RU2144975C1 - Способ установки двухстенной изолированной колонны труб и двухстенная изолированная эксплуатационная колонна - Google Patents

Способ установки двухстенной изолированной колонны труб и двухстенная изолированная эксплуатационная колонна Download PDF

Info

Publication number
RU2144975C1
RU2144975C1 RU96124367A RU96124367A RU2144975C1 RU 2144975 C1 RU2144975 C1 RU 2144975C1 RU 96124367 A RU96124367 A RU 96124367A RU 96124367 A RU96124367 A RU 96124367A RU 2144975 C1 RU2144975 C1 RU 2144975C1
Authority
RU
Russia
Prior art keywords
string
pipe
pipe string
double
walled
Prior art date
Application number
RU96124367A
Other languages
English (en)
Other versions
RU96124367A (ru
Inventor
Шпрингер Иоханн
Original Assignee
Роксвелл Интернэшнл Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роксвелл Интернэшнл Лимитед filed Critical Роксвелл Интернэшнл Лимитед
Publication of RU96124367A publication Critical patent/RU96124367A/ru
Application granted granted Critical
Publication of RU2144975C1 publication Critical patent/RU2144975C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/003Insulating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

Изобретение относится к бурению геотермальных или нефтяных скважин и касается способа установки и конструкции двухстенной изолированной эксплуатационной колонны труб. Колонна предназначена для подвешивания на опорном средстве, имеет внутреннюю колонну труб, образованную из множества внутренних труб, и радиально наружную колонну труб, состоящую из множества наружных труб, причем колонны являются независимыми и расположенными на расстоянии друг от друга, за исключением аксиального соединения колонн относительно друг друга на верхнем конце эксплуатационной колонны труб, хотя крепление колонн в осевом направлении возможно также и на нижнем конце этой колонны, если это потребуется. Кольцевой изолирующий зазор между внутренней и внешней колоннами труб герметично уплотнен на обоих противоположных концах, причем его можно вакуумировать. Внутреннюю и наружную колонны труб можно опустить в скважину, применяя известную технологию бурения нефтяных скважин, причем механическое соединение между внутренней и наружной колоннами труб отсутствует, особенно в местах соединения соответствующих внутренних и наружных отрезков трубы. Для того, чтобы жидкость не попала внутрь наружной колонны до опускания внутренней колонны труб в скважину и уплотнения ее с наружной колонной на ее нижнем конце, вставляют пробку, которая закрывает сначала нижний конец наружной колонны труб, а затем ее удаляют прежде, чем жидкость сможет пройти через теплоизолированную двухстенную колонну труб. Изобретение повышает надежность использования и обеспечивает простоту сборки двухстенной колонны. 2 с. и 17 з.п.ф-лы, 11 ил.

Description

Настоящее изобретение относится к двухстенной изолированной эксплуатационной колонне труб и к способу установки ее в скважине, например в геотермальной или нефтяной скважине.
Существует необходимость в обеспечении исключительных теплоизолирующих свойств для эксплуатационной колонны труб, которая должна подавать теплые или горячие жидкости на поверхность с большой глубины. Другими словами, требуется уменьшить до минимума охлаждение жидкости во время ее передачи со дна скважины наверх, даже если температура окружающих формаций может уменьшаться на 3oC на 100 метрах.
Это применяется в следующих скважинах:
1. Геотермальные скважины, из которых добывают горячую воду из глубоких водоносных пластов при относительно низких скоростях потока, где иначе тепловая вода будет значительно охлаждаться во время ее передачи на поверхность, в результате тепловая энергия, необходимая для потребителя, будет теряться.
2. Замкнутые геотермальные скважины, где теплую жидкость из теплообменника, которой обычно является вода, накачивают вниз на дно скважины в кольцеобразное пространство, образованное между сцементированной обсадной колонной и эксплуатационной колонной труб, во время извлечения тепловой энергии из окружающих формаций и последующей передачи тепловой энергии на поверхность через эксплуатационную колонну.
3. Нефтяные скважины, добывающие сырую нефть с высоким содержанием парафина.
Без эффективной теплоизоляции труб нефть в эксплуатационной колонне труб будет значительно охлаждаться во время ее прохождения к установке на поверхности. Когда температура понижается ниже уровня, который является конкретным для определенного типа нефти, парафин начинает превращаться в твердое состояние и прилипать к внутренней стенке эксплуатационной колонны труб. В результате сопротивление потоку будет увеличиваться из-за уменьшения поперечного сечения труб, таким образом насосные штанги могут застревать и разрушаться. Для накачки холодной и, следовательно, высоковязкой нефти через секции трубопровода, расположенного вблизи устья скважины, требуется значительное количество энергии.
4. Для добычи нефти, которая уже является высоковязкой в формации, содержащей нефть в нисходящей скважине, где в формацию и по диаметру скважины подают горячий пар для нагрева вязкой нефти и, следовательно, для улучшения ее характеристик текучести. Потери тепла на пути движения к поверхности земли необходимо уменьшить, чтобы не вызвать какого-либо падения давления потока в эксплуатационной колонне труб.
Эксплуатационные колонны труб, покрытые стекловатой или керамической ватой и затем обмотанные фольгой или полосками тонкой листовой стали для защиты слоя изоляции от проникновения воды, часто применяют для использования на поверхности. Однако вода может проникать в изолирующий материал через небольшие щели или трещины, которые могут образовываться в окружающей крышке и уменьшать изолирующие свойства такой колонны. Поэтому этот известный способ нельзя применять для теплоизоляции эксплуатационных колонн труб, подвергаемых действию жидкости под высоким давлением в кольцеобразном пространстве между эксплуатационной и обсадной колонками в глубоких скважинах.
Труба, изготовленная из стекловолокна, имеет более низкую теплопроводимость, чем стальная труба, и ее обычно применяют для трубопроводов для эксплуатационных колонн труб для работы в коррозионной среде, а не для теплоизоляции, поскольку ее тепловые свойства являются обычно недостаточными. Температурные пределы и более низкая прочность также ограничивают применение труб, изготовленных из такого материала. Также стекловолокнистый материал является более дорогостоящим, чем стальная труба такого же диаметра, и его нельзя применять в нефтяных скважинах, оснащенных рециркуляционными насосными штангами. Кроме того затраты на товарно-материальные запасы будут увеличиваться, если трубы из стекловолокна необходимо хранить про запас помимо стандартных стальных труб, которые обычно применяют в нефтяной отрасли промышленности.
До сих пор теплоизолированные эксплуатационные трубы применяют для скважин с полным нагнетанием пара с целью достижения улучшенного термического КПД. Колонны труб, которые часто имеют длину свыше 1000 метров, выполняют из отдельных отрезков двухстенных труб, каждый из которых имеет обычно длину примерно 9 метров, которая соответствует двум соединениям труб согласно нормам AP1, их эксплуатируют и восстанавливают с применением приспособлений, используемых в нефтяной промышленности, тем же способом, как и одностенные колонны.
Наиболее типичный вариант такой колонны труб показан в Каталоге оборудования для нефтяной промышленности, том 1, стр. 988 Н, 35-издание, 1982-83 годы, опубликованном фирмой Галф Паблишинг, США. Далее будет описана известная эксплуатационная колонна труб со ссылкой на прилагаемые чертежи, на которых фиг. 1 показывает в продольном разрезе эксплуатационную колонну, а фиг. 3 представляет в увеличенном масштабе подробный вид в продольном разрезе части колонны труб с фиг. 1, показывающий более четко соединение между двумя отрезками трубы.
Теплоизолированная труба, показанная на фиг. 1, представляет отдельный отрезок трубы, которая теплоизолирована и имеет соединения на ее противоположных концах, однако должно быть ясно, что на практике используется множество таких отрезков труб, применяемых для образования теплоизолированной эксплуатационной колонны труб. Фиг. 2 показывает детали конструкции резьбовых соединений, применяемых для образования секций труб изолированной эксплуатационной колонны труб, соединенных вместе.
Как показано на фиг. 1 и 2, внутренняя труба 1 имеет внутренний диаметр, увеличенный на ее противоположных концах, при этом внутренняя труба 1 расположена концентрично внутри наружной трубы, а противоположные концы внутренней трубы приварены к наружной трубе 2. Внутри кольцеобразного пространства 3, образованного между наружной стенкой внутренней трубы и внутренней стенкой наружной трубы, расположена изолирующая среда, например воздух. Наружная труба 2 несколько длиннее, чем изолированная двухстенная секция, таким образом резьбу для соединительного винта можно нарезать на противоположных концах наружной трубы. Для соединения одной секции изолированной трубы с двойными стенками со следующей секцией трубы с двойными стенками в осевом направлении применяют двухвтулочные соединительные муфты 4. Для исключения изменения внутреннего диаметра в каждой точке соединения в колонне труб, которое будет нежелательно увеличивать потери в условиях давления при ударной нагрузке в потоке жидкости, например нефти, в конце труб вставляют неизолированные секционные втулки 5 во время опускания эксплуатационной колонны труб в скважину.
Механически такие эксплуатационные колонны труб удовлетворяют всем требованиям к прочности колонн для глубоких скважин. Однако, даже в идеальном случае, когда жидкость из буровой скважины не проходит в кольцеобразное пространство 6 между втулкой 5 и втулочной муфтой 4, значительное количество тепловой энергии теряется через теплопроводящие мостики, образованные внутренними и наружными трубами, свариваемыми вместе, и также механическим соединением между втулкой 5 и втулочной муфтой 4. Однако вода или нефть обычно будет проходить в кольцеобразное пространство 6, снижая дополнительно эффективность изоляции. Любое механическое повреждение внутренней трубы 1, вызванное насосными штангами с возвратно-поступательным движением или коррозией, будет позволять жидкости проникать в кольцеобразное пространство 7 между внутренней и наружной трубами, тем самым приводя к образованию термического мостика, который не будет сразу видимым на поверхности, поскольку кольцеобразное пространство закрыто на конце каждой трубы внутренней трубой, приваренной к наружной трубе.
Другим недостатком изолированной эксплуатационной колонны этого типа является требование к сварке вместе внутренней и наружной труб. В области бурения скважин обычно исключают применение, где это возможно, инструментов или оборудования для сварки, которые устанавливают вблизи нисходящей скважины, поскольку такие сварные соединения являются исходными точками для возникновения утечек в результате коррозии. Таким образом в настоящей теплоизолированной эксплуатационной колонне, например, сварные соединения между внутренней и наружной трубами могут быть как раз исходной точкой для утечки в результате коррозии. Если коррозия начинается внутри кольцеобразного пространства 3 между двумя трубами, то ее никогда нельзя обнаружить ни визуально, ни неразрушающими методами контроля, обычно применяемыми в нефтяной и газовой промышленности.
Когда стальные трубы покидают производственную линию на заводе, они обычно имеют широкие допуски на длину. Таким образом для достижения соответствия между внутренней и наружной трубами двухстенной эксплуатационной колонны труб необходимо трубы резать до соответствующей длины, однако это увеличивает затраты материала. Основной причиной редкого применения двухстенных эксплуатационных колонн труб является их высокая стоимость, которая превышает в несколько раз стоимость простых труб, большие затраты времени на доставку специально изготовленных сварных соединений и, наконец, но не в меньшей степени, большие затраты на товарно-материальные запасы.
Другая двухстенная труба, предназначенная для теплоизоляции, раскрыта в Европейском патенте EP-A-0138603. В этом документе недостаток известного технического решения устраняется за счет образования канала между соединением двух секций трубы, таким образом кольцеобразные пространства в соответствующих секциях трубы сообщаются благодаря стенке и небольшому каналу, имеющему меньшую площадь поперечного сечения, чем площадь поперечного сечения кольцеобразного пространства снаружи соединения внутренней и наружной труб. Поскольку канал в каждой трубе может быть неточно центрирован с другим каналом, то площадь поперечного сечения продольно аксиальной части канала увеличивают с тем, чтобы обеспечить взаимное соединение двух отрезков трубы, когда будут соединять вместе две секции двухстенной трубы. На внутренней и внешней сторонах канала расположены соответствующие кольцевые уплотнения для достижения уплотнения между кольцеобразным пространством внутри изолированной колонны труб и внутренней стороной, где проходит поток жидкости, и вокруг изолированной колонны.
Кольцеобразное пространство можно заполнить любым требуемым изолирующим газом или жидкостью либо его можно вакуумировать с поверхности. Таким образом, взаимно соединенные кольцеобразные пространства можно использовать для проведения проверки на утечку в любом уплотнении или в стенках труб. Если кольцеобразное пространство сначала заполняют газом, то утечку определяют по повышению давления, которое будет повышаться до тех пор, пока давление в кольцеобразном пространстве не уравновесит давление жидкости внутри изолированной эксплуатационной колонны труб либо снаружи. Это техническое решение также имеет недостаток описанных двухстенных изолированных эксплуатационных колонн труб, что касается определения причины такой утечки, причем, если внутренняя или наружная труба будет иметь утечку, то вытекаемая жидкость будет проходить через кольцеобразное пространство всей колонны. В этом случае трудно определить место утечки, которая может быть не только в корпусе трубы, но также и в эластомерных уплотнениях, радиально расположенных внутри и снаружи канала.
Другая известная двухстенная труба для бурения скважины с обратной промывкой раскрыта в патенте Великобритании N 1204026. В этом патенте описано, что две концентричные трубы соединяют вместе посредством ребер, которые приварены в кольцеобразном пространстве между внутренней и наружной трубами. Внутреннюю трубу вставляют в каждый конец наружной трубы, которая снабжена винтовой резьбой для соединения вместе отдельных секций трубы. Когда эксплуатационную колонну труб опускают в скважину, перекрывающая втулка, имеющая уплотнения на ее противоположных концах, вставляется во внутреннюю трубу верхней и нижней секций эксплуатационной колонны для уплотнения вместе внутренних труб двух различных секций с двойными стенками. Таким образом втулка проходит в соединение следующей трубы, где оно уплотняется с внутренней трубой следующей секции. Необходимость соединения вместе внутренних труб посредством втулок увеличивает их стоимость, затраты на хранение и уход за колонной. Однако труба с двойными стенками, изготовленная в соответствии с этим патентом, имеет также и упомянутые недостатки в том, что внутреннюю и наружную трубы соединяют механически, в результате между внутренней и наружной трубами образуется термическое соединение.
Теплоизолированный трубопровод для транспортировки жидкостей и газа на поверхность земли раскрыт в публикации международной заявки WO 91/19129. В этой заявке раскрыты две концентричные трубы из стали, разделенные кольцеобразным пространством, которое заполнено изолирующим материалом из микростекловолокна или микроминеральных волокон, имеющих достаточную прочность на сжатие для поддержания трубы достаточно отделенной от наружной трубы. Изолирующий материал необходим в кольцеобразном пространстве для опоры массы колонны труб, поскольку колонны труб, расположенные примерно горизонтально и без изолирующего материала, теряют свои изолирующие свойства. Таким образом, чтобы достичь соответствующих изолирующих свойств, применяют твердые изоляторы, которые являются очень пористыми. Эти опорные изоляторы увеличивают стоимость колонны труб, однако более значительным их недостатком является то, что жидкости, которые могут проходить в кольцеобразное пространство из-за утечки в одной из внутренних или наружных колонн труб, будут проникать в поры изолирующего материала изоляторов, таким образом необходимо будет заменять материал.
В этой публикации не описано, что такую колонну из обычно независимых концентричных трубчатых элементов, предназначенных для более или менее горизонтальных трубопроводов, опускают в обычно вертикальную буровую скважину, заполненную жидкостью, и где кольцеобразное пространство между внутренней и наружной трубами должно герметизироваться для защиты от проникновения жидкостей, содержащихся в скважине.
Оборудование, применяемое в нефтяной промышленности, не предназначено для одновременного опускания или подъема концентричных колонн труб различного диаметра. Трубные соединения в соответствии с принятым во всем мире стандартом AP1, которые используют в нефтяной промышленности, имеют различную длину, причем длина соединений колеблется значительно. Только с нестандартными, более дорогостоящими трубами, обработанными механически до одинаковой длины, можно опускать одновременно концентричные колонны труб во время операции опускания труб в скважину с медленной скоростью.
Например, в авторском свидетельстве СССР N 950896 описана теплоизолированная колонна труб, которую монтируют в заводских условиях. В нем раскрыто, что внутренняя труба имеет чередующиеся слои теплоизолирующего материала, образованного из фольги и базальтового полотна, навитых вокруг периферии внутренней трубы. Затем на сочетание внутренней трубы и изоляции устанавливают наружную трубу. Внутренняя и наружная трубы по длине идентичны друг другу, а смонтированные секции из внутренней и наружной труб транспортируют к устью скважины, где секции соединяют друг с другом для формирования двухстенной изолированной колонны. При этом двухстенные изолирующие секции, где каждая секция представляет собой трубы одной длины, соединяют друг с другом, когда происходит подача секций в скважину. Поскольку изолирующий материал прикреплен к внутренней трубе соответствующих секций, этот изолирующий материал не является непрерывным. Если изолирующий материал становится влажным, то он теряет свои изолирующие свойства.
В настоящем изобретении сделана попытка создать способ изоляции двухстенной изолированной колонны, при котором устраняются трудности, связанные с необходимостью сборки секций в заводских условиях, причем так, что более необязательно, чтобы внутренние и наружные трубы были идентичны по длине. Кроме того, цель изобретения заключается в создании изолированной колонны труб, в которой изолирующий материал не превышается, при этом если он увлажняется, то не теряет своих изолирующих свойств.
Согласно первому аспекту настоящего изобретения создана двухстенная изолированная колонна труб, предназначенная для подвешивания на опорном средстве, причем колонна состоит из внутренней и наружной труб с теплоизолирующим зазором между внутренней и наружной трубами, в которой, согласно изобретению, колонна содержит множество секций наружных труб, механически соединенных вместе для образования наружной колонны труб, и множества секций внутренних труб для образования колонны внутренних труб, причем они также соединены вместе механически, внутренняя и наружная колонны труб расположены на расстоянии друг от друга по существу по всей их длине. В общем, внутренняя и наружная колонны труб изолированы друг от друга без какого-либо механического соединения между ними на одном или обоих концах.
В предпочтительном варианте выполнения изобретения на нижнем конце наружной колонны труб расположено съемное уплотняющее средство для исключения утечки жидкости в наружную колонну во время ее установки.
Преимущественно изолирующий зазор заполняют газом или жидкой средой либо его по существу вакуумируют.
Преимущественно внутреннюю и наружную колонны трубы соединяют вместе на верхнем или обоих концах, то есть только на верхнем и нижнем концах изолированной колонны труб.
Преимущественно наружные и внутренние трубы приспособлены выдерживать давление, превышающее гидростатический напор жидкости внутри изолированной эксплуатационной колонны труб или снаружи.
В одном из вариантов выполнения изобретения внутреннюю колонну труб предварительно подвергают растягивающему напряжению, а наружную колонну предварительно сжимают, чтобы допустимые уровни напряжений, вызываемые колебаниями температур во внутренней и наружной колоннах труб, не превышались. Предпочтительно внутреннюю и/или наружную колонну труб оснащают средством компенсации температуры по осевой длине.
В другом варианте выполнения изобретения предусмотрено изолирующее распорное средство в изолирующем зазоре для поддержания концентричности между внутренней и наружной колоннами труб для исключения контакта внутренней колонны с наружной колонной.
В соответствии с другим аспектом изобретения создан способ установки двухстенной изолированной колонны труб, включающий в себя следующие стадии:
выполнение первой секции трубы с уплотняющими средствами на ее нижнем конце во время применения для исключения утечки жидкости в наружную трубу,
механическое соединение второй секции наружной трубы с концом первого отрезка наружной трубы, удаленным от уплотняющего средства, для образования наружной колонны труб,
подвешивание наружной колонны труб на опорное средство, установка первого и второго соединенных отрезков внутренней трубы для образования внутренней колонны труб внутри наружной колонны, причем первый и второй отрезки внутренней трубы соединяют механически, внутренняя колонна труб расположена на расстоянии от наружной колонны труб для образования между ними теплоизолирующего зазора, причем внутренняя и наружная колонна труб отделены друг от друга по существу по всей их длине.
Предпочтительно соединяют вместе более чем две секции наружной и внутренней труб.
В конкретном варианте исполнения изобретения уплотняющее средство удаляют путем повышения давления жидкости внутри секций внутренней трубы или механическими средствами.
Преимущественно для выравнивания гидростатического давления на внешней стороне уплотняющего средства в буровой скважине внутреннюю колонну труб заполняют жидкостью и затем уплотняющее средство деактивируют путем накачки.
Преимущественно внутренние и наружные трубы соединяют механически на верхнем или на обоих концах колонны, т.е. только на верхнем и нижнем концах изолированной колонны труб.
Предпочтительно, чтобы соединение между соответствующими наружными и между соответствующими внутренними трубами представляло собой непроницаемое соединение, образованное посредством резьбы или сварки.
Предпочтительно нижний переходник на нижнем конце колонны труб соединяют на наружной колонне труб, а горизонтальную распорку соединяют на внутренней колонне труб для достижения уплотнения с наружной колонной.
Предпочтительно использовать уплотнение зазора наверху колонны труб для создания вакуума в этом зазоре.
В конкретном варианте соединения, где двухстенная изолированная колонна труб расположена в обсадной колонне, площадь поперечного сечения между двухстенной изолированной колонной и обсадной колонной труб больше площади поперечного сечения внутренней трубы.
Предпочтительно во внутренней и/или наружной колоннах труб расположены средства компенсации температуры вдоль осевой длины.
Преимуществом настоящего изобретения является то, что температура в зазоре на нижнем конце колонны труб равна примерно температуре на нижнем конце внутренней колонны труб при ее использовании.
Согласно настоящему изобретению применяют изолированную колонну труб, имеющую минимальные потери тепла, причем она имеет трубные соединения, обычные для нефтяной промышленности, с позитивно уплотняющими соединениями без включения третьего, обычно трубчатого слоя изоляции из твердого материала в зазоре между внутренней и наружной трубами, как это требуется в публикации международной заявки WO 91/19129. Если жидкость проникает в изолирующий зазор между внутренними и наружными трубами, то легко можно определить, где происходит утечка и можно заменить деталь, дающую утечку. Сварка колонны труб не требуется, однако сварку можно применять, когда это необходимо. Когда трубные соединения вынимают из скважины, то их легко можно очистить и проверить, чтобы снова использовать в той же скважине или для любой другой цели, требующей колонну труб, изготовленную из соединений стальных труб, применяемых с позитивно уплотняющими соединениями.
Теперь изобретение будет описано на примере со ссылкой на приложенные чертежи, на которых:
фиг. 1 представляет вид в продольном осевом сечении изолированной трубы с двойными стенками, известной в технике,
фиг. 2 показывает деталь соединения, применяемого в известном техническом решении, представленном на фиг. 1,
фиг. 3 показывает в продольном осевом сечении первый вариант выполнения двухстенной изолированной трубы в соответствии с настоящим изобретением,
фиг. 4 показывает в продольном осевом сечении второй вариант выполнения двухстенной изолированной колонны труб в соответствии с настоящим изобретением,
фиг. 5(a) представляет вид в частичном продольном сечении колонны труб в соответствии с настоящим изобретением, в которой внутренняя труба расположена эксцентрично относительно наружной стенки,
фиг. 5(b) - вид в поперечном сечении по линии B-B на фиг. 5(a),
фиг. 6(a) представляет вид в продольном сечении части двухстенной изолированной трубы в соответствии с настоящим изобретением, сцентрированной посредством центрирующих элементов с низкой теплопроводимостью,
фиг. 6(b) - вид в сечении по линии B-B на фиг. 6(a),
фиг. 7(a) - показывает часть двухстенной изолированной колонны труб в соответствии с настоящим изобретением, в которой внутренняя труба снабжена элементами для термического расширения,
фиг. 7(b) представляет вид в сечении по линии B-B на фиг. 7(a),
фиг. 8 показывает изолированную двухстенную колонну труб в соответствии с настоящим изобретением, расположенную в замкнутой геотермальной скважине для извлечения тепла,
фиг. 9 показывает двухстенную изолированную колонну труб в соответствии с настоящим изобретением, установленную в нефтяной или в термальной водяной скважине,
фиг. 10 показывает кондуктор для опоры внутренней и наружной колонны труб и для уплотнения колонн и средство для подсоединения вакуумного насоса для улучшения теплоизоляции,
фиг. 11 показывает нижнее уплотнение между внутренней и наружной колоннами труб.
фиг. 3 представляет вид в продольном осевом сечении изолированной двухстенной колонны труб, в которой расположена внутренняя колонна 21 труб, образованная из множества секций внутренней трубы, соединенных друг с другом в осевом направлении, и наружная колонна 22 труб, образованная из отдельных секций наружной трубы, соединенных аксиально друг с другом, причем внутренняя колонна 21 труб расположена предпочтительно концентрично внутри наружной колонны 22. Отдельные трубы внутренней колонны 21 соединены вместе посредством резьбовых соединений 23, а отдельные трубы наружной колонны 22 соединены вместе посредством резьбовых соединений 24, причем оба эти резьбовые соединения 23 и 24 обычно являются соединениями, непроницаемыми для газа и жидкости.
На верхнем конце двухстенной изолированной колонны труб прикреплены внутренняя и наружная колонны 21, 22 для исключения относительного аксиального перемещения друг к другу посредством элемента 25, запирающего верхний конец двух колонн вместе. Также на верхнем конце колонны расположено периферическое уплотнение 26, которое уплотняет внутреннюю и наружную колонны 21, 22 вместе на самом верхнем конце колонны. Элемент 25 для исключения осевого перемещения и уплотнение 26 можно объединить в один элемент конструкций. На нижнем конце этой колонны труб также уплотнены вместе внутренняя и наружная колонна 21, 22 труб посредством периферического уплотнения 27 для закрытия и герметичного уплотнения зазора 30 между внутренней и наружной колоннами 21, 22 труб. Зазор 30, которым обычно является кольцеобразная полость, поскольку эксплуатационная колонна труб обычно имеет круглое сечение, может быть заполнен любой требуемой изолирующей жидкостью или газом через клапан 29 на верхнем конце наружной колонны 22. Либо кольцеобразную полость можно по существу вакуумировать.
На нижнем конце наружной колонны 22 расположена временная уплотняющая пробка 31 для закрытия нижнего ее конца, причем она уплотнена с нижней наружной трубой посредством периферического уплотнения 28. Применение временной уплотняющей пробки 31 будет описано дальше.
В другом варианте исполнения, показанном на фиг. 4, который подобен варианту выполнения изобретения на фиг. 3, за исключением того, что для исключения чрезмерного относительного перемещения в нижних уплотнениях 27, 28, вызванного чистыми колебаниями температуры или трением между внутренней колонной 21 труб и насосной штангой, обе независимые внутренняя и наружная колонны 21, 22 закрепляются вместе посредством запирающего элемента 32, расположенного между уплотнениями 27 и 28.
Таким образом, согласно настоящему изобретению внутренняя и наружная колонны 21, 22 труб являются расположенными на расстоянии друг относительно друга без какого-либо механического соединения между ними по существу по всей их длине за исключением на их одном или обоих концах.
Поскольку скважины, в которых расположены эксплуатационные колонны, редко являются абсолютно вертикальными или прямыми, то продольная ось внутренней колонны труб может быть неконцентричной с продольной осью наружной колонны 22 труб. В зависимости от общего наклона, а также от изменений в азимуте и наклоне, касание может быть, как показано на фиг. 5(a) и фиг. 5(b). Однако эксцентричность ограничена минимальным натягом, вызванным большим наружным диаметром резьбового муфтового соединения 23 внутренней колонны 21 труб в сравнении с массой трубы. Это может привести к линейному контакту между внутренней и наружной колоннами труб в некоторых соединениях, который может вызвать незначительные потери тепла. Однако такие потери тепла являются менее значительными чем те, которые имеют место в известных технических решениях.
Фиг. 6(a) и 6(b) показывают, как можно исключить эти незначительные потери тепла при помощи центрирующего устройства 34, изготовленного из материала, имеющего низкую теплопроводимость. Такие центрирующие устройства размещают по меньшей мере в заданных местах вдоль продольной оси, причем их прикрепляют к наружной поверхности колонны труб, чтобы исключить любой контакт между металлическими поверхностями и уменьшить контакт между внутренней и наружной колоннами труб за исключением концов теплоизолированной колонны труб с двойными стенками.
Если обе эксплуатационные трубы будут соединены вместе на их противоположных концах, как показано на фиг. 4, то колебание температур может привести к нежелательным высоким напряжениям в осевом направлении в одной или другой колонне труб.
Фиг. 7(a) и 7(b) показывают вариант исполнения изобретения, в котором компенсатор 35 температуры по осевой длине расположен в трубе внутренней колонны 21 труб, хотя компенсатор можно также установить в наружной колонне 22 или в обеих колоннах 21, 22.
Как показано на фиг. 8, двухстенная колонна 46 труб в соответствии с настоящим изобретением установлена внутри обсадной колонны 47 зацементированной буровой скважины. Обычно буровую скважину оснащают первой обсадной колонной 48 труб, радиально внутренней второй обсадной колонной 49 и еще третьей радиально внутренней обсадной колонной 50. Как внутренние, так и наружные колонны труб теплоизолированной двухстенной колонны, поддерживаются устройством 25 для исключения осевого перемещения, включая кондуктор, таким образом, внутренняя и наружная колонны труб удерживаются от относительного перемещения в осевом направлении. Вблизи устройства 25 для исключения перемещения расположено уплотнение 26, закрывающее кольцеобразное пространство между обеими колоннами труб. На нижнем конце теплоизолированной 46 трубы расположены уплотнения 27, 28 (не показаны на фиг. 6) и запирающий элемент 32 (не показан отдельно на фиг. 8), которые могут быть предусмотрены.
В этом варианте исполнения изобретения может быть подсоединен вакуумный насос к закрытому кольцеобразному зазору через клапан 29 между двумя колоннами труб для создания вакуума, действующего в качестве изолирующей среды внутри теплоизолированной двухстенной эксплуатационной колонны 46 труб. Когда энергию добывают из геотермального источника в окружающих скважину формациях, то накачивают холодную жидкость, предпочтительно воду, через клапан 51 в пространство, образованное между колонной 47 обсадных труб и изолированной двухстенной колонной 46 труб. С увеличением глубины температура в пластах формаций повышается, таким образом циркулирующая среда становится теплее по мере ее приближения к нижнему концу колонны 46 труб. Затем циркулирующая жидкость течет назад к поверхности земли по трубам верхней колонны 21 и ее удаляют через клапан 52. Предпочтительно площадь поперечного сечения внутренней колонны труб изолированной двухстенной колонны 46 труб значительно меньше, чем площадь поперечного сечения потока между изолированной двухстенной колонной 46 и обсадной колонной 47 труб, таким образом, период, во время которого циркулирующая жидкость может терять свою тепловую энергию, когда она возвращается к поверхности земли, меньше, чем время, доступное для нагрева жидкости во время ее движения вниз через обсадную колонну 47 труб.
Фиг. 9 показывает другой вариант выполнения настоящего изобретения, в котором применяют двухстенную изолированную колонну труб для нефтяной скважины. В отличие от конструкции, показанной на фиг. 8, циркулирующую жидкостью, которая является холодной, не накачивают в пространство между изолированной колонной 46 труб и обсадной колонной 47 труб, таким образом, разность температур между жидкостью, проходящей вверх через изолированную колонну 46, и окружающей средой менее значительная. Однако скорость потока нефти из нефтяных скважин часто очень низкая, таким образом, общие потери тепла все еще остаются значительными, если насосно-компрессорная труба не будет изолирована. Нефть, особенно с высоким содержанием битума или парафина, очень чувствительна к температурам. Когда температура нефти или внутренней стенки насосно-компрессорной трубы понижается ниже минимальной температуры, которая является конкретной для определенного типа нефти, битум или парафин частично затвердевает, блокируя путь потоку внутри трубы, а это может привести к повреждению насосной трубы. Таким образом, целью теплоизолированной двухстенной колонны труб в соответствии с настоящим изобретением является поддержание температуры нефти на всем пути ее движения к поверхности выше критической температуры затвердевания. В варианте исполнения, показанной на фиг. 9, обсадная колонна 47 труб проходит через нефтеносную формацию или через водоносный пласт 60.
Фиг. 10 показывает в увеличенном масштабе кондуктор, применяемый в конструкциях, показанных на фиг. 8 и 9.
Один вариант исполнения нижнего уплотняющего средства для кольцеобразного зазора между внутренней и наружной колоннами труб и для закрытия наружной колонны труб показан на фиг. 11. Полированный держатель 70 соединен посредством резьбы с нижним концом внутренней колонны 21 труб для уплотнения с уплотняющими элементами 27(a) и 27(b) уплотнения 27, как показано на фиг. 3 и 4. Нижний переходник 71 соединен с нижним концом наружной колонны 22 труб, а уплотнения 27(a) и 27(b) образуют между нижним переходником 71 и держателем 70 уплотнение, непроницаемое для жидкости и газа. Нижний переходник 71 состоит из двух частей: элемент 71(a), с которым взаимодействуют уплотнения 27(a) и 27(b), и нижний элемент 71(b), с которым взаимодействуют уплотнения 28(a) и 28(b), показанные на фиг. 3 и 4. В нижнюю часть 71(b) вставляют пробку 31. Пробку 31 вставляют и уплотняют с нижней частью 71(b) переходника для исключения проникновения жидкости в двухстенную колонну 46 труб, когда ее опускают в скважину. Как уже упоминалось, если это потребуется для конкретного применения, то внутреннюю и наружную колонну труб можно аксиально закрепить друг с другом вблизи уплотнения 28. Такое аксиальное крепление колонн труб может быть достигнуто с устройством, известным в нефтяной промышленности как "затвор с собачкой".
Ниже описан способ установки изолированной двухстенной колонны труб.
Начиная с нижнего переходника 71, предпочтительно имеющего постоянные уплотнения 27(a) и 27(b), 28(a) и 28(b) и временную пробку 31, в скважину опускают наружную колонну 22 труб. Временная пробка 31 препятствует жидкостям, содержащимся в скважине, проникать в трубы. Нижний переходник подсоединяют посредством непроницаемого уплотнения к первой наружной трубе наружной колонны 22, причем также подсоединяют множество других труб, когда это необходимо, до тех пор, пока нижний переходник не достигнет его конечного положения, после этого наружную колонну 22 труб подвешивают в плашках на кондуктора (фиг. 8 и 9), являющийся опорным средством.
Далее, начиная с полированного держателя 70, опускают внутреннюю колонну 21 труб в пустую наружную колонну 22 до тех пор, пока полированный держатель 70 не достигнет нижнего переходника и уплотнится уплотнениями 27(a), 27(b). Для выравнивая гидростатического давления на нижней части временной пробки 31, создаваемого жидкостью в буровой скважине, внутреннюю колонну 21 труб заполняют жидкостью, после этого временную пробку 31 деактивируют, например, путем открытой прокачки. До и после заполнения внутренней колонны 21 труб жидкостью и деактивации временной пробки 31 внутренняя колонна 21 труб остается подвешенной на кондукторе и изолированной от наружной колонны 22 наверху скважины. Чтобы проверить, уплотнен ли герметично зазор между внутренней и наружной колоннами 21, 22 труб, зазор можно сначала не вакуумировать, а закрыть, пока будут измерять давление манометром в зазоре между внутренней и наружной колоннами 21, 22 труб. Если давление будет продолжать повышаться после небольшого начального повышения давления, вызванного начальным повышением температуры воздуха между колоннами 21, 22 труб, то это будет указывать на утечку в одном или более соединенных через одно или более отверстий в трубах или через уплотнение в нижней части колонны. После герметизации системы подсоединяют вакуумный насос к клапану 29 между обеими колоннами 21, 22 труб и пространство вакуумируют. После этого скважину можно использовать для добычи воды или нефти либо для получения тепловой энергии из замкнутой геотермальной системы.
В некоторых случаях возможно потребуется подвергнуть двухстенную изолированную колонну труб предварительному натяжению путем натяжения внутренней колонны на наружную колонну для растяжения внутренней трубы и сжатия наружной трубы. Такое предварительное натяжение потребуется в суровых термических условиях.

Claims (19)

1. Способ установки двухстенной изолированной колонны труб, при котором формируют двухстенную изолированную колонну труб из внутренней трубы и наружной трубы, причем внутреннюю колонну труб размещают на расстоянии от наружной колонны для образования теплоизолирующего зазора между внутренней и наружной колоннами труб, при этом внутренняя и наружная колонны отделены друг от друга по существу по всей длине, отличающийся тем, что выполняют первую секцию наружной трубы с уплотняющим средством на нижнем конце при ее использовании для исключения проникновения жидкости в наружную трубу, механически соединяют вторую секцию наружной трубы с концом первой секции наружной трубы, удаленной от уплотняющего средства для образования наружной колонны труб, подвешивают наружную колонну труб на опорное средство, устанавливают соединяемую первую и вторую секции внутренней трубы для образования внутренней колонны труб внутри наружной колонны труб, подвешивают внутреннюю колонну труб на опорное средство, первую и вторую секции внутренней трубы соединяют механически.
2. Способ по п.1, отличающийся тем, что соединяют вместе более чем две секции внутренней и наружной труб соответственно.
3. Способ по п.1 или 2, отличающийся тем, что уплотняющее средство удаляют путем повышения давления жидкости в секциях внутренней трубы или механическими средствами.
4. Способ по п.3, отличающийся тем, что для выравнивания гидростатического давления снаружи уплотняющего средства в буровой скважине внутреннюю колонну труб заполняют жидкостью и затем деактивируют уплотняющее средство.
5. Способ по любому из пп.1 - 4, отличающийся тем, что внутреннюю и наружную трубы механически соединяют вместе на верхнем конце двухстенной изолированной колонны труб или на обоих концах двухстенной изолированной колонны труб.
6. Способ по любому из пп.1 - 5, отличающийся тем, что соединение между соответствующими наружными и внутренними трубами является непроницаемым для жидкости.
7. Способ по любому из пп.1 - 6, отличающийся тем, что нижний переходник на нижнем конце двухстенной изолированной эксплуатационной колонны труб подсоединяют на наружной колонне труб, а держатель подсоединяют на внутренней колонне труб для образования уплотнения с наружной колонной.
8. Способ по любому из пп.1 - 7, отличающийся тем, что образуют уплотнение для зазора наверху колонны для создания вакуума в зазоре.
9. Способ по любому из пп. 1 - 8, отличающийся тем, что двухстенную изолированную колонну труб размещают в обсадной колонне труб, причем площадь поперечного сечения между двухстенной изолированной колонной труб и обсадной колонной труб больше площади поперечного сечения полости во внутренней колонне труб.
10. Способ по любому из пп.1 - 9, отличающийся тем, что температура в зазоре на нижнем конце колонны труб примерно равна температуре на нижнем конце внутренней колонны труб при ее использовании.
11. Способ по любому из пп.1 - 10, отличающийся тем, что средство для компенсации температуры по осевой длине устанавливают во внутренней и/или наружной колонне труб.
12. Двухстенная изолированная эксплуатационная колонна труб, предназначенная для подвешивания на опорном средстве, содержащая внутренние и наружные трубы с термоизолирующим средством между этими трубами, колонна труб содержит множество секций наружных труб, механически соединенных вместе средствами для передачи силы для формирования наружной колонны труб, и множество секций внутренних труб, механически соединенных вместе дополнительными средствами для передачи силы для формирования внутренней колонны труб, причем внутренняя и наружная колонны труб являются раздельными и отделены друг от друга по существу по всей их длине, отличающаяся тем, что изолирующее средство является изолирующим зазором, который непрерывно простирается от верхнего конца колонны труб до нижнего конца колонны труб, и уплотнительные средства расположены на нижнем конце колонны труб, образуя уплотнение между внутренней и наружной колоннами труб, таким образом закрывая изолирующий зазор на нижнем конце колонны труб.
13. Двухстенная изолированная колонна труб по п.12, отличающаяся тем, что на нижнем конце наружной колонны труб расположено съемное уплотнение для исключения проникновения жидкости в наружную колонну труб.
14. Двухстенная изолированная колонна труб по п.12 или 13, отличающаяся тем, что изолирующий зазор заполнен газообразной или жидкой средой либо вакуумирован.
15. Двухстенная изолированная колонна труб по любому из пп.12 - 14, отличающаяся тем, что внутренняя и наружная колонны труб соединены вместе на обоих концах этой колонны труб, т.е. только на верхнем и нижнем ее концах.
16. Двухстенная изолированная колонна труб по любому из пп.12 - 15, отличающаяся тем, что внутренние и наружные трубы приспособлены для выдерживания давления, превышающего гидростатический напор жидкости внутри или снаружи изолированной колонны труб.
17. Двухстенная изолированная колонна труб по любому из пп.12 - 16, отличающаяся тем, что внутренняя колонна предварительно растянута, а наружная колонна предварительно сжата для исключения превышения допустимых уровней напряжений во внутренней и наружных трубах соответственно, вызванных колебаниями внутренних и наружных температур.
18. Двухстенная изолированная колонна труб по п.17, отличающаяся тем, что внутренняя и/или наружная колонны труб оснащены средством компенсации температуры по осевой длине.
19. Двухстенная изолированная колонна труб по любому из пп.12 - 18, отличающаяся тем, что в изолирующем зазоре расположено изолирующее распорное средство для поддержания концентричности между внутренней и наружной колоннами труб для исключения контакта между внутренней и наружной колоннами труб.
RU96124367A 1994-05-25 1995-05-23 Способ установки двухстенной изолированной колонны труб и двухстенная изолированная эксплуатационная колонна RU2144975C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT0106894A AT404386B (de) 1994-05-25 1994-05-25 Doppelwandiger thermisch isolierter tubingstrang
ATA106894 1994-05-25
ATA1068/94 1994-05-25
PCT/EP1995/001997 WO1995032355A1 (en) 1994-05-25 1995-05-23 Double walled insulated tubing and method of installing same

Publications (2)

Publication Number Publication Date
RU96124367A RU96124367A (ru) 1999-02-20
RU2144975C1 true RU2144975C1 (ru) 2000-01-27

Family

ID=3505916

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96124367A RU2144975C1 (ru) 1994-05-25 1995-05-23 Способ установки двухстенной изолированной колонны труб и двухстенная изолированная эксплуатационная колонна

Country Status (9)

Country Link
US (1) US5862866A (ru)
EP (1) EP0760898B1 (ru)
CN (1) CN1057364C (ru)
AT (2) AT404386B (ru)
BR (1) BR9507757A (ru)
CA (1) CA2190971C (ru)
DE (1) DE69519292T2 (ru)
RU (1) RU2144975C1 (ru)
WO (1) WO1995032355A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182283U1 (ru) * 2018-02-08 2018-08-13 Акционерное общество "Трубодеталь" (АО "Трубодеталь") Теплоизолирующее направление
RU194042U1 (ru) * 2019-10-02 2019-11-26 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Трубчатый пробоотборник для донных отложений
RU195162U1 (ru) * 2019-10-02 2020-01-16 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Колонковая труба для трубчатого пробоотборника
RU2731449C1 (ru) * 2019-10-09 2020-09-02 Общество с ограниченной ответственностью "Новые Трубные Технологии" (ООО "НТТ") Стеклокомпозитный адаптер для прокладки напорных и безнапорных трубопроводов методом микротоннелирования

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325507B (en) * 1997-05-23 1999-04-07 T J Corbishley Improvements in methods of forming an elongate tubular structure
CN1061750C (zh) * 1997-08-13 2001-02-07 辽河石油勘探局机械修造集团公司 真空隔热油管及其制造工艺技术
WO1999027228A1 (en) * 1997-11-24 1999-06-03 Elwood Champness Tool cooling system
GB2384502B (en) * 1998-11-16 2004-10-13 Shell Oil Co Coupling an expandable tubular member to a preexisting structure
US7357188B1 (en) * 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US6823937B1 (en) * 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US7231985B2 (en) * 1998-11-16 2007-06-19 Shell Oil Company Radial expansion of tubular members
US7552776B2 (en) * 1998-12-07 2009-06-30 Enventure Global Technology, Llc Anchor hangers
GB2344606B (en) * 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
US7185710B2 (en) * 1998-12-07 2007-03-06 Enventure Global Technology Mono-diameter wellbore casing
US20070051520A1 (en) * 1998-12-07 2007-03-08 Enventure Global Technology, Llc Expansion system
AU770359B2 (en) * 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
US7516790B2 (en) * 1999-12-03 2009-04-14 Enventure Global Technology, Llc Mono-diameter wellbore casing
US7234531B2 (en) * 1999-12-03 2007-06-26 Enventure Global Technology, Llc Mono-diameter wellbore casing
CA2416573A1 (en) * 2000-09-18 2002-03-21 Shell Canada Ltd LOST COLUMN SUSPENSION INCLUDING A SLEEVE VALVE
US7100685B2 (en) * 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
DE60119779T2 (de) * 2000-12-22 2007-04-26 Mitsui Babcock Energy Ltd. Isoliertes verbundrohr
GB2387405A (en) * 2001-01-03 2003-10-15 Enventure Global Technology Mono-diameter wellbore casing
US7410000B2 (en) * 2001-01-17 2008-08-12 Enventure Global Technology, Llc. Mono-diameter wellbore casing
GB2395506B (en) * 2001-07-06 2006-01-18 Eventure Global Technology Liner hanger
AU2002345912A1 (en) * 2001-07-06 2003-01-21 Enventure Global Technology Liner hanger
AU2002322855A1 (en) * 2001-08-20 2003-03-03 Eventure Global Technology Apparatus for radially expanding tubular members including a segmented expansion cone
WO2004081346A2 (en) * 2003-03-11 2004-09-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
CA2459910C (en) * 2001-09-07 2010-04-13 Enventure Global Technology Adjustable expansion cone assembly
WO2004094766A2 (en) 2003-04-17 2004-11-04 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
WO2003093623A2 (en) * 2002-05-06 2003-11-13 Enventure Global Technology Mono diameter wellbore casing
CA2467377C (en) * 2001-11-12 2011-01-04 Enventure Global Technology Collapsible expansion cone
US7290605B2 (en) * 2001-12-27 2007-11-06 Enventure Global Technology Seal receptacle using expandable liner hanger
US7918284B2 (en) * 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7377326B2 (en) * 2002-08-23 2008-05-27 Enventure Global Technology, L.L.C. Magnetic impulse applied sleeve method of forming a wellbore casing
EP1972752A2 (en) * 2002-04-12 2008-09-24 Enventure Global Technology Protective sleeve for threated connections for expandable liner hanger
CA2487286A1 (en) * 2002-05-29 2003-12-11 Enventure Global Technology System for radially expanding a tubular member
GB2418943B (en) * 2002-06-10 2006-09-06 Enventure Global Technology Mono Diameter Wellbore Casing
AU2003275962A1 (en) * 2002-06-12 2003-12-31 Eventure Global Technology Collapsible expansion cone
GB2417971B (en) * 2002-07-19 2007-02-14 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
WO2004009950A1 (en) * 2002-07-24 2004-01-29 Enventure Global Technology Dual well completion system
WO2004011776A2 (en) * 2002-07-29 2004-02-05 Enventure Global Technology Method of forming a mono diameter wellbore casing
EP1540128A4 (en) * 2002-08-23 2006-07-19 Enventure Global Technology METHOD FOR FORMING A TUBING OF A DRILLING WELL BY INTERLOCK SEALING SEAL LAYER
BR0314622A (pt) * 2002-09-20 2005-08-02 Enventure Global Technology Aparelho para expandir radialmente e deformar plasticamente um membro tubular expansìvel, conjunto de cone de expansão ajustável, e método para formar um encamisamento em um furo de poço
AU2003270774A1 (en) * 2002-09-20 2004-04-08 Enventure Global Technlogy Bottom plug for forming a mono diameter wellbore casing
AU2003263859A1 (en) * 2002-09-20 2004-04-08 Enventure Global Technology Protective sleeve for expandable tubulars
WO2004023014A2 (en) * 2002-09-20 2004-03-18 Enventure Global Technlogy Threaded connection for expandable tubulars
EP1552271A1 (en) * 2002-09-20 2005-07-13 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US20060108123A1 (en) * 2002-12-05 2006-05-25 Frank De Lucia System for radially expanding tubular members
US6769487B2 (en) * 2002-12-11 2004-08-03 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US7134455B2 (en) * 2002-12-20 2006-11-14 Hickman Cole J Insulator apparatus for vacuum insulated tubing
US7886831B2 (en) * 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
CA2614179A1 (en) * 2003-02-18 2004-09-02 Enventure Global Technology Protective compression and tension sleeves for threaded connections for radially expandable tubular members
CA2517208C (en) * 2003-02-26 2008-06-03 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
US7207603B2 (en) * 2003-03-11 2007-04-24 Grant Prideco, L.P. Insulated tubular assembly
US20050166387A1 (en) * 2003-06-13 2005-08-04 Cook Robert L. Method and apparatus for forming a mono-diameter wellbore casing
GB2421529B (en) * 2003-09-02 2007-09-05 Enventure Global Technology A method of radially expanding and plastically deforming tubular members
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7152700B2 (en) * 2003-11-13 2006-12-26 American Augers, Inc. Dual wall drill string assembly
US7866708B2 (en) * 2004-03-09 2011-01-11 Schlumberger Technology Corporation Joining tubular members
GB2432866A (en) 2004-08-13 2007-06-06 Enventure Global Technology Expandable tubular
US7363769B2 (en) 2005-03-09 2008-04-29 Kelix Heat Transfer Systems, Llc Electromagnetic signal transmission/reception tower and accompanying base station employing system of coaxial-flow heat exchanging structures installed in well bores to thermally control the environment housing electronic equipment within the base station
US20070131412A1 (en) * 2005-06-14 2007-06-14 Schlumberger Technology Corporation Mass Isolation Joint for Electrically Isolating a Downhole Tool
US7671597B2 (en) * 2005-06-14 2010-03-02 Schlumberger Technology Corporation Composite encased tool for subsurface measurements
WO2007014339A2 (en) * 2005-07-27 2007-02-01 Enventure Global Technology, L.L.C. Method and apparatus for coupling expandable tubular members
ITTO20060021A1 (it) * 2006-01-13 2007-07-14 Soilmec Spa Sistema di perforazione del terreno per realizzare la circolazione di fluido in un impianto per lo sfruttamento dell'energia geotermica.
US8225876B2 (en) * 2006-02-09 2012-07-24 Daniel Lu Mei Continuous communications conduit apparatus and method
JP2010520387A (ja) * 2007-03-06 2010-06-10 アー・ウント・エス・ウムヴェルトテヒノロギー・アクチエンゲゼルシャフト 地中ゾンデを形成するシステム
US7708076B2 (en) * 2007-08-28 2010-05-04 Baker Hughes Incorporated Method of using a drill in sand control liner
US8708046B2 (en) * 2007-11-16 2014-04-29 Conocophillips Company Closed loop energy production from geothermal reservoirs
US7896108B2 (en) * 2008-03-06 2011-03-01 Able Robert E Dual string orbital drilling system
US10301912B2 (en) 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US8307896B2 (en) * 2009-04-27 2012-11-13 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
US8439105B2 (en) * 2009-07-28 2013-05-14 Geotek Energy, Llc Completion system for subsurface equipment
US8672024B2 (en) * 2009-07-28 2014-03-18 Geotek Energy, Llc Subsurface well completion system having a heat exchanger
US9732605B2 (en) * 2009-12-23 2017-08-15 Halliburton Energy Services, Inc. Downhole well tool and cooler therefor
CN101832108B (zh) * 2010-05-07 2013-02-27 湖北贵族真空科技股份有限公司 真空油管接箍
CN102116393A (zh) * 2010-08-03 2011-07-06 合肥华宇橡塑设备有限公司 一种内衬承插式复合管材
CN102121353A (zh) * 2010-12-31 2011-07-13 江苏常宝钢管股份有限公司 分体组装式隔热油管连接结构
CN102121354B (zh) * 2010-12-31 2016-05-18 江苏常宝钢管股份有限公司 管端内管工厂端焊接固定的隔热油管连接结构
WO2012048535A1 (zh) * 2010-10-15 2012-04-19 江苏常宝钢管股份有限公司 一种隔热油管的连接结构
CN102086758B (zh) * 2010-12-31 2016-06-22 江苏常宝钢管股份有限公司 整体套装式隔热油管连接结构
US8875778B2 (en) * 2010-11-15 2014-11-04 Thermodynamique Solutions Inc. Geothermal adiabatic-isothermal heat sink exchange system
CN102536164A (zh) * 2010-12-21 2012-07-04 熊斌辉 超高温完井技术
CN102102492A (zh) * 2011-01-19 2011-06-22 胜利油田孚瑞特石油装备有限责任公司 直连型隔热油管及其加工工艺
CN102134976A (zh) * 2011-03-04 2011-07-27 中南大学 一种坑道钻探水力反循环双壁钻具
US20120312016A1 (en) * 2011-06-13 2012-12-13 Roland Lawes Geothermal Energy Method and Apparatus
RU2487228C1 (ru) * 2011-12-20 2013-07-10 Общество С Ограниченной Ответственностью "Тмк-Премиум Сервис" Секция теплоизолированной колонны
CN102444396B (zh) * 2012-01-04 2016-08-03 李向东 一种天然气生产方法
GB201208935D0 (en) * 2012-05-21 2012-07-04 Ford Global Tech Llc An engine system
JP6069895B2 (ja) * 2012-06-04 2017-02-01 Jfeスチール株式会社 地中熱交換器及び地中熱交換器の製造方法
CN103470918B (zh) * 2012-06-08 2016-09-28 北京航天试验技术研究所 一种用于低温流体输送的无补偿器真空管
US8739902B2 (en) 2012-08-07 2014-06-03 Dura Drilling, Inc. High-speed triple string drilling system
US9523254B1 (en) * 2012-11-06 2016-12-20 Sagerider, Incorporated Capillary pump down tool
WO2014144887A2 (en) * 2013-03-15 2014-09-18 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
JP6179846B2 (ja) * 2013-03-22 2017-08-16 日本ヒューム株式会社 地熱利用コンクリート基礎杭の設置方法
US9415496B2 (en) 2013-11-13 2016-08-16 Varel International Ind., L.P. Double wall flow tube for percussion tool
US9562392B2 (en) 2013-11-13 2017-02-07 Varel International Ind., L.P. Field removable choke for mounting in the piston of a rotary percussion tool
US9328558B2 (en) 2013-11-13 2016-05-03 Varel International Ind., L.P. Coating of the piston for a rotating percussion system in downhole drilling
US9404342B2 (en) 2013-11-13 2016-08-02 Varel International Ind., L.P. Top mounted choke for percussion tool
US10161221B2 (en) * 2013-12-03 2018-12-25 Conocophillips Company Dual vacuum insulated tubing well design
US9580992B2 (en) 2014-03-06 2017-02-28 Baker Hughes Incorporated Sealing device having high differential pressure opening capability
AU2015255929B2 (en) * 2014-05-07 2019-07-18 Glen R. Sumner Submarine or buried piping and pipelines insulated with liquids
CN105464624A (zh) * 2014-08-29 2016-04-06 中国石油化工股份有限公司 一种完井方法
CN105156062A (zh) * 2015-07-21 2015-12-16 胡显三 一种密封筒
FR3040727B1 (fr) * 2015-09-08 2017-09-22 Itp Sa Procede de fabrication d'un troncon double enveloppe
FR3040728B1 (fr) * 2015-09-08 2018-08-17 Itp Sa Procede de mise en production d'un puits d'hydrocarbure sous-marin
CN106481283A (zh) * 2016-11-29 2017-03-08 无锡金顶石油管材配件制造有限公司 一种泄压式石油管道管接箍结构
US10378209B2 (en) 2017-04-20 2019-08-13 136 Holdings, Llc Composite sucker rod with support sleeve
JP7116981B2 (ja) * 2017-05-26 2022-08-12 ジャパン・ニュー・エナジー株式会社 地熱発電装置
CN107165585B (zh) * 2017-06-30 2023-05-02 刘兴仁 一种内衬耐磨、隔热保温复合油管
US11085670B2 (en) 2018-09-14 2021-08-10 Geosource Energy Inc. Method and apparatus for installing geothermal heat exchanger
GB2579642A (en) * 2018-12-10 2020-07-01 Rigon Energy Ltd Storing and extracting thermal energy in a hydrocarbon well
HUP1900017A1 (hu) 2019-01-22 2020-07-28 Geomax Project Kft Geotermikus kút, eljárás annak létesítésére, valamint eljárás geotermikus energiatermelésre
EP3686511B1 (en) 2019-01-22 2021-05-12 GeoMax Project Kft. Geothermal well, method of establishing thereof and method for geothermal energy production
CN110524183A (zh) * 2019-09-12 2019-12-03 域鑫科技(惠州)有限公司 一种管道焊接工装
US11761306B2 (en) * 2020-04-01 2023-09-19 Vallourec Tube-Alloy, Llc Assembly with tightly controlled axial gap for threaded connector insulation on vacuum insulated tubing
CN112112578A (zh) * 2020-11-23 2020-12-22 东营市金亿来石油机械有限公司 一种防偏转的空心抽油杆
EP4092197A1 (en) * 2021-05-17 2022-11-23 Jorma Leino Reinforced concrete pile
CN115263201B (zh) * 2022-08-03 2023-07-14 山东美生热能科技有限公司 一种具有真空自检功能的隔热油套管

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924245A (en) * 1958-10-01 1960-02-09 Harvey A Wilson Pipe line for hot fluids and method of constructing same
US3142336A (en) * 1960-07-18 1964-07-28 Shell Oil Co Method and apparatus for injecting steam into subsurface formations
US3160208A (en) * 1961-10-06 1964-12-08 Shell Oil Co Production well assembly for in situ combustion
US3297100A (en) * 1964-04-13 1967-01-10 Large Mine Shaft Drillers Inc Dual drill stem method and apparatus
CA854056A (en) * 1967-11-21 1970-10-20 Becker Drilling (Alberta) Ltd. Joint for double-walled drill pipe
US3574357A (en) * 1969-02-27 1971-04-13 Grupul Ind Pentru Foray Si Ext Thermal insulating tubing
US3561531A (en) * 1969-08-21 1971-02-09 Exxon Production Research Co Method and apparatus for landing well pipe in permafrost formations
US3608640A (en) * 1969-10-20 1971-09-28 Continental Oil Co Method of assembling a prestressed conduit in a wall
US3884512A (en) * 1971-05-26 1975-05-20 Mancar Trust Deep-well drilling arrangement
US3945215A (en) * 1974-02-14 1976-03-23 Cryogenic Technology, Inc. Low-loss, fluid helium transfer line suitable for extended lengths
US4130301A (en) * 1975-01-27 1978-12-19 General Electric Company Double-walled well casing structure
US4067596A (en) * 1976-08-25 1978-01-10 Smith International, Inc. Dual flow passage drill stem
EP0017783B1 (de) * 1979-03-23 1983-05-25 Aeroaqua Ag. Vorrichtung zur Nutzung der Erdwärme und Verfahren zur Herstellung dieser Vorrichtung
US4477106A (en) * 1980-08-29 1984-10-16 Chevron Research Company Concentric insulated tubing string
US4459731A (en) * 1980-08-29 1984-07-17 Chevron Research Company Concentric insulated tubing string
US4415184A (en) * 1981-04-27 1983-11-15 General Electric Company High temperature insulated casing
US4566495A (en) * 1981-05-18 1986-01-28 Baker Oil Tools, Inc. Concentric walled conduit for a tubular conduit string
US4396211A (en) * 1981-06-10 1983-08-02 Baker International Corporation Insulating tubular conduit apparatus and method
US4444420A (en) * 1981-06-10 1984-04-24 Baker International Corporation Insulating tubular conduit apparatus
US4526408A (en) * 1982-07-19 1985-07-02 Baker Oil Tools, Inc. Insulating tubular conduit
EP0138603A3 (en) * 1983-10-13 1986-04-23 Texas Forge & Tool Limited Improvements in or relating to rods and pipes
US5070597A (en) * 1985-07-19 1991-12-10 Raychem Corporation Tubular article
US4693313A (en) * 1986-06-26 1987-09-15 Kawasaki Thermal Systems, Inc. Insulated wellbore casing
US4790375A (en) * 1987-11-23 1988-12-13 Ors Development Corporation Mineral well heating systems
GB9007147D0 (en) * 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
DE4017510A1 (de) * 1990-05-31 1991-12-05 Preussag Anlagenbau Ummantelte rohrleitung zur foerderung von gasfoermigen oder fluessigen medien
US5535825A (en) * 1994-04-25 1996-07-16 Hickerson; Russell D. Heat controlled oil production system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182283U1 (ru) * 2018-02-08 2018-08-13 Акционерное общество "Трубодеталь" (АО "Трубодеталь") Теплоизолирующее направление
RU194042U1 (ru) * 2019-10-02 2019-11-26 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Трубчатый пробоотборник для донных отложений
RU195162U1 (ru) * 2019-10-02 2020-01-16 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Колонковая труба для трубчатого пробоотборника
RU2731449C1 (ru) * 2019-10-09 2020-09-02 Общество с ограниченной ответственностью "Новые Трубные Технологии" (ООО "НТТ") Стеклокомпозитный адаптер для прокладки напорных и безнапорных трубопроводов методом микротоннелирования

Also Published As

Publication number Publication date
ATA106894A (de) 1998-03-15
DE69519292D1 (de) 2000-12-07
US5862866A (en) 1999-01-26
AT404386B (de) 1998-11-25
CN1149902A (zh) 1997-05-14
BR9507757A (pt) 1997-09-23
CA2190971A1 (en) 1995-11-30
CN1057364C (zh) 2000-10-11
ATE197336T1 (de) 2000-11-15
EP0760898A1 (en) 1997-03-12
EP0760898B1 (en) 2000-11-02
CA2190971C (en) 2000-10-31
DE69519292T2 (de) 2001-05-17
MX9605778A (es) 1998-05-31
WO1995032355A1 (en) 1995-11-30

Similar Documents

Publication Publication Date Title
RU2144975C1 (ru) Способ установки двухстенной изолированной колонны труб и двухстенная изолированная эксплуатационная колонна
US4415184A (en) High temperature insulated casing
RU2169838C2 (ru) Система контроля буровой скважины
CA1151540A (en) Insulated casing assembly
US4444420A (en) Insulating tubular conduit apparatus
US20050103497A1 (en) Downhole flow control apparatus, super-insulated tubulars and surface tools for producing heavy oil by steam injection methods from multi-lateral wells located in cold environments
US9267637B2 (en) Coaxial pipe assembly including a thermally insulating sleeve
US8567506B2 (en) Fluid isolating pressure equalization in subterranean well tools
EP3140365B1 (en) Submarine or buried piping and pipelines insulated with liquids
CA1150623A (en) Method and apparatus for thermally insulating well
EP0413753B1 (en) Tubing collar
NO20151590A1 (en) Sand control screen assembly with internal control lines
US3380530A (en) Steam stimulation of oil-bearing formations
CA2675784C (en) Insulated double-walled well completion tubing for high temperature use
US3608640A (en) Method of assembling a prestressed conduit in a wall
US3654691A (en) Process for constructing prestressed conduit for heated fluids
US20060245989A1 (en) Monolithic pipe structure particularly suited for riser and pipeline uses
CA2055437C (en) Device for protecting wells from corrosion or deposits caused by the nature of the fluid produced or located therein
US4579373A (en) Insulated concentric tubing joint assembly
RU2339809C1 (ru) Способ сооружения и эксплуатации паронагнетательной скважины
Śliwa et al. The application of vacuum insulated tubing in deep borehole heat exchangers
RU2386009C2 (ru) Термоизолированная колонна
CA3085287A1 (en) Gas insulated tubing
MXPA96005778A (en) Isolated double-wall pipe and method of installation of the mi
RU2133324C1 (ru) Термоизолированная колонна

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050524