RU2187578C2 - Биполярная пластина для электролизеров типа фильтр-пресс - Google Patents

Биполярная пластина для электролизеров типа фильтр-пресс Download PDF

Info

Publication number
RU2187578C2
RU2187578C2 RU98121813/28A RU98121813A RU2187578C2 RU 2187578 C2 RU2187578 C2 RU 2187578C2 RU 98121813/28 A RU98121813/28 A RU 98121813/28A RU 98121813 A RU98121813 A RU 98121813A RU 2187578 C2 RU2187578 C2 RU 2187578C2
Authority
RU
Russia
Prior art keywords
powder
graphite
end parts
conductive
central part
Prior art date
Application number
RU98121813/28A
Other languages
English (en)
Other versions
RU98121813A (ru
Inventor
Фульвио Федерико
Original Assignee
Де Нора Элеттроди С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Де Нора Элеттроди С.П.А. filed Critical Де Нора Элеттроди С.П.А.
Publication of RU98121813A publication Critical patent/RU98121813A/ru
Application granted granted Critical
Publication of RU2187578C2 publication Critical patent/RU2187578C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Filtration Of Liquid (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Graft Or Block Polymers (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Использование: в электролизе при получении хлора. Технический результат изобретения заключается в повышении химической стойкости пластин электролизера. Сущность: биполярная пластина выполнена из композитного материала. Пластина имеет центральную часть, которая является электропроводящей и получается горячим прессованием смеси порошков графита или проводящего углерода и термопластичного полимера, стойкого к коррозии, и две концевые части, содержащие распределительные отверстия для впуска свежих электролитов и выпуска отработанных электролитов и продуктов электролиза. Концевые части составляют единое целое с центральной частью и получаются из смеси порошков графита или проводящего углерода и термопластичного полимера при соотношении между указанными порошками ниже, чем в центральной части. Указанная смесь для концевых частей может дополнительно содержать также порошок непроводящего соединения, причем в этом случае смесь также может быть свободной от порошка графита или проводящего углерода. 2 с. и 2 з.п.ф-лы, 2 табл., 1 ил.

Description

Предпосылки создания изобретения
Способы мембранного электролиза промышленного масштаба, такие как получение хлора и гидроксида натрия из растворов хлористого натрия и, даже в большей степени, получение хлора из раствора хлористоводородной кислоты или прямо из газообразной хлористоводородной кислоты, как описано в патенте США 5411641 (J. A. Trainham Ш, C.G. Law Jr, J.S. Newman, K.B. Keating, D.J. Eames) фирмы И.Ай. ДюПон де Немур анд Ко. (США) от 2 мая 1995 г., осуществляют в чрезвычайно агрессивных условиях.
В способе получения гидроксида натрия и хлора анодная реакция дает газообразный хлор, который, как хорошо известно, является сильным коррозионным агентом. По этой причине в промышленной практике для анодных элементов первичных ячеек, образующих электролизеры, обычно используется титан. Использование титана в данном случае допускается при относительно умеренной кислотности рассола хлористого натрия в контакте с указанными анодными частями. Кислотность поддерживают на низких уровнях по производственным причинам, и в основном нет разрушения чувствительных ионообменных мембран, разделяющих с высокой эффективностью получаемый гидроксид натрия от кислотного рассола. Поставщики этого вида мембран указывают на то, что минимальное значение рН для непрерывной работы должно поддерживаться около 2.
Титан не может использоваться для конструирования катодных частей первичных ячеек, образующих электролизер, так как водородовыделение, которое является только катодной реакцией, будет вызывать резкое охрупчивание. В большинстве случаев катодные части первичных ячеек выполняют из высоколегированных нержавеющих сталей или даже лучше никеля. Как следствие, в биполярных электролизерах биполярные элементы, которые спаренные вместе в конструкции типа фильтр-пресс образуют первичные ячейки, выполняют из двух слоев, выполненных из никеля и титана, соединенных либо механически (патент США 4664770, (H. Schmitt, H. Shcurig, D. Bergner, K. Hannesen) фирмы Unde GmbH, от 12 мая 1987 г., либо сваркой (патент США 4488946 (G.J.E. Morris, R.N. Beaver, S. Grosshandler, H.D. Dang, J.R. Pimlott) фирмы Дзе Дау Кемикал Ко. от 18 декабря 1984 г., необязательно, с внутренним слоем, предназначенным для обеспечения электропроводности и необходимой жесткости. Эти биполярные элементы обычно обуславливают усложненную конструкцию, а следовательно, высокую стоимость.
В производстве хлора путем электролиза хлористоводородной кислоты агрессивность является намного более высокой в результате одновременного присутствия хлора и высокой кислотности. В отдельных условиях (температура ниже 60oС, концентрация кислоты ниже 20%, добавление пассивирующих агентов) может использоваться титан - 0,2%, палладиевый сплав (ASTM B265, тип 7) с промежуточными участками, пригодно защищенными соответствующим керамическим покрытием. При температурах и концентрациях кислоты, более высоких, чем вышеуказанные, и при отсутствии пассивирующих агентов единственным пригодным материалом для конструирования анодных частей электролизера является тантал, чрезвычайно дорогой материал, который обладает множеством проблем при его переработке.
Во всяком случае, тантал, так же как титан, является несовместимым с водородом и поэтому не может использоваться для катодных частей. Возможное решение обеспечивается никелевыми сплавами Гастелой типа В, но они являются очень дорогими и подвержены коррозии в процессе остановок электролизеров. Во избежание этих некоторых затруднений необходимо обеспечивать электролизные установки поляризационными системами, которые делают вряд ли практичной всю конструкцию.
Возможная альтернатива обеспечивается графитом, который является достаточно устойчивым в условиях процесса, как анодных (выделение хлора с минимальными количествами кислорода в присутствии хлоридов и кислотности), так и в катодных (водород в присутствии гидроксида натрия при хлорщелочном электролизе или в присутствии кислотности при электролизе хлористоводородной кислоты). Поэтому графит может использоваться в виде пластин, образующих элементы, которые затем собирают в конструкцию типа фильтр-пресс с образованием первичных ячеек электролизеров. В случае биполярных электролизеров две стороны одной и той же графитовой пластины действительно действуют как катодная стенка одной ячейки и анодная стенка смежной ячейки. Поскольку графит является пористым по природе, смешения хлора и водорода, вызванного диффузией через поры, можно избежать, только делая графитовые пластины непроницаемыми с помощью способов, содержащих заполнение под вакуумом пор жидкой полимерной смолой, которая затем полимеризуется и делает графитовую пластину более плотной и улучшает ее характеристики химической стойкости. Графитовые пластины этого типа используются в настоящее время в промышленном способе, известном как "способ Уде-Байера" электролиза растворов хлористоводородной кислоты. Однако непроницаемый графит является чрезвычайно хрупким и считается неприемлемым для большинства производителей хлора, особенно, в определяющих устройствах, таких как электролизеры для производства хлора.
Интересная альтернатива предложена в патенте США 4214969 (R.J. Lawrance) фирмы Дженерал Электрик Компани от 29 июля 1980 г., относящемся к получению пластин, выполненных из графитового порошка и термопластичных фторированных полимеров. Продукт, полученный нагреванием и прессованием порошкообразной смеси, является композитом, имеющим минимальную или отсутствующую пористость, показывающим приемлемую электропроводность. Эта последняя характеристика является очевидно необходимой, так как пластины должны обеспечивать эффективную передачу электрического тока для обеспечения нормальной работы электролизеров. Преимуществом графит-полимерного композита по сравнению с непроницаемым графитом является его более высокая жесткость. Действительно, два требования, жесткость и электропроводность, являются противоречащими друг другу, так как более высокая жесткость включает большее количество полимера, тогда как большее количество графита требуется для увеличения электропроводности. Как следствие, оптимизированный продукт должен быть компромиссом между двумя требованиями, компромиссом, который, как указывает упомянутый патент, должен быть функцией параметров получения, в частности, давления и температуры.
Когда термопластичным фторполимерам является поливинилиденфторид, такой как Кайнар, выпускаемый фирмой - дочерним предприятием Пеннволт (США), наилучшие результаты в отношении электропроводности и жесткости (определенной как сопротивление изгибу) получаются при содержании полимера в интервале 20-25 мас. %. Несомненно, композитная пластина, полученная, как показано выше, и с вышеуказанным материалом, является по существу дорогостоящей.
Снижение общей стоимости электролизера, полученного сборкой в конструкцию типа фильтр-пресс нескольких пластин, может быть достигнуто исключением у каждой пластины всякого наружного соединения (резьбовые соединения, трубки, прокладки) для циркуляции электролитов и отвода продуктов. Эта упрощенная конструкция несомненно увеличивает эксплуатационную надежность электролизеров, особенно при работе под давлением. Исключение наружного соединения требует, чтобы каждая пластина была обеспечена соответствующими внутренними отверстиями, обеспеченными соответствующими системами распределения, как описано подробно в патенте США 4214969. Множество пластин электролизера должно иметь совмещение всех отверстий для того, чтобы образовать продольные каналы внутри конструкции электролизера. Эти каналы (коллекторы), которые соединены с соответствующими насадками, расположенными на одной или на обеих сторонах головных частей электролизера, обеспечивают внутреннее распределение к разным первичным ячейкам свежих электролитов и отвод отработанных электролитов и продуктов электролиза (например, хлора и кислорода). Такие каналы, продольно пересекающие электролизер, поэтому подвергаются воздействию заметного градиента электрического потенциала. Кроме того, если как свежий, так и отработанный электролиты имеют достаточную электропроводность (хлористоводородная кислота, рассол хлористого натрия и гидроксид натрия являются высокопроводящими), тогда каналы пересекаются совместным электрическим током, так называемым шунтовым током, который представляет потерю эффективности и вызывает явления электролиза между поверхностями пластин, обращенных к каналам.
Эти явления электролиза дают по существу два отрицательных эффекта, которыми является пониженная чистота продуктов электролиза и коррозия по меньшей мере части поверхностей композитной пластины. В действительности также графитовые частицы, образующие композит, могут подвергаться коррозии и постепенно изнашиваться и превращаться в окись углерода и/или гидроксид углерода в условиях электролиза, типичных для указанных каналов. Как следствие, композит теряет свои главные компоненты и, таким образом, какую-либо механическую сплошность.
Патент США 4371433 (E.N. Balko, L.C. Moulthrop) фирмы Дженерал Электрик Компани от 1 февраля 1983 г. описывает способ снижения паразитных шунтовых токов и исключения явлений коррозии. Этот способ предусматривает особый профиль коллекторов для того, чтобы вызвать дробление потока электролита на мелкие капли (увеличение общего электросопротивления), причем внутри коллекторов содержатся особые прокладки. Фактически поверхность композитных пластин, обращенная к коллектору, внутренне расположена в линию с прокладками и не может вступать в контакт с электролитами. Однако ввиду того, что эти прокладки имеют сложную геометрию и выполнены из эластомерных фторуглеводородных материалов, которые должны обеспечить высокую химическую стойкость, таких как фторгексафторпропиленовый каучук марки Вайтон, поставляемый фирмой ДюПон (США), этот способ является очень дорогим и поэтому вряд ли применим в промышленном масштабе.
Краткое описание изобретения
В основу настоящего изобретения положена задача создания биполярной пластины для электролизеров типа фильтр-пресс, решающей проблемы существующего аналога путем обеспечения способа защиты пластин из композита графит (или проводящий углерод) - термопластичный (предпочтительно, но не исключительно, фторированный) полимер на тех участках, где указанные пластины обращены к продольным коллекторам.
Поставленная задача решается тем, что в биполярной пластине для использования в биполярном электролизере фильтр-прессного типа, причем указанная пластина имеет центральную часть, выполненную из проводящего композита, полученного из смеси порошка, или волокон из графита, или проводящего углерода и порошка коррозионно-стойкого термопластичного полимера, и две концевые части, выполненные из композита, полученного из смеси указанных порошка, или волокон графита, или проводящего углерода и указанного порошка коррозионно-стойкого термопластичного полимера, причем указанные концевые части имеют более высокое удельное электросопротивление, чем центральная часть, и содержат отверстия, для распределения свежих электролитов и отвода отработанных электролитов и продуктов электролиза, причем центральная часть и концевые части образуют представляющий единое целое элемент, согласно изобретению центральная часть содержит более 60 мас. % указанных порошка, или волокон графита, или проводящего углерода, концевые части (7, 8) имеют низкое содержание указанных порошка, или волокон графита, или проводящего углерода, так что удельное электросопротивление концевых частей является по меньшей мере в 10 раз выше, чем удельное электросопротивление центральной части и концевые части дополнительно содержат дополнительный непроводящий коррозионно-стойкий материал для снижения разности коэффициентов термического расширения центральной части и концевых частей.
Целесообразно дополнительный непроводящий материал выбирать из группы, состоящей из пентоксида тантала, пентоксида ниобия, оксида циркония, сульфата бария.
Нужно, чтобы термопластичным полимером являлся фторированный полимер.
Поставленная задача решается также альтернативным выполнением биполярной пластины для использования в биполярном электролизере фильтр-прессного типа, причем указанная пластина имеет центральную часть, выполненную из проводящего композита, полученного из смеси порошка, или волокон из графита, или проводящего углерода и порошка коррозионно-стойкого термопластичного полимера, и две концевые части, имеющие отверстия для распределения свежих электролитов и отвода отработанных электролитов и продуктов электролиза, причем указанные центральная часть и концевая часть образуют представляющий единое целое элемент, в которой согласно изобретению концевые части являются выполненными из композита, полученного из смеси, содержащей порошок непроводящего коррозионно-стойкого материала и порошок термопластичного полимера.
Способ согласно изобретению имеет преимущество, заключающееся в отсутствии заметного увеличения стоимости при получении общей композитной пластины и может быть реализован для получения указанной пластины.
Настоящее изобретение решает проблему локализованной коррозии на тех участках, где поверхность указанных пластин обращена к продольным коллекторам, путем соответствующего снижения, или даже исключения, содержания графитового порошка или порошка проводящего углерода в концевых частях указанных биполярных пластин. Указанная концевая часть содержит отверстия, которые после сборки биполярных пластин в конструкцию типа фильтр-пресс образуют продольные каналы (коллектора).
Описание предпочтительного варианта изобретения
Настоящий предпочтительный вариант изобретения будет теперь описан со ссылкой на чертеж, на котором представлен вид спереди биполярной пластины.
Представленная биполярная пластина 1 имеет отверстия 2, 3, 4 и 5, которые после сборки в фильтр-прессную конструкцию со смежной биполярной пластиной образуют продольные каналы (коллектора), и продольные канавки 6, предназначенные для улучшения циркуляции и распределения электролитов. Указанные канавки 6 могут отсутствовать, и биполярная пластина может альтернативно иметь плоскую поверхность.
Концевые части 7 и 8 биполярной пластины имеют пониженное содержание графитового порошка или могут даже совсем не содержать графит. Центральная часть 9 биполярной пластины имеет большую поверхность по сравнению с концевыми частями 7 и 8 и выполнена из композита с высоким содержанием графита и, таким образом, с высокой проводимостью. Указанная центральная часть 9 фактически предназначена для передачи электрического тока к электродам (анодам и катодам), которые находятся в контакте с указанной центральной частью и фактически имеют такую же поверхность.
При снижении или даже исключении содержания графита или проводящего углерода в проводящих участках 7 и 8 устраняются проблемы коррозии. Эти проблемы коррозии обусловлены тем, что поверхности биполярной пластины, обращенные к продольным каналам (коллекторам), (цилиндрические поверхности отверстий 2, 3, 4 и 5 на чертеже), могут действовать как электроды и, в частности, как чередующиеся аноды и катоды, благодаря воздействию градиента электрического потенциала по электролизеру. На поверхностях, действующих как катоды, выделяется водород, и отсутствует проблема стабильности полимера, наполненного графитом или проводящим углеродом. На поверхностях, действующих как аноды, выделяются ионы хлорида с образованием хлора. Эта реакция отличается высокой эффективностью, но не 100%, и включает паразитную реакцию образования воды с кислородовыделением. В этих условиях частицы графита или проводящего углерода медленно разрушаются и превращаются в окись углерода и/или в гидроксид углерода. Когда композит является проводящим, графитовые частицы концентрируются так, что можно предположить, что статистически указанные частицы вступают в контакт друг с другом с образованием проводящих цепей через всю толщину пластин. Поэтому, когда коррозия вызывает полное истощение пластины, разрушение не прекращается, а продолжается в смежной пластине, что приводит к нарастанию пористости в массе композита, который соответственно теряет всякую механическую жесткость.
Наиболее очевидным решением кажется полное исключение графитового порошка при изготовлении концевых частей 7 и 8 биполярной пластины 1 только с порошком термопластичного полимера. Как уже сказано, это является экстремальным решением, которое может иметь механические проблемы. Действительно, в данном случае композитная пластина получается, как указано выше, при прессовании и нагревании смеси графитового порошка и порошка термопластичного полимера (необязательно, в виде предварительно отформованных таблеток), распределенной на центральной части формы, и порошка или таблеток полимера, распределенных на участках формы, соответствующих концевым частям 7 и 8 биполярной пластины. Когда подобная пластина с частями, имеющими различное содержание графитового порошка, охлаждается, часто имеются некоторые искривления, вызванные различными коэффициентами термического расширения частей, имеющих различное содержание графита. В частности, концевые части, выполненные только из термопластичного полимера, характеризуются намного большим коэффициентом термического расширения. Для того чтобы избежать проблем искривления, препятствующих получению совершенно плоских пластин, содержание графита должно быть снижено, но не исключено. Для определения точного содержания графитового порошка необходимо избежать вышеуказанных проблем, значения удельного электросопротивления различных композитов были определены и приводятся в таблице 1.
Подобные результаты получаются при замене по меньшей мере частично графитового порошка графитовыми волокнами, как рассмотрено патентом США 4339322 (E. N. Balko, R.J. Lawrance) фирмы Дженерал Электрик Компани от 13 июля 1982 г. Технологический цикл включает холодное прессование при 14500 кПа, нагревание при 150oС, снижение давления до 2000 кПа, повышение температуры до 205oС, доведение давления снова до 14500 кПа с конечной фазой постепенного снижения давления и температуры.
Данные таблицы 1 ясно показывают, что при значительном снижении содержания графитового порошка до 40% еще сохраняется минимальная электропроводность, что означает, что графитовые частицы (или их агрегаты) по меньшей мере частично образуют электропроводящие мостики. Коррозионные испытания были выполнены под током, т.е. при использовании образцов композитов, содержащих 40 мас.% графитового порошка, работающих в качестве анодов в рассоле хлористого натрия и в хлористоводородной кислоте. В результате установлено, что коррозии подвергаются только небольшие участки, где существуют редкие проводящие мостики (цепи графитовых частиц в контакте друг с другом). Как следствие, пористость композита является умеренной, и механические характеристики не ухудшаются.
Было установлено, что полная невосприимчивость к пористости, обусловленной коррозией, может быть получена дальнейшим снижением содержания графитового порошка, например, до 20 мас.% или даже ниже. Однако в данном случае снова имеются явления искривления, типичные для биполярных пластин с концевыми частями 7 и 8, выполненными только из термопластичного полимера, в частности, когда им является поливинилиденфторид, характеризующийся особенно высоким коэффициентом термического расширения. Действительно, коэффициент термического расширения композита, содержащего 20 мас.% графита, является намного выше коэффициента термического расширения композита, имеющего высокое содержание графита (например, 80 мас.%), используемого для центральной части 9 биполярной пластины 1.
Было установлено, что вышеуказанная проблема может быть решена, если концевые части 7 и 8 биполярной пластины получаются из смеси, содержащей порошки графита в минимальных количествах (20 мас.% или менее), термопластичный полимер и непроводящий коррозионно-стойкий материал-наполнитель.
Наилучшие результаты получаются, когда процентное содержание термопластичного полимера, рассчитанное по отношению к общей массе тройной смеси, является таким же, как в центральной части 9 биполярной пластины 1.
Кроме того, было установлено, что материал-наполнитель должен выбираться тщательно, принимая во внимание химические характеристики термопластичного полимера. Действительно, когда последним является фторированный полимер (наиболее предпочтительный благодаря высокой химической инертности), при температурах, развивающихся в процессе формования биполярной пластины, может иметь место химическая реакция между полимером и материалом-наполнителем. Например, когда термопластичным полимером является поливинилиденфторид, он может сильно реагировать с порошком диоксида кремния или оксида бора и возможно образовывать летучие соединения, такие как диоксид кремниятетрафторид или боротрифторид. Кроме того, дополнительный материал-наполнитель должен быть устойчивым при контакте с кислотными рассолами хлористого натрия и с растворами хлористоводородной кислоты, содержащими хлор. Было установлено, что некоторые керамические оксиды, такие как пентоксид ниобия, пентоксид тантала, оксид циркония, оксид лантана, оксид тория, редкоземельные керамические оксиды и некоторые силикаты являются пригодными для использования. Также пригодными для использования являются некоторые нерастворимые соли, такие как, например, сульфат бария.
Несмотря на то, что сульфат бария является совершенно удовлетворяющим назначению для биполярной пластины изобретения, было установлено, что наилучшие механические характеристики, в частности, сопротивление изгибу, получаются при использовании различных оксидов или силикатов, как перечислено выше. Можно допустить, что этот дополнительный положительный эффект обусловлен минимальной химической реакцией между поверхностью частиц и фторированным полимером. Эта реакция, которая является совершенно допустимой, может вызвать улучшенную адгезию на поверхности раздела полимер-частица.
При соответствующем выборе количеств порошка вышеуказанных композитов содержание графитового порошка может быть также исключено из порошковой смеси, используемой для получения концевых частей 7 и 8 биполярной пластины. Оптимальные соотношения по массе зависят от характеристик материала и от плотности частиц, которые являются функцией химического состава, кристаллической структуры и пористости. Экспериментальные данные относительно оптимального соотношения между различными материалами-наполнителями показывают, что наиболее важным параметром является объемное соотношение между материалом-наполнителем и всей смесью.
Это является главной целью изобретения. Очевидно, что могут быть разработаны дополнительные варианты, которые не определены специально в настоящем описании, однако понятно, что изобретение не предназначено для ограничения этим.
Пример 1
16 полос, имеющих размеры 1х1х10 см, вырезаются из 4 листов (по 4 полосы из каждого листа) толщиной 1 см, имеющих размеры 10х10 см, полученных из порошков, указанных в таблице 2. Термопластичным полимером является поливинилиденфторид, поставляемый фирмой Атохем. Технологическим циклом является холодное прессование порошкообразной смеси в форме при 14500 кПа, нагревание при 150oС, снижение давления при 2000 кПа, повышение температуры до 205oС, доведение давления снова до 14500 кПа, с конечной фазой постепенного снижения давления и температуры.
После охлаждения листы являются плоскими. Каждая пара полос подвергается воздействию электронапряжения 3 В после введения двух пар полос в два контейнера с 5% хлористоводородной кислотой и с хлористым натрием с концентрацией 200 г/л и рН 3. Оба раствора непрерывно обновляются для поддержания концентраций в интервале изменения 10%. Температура поддерживается при 90oС. Таким образом каждая композиция испытывается как на анодную, так и на катодную поляризацию. Полосы при катодной поляризации являются невосприимчивыми к любому разрушению. Приведенными в таблице 2 данными показано поведение различных образцов при анодной поляризации. У полос, вырезанных из листа с высоким содержанием графита (Стэкпол А-905, 80 мас.%, типичный аналог), наблюдается заметное падение механических характеристик после только 2 суток электролиза в растворах хлористого натрия и после 5 суток электролиза в растворе хлористоводородной кислоты.
Определенно лучшее поведение наблюдается у полос, полученных из листа, имеющего низкое содержание графита (40 мас.%), однако эти полосы испытывают отрицательное воздействие, проявляющееся в виде повышенной шероховатости, показывающей, что имеется пористость, даже если небольшая.
Полосы, содержащие небольшое количество графита (20 мас.%) и дополнительное количество пентоксида тантала или оксида бария, оказываются невосприимчивыми к любому воздействию. Подобный результат получается с образцами, содержащими пентоксид тантала, пентоксид ниобия, оксид бария. Соответствующие данные не включены в таблицу 2.

Claims (4)

1. Биполярная пластина для использования в биполярном электролизере фильтр-прессного типа, причем указанная пластина имеет центральную часть, выполненную из проводящего композита, полученного из смеси порошка или волокон из графита или проводящего углерода и порошка коррозионно-стойкого термопластичного полимера, и две концевые части, выполненные из композита, полученного из смеси указанных порошка или волокон графита или проводящего углерода и указанного порошка коррозионно-стойкого термопластичного полимера, причем указанные концевые части имеют более высокое удельное электросопротивление, чем центральная часть, и содержат отверстия для распределения свежих электролитов и отвода отработанных электролитов и продуктов электролиза, причем центральная часть и концевые части образуют представляющий единое целое элемент, отличающаяся тем, что центральная часть содержит более 60 мас.% указанных порошка или волокон графита или проводящего углерода, концевые части имеют низкое содержание указанных порошка или волокон графита или проводящего углерода, так что удельное электросопротивление концевых частей является, по меньшей мере, в 10 раз выше, чем удельное электросопротивление центральной части, и концевые части дополнительно содержат дополнительный непроводящий коррозионно-стойкий материал для снижения разности коэффициентов термического расширения центральной части и концевых частей.
2. Биполярная пластина по п.1, отличающаяся тем, что дополнительный материал выбирают из группы, состоящей из пентоксида тантала, пентоксида ниобия, оксида циркония, сульфата бария.
3. Биполярная пластина по любому из пп.1 и 2, отличающаяся тем, что термопластичным полимером является фторированный полимер.
4. Биполярная пластина для использования в биполярном электролизере фильтр-прессного типа, причем указанная пластина имеет центральную часть, выполненную из проводящего композита, полученного из смеси порошка или волокон из графита или проводящего углерода и порошка коррозионно-стойкого термопластичного полимера, и две концевые части, имеющие отверстия для распределения свежих электролитов и отвода отработанных электролитов и продуктов электролиза, причем указанные центральная часть и концевая часть образуют представляющий единое целое элемент, отличающаяся тем, что концевые части являются выполненными из композита, полученного из смеси, содержащей порошок непроводящего коррозионно-стойкого материала и порошок термопластичного полимера.
RU98121813/28A 1996-05-07 1997-05-06 Биполярная пластина для электролизеров типа фильтр-пресс RU2187578C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI96A000911 1996-05-07
IT96MI000911A IT1283628B1 (it) 1996-05-07 1996-05-07 Tipo migliorato di lastra bipolare per elettrolizzatori

Publications (2)

Publication Number Publication Date
RU98121813A RU98121813A (ru) 2000-09-27
RU2187578C2 true RU2187578C2 (ru) 2002-08-20

Family

ID=11374215

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98121813/28A RU2187578C2 (ru) 1996-05-07 1997-05-06 Биполярная пластина для электролизеров типа фильтр-пресс

Country Status (18)

Country Link
US (1) US6039852A (ru)
EP (1) EP0898622B1 (ru)
JP (1) JP2000509441A (ru)
KR (1) KR20000010688A (ru)
CN (1) CN1061703C (ru)
AT (1) ATE213509T1 (ru)
AU (1) AU710692B2 (ru)
BR (1) BR9709215A (ru)
CA (1) CA2251971C (ru)
DE (1) DE69710576T2 (ru)
ES (1) ES2171939T3 (ru)
ID (1) ID17845A (ru)
IT (1) IT1283628B1 (ru)
NO (1) NO985184L (ru)
PL (1) PL189242B1 (ru)
RU (1) RU2187578C2 (ru)
TW (1) TW410242B (ru)
WO (1) WO1997042359A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19956787A1 (de) * 1999-11-25 2001-05-31 Bayer Ag Elektrolyseplatte
US6773841B2 (en) 2002-04-25 2004-08-10 General Motors Corporation Fuel cell having insulated coolant manifold
US20050242471A1 (en) * 2004-04-30 2005-11-03 Bhatt Sanjiv M Methods for continuously producing shaped articles
US20060228619A1 (en) * 2005-04-12 2006-10-12 General Electric Company Electrochemical cell structure
KR102131237B1 (ko) * 2018-08-27 2020-07-07 한국에너지기술연구원 알칼라인 수전해 셀 조립체

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214969A (en) * 1979-01-02 1980-07-29 General Electric Company Low cost bipolar current collector-separator for electrochemical cells
US4339322A (en) * 1980-04-21 1982-07-13 General Electric Company Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator
CH645674A5 (en) * 1980-09-19 1984-10-15 Bbc Brown Boveri & Cie Bipolar plate for an electrolytic appliance constructed in the manner of a filter press, and method for manufacturing it
US4346150A (en) * 1981-06-01 1982-08-24 Exxon Research & Engineering Co. Electrochemical construction
CH656402A5 (de) * 1983-05-06 1986-06-30 Bbc Brown Boveri & Cie Kathodischer stromkollektor.
CH672142A5 (ru) * 1985-07-17 1989-10-31 Metkon Sa
US5322597A (en) * 1992-07-30 1994-06-21 Minnesota Mining And Manufacturing Company Bipolar flow cell and process for electrochemical fluorination
US5296121A (en) * 1992-08-24 1994-03-22 The Dow Chemical Company Target electrode for preventing corrosion in electrochemical cells
US5756874A (en) * 1995-10-10 1998-05-26 Eosystems, Inc. Electrochemical cell for processing organic wastes

Also Published As

Publication number Publication date
CN1061703C (zh) 2001-02-07
EP0898622A1 (en) 1999-03-03
PL189242B1 (pl) 2005-07-29
CA2251971C (en) 2005-07-19
CA2251971A1 (en) 1997-11-13
ITMI960911A0 (ru) 1996-05-07
CN1218519A (zh) 1999-06-02
NO985184D0 (no) 1998-11-06
DE69710576T2 (de) 2003-03-20
NO985184L (no) 1999-01-06
ITMI960911A1 (it) 1997-11-07
TW410242B (en) 2000-11-01
AU710692B2 (en) 1999-09-30
ATE213509T1 (de) 2002-03-15
WO1997042359A1 (en) 1997-11-13
JP2000509441A (ja) 2000-07-25
ID17845A (id) 1998-01-29
US6039852A (en) 2000-03-21
AU2952297A (en) 1997-11-26
EP0898622B1 (en) 2002-02-20
ES2171939T3 (es) 2002-09-16
BR9709215A (pt) 1999-08-10
PL329726A1 (en) 1999-04-12
IT1283628B1 (it) 1998-04-23
KR20000010688A (ko) 2000-02-25
DE69710576D1 (de) 2002-03-28

Similar Documents

Publication Publication Date Title
US4339322A (en) Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator
US4214969A (en) Low cost bipolar current collector-separator for electrochemical cells
US4197178A (en) Bipolar separator for electrochemical cells and method of preparation thereof
US4176018A (en) Electrolyte and process for electrolytic production of fluorine
DE3041844C2 (de) Elektrolysezelle und deren Verwendung
JPH0673586A (ja) 電解槽及び電解方法
KR830002163B1 (ko) 염소-알칼리 전해조
US3926770A (en) Electrolytic cell having silicon bipolar electrodes
EP0090381A1 (en) Electrode and method of electrolysis
JPS629674B2 (ru)
RU2187578C2 (ru) Биполярная пластина для электролизеров типа фильтр-пресс
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
EP0007078A2 (en) Bipolar separator for electrochemical cells, a method for its preparation and an electrochemical cell comprising said separator
JPS60255989A (ja) 複極式電解槽用端部槽コネクタ−
US4666579A (en) Structural frame for a solid polymer electrolyte electrochemical cell
GB2037813A (en) Electrolytic cell element material
US4666580A (en) Structural frame for an electrochemical cell
JPS6246638B2 (ru)
Lawrence Low cost bipolar current collector-separator for electrochemical cells
EP1105551A1 (en) Filter press electrolyzer
MXPA98009271A (en) Bipolar plate for press electrolyzers filtrad
US4670123A (en) Structural frame for an electrochemical cell
US4668371A (en) Structural frame for an electrochemical cell
CA1187442A (en) Permionic membrane electrolytic cell current distribution means
NZ206668A (en) Filter press electrolyser

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080507