahren
US7341559B2 (en) * 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7274955B2 (en) * 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7142901B2 (en) * 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
WO2004030480A1 (en) 2002-10-01 2004-04-15 Nellcor Puritan Bennett Incorporated Headband with tension indicator
US7096052B2 (en) * 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
WO2004047631A2 (en) * 2002-11-22 2004-06-10 Masimo Laboratories, Inc. Blood parameter measurement system
US6970792B1 (en) * 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7919713B2 (en) * 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US20060142648A1 (en) * 2003-01-07 2006-06-29 Triage Data Networks Wireless, internet-based, medical diagnostic system
US20050148882A1 (en) 2004-01-06 2005-07-07 Triage Wireless, Incc. Vital signs monitor used for conditioning a patient's response
US7006856B2 (en) * 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7230688B1 (en) * 2003-02-14 2007-06-12 Cadwell Industries, Inc. System and method for processing information in a pulse oximeter
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US20050055276A1 (en) * 2003-06-26 2005-03-10 Kiani Massi E. Sensor incentive method
US7455643B1 (en) * 2003-07-07 2008-11-25 Nellcor Puritan Bennett Ireland Continuous non-invasive blood pressure measurement apparatus and methods providing automatic recalibration
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7254431B2 (en) * 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US7254434B2 (en) * 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US7483729B2 (en) * 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7373193B2 (en) * 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
US20050113704A1 (en) * 2003-11-26 2005-05-26 Lawson Corey J. Patient monitoring system that incorporates memory into patient parameter cables
US7280858B2 (en) * 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7435214B2 (en) * 2004-01-29 2008-10-14 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
US20070297741A1 (en) * 2004-02-11 2007-12-27 Patrick Linder Method for Determining Clinical and/or Chemical Parameters in a Medium and Device for Carrying Out Said Method
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US7120479B2 (en) * 2004-02-25 2006-10-10 Nellcor Puritan Bennett Inc. Switch-mode oximeter LED drive with a single inductor
US7190985B2 (en) 2004-02-25 2007-03-13 Nellcor Puritan Bennett Inc. Oximeter ambient light cancellation
US7162288B2 (en) * 2004-02-25 2007-01-09 Nellcor Purtain Bennett Incorporated Techniques for detecting heart pulses and reducing power consumption in sensors
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
US7194293B2 (en) 2004-03-08 2007-03-20 Nellcor Puritan Bennett Incorporated Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
WO2005087097A1 (en) 2004-03-08 2005-09-22 Masimo Corporation Physiological parameter system
US7534212B2 (en) 2004-03-08 2009-05-19 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US7277741B2 (en) * 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
WO2005089640A2 (en) * 2004-03-19 2005-09-29 Masimo Corporation Low power and personal pulse oximetry systems
US20050216199A1 (en) * 2004-03-26 2005-09-29 Triage Data Networks Cuffless blood-pressure monitor and accompanying web services interface
WO2005096922A1 (en) * 2004-03-31 2005-10-20 Masimo Corporation Physiological assessment system
US20060009698A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Hand-held monitor for measuring vital signs
US20050261598A1 (en) * 2004-04-07 2005-11-24 Triage Wireless, Inc. Patch sensor system for measuring vital signs
US20060009697A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
US20050228297A1 (en) * 2004-04-07 2005-10-13 Banet Matthew J Wrist-worn System for Measuring Blood Pressure
US20050228300A1 (en) * 2004-04-07 2005-10-13 Triage Data Networks Cuffless blood-pressure monitor and accompanying wireless mobile device
US7179228B2 (en) 2004-04-07 2007-02-20 Triage Wireless, Inc. Cuffless system for measuring blood pressure
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
US7319522B2 (en) * 2004-05-27 2008-01-15 Finesse Solutions Llc. Systems and methods for in situ spectroscopic measurements
US7180594B2 (en) * 2004-05-27 2007-02-20 Finesse Instruments, Llc. Method and apparatus for verifying proper operation of a photometric device, such as a cell density probe
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7937128B2 (en) * 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
US20060253010A1 (en) * 2004-09-28 2006-11-09 Donald Brady Monitoring device, method and system
US20060079794A1 (en) * 2004-09-28 2006-04-13 Impact Sports Technologies, Inc. Monitoring device, method and system
US7887492B1 (en) 2004-09-28 2011-02-15 Impact Sports Technologies, Inc. Monitoring device, method and system
US7468036B1 (en) 2004-09-28 2008-12-23 Impact Sports Technology, Inc. Monitoring device, method and system
US7470234B1 (en) 2004-09-28 2008-12-30 Impact Sports Technology, Inc. Monitoring device, method and system
US20060073719A1 (en) * 2004-09-29 2006-04-06 Kiani Massi E Multiple key position plug
US20060084878A1 (en) * 2004-10-18 2006-04-20 Triage Wireless, Inc. Personal computer-based vital signs monitor
US20060095100A1 (en) * 2004-10-29 2006-05-04 Kian Shin Lee Method and apparatus for regulating light administered at a patient treatment site
US7359742B2 (en) * 2004-11-12 2008-04-15 Nonin Medical, Inc. Sensor assembly
DE102004056587A1 (de) * 2004-11-23 2006-05-24 Lmt Lammers Medical Technology Gmbh Pulsoximetrisches Messgerät
US20060122520A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital sign-monitoring system with multiple optical modules
US20070048096A1 (en) * 2004-12-07 2007-03-01 Hubbs Jonathan W Soil conditioner
US7658716B2 (en) * 2004-12-07 2010-02-09 Triage Wireless, Inc. Vital signs monitor using an optical ear-based module
US7392074B2 (en) * 2005-01-21 2008-06-24 Nonin Medical, Inc. Sensor system with memory and method of using same
US7706853B2 (en) * 2005-02-10 2010-04-27 Terumo Cardiovascular Systems Corporation Near infrared spectroscopy device with reusable portion
US20060189871A1 (en) * 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
EP1860993B1 (en) 2005-03-01 2019-01-23 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7392075B2 (en) 2005-03-03 2008-06-24 Nellcor Puritan Bennett Incorporated Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
JP2006246389A (ja) * 2005-03-07 2006-09-14 Sumitomo Electric Ind Ltd 光送信器
US7937129B2 (en) * 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US20060226848A1 (en) * 2005-03-30 2006-10-12 Youngtek Electronics Corporation Mass-production LED test device for mass production
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US20070073116A1 (en) * 2005-08-17 2007-03-29 Kiani Massi E Patient identification using physiological sensor
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
JP5021654B2 (ja) * 2005-09-29 2012-09-12 コンメド コーポレイション センサホルダ
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US20070106126A1 (en) 2005-09-30 2007-05-10 Mannheimer Paul D Patient monitoring alarm escalation system and method
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7486979B2 (en) * 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
US7486977B2 (en) * 2005-10-27 2009-02-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US20070100220A1 (en) 2005-10-28 2007-05-03 Baker Clark R Jr Adjusting parameters used in pulse oximetry analysis
DE102006052125A1 (de) * 2005-11-15 2007-05-16 Weinmann G Geraete Med Vorrichtung zur Bestimmung physiologischer Variablen
EP2374407B1 (en) 2005-11-29 2021-05-05 Masimo Corporation Optical sensor including disposable and reusable elements
US20070180140A1 (en) * 2005-12-03 2007-08-02 Welch James P Physiological alarm notification system
US7648463B1 (en) 2005-12-15 2010-01-19 Impact Sports Technologies, Inc. Monitoring device, method and system
US20070142715A1 (en) * 2005-12-20 2007-06-21 Triage Wireless, Inc. Chest strap for measuring vital signs
US8050730B2 (en) 2005-12-23 2011-11-01 Shenzhen Mindray Bio-Medical Electrics Co., Ltd. Method and apparatus for eliminating interference in pulse oxygen measurement
US7990382B2 (en) * 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US20070159818A1 (en) * 2006-01-07 2007-07-12 Rueggeberg Frederick A Use of integrating sphere technology to provide uniform, high-intensity light, and wavelength mixing from light emitting diodes
US7938643B2 (en) * 2006-01-07 2011-05-10 Medical College Of Georgia Research Institute, Inc. Use of integrating sphere technology to provide uniform, high-intensity light, and wavelength mixing from light emitting diodes
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US20070185393A1 (en) * 2006-02-03 2007-08-09 Triage Wireless, Inc. System for measuring vital signs using an optical module featuring a green light source
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US20070208259A1 (en) * 2006-03-06 2007-09-06 Mannheimer Paul D Patient monitoring alarm escalation system and method
US20070244377A1 (en) * 2006-03-14 2007-10-18 Cozad Jenny L Pulse oximeter sleeve
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US8702606B2 (en) * 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
US8998809B2 (en) 2006-05-15 2015-04-07 Cercacor Laboratories, Inc. Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US7993275B2 (en) 2006-05-25 2011-08-09 Sotera Wireless, Inc. Bilateral device, system and method for monitoring vital signs
US9149192B2 (en) 2006-05-26 2015-10-06 Sotera Wireless, Inc. System for measuring vital signs using bilateral pulse transit time
WO2007140478A2 (en) 2006-05-31 2007-12-06 Masimo Corporation Respiratory monitoring
US20070282181A1 (en) * 2006-06-01 2007-12-06 Carol Findlay Visual medical sensor indicator
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
WO2007143626A2 (en) 2006-06-05 2007-12-13 Masimo Laboratories, Inc. Parameter upgrade system
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
CN100500092C (zh) * 2006-06-16 2009-06-17 周常安 具有可变结构的血液生理信号检测装置
WO2008002405A2 (en) * 2006-06-16 2008-01-03 Medtor Llc System and method for a non-invasive medical sensor
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8442607B2 (en) 2006-09-07 2013-05-14 Sotera Wireless, Inc. Hand-held vital signs monitor
KR20090086942A (ko) * 2006-09-08 2009-08-14 에이전시 포 사이언스, 테크놀로지 앤드 리서치 가변 파장 발광 다이오드
US20080064965A1 (en) * 2006-09-08 2008-03-13 Jay Gregory D Devices and methods for measuring pulsus paradoxus
US20080064940A1 (en) * 2006-09-12 2008-03-13 Raridan William B Sensor cable design for use with spectrophotometric sensors and method of using the same
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8064975B2 (en) 2006-09-20 2011-11-22 Nellcor Puritan Bennett Llc System and method for probability based determination of estimated oxygen saturation
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
USD609193S1 (en) 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
US8315683B2 (en) * 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US20080103375A1 (en) * 2006-09-22 2008-05-01 Kiani Massi E Patient monitor user interface
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8160668B2 (en) * 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
US20080081956A1 (en) * 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US20080082338A1 (en) * 2006-09-29 2008-04-03 O'neil Michael P Systems and methods for secure voice identification and medical device interface
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US20080097175A1 (en) * 2006-09-29 2008-04-24 Boyce Robin S System and method for display control of patient monitor
US7706896B2 (en) * 2006-09-29 2010-04-27 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US8068890B2 (en) * 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8728059B2 (en) 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US7925511B2 (en) * 2006-09-29 2011-04-12 Nellcor Puritan Bennett Llc System and method for secure voice identification in a medical device
US7698002B2 (en) * 2006-09-29 2010-04-13 Nellcor Puritan Bennett Llc Systems and methods for user interface and identification in a medical device
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
EP2073692B1 (en) 2006-10-12 2017-07-26 Masimo Corporation Perfusion index smoothing
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US20080094228A1 (en) * 2006-10-12 2008-04-24 Welch James P Patient monitor using radio frequency identification tags
US8449469B2 (en) 2006-11-10 2013-05-28 Sotera Wireless, Inc. Two-part patch sensor for monitoring vital signs
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
WO2008073855A2 (en) 2006-12-09 2008-06-19 Masimo Corporation Plethysmograph variability processor
US7952692B2 (en) * 2006-12-12 2011-05-31 Orsense Ltd. Method and apparatus for determination of analyte concentration
US7902560B2 (en) * 2006-12-15 2011-03-08 Koninklijke Philips Electronics N.V. Tunable white point light source using a wavelength converting element
US7791155B2 (en) * 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
JP2008170340A (ja) * 2007-01-12 2008-07-24 Olympus Corp 波長特定方法および分析装置
US8652060B2 (en) * 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US7830560B2 (en) * 2007-01-31 2010-11-09 Hewlett-Packard Development Company, L.P. System and method for adaptive digital ramp current control
US20080200819A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
US20080221399A1 (en) * 2007-03-05 2008-09-11 Triage Wireless, Inc. Monitor for measuring vital signs and rendering video images
US20090093687A1 (en) * 2007-03-08 2009-04-09 Telfort Valery G Systems and methods for determining a physiological condition using an acoustic monitor
US20080221426A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Methods and apparatus for detecting misapplied optical sensors
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
EP2476369B1 (en) 2007-03-27 2014-10-01 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
WO2009055091A1 (en) * 2007-05-08 2009-04-30 Medscansonics, Inc. Medical sensor connector
US20100130875A1 (en) * 2008-06-18 2010-05-27 Triage Wireless, Inc. Body-worn system for measuring blood pressure
US20080319327A1 (en) * 2007-06-25 2008-12-25 Triage Wireless, Inc. Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure
US8764671B2 (en) * 2007-06-28 2014-07-01 Masimo Corporation Disposable active pulse sensor
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
JP4569615B2 (ja) * 2007-09-25 2010-10-27 ブラザー工業株式会社 印刷装置
US7703334B2 (en) * 2007-10-04 2010-04-27 Medility Llc Bandage type sensor arrangement and carrier assembly therefore, and method of manufacture
WO2009050081A2 (de) * 2007-10-11 2009-04-23 Basf Se Spektrometer mit led-array
US8355766B2 (en) * 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
JP5296793B2 (ja) 2007-10-12 2013-09-25 マシモ コーポレイション コネクタアセンブリ
WO2009049254A2 (en) 2007-10-12 2009-04-16 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
US20090118628A1 (en) * 2007-11-01 2009-05-07 Triage Wireless, Inc. System for measuring blood pressure featuring a blood pressure cuff comprising size information
JP2011502716A (ja) * 2007-11-14 2011-01-27 コンメッド コーポレイション 脈動性生物測定信号の処理方法および装置
US8204567B2 (en) * 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8380272B2 (en) * 2007-12-21 2013-02-19 Covidien Lp Physiological sensor
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US20090171167A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US20090168050A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc Optical Sensor System And Method
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US20090171166A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximeter with location awareness
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US20090171226A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
US20090171171A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximetry sensor overmolding location features
US20090171174A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for maintaining battery life
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8768423B2 (en) 2008-03-04 2014-07-01 Glt Acquisition Corp. Multispot monitoring for use in optical coherence tomography
US20090247851A1 (en) * 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US9560994B2 (en) 2008-03-26 2017-02-07 Covidien Lp Pulse oximeter with adaptive power conservation
US20090247854A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Retractable Sensor Cable For A Pulse Oximeter
US8140272B2 (en) * 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
EP2262414A1 (en) * 2008-03-31 2010-12-22 Nellcor Puritan Bennett LLC Medical monitoring patch device and methods
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
EP2278911A1 (en) 2008-05-02 2011-02-02 Masimo Corporation Monitor configuration system
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
WO2009137682A1 (en) * 2008-05-07 2009-11-12 Lynn Lawrence A Medical failure pattern search engine
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US8660799B2 (en) 2008-06-30 2014-02-25 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US20090326386A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Systems and Methods for Non-Invasive Blood Pressure Monitoring
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US8398556B2 (en) * 2008-06-30 2013-03-19 Covidien Lp Systems and methods for non-invasive continuous blood pressure determination
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US20090327515A1 (en) * 2008-06-30 2009-12-31 Thomas Price Medical Monitor With Network Connectivity
US9895068B2 (en) * 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
US8506498B2 (en) 2008-07-15 2013-08-13 Nellcor Puritan Bennett Ireland Systems and methods using induced perturbation to determine physiological parameters
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
JP5375826B2 (ja) * 2008-08-22 2013-12-25 コニカミノルタ株式会社 測光測色装置
US8773336B2 (en) 2008-09-05 2014-07-08 Ketra, Inc. Illumination devices and related systems and methods
US8521035B2 (en) * 2008-09-05 2013-08-27 Ketra, Inc. Systems and methods for visible light communication
US8886047B2 (en) * 2008-09-05 2014-11-11 Ketra, Inc. Optical communication device, method and system
US8674913B2 (en) * 2008-09-05 2014-03-18 Ketra, Inc. LED transceiver front end circuitry and related methods
US20110063214A1 (en) * 2008-09-05 2011-03-17 Knapp David J Display and optical pointer systems and related methods
US10210750B2 (en) 2011-09-13 2019-02-19 Lutron Electronics Co., Inc. System and method of extending the communication range in a visible light communication system
US9509525B2 (en) * 2008-09-05 2016-11-29 Ketra, Inc. Intelligent illumination device
US9276766B2 (en) * 2008-09-05 2016-03-01 Ketra, Inc. Display calibration systems and related methods
SE532941C2 (sv) 2008-09-15 2010-05-18 Phasein Ab Gasprovtagningsledning för andningsgaser
WO2010031070A2 (en) 2008-09-15 2010-03-18 Masimo Corporation Patient monitor including multi-parameter graphical display
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20100076319A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Pathlength-Corrected Medical Spectroscopy
US20100076276A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Medical Sensor, Display, and Technique For Using The Same
US20100081946A1 (en) * 2008-09-26 2010-04-01 Qualcomm Incorporated Method and apparatus for non-invasive cuff-less blood pressure estimation using pulse arrival time and heart rate with adaptive calibration
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US9301697B2 (en) * 2008-09-30 2016-04-05 Nellcor Puritan Bennett Ireland Systems and methods for recalibrating a non-invasive blood pressure monitor
US9314168B2 (en) * 2008-09-30 2016-04-19 Nellcor Puritan Bennett Ireland Detecting sleep events using localized blood pressure changes
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US8532751B2 (en) * 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US20100081912A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Ultrasound-Optical Doppler Hemometer and Technique for Using the Same
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US9687161B2 (en) * 2008-09-30 2017-06-27 Nellcor Puritan Bennett Ireland Systems and methods for maintaining blood pressure monitor calibration
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US20100088957A1 (en) * 2008-10-09 2010-04-15 Hubbs Jonathan W Natural turf with binder
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US20090171172A1 (en) * 2008-12-19 2009-07-02 Nellcor Puritan Bennett Llc Method and system for pulse gating
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
CN101919077A (zh) * 2009-01-26 2010-12-15 罗姆股份有限公司 半导体装置以及具有该半导体装置的电子设备
US20100210930A1 (en) * 2009-02-13 2010-08-19 Saylor Stephen D Physiological Blood Gas Detection Apparatus and Method
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US20100216639A1 (en) * 2009-02-20 2010-08-26 Hubbs Jonathon W Gypsum soil conditioner
JP5749658B2 (ja) 2009-03-04 2015-07-15 マシモ・コーポレイション 医療監視システム
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US8216136B2 (en) 2009-03-05 2012-07-10 Nellcor Puritan Bennett Llc Systems and methods for monitoring heart rate and blood pressure correlation
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US20100234718A1 (en) * 2009-03-12 2010-09-16 Anand Sampath Open architecture medical communication system
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US20100240972A1 (en) * 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US8897847B2 (en) 2009-03-23 2014-11-25 Masimo Corporation Digit gauge for noninvasive optical sensor
US20100249550A1 (en) * 2009-03-25 2010-09-30 Neilcor Puritan Bennett LLC Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
JP5623504B2 (ja) 2009-04-17 2014-11-12 バイオボーション・アーゲーBiovotion AG 身体組織の特性の感知デバイス
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US20100324431A1 (en) * 2009-06-18 2010-12-23 Nellcor Puritan Bennett Ireland Determining Disease State Using An Induced Load
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US20100331631A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Oxygen saturation ear sensor design that optimizes both attachment method and signal quality
US8670811B2 (en) 2009-06-30 2014-03-11 Masimo Corporation Pulse oximetry system for adjusting medical ventilation
US8290730B2 (en) * 2009-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Systems and methods for assessing measurements in physiological monitoring devices
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US9198582B2 (en) * 2009-06-30 2015-12-01 Nellcor Puritan Bennett Ireland Determining a characteristic physiological parameter
US8636667B2 (en) 2009-07-06 2014-01-28 Nellcor Puritan Bennett Ireland Systems and methods for processing physiological signals in wavelet space
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US20110040197A1 (en) * 2009-07-20 2011-02-17 Masimo Corporation Wireless patient monitoring system
US20110208015A1 (en) * 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US20110021929A1 (en) * 2009-07-27 2011-01-27 Nellcor Puritan Bennett Ireland Systems and methods for continuous non-invasive blood pressure monitoring
US20110028806A1 (en) * 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US20110028809A1 (en) * 2009-07-29 2011-02-03 Masimo Corporation Patient monitor ambient display device
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8628477B2 (en) * 2009-07-31 2014-01-14 Nellcor Puritan Bennett Ireland Systems and methods for non-invasive determination of blood pressure
US20110029865A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Control Interface For A Medical Monitor
US20110087081A1 (en) * 2009-08-03 2011-04-14 Kiani Massi Joe E Personalized physiological monitor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8494606B2 (en) * 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US20110172498A1 (en) 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US9510779B2 (en) 2009-09-17 2016-12-06 Masimo Corporation Analyte monitoring using one or more accelerometers
US9220440B2 (en) 2009-09-21 2015-12-29 Nellcor Puritan Bennett Ireland Determining a characteristic respiration rate
US8704666B2 (en) 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8571618B1 (en) 2009-09-28 2013-10-29 Cercacor Laboratories, Inc. Adaptive calibration system for spectrophotometric measurements
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9554739B2 (en) 2009-09-29 2017-01-31 Covidien Lp Smart cable for coupling a medical sensor to an electronic patient monitor
US8376955B2 (en) 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US8463347B2 (en) * 2009-09-30 2013-06-11 Nellcor Puritan Bennett Ireland Systems and methods for normalizing a plethysmograph signal for improved feature analysis
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
US20110077470A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Patient Monitor Symmetry Control
US20110082711A1 (en) * 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
JP4679658B2 (ja) * 2009-10-10 2011-04-27 株式会社オーバル フィールド機器の光電センシング感度調整
US9106038B2 (en) 2009-10-15 2015-08-11 Masimo Corporation Pulse oximetry system with low noise cable hub
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US8790268B2 (en) 2009-10-15 2014-07-29 Masimo Corporation Bidirectional physiological information display
US8715206B2 (en) 2009-10-15 2014-05-06 Masimo Corporation Acoustic patient sensor
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US20110118561A1 (en) 2009-11-13 2011-05-19 Masimo Corporation Remote control for a medical monitoring device
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
GB2487882B (en) 2009-12-04 2017-03-29 Masimo Corp Calibration for multi-stage physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
GB2490817A (en) 2010-01-19 2012-11-14 Masimo Corp Wellness analysis system
EP2362207A1 (de) 2010-01-28 2011-08-31 F. Hoffmann-La Roche AG Messsystem und Messverfahren insbesondere zur Blutzuckerbestimmung
US9549695B2 (en) 2010-02-26 2017-01-24 Biovotion Ag Optical determination of blood perfusion and similar parameters
DE112011100761T5 (de) 2010-03-01 2013-01-03 Masimo Corporation Adaptives Alarmsystem
WO2011112524A1 (en) 2010-03-08 2011-09-15 Masimo Corporation Reprocessing of a physiological sensor
US20110237910A1 (en) * 2010-03-23 2011-09-29 Cas Medical Systems, Inc. Stabilized multi-wavelength laser system for non-invasive spectrophotometric monitoring
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9451887B2 (en) 2010-03-31 2016-09-27 Nellcor Puritan Bennett Ireland Systems and methods for measuring electromechanical delay of the heart
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US8898037B2 (en) 2010-04-28 2014-11-25 Nellcor Puritan Bennett Ireland Systems and methods for signal monitoring using Lissajous figures
US8712494B1 (en) 2010-05-03 2014-04-29 Masimo Corporation Reflective non-invasive sensor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US20120146172A1 (en) 2010-06-18 2012-06-14 Sionyx, Inc. High Speed Photosensitive Devices and Associated Methods
US8740792B1 (en) 2010-07-12 2014-06-03 Masimo Corporation Patient monitor capable of accounting for environmental conditions
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8521246B2 (en) * 2010-07-29 2013-08-27 Covidien Lp Cable cross talk suppression
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
JP5710767B2 (ja) 2010-09-28 2015-04-30 マシモ コーポレイション オキシメータを含む意識深度モニタ
US9386668B2 (en) 2010-09-30 2016-07-05 Ketra, Inc. Lighting control system
USRE49454E1 (en) 2010-09-30 2023-03-07 Lutron Technology Company Llc Lighting control system
EP2624755B1 (en) * 2010-10-08 2020-01-22 Edwards Lifesciences Corporation Detection of catheter proximity to blood-vessel wall
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US8723677B1 (en) 2010-10-20 2014-05-13 Masimo Corporation Patient safety system with automatically adjusting bed
US9259176B2 (en) * 2010-11-16 2016-02-16 Hitachi Medical Corporation Biological optical measurement instrument and operation method therefor
US8825428B2 (en) 2010-11-30 2014-09-02 Neilcor Puritan Bennett Ireland Methods and systems for recalibrating a blood pressure monitor with memory
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9259160B2 (en) 2010-12-01 2016-02-16 Nellcor Puritan Bennett Ireland Systems and methods for determining when to measure a physiological parameter
US9357934B2 (en) 2010-12-01 2016-06-07 Nellcor Puritan Bennett Ireland Systems and methods for physiological event marking
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US8761853B2 (en) 2011-01-20 2014-06-24 Nitto Denko Corporation Devices and methods for non-invasive optical physiological measurements
US10656095B2 (en) * 2011-02-09 2020-05-19 Honeywell International Inc. Systems and methods for wavelength spectrum analysis for detection of various gases using a treated tape
US10332630B2 (en) 2011-02-13 2019-06-25 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US9282924B2 (en) 2011-03-31 2016-03-15 Covidien Lp Medical sensor with temperature control
EP2511693A1 (en) * 2011-04-13 2012-10-17 F. Hoffmann-La Roche AG Analysis System with a spectrally controlled light source
US8830449B1 (en) 2011-04-18 2014-09-09 Cercacor Laboratories, Inc. Blood analysis system
US9095316B2 (en) 2011-04-20 2015-08-04 Masimo Corporation System for generating alarms based on alarm patterns
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US8749172B2 (en) 2011-07-08 2014-06-10 Ketra, Inc. Luminance control for illumination devices
JP2014525091A (ja) 2011-07-13 2014-09-25 サイオニクス、インク. 生体撮像装置および関連方法
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US20130023775A1 (en) * 2011-07-20 2013-01-24 Cercacor Laboratories, Inc. Magnetic Reusable Sensor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9161722B2 (en) 2011-09-07 2015-10-20 Covidien Lp Technique for remanufacturing a medical sensor
US8726496B2 (en) 2011-09-22 2014-05-20 Covidien Lp Technique for remanufacturing a medical sensor
US8692992B2 (en) 2011-09-22 2014-04-08 Covidien Lp Faraday shield integrated into sensor bandage
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
JP6104920B2 (ja) 2011-10-13 2017-03-29 マシモ・コーポレイション 医療用監視ハブ
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
EP3603502B1 (en) 2011-10-13 2023-10-04 Masimo Corporation Physiological acoustic monitoring system
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9060695B2 (en) 2011-11-30 2015-06-23 Covidien Lp Systems and methods for determining differential pulse transit time from the phase difference of two analog plethysmographs
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9267572B2 (en) 2012-02-08 2016-02-23 Masimo Corporation Cable tether system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
WO2013148605A1 (en) 2012-03-25 2013-10-03 Masimo Corporation Physiological monitor touchscreen interface
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
EP2838428B1 (en) 2012-04-17 2023-09-06 Masimo Corporation Hypersaturation index
CN102661792A (zh) * 2012-04-24 2012-09-12 杭州泽大仪器有限公司 复合型全光谱led比色光源系统
US20130294969A1 (en) 2012-05-02 2013-11-07 Nellcor Puritan Bennett Llc Wireless, Reusable, Rechargeable Medical Sensors and System for Recharging and Disinfecting the Same
US10251233B2 (en) 2012-05-07 2019-04-02 Micron Technology, Inc. Solid state lighting systems and associated methods of operation and manufacture
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
USD850626S1 (en) 2013-03-15 2019-06-04 Rhythm Diagnostic Systems, Inc. Health monitoring apparatuses
US10413251B2 (en) 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US10610159B2 (en) 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
DE102012110397A1 (de) * 2012-10-30 2014-04-30 Epcos Ag Leuchtdiodenanordnung, Modul und Verfahren zur Herstellung einer Leuchtdiodenanordnung
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
JP6466346B2 (ja) 2013-02-15 2019-02-06 サイオニクス、エルエルシー アンチブルーミング特性を有するハイダイナミックレンジcmos画像センサおよび関連づけられた方法
US9277890B2 (en) * 2013-02-25 2016-03-08 Dynasthetics, Llc System for generating noninvasive respiratory monitor signals
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
WO2014164139A1 (en) 2013-03-13 2014-10-09 Masimo Corporation Systems and methods for monitoring a patient health network
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
US9986952B2 (en) 2013-03-14 2018-06-05 Masimo Corporation Heart sound simulator
WO2014158820A1 (en) 2013-03-14 2014-10-02 Cercacor Laboratories, Inc. Patient monitor as a minimally invasive glucometer
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
WO2014159132A1 (en) 2013-03-14 2014-10-02 Cercacor Laboratories, Inc. Systems and methods for testing patient monitors
US20140275890A1 (en) * 2013-03-15 2014-09-18 Covidien Lp Systems and methods for sensor calibration in photoplethsymography
US10456038B2 (en) 2013-03-15 2019-10-29 Cercacor Laboratories, Inc. Cloud-based physiological monitoring system
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
WO2014149781A1 (en) 2013-03-15 2014-09-25 Cercacor Laboratories, Inc. Cloud-based physiological monitoring system
DE102013009166B4 (de) * 2013-05-29 2014-12-11 Inelta Sensorsysteme Gmbh & Co. Kalibrierungsvorrichtung
US9209345B2 (en) 2013-06-29 2015-12-08 Sionyx, Inc. Shallow trench textured regions and associated methods
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
US9578724B1 (en) 2013-08-20 2017-02-21 Ketra, Inc. Illumination device and method for avoiding flicker
US9651632B1 (en) 2013-08-20 2017-05-16 Ketra, Inc. Illumination device and temperature calibration method
US9345097B1 (en) 2013-08-20 2016-05-17 Ketra, Inc. Interference-resistant compensation for illumination devices using multiple series of measurement intervals
US9360174B2 (en) 2013-12-05 2016-06-07 Ketra, Inc. Linear LED illumination device with improved color mixing
US9237620B1 (en) 2013-08-20 2016-01-12 Ketra, Inc. Illumination device and temperature compensation method
US9332598B1 (en) 2013-08-20 2016-05-03 Ketra, Inc. Interference-resistant compensation for illumination devices having multiple emitter modules
USRE48956E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices using multiple series of measurement intervals
USRE48955E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices having multiple emitter modules
US9247605B1 (en) 2013-08-20 2016-01-26 Ketra, Inc. Interference-resistant compensation for illumination devices
US9769899B2 (en) 2014-06-25 2017-09-19 Ketra, Inc. Illumination device and age compensation method
US9155155B1 (en) 2013-08-20 2015-10-06 Ketra, Inc. Overlapping measurement sequences for interference-resistant compensation in light emitting diode devices
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
US9736895B1 (en) 2013-10-03 2017-08-15 Ketra, Inc. Color mixing optics for LED illumination device
US10010276B2 (en) 2013-10-07 2018-07-03 Masimo Corporation Regional oximetry user interface
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US9146028B2 (en) 2013-12-05 2015-09-29 Ketra, Inc. Linear LED illumination device with improved rotational hinge
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US10188330B1 (en) 2014-02-05 2019-01-29 Covidien Lp Methods and systems for determining a light drive parameter limit in a physiological monitor
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
US20150257661A1 (en) * 2014-03-11 2015-09-17 Xerox Corporation System and method for determining arterial pulse wave transit time
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US9614337B2 (en) 2014-06-19 2017-04-04 Covidien Lp Multiple orientation connectors for medical monitoring systems
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US9557214B2 (en) 2014-06-25 2017-01-31 Ketra, Inc. Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
US10161786B2 (en) 2014-06-25 2018-12-25 Lutron Ketra, Llc Emitter module for an LED illumination device
US9736903B2 (en) 2014-06-25 2017-08-15 Ketra, Inc. Illumination device and method for calibrating and controlling an illumination device comprising a phosphor converted LED
US9392663B2 (en) 2014-06-25 2016-07-12 Ketra, Inc. Illumination device and method for controlling an illumination device over changes in drive current and temperature
US20160022183A1 (en) * 2014-07-24 2016-01-28 Wristdocs Llc Pulse oximeter sensor with reversible connector assembly
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US9510416B2 (en) 2014-08-28 2016-11-29 Ketra, Inc. LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time
US9392660B2 (en) 2014-08-28 2016-07-12 Ketra, Inc. LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
WO2016036985A1 (en) 2014-09-04 2016-03-10 Masimo Corportion Total hemoglobin index system
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US10154815B2 (en) 2014-10-07 2018-12-18 Masimo Corporation Modular physiological sensors
CN106999112A (zh) 2014-10-10 2017-08-01 麦德托有限公司 用于无创医疗传感器的系统和方法
US9978887B2 (en) * 2014-10-28 2018-05-22 Silicon Laboratories Inc. Light detector using an on-die interference filter
US9627424B2 (en) 2014-11-19 2017-04-18 Silicon Laboratories Inc. Photodiodes for ambient light sensing and proximity sensing
USD756817S1 (en) 2015-01-06 2016-05-24 Covidien Lp Module connectable to a sensor
CA2974374C (en) 2015-01-23 2024-01-09 Masimo Sweden Ab Nasal/oral cannula system and manufacturing
US9485813B1 (en) 2015-01-26 2016-11-01 Ketra, Inc. Illumination device and method for avoiding an over-power or over-current condition in a power converter
US9237623B1 (en) 2015-01-26 2016-01-12 Ketra, Inc. Illumination device and method for determining a maximum lumens that can be safely produced by the illumination device to achieve a target chromaticity
US9237612B1 (en) 2015-01-26 2016-01-12 Ketra, Inc. Illumination device and method for determining a target lumens that can be safely produced by an illumination device at a present temperature
CN113054464B (zh) 2015-02-06 2023-04-07 迈心诺公司 连接器和传感器组件
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
CN107405075B (zh) 2015-02-06 2021-03-05 迈心诺公司 用于光学探针的折叠柔性电路
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
EP3334334A1 (en) 2015-08-11 2018-06-20 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
CN108348162B (zh) 2015-08-31 2021-07-23 梅西莫股份有限公司 无线式病人监护系统和方法
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
USD784931S1 (en) 2015-09-17 2017-04-25 Covidien Lp Sensor connector cable
USD779432S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor and connector
USD779433S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor connector cable
USD790069S1 (en) 2015-11-02 2017-06-20 Covidien Lp Medical sensor
WO2017093380A1 (en) * 2015-12-01 2017-06-08 Koninklijke Philips N.V. Pulse oximetry system with an integrated pulse width modulator
US10646144B2 (en) 2015-12-07 2020-05-12 Marcelo Malini Lamego Wireless, disposable, extended use pulse oximeter apparatus and methods
JP6563131B2 (ja) 2015-12-09 2019-08-21 クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. テレセントリック光学測定機のためのフォーカシングシステム
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
EP3472571B1 (en) * 2016-06-20 2022-03-02 Koninklijke Philips N.V. Medical coupling unit and sensor-side connector
WO2018009612A1 (en) 2016-07-06 2018-01-11 Patient Doctor Technologies, Inc. Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
WO2018119239A1 (en) 2016-12-22 2018-06-28 Cercacor Laboratories, Inc Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US11417426B2 (en) 2017-02-24 2022-08-16 Masimo Corporation System for displaying medical monitoring data
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
US11024064B2 (en) 2017-02-24 2021-06-01 Masimo Corporation Augmented reality system for displaying patient data
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
CN110891486A (zh) 2017-03-10 2020-03-17 梅西莫股份有限公司 肺炎筛查仪
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
CN110891472B (zh) 2017-04-28 2023-04-04 迈心诺公司 抽查测量系统
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
CN110809804B (zh) 2017-05-08 2023-10-27 梅西莫股份有限公司 使用适配器将医疗系统与网络控制器配对的系统
US10596054B2 (en) * 2017-06-28 2020-03-24 General Electric Company Infant warming system and method
US11026604B2 (en) 2017-07-13 2021-06-08 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
KR102611362B1 (ko) 2017-08-15 2023-12-08 마시모 코오퍼레이션 비침습적 환자 모니터의 내수 커넥터
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
USD862709S1 (en) 2017-09-20 2019-10-08 Covidien Lp Medical sensor
WO2019079643A1 (en) 2017-10-19 2019-04-25 Masimo Corporation DISPLAY ARRANGEMENT FOR MEDICAL SURVEILLANCE SYSTEM
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
CN111372517B (zh) 2017-10-31 2023-02-17 梅西莫股份有限公司 用于显示氧气状态指示的系统
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
US10659963B1 (en) 2018-02-12 2020-05-19 True Wearables, Inc. Single use medical device apparatus and methods
JP7091090B2 (ja) * 2018-02-28 2022-06-27 フクダ電子株式会社 パルスオキシメータ及び血液特性測定装置
WO2019169026A1 (en) 2018-03-01 2019-09-06 Masimo Corporation Autonomous drug delivery system
KR101987179B1 (ko) * 2018-04-02 2019-06-10 동강대학교산학협력단 아동도 겸용할 수 있는 포터블타입의 혈중산소농도측정장치용 어댑터
EP3782165A1 (en) 2018-04-19 2021-02-24 Masimo Corporation Mobile patient alarm display
WO2019209915A1 (en) 2018-04-24 2019-10-31 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
EP3801207A1 (en) 2018-06-06 2021-04-14 Masimo Corporation Opioid overdose monitoring
US11272599B1 (en) 2018-06-22 2022-03-08 Lutron Technology Company Llc Calibration procedure for a light-emitting diode light source
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
JP7128960B2 (ja) 2018-10-11 2022-08-31 マシモ・コーポレイション 鉛直方向戻り止めを備えた患者コネクタ組立体
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
EP3864869A1 (en) 2018-10-12 2021-08-18 Masimo Corporation System for transmission of sensor data using dual communication protocol
WO2020095312A1 (en) * 2018-11-11 2020-05-14 Jerusalem College Of Technology Method for measurements of oxygenated and de-oxygenated hemoglobin concentration
US11986289B2 (en) 2018-11-27 2024-05-21 Willow Laboratories, Inc. Assembly for medical monitoring device with multiple physiological sensors
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
JP7269762B2 (ja) * 2019-03-18 2023-05-09 日本光電工業株式会社 医用センサ、医用センサのリユーザブル部分、および医用センサのディスポーザブル部分
US11986305B2 (en) 2019-04-17 2024-05-21 Masimo Corporation Liquid inhibiting air intake for blood pressure monitor
US11149405B2 (en) * 2019-04-30 2021-10-19 Caterpillar Paving Products Inc. Grade control indicator assembly
US10680141B1 (en) * 2019-06-04 2020-06-09 Dell Products L.P. Light-emitting diode (LED) switching system
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US11903700B2 (en) 2019-08-28 2024-02-20 Rds Vital signs monitoring systems and methods
WO2021077019A1 (en) 2019-10-18 2021-04-22 Masimo Corporation Display layout and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
EP4049032A1 (en) 2019-10-25 2022-08-31 Cercacor Laboratories, Inc. Indicator compounds, devices comprising indicator compounds, and methods of making and using the same
TW202133806A (zh) 2019-10-31 2021-09-16 香港商倍靈科技(知識產權)有限公司 用於光學量測裝置的測試儀
US11721105B2 (en) 2020-02-13 2023-08-08 Masimo Corporation System and method for monitoring clinical activities
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
WO2021189007A1 (en) 2020-03-20 2021-09-23 Masimo Corporation Remote patient management and monitoring systems and methods
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
US11986067B2 (en) 2020-08-19 2024-05-21 Masimo Corporation Strap for a wearable device
USD946598S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946597S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946596S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
US20220273206A1 (en) * 2021-02-26 2022-09-01 Covidien Lp System and method for digitally calibrating a medical sensor
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
DE102021116814A1 (de) 2021-06-30 2023-01-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische sensorvorrichtung
CN113566743A (zh) * 2021-07-26 2021-10-29 上海领检科技有限公司 一种全自动双波长led中心波长夹角测试装置
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device

Family Cites Families (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US600292A (en) * 1898-03-08 Apparatus for facilitating delineation of outlines of type-faces
US491150A (en) * 1893-02-07 Cash-recorder
DE393830C (de) * 1921-05-18 1924-04-16 Koch & Sterzel Verfahren zur Pruefung von kapazitativen Gegenstaenden der Elektrotechnik auf Isolationsfestigkeit
US3463142A (en) * 1966-07-05 1969-08-26 Trw Inc Blood content monitor
US3647299A (en) * 1970-04-20 1972-03-07 American Optical Corp Oximeter
US3740570A (en) * 1971-09-27 1973-06-19 Litton Systems Inc Driving circuits for light emitting diodes
US3799672A (en) * 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
CA1037285A (en) * 1975-04-30 1978-08-29 Glenfield Warner Ear oximetry process and apparatus
US4169976A (en) * 1976-02-27 1979-10-02 Valfivre S.P.A. Process for cutting or shaping of a substrate by laser
US4182977A (en) * 1978-06-01 1980-01-08 Trw Inc. Constant output light emitting device
EP0019478A3 (en) * 1979-05-19 1982-05-26 Fife Regional Council Apparatus and method for indicating a colour change of an object
US4308456A (en) * 1979-11-19 1981-12-29 Versatile Integrated Modules Method and apparatus for measuring the frequency of radiation
US4346590A (en) * 1980-09-02 1982-08-31 Texaco Inc. Gain stabilization for radioactivity well logging apparatus
US4407290A (en) * 1981-04-01 1983-10-04 Biox Technology, Inc. Blood constituent measuring device and method
IT1158641B (it) * 1982-03-02 1987-02-18 Zetronic Spa Connettore rapido per circuito multipolare
US4449821A (en) * 1982-07-14 1984-05-22 E. I. Du Pont De Nemours And Company Process colorimeter
US4700708A (en) * 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
US4621643A (en) * 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4770179A (en) * 1982-09-02 1988-09-13 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) * 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
US4580867A (en) * 1985-02-12 1986-04-08 Molex Incorporated Method and apparatus for terminating a reciprocable connector
US4913150A (en) * 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
JPS6365845A (ja) * 1986-09-05 1988-03-24 ミノルタ株式会社 オキシメ−タ装置
US4877322A (en) * 1987-04-30 1989-10-31 Eyedentify, Inc. Method and apparatus for measuring blood oxygen levels in selected areas of the eye fundus
FI77736C (fi) * 1987-06-25 1989-04-10 Valtion Teknillinen Foerfarande foer reglering av straolkaella och reglerbar straolkaella.
US4848901A (en) * 1987-10-08 1989-07-18 Critikon, Inc. Pulse oximeter sensor control system
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US5564417A (en) * 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
US5058588A (en) * 1989-09-19 1991-10-22 Hewlett-Packard Company Oximeter and medical sensor therefor
US5140228A (en) * 1990-02-23 1992-08-18 Stocker & Yale, Inc. Apparatus for regulating the intensity of light emitted by a lamp
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
US5113862A (en) * 1990-09-25 1992-05-19 Siemens Pacesetter, Inc. Blood oxygen sensor having leakage compensation
US5209230A (en) * 1990-10-19 1993-05-11 Nellcor Incorporated Adhesive pulse oximeter sensor with reusable portion
US5720293A (en) * 1991-01-29 1998-02-24 Baxter International Inc. Diagnostic catheter with memory
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
MX9702434A (es) 1991-03-07 1998-05-31 Masimo Corp Aparato de procesamiento de señales.
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
DE69229994T2 (de) * 1991-03-07 2000-04-27 Masimo Corp Gerät und verfahren zur signalverarbeitung
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US6541756B2 (en) * 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US6580086B1 (en) * 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US5246003A (en) * 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
CA2096836A1 (en) 1991-09-26 1993-03-27 Hans Bar Medico-technical process and means for measuring blood irrigation of organs
US5249576A (en) * 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
JPH05275746A (ja) * 1992-03-26 1993-10-22 Nippondenso Co Ltd 波長可変発光ダイオード
US5308919A (en) * 1992-04-27 1994-05-03 Minnich Thomas E Method and apparatus for monitoring the arteriovenous oxygen difference from the ocular fundus
JP3091929B2 (ja) * 1992-05-28 2000-09-25 日本光電工業株式会社 パルスオキシメータ
US5365937A (en) 1992-09-09 1994-11-22 Mcg International, Inc. Disposable sensing device with contaneous conformance
US5422632A (en) 1992-10-28 1995-06-06 Intellitouch 2000, Inc. Electronic security system
KR950703891A (ko) 1992-12-07 1995-11-17 안드레드 빌러스 전자청진기
US5287853A (en) * 1992-12-11 1994-02-22 Hewlett-Packard Company Adapter cable for connecting a pulsoximetry sensor unit to a medical measuring device
JP3285242B2 (ja) * 1993-01-25 2002-05-27 矢崎総業株式会社 コネクタ構造
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
USD353196S (en) 1993-05-28 1994-12-06 Gary Savage Stethoscope head
USD353195S (en) 1993-05-28 1994-12-06 Gary Savage Electronic stethoscope housing
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
WO1995005120A1 (fr) * 1993-08-12 1995-02-23 Kurashiki Boseki Kabushiki Kaisha Procede non-invasif de mesure du taux de sucre sanguin et instrument de mesure utilise a cet effet
US7376453B1 (en) 1993-10-06 2008-05-20 Masimo Corporation Signal processing apparatus
US5515169A (en) * 1993-10-13 1996-05-07 Labintelligence Inc. Spectral wavelength discrimination system and method for using
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
US5570002A (en) 1994-02-18 1996-10-29 Ergo Mechanical Systems, Incorporated Universal power-supply connection system for multiple electronic devices
US5590649A (en) 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5810734A (en) 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US5904654A (en) 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
USD361840S (en) 1994-04-21 1995-08-29 Gary Savage Stethoscope head
USD362063S (en) 1994-04-21 1995-09-05 Gary Savage Stethoscope headset
USD363120S (en) 1994-04-21 1995-10-10 Gary Savage Stethoscope ear tip
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
US5562002A (en) 1995-02-03 1996-10-08 Sensidyne Inc. Positive displacement piston flow meter with damping assembly
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US6517283B2 (en) 2001-01-16 2003-02-11 Donald Edward Coffey Cascading chute drainage system
US5758644A (en) * 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
USD393830S (en) 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US7899518B2 (en) 1998-04-06 2011-03-01 Masimo Laboratories, Inc. Non-invasive tissue glucose level monitoring
AU4214199A (en) 1998-06-03 1999-12-20 Masimo Corporation Stereo pulse oximeter
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6519487B1 (en) * 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6684091B2 (en) * 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US6343224B1 (en) * 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6684090B2 (en) * 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
JP4986324B2 (ja) * 1999-01-25 2012-07-25 マシモ・コーポレイション 汎用/アップグレード用パルス酸素濃度計
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
ATE437913T1 (de) * 1999-05-27 2009-08-15 Teijin Ltd Polycarbonatharz-zusammensetzung, optisches auzeichnungsmedium sowie substrat dafür
EP1199977A2 (en) 1999-06-18 2002-05-02 Masimo Corporation Pulse oximeter probe-off detection system
US6515273B2 (en) * 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6943348B1 (en) 1999-10-19 2005-09-13 Masimo Corporation System for detecting injection holding material
US6542764B1 (en) * 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6377829B1 (en) * 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US20010034477A1 (en) 2000-02-18 2001-10-25 James Mansfield Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6697656B1 (en) * 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
DK1309270T3 (da) 2000-08-18 2009-08-03 Masimo Corp Pulsoximeter med to modi
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
JP2004532526A (ja) 2001-05-03 2004-10-21 マシモ・コーポレイション フレックス回路シールド光学センサ及び該フレックス回路シールド光学センサを製造する方法
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) * 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
WO2003065557A2 (en) * 2002-01-25 2003-08-07 Masimo Corporation Power supply rail controller
EP1478265B1 (en) 2002-02-22 2010-04-14 Masimo Corporation Active pulse spectrophotometry
US7509494B2 (en) 2002-03-01 2009-03-24 Masimo Corporation Interface cable
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7274955B2 (en) 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
WO2004044557A2 (en) 2002-11-12 2004-05-27 Argose, Inc. Non-invasive measurement of analytes
WO2004047631A2 (en) * 2002-11-22 2004-06-10 Masimo Laboratories, Inc. Blood parameter measurement system
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7919713B2 (en) 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) * 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7003338B2 (en) * 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
WO2005007215A2 (en) 2003-07-09 2005-01-27 Glucolight Corporation Method and apparatus for tissue oximetry
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
WO2005065241A2 (en) 2003-12-24 2005-07-21 Argose, Inc. Smmr (small molecule metabolite reporters) for use as in vivo glucose biosensors
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7510849B2 (en) 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
WO2005087097A1 (en) 2004-03-08 2005-09-22 Masimo Corporation Physiological parameter system
WO2005096922A1 (en) 2004-03-31 2005-10-20 Masimo Corporation Physiological assessment system
CA2464634A1 (en) 2004-04-16 2005-10-16 Andromed Inc. Pap estimator
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
USD566282S1 (en) 2005-02-18 2008-04-08 Masimo Corporation Stand for a portable patient monitor
US20060189871A1 (en) 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
USD554263S1 (en) 2005-02-18 2007-10-30 Masimo Corporation Portable patient monitor
EP1860993B1 (en) 2005-03-01 2019-01-23 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7937129B2 (en) 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
EP2374407B1 (en) 2005-11-29 2021-05-05 Masimo Corporation Optical sensor including disposable and reusable elements
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
WO2007140478A2 (en) 2006-05-31 2007-12-06 Masimo Corporation Respiratory monitoring
USD609193S1 (en) 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
USD587657S1 (en) 2007-10-12 2009-03-03 Masimo Corporation Connector assembly
US8315683B2 (en) 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
WO2008073855A2 (en) 2006-12-09 2008-06-19 Masimo Corporation Plethysmograph variability processor
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
US8355766B2 (en) 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
JP5296793B2 (ja) 2007-10-12 2013-09-25 マシモ コーポレイション コネクタアセンブリ
WO2009049254A2 (en) 2007-10-12 2009-04-16 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
USD606659S1 (en) 2008-08-25 2009-12-22 Masimo Laboratories, Inc. Patient monitor
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
JP5275746B2 (ja) 2008-10-22 2013-08-28 株式会社日立製作所 圧電素子
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US20110172498A1 (en) 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US8790268B2 (en) 2009-10-15 2014-07-29 Masimo Corporation Bidirectional physiological information display
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US8455290B2 (en) 2010-09-04 2013-06-04 Masimo Semiconductor, Inc. Method of fabricating epitaxial structures
USD692145S1 (en) 2012-09-20 2013-10-22 Masimo Corporation Medical proximity detection token

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788735B2 (en) 2002-03-25 2017-10-17 Masimo Corporation Body worn mobile medical patient monitor
US9795300B2 (en) 2002-03-25 2017-10-24 Masimo Corporation Wearable portable patient monitor
US9872623B2 (en) 2002-03-25 2018-01-23 Masimo Corporation Arm mountable portable patient monitor
US10213108B2 (en) 2002-03-25 2019-02-26 Masimo Corporation Arm mountable portable patient monitor
US10219706B2 (en) 2002-03-25 2019-03-05 Masimo Corporation Physiological measurement device
US10335033B2 (en) 2002-03-25 2019-07-02 Masimo Corporation Physiological measurement device
US10869602B2 (en) 2002-03-25 2020-12-22 Masimo Corporation Physiological measurement communications adapter
US11484205B2 (en) 2002-03-25 2022-11-01 Masimo Corporation Physiological measurement device
US8457704B2 (en) 2005-10-27 2013-06-04 Smiths Medical Asd, Inc. Single use pulse oximeter
US8903467B2 (en) 2005-10-27 2014-12-02 Smiths Medical Asd, Inc. Single use pulse oximeter
RU2501522C2 (ru) * 2012-03-07 2013-12-20 Белорусский Государственный Университет (Бгу) Способ определения концентрации гемоглобина в биологических тканях

Also Published As

Publication number Publication date
ES2184868T3 (es) 2003-04-16
CA2221446A1 (en) 1996-12-19
EP0832421A1 (en) 1998-04-01
US7496391B2 (en) 2009-02-24
US8781543B2 (en) 2014-07-15
DE69623285D1 (de) 2002-10-02
US20090270703A1 (en) 2009-10-29
US20070112260A1 (en) 2007-05-17
DE69623285T2 (de) 2003-04-10
EP1136812A1 (en) 2001-09-26
JP3837161B2 (ja) 2006-10-25
CA2221446C (en) 2008-09-30
PT1238627E (pt) 2009-10-26
HK1009848A1 (en) 1999-06-11
JP4021916B2 (ja) 2007-12-12
HK1049779B (zh) 2009-12-11
US8145287B2 (en) 2012-03-27
AU704383B2 (en) 1999-04-22
JP2006122693A (ja) 2006-05-18
DK0832421T3 (da) 2002-12-16
PT832421E (pt) 2002-12-31
US6397091B2 (en) 2002-05-28
CA2637855A1 (en) 1996-12-19
CN1113225C (zh) 2003-07-02
US20010020123A1 (en) 2001-09-06
ES2330196T3 (es) 2009-12-07
CN1192271A (zh) 1998-09-02
HK1049779A1 (en) 2003-05-30
US20020062071A1 (en) 2002-05-23
US5758644A (en) 1998-06-02
ATE223035T1 (de) 2002-09-15
EP1238627B1 (en) 2009-08-12
US7526328B2 (en) 2009-04-28
JPH11506834A (ja) 1999-06-15
DE69637999D1 (de) 2009-09-24
EP1238627A2 (en) 2002-09-11
DK1238627T3 (da) 2009-10-05
WO1996041138A1 (en) 1996-12-19
EP0832421B1 (en) 2002-08-28
US20120184832A1 (en) 2012-07-19
US6678543B2 (en) 2004-01-13
US20040147824A1 (en) 2004-07-29
US6011986A (en) 2000-01-04
AU5977196A (en) 1996-12-30
EP1238627A3 (en) 2003-01-15
US20140288400A1 (en) 2014-09-25
ATE439081T1 (de) 2009-08-15
US5823950A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
RU2199723C2 (ru) Источник света с регулируемой длиной волны для оксигемометра
KR100376649B1 (ko) 저포화도에대해최적화된산소포화도측정기및센서
US5983122A (en) Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
EP0619981B1 (en) Arterial blood monitoring probe
EP0104772B1 (en) Calibrated optical oximeter probe
EP0286142B1 (en) Reflection type oximeter
US20080221411A1 (en) System and method for tissue hydration estimation
CA2610753A1 (en) Continuous spectroscopic measurement of total hemoglobin
EP0329196B1 (en) Oximeter for cooperation with an oximeter probe
EP2063763A2 (en) Blood oxygen monitor
JPH05269116A (ja) 改良された動脈血のモニター装置
AU729132B2 (en) Manual and automatic probe calibration
JP7091090B2 (ja) パルスオキシメータ及び血液特性測定装置