RU2124534C1 - Герметизирующий слой бескамерной шины, пневматическая шина, содержащая этот слой и камера шины - Google Patents

Герметизирующий слой бескамерной шины, пневматическая шина, содержащая этот слой и камера шины Download PDF

Info

Publication number
RU2124534C1
RU2124534C1 RU95119584A RU95119584A RU2124534C1 RU 2124534 C1 RU2124534 C1 RU 2124534C1 RU 95119584 A RU95119584 A RU 95119584A RU 95119584 A RU95119584 A RU 95119584A RU 2124534 C1 RU2124534 C1 RU 2124534C1
Authority
RU
Russia
Prior art keywords
rubber
tire
reactive
sealing layer
layered silicate
Prior art date
Application number
RU95119584A
Other languages
English (en)
Other versions
RU95119584A (ru
Inventor
Нэтан Кресдж Эдвард
Джон Лоз Дэвид
Original Assignee
Эксон Кемикэл Пейтентс Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксон Кемикэл Пейтентс Инк. filed Critical Эксон Кемикэл Пейтентс Инк.
Publication of RU95119584A publication Critical patent/RU95119584A/ru
Application granted granted Critical
Publication of RU2124534C1 publication Critical patent/RU2124534C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/02Inflatable pneumatic tyres or inner tubes having separate inflatable inserts, e.g. with inner tubes; Means for lubricating, venting, preventing relative movement between tyre and inner tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10135Armored
    • Y10T152/10234Interliners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10135Armored
    • Y10T152/10234Interliners
    • Y10T152/10243Cotton, fabric, or rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • Y10T428/3183Next to second layer of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • Y10T428/31833Next to aldehyde or ketone condensation product or addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • Y10T428/31833Next to aldehyde or ketone condensation product or addition polymer from unsaturated monomers
    • Y10T428/31837Including polyene monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)
  • Laminated Bodies (AREA)

Abstract

Герметизирующий слой предназначен для изготовления автомобильных шин. Изготавливается из каучуков общего назначения и силикатной глины. В результате понижается воздухопроницаемость без ухудшения эластичности. 3 с. и 42 з.п.ф-лы.

Description

Изобретение относится к герметизирующим слоям бескамерных шин, пневматическим шинам, содержащим этот слой и камерами шин. Композиции для герметизирующих слоев содержат различные каучуки и их смеси, включающие чешуйки силикатной глины. Добавление таких чешуек к каучукам приводит к получению композиции, которая обладает достаточно низкой воздухопроницаемостью и может быть использована для изготовления герметизирующих слоев и камер шин.
Из уровня техники хорошо известно, что герметизирующие слои бескамерных шин должны быть выполнены из материалов, которые обладают сравнительно низкой воздухопроницаемостью и тем не менее остаются эластичными. Каучуки, которые почти исключительно используются для этой цели, представляют собой бутилкаучуки, в частности, галогенированные бутилкаучуки. До настоящего времени только эти полимеры обладали необходимыми характеристиками, обеспечивающими их использование в изготовлении герметизирующих слоев и камер шин.
В последнее время для изготовления герметизирующих слоев использовали новую группу сополимеров. В опубликованной Международной заявке РСТ/ US 91/04896 описано применение сополимеров изомоноолефина с параалкилстиролом для изготовления герметизирующих слоев шин. Герметизирующие слои бескамерных шин, изготовленные из этих сополимеров, характеризуются очень низкой воздухопроницаемостью.
Проблема использования бутилкаучуков и новых сополимеров заключается в том, что эти полимеры являются сравнительно дорогими по сравнению с каучуками общего назначения. Каучуки общего назначения, однако, не обладают требуемой низкой воздухопроницаемостью. Следовательно, существует необходимость в создании каучуковых композиций, являющихся сравнительно недорогими и тем не менее обладающих достаточно низкой воздухопроницаемостью для использования в производстве герметизирующих слоев бескамерных шин.
Добавление глин к каучуку хорошо известно из уровня техники. Глины добавляли к каучуковым композициям для улучшения их прочности. Например, в патенте США 4889885, который принят за более близкий аналог к предложенной группе изобретений, описано получение композиционного материала путем добавления слоистого силиката к каучуку для улучшения механических свойств. Получаемые продукты, однако, являются довольно жесткими и поэтому их применение для изготовления герметизирующих слоев шин затруднительно.
Задача описываемой группы изобретений заключается в возможности изготовления дешевого герметизирующего слоя бескамерной шины, пневматической шины, содержащей этот слой и камеры шины с использованием каучуков общего назначения, имеющих характеристики, аналогичные характеристикам более дорогих галоидированных бутилкаучуков в настоящее время. Кроме того, возможность использовать каучуки общего назначения для герметизирующего слоя скажется на агдезии между герметизирующим слоем и каркасом шины, а именно каучуки общего назначения будут более совместимы с другими компонентами резины в шине.
Поставленная задача достигается созданием герметизирующего слоя бескамерной шина, включающим твердый каучук и комплекс, представляющий собой реакционноспособный каучук, содержащий положительно заряженную группу и слоистый силикат, равномерно диспергированный в этом каучуке, а слои силиката имеют толщину 7-12 ангстрем, в котором согласно изобретению по меньшей мере 40% поверхности слоев силиката расположено перпендикулярно диффузии газа, обусловленной давлением в шине, слои силиката имеют длину и ширину, которые по меньшей мере в 25 раз больше их толщины, расстояние между слоями указанного слоистого силиката составляет более 12 ангстрем, реакционноспособный каучук является растворимым в твердом каучуке или способен сшиваться с твердым каучуком и слоистый силикат содержится в комплексе в количестве 1 - 50 масс. частей на 100 масс. частей реакционноспособного каучука.
Поставленная задача решается созданием пневматической шины, содержащей герметизирующий слой, включающий в себя твердый каучук и комплекс, представляющий собой реакционноспособный каучук, содержащий положительно заряженную группу, и равномерно диспергированный в нем слоистый силикат, а слои силиката имеют толщину 7-12 ангстрем, в которой согласно изобретению по меньшей мере 40% поверхности слоев силиката расположено перпендикулярно направлению диффузии газа, обусловленной давлением в шине, слои силиката имеют длину и ширину, которые по меньшей мере в 25 раз больше их толщины, расстояние между слоями указанного слоистого силиката составляет более 12 ангстрем, а слоистый силикат содержится в комплексе в количестве примерно 1-50 масс. частей на 100 масс. частей реакционноспособного каучука.
Поставленная задача решается также созданием камеры шины, включающей твердый каучук и комплекс, представляющий собой реакционноспособный каучук, содержащий положительно заряженную группу, и слоистый силикат, равномерно диспергированный в этом каучуке, а слои силиката имеют толщину 7-12 ангстрем, в которой согласно изобретению по меньшей мере 40% поверхности слоев силиката расположено перпендикулярно направлению диффузии газа, обусловленной давлением в шине, слои силиката имеют длину и ширину, которые по меньшей мере в 25 раз больше их толщины, слоистый силикат содержится в комплексе в количестве 1-50 масс. частей на 100 масс.частей реакционноспособного каучука и расстояние между слоями указанного слоистого силиката составляет более 12 ангстрем, реакционноспособный каучук является растворимым в твердом каучуке или способен сшиваться с твердым каучуком.
Было обнаружено, что, регулируя размер, размещение и ориентацию чешуек специфической силикатной глины в композициях на основе каучука, можно получить каучуковую композицию, обладающую достаточно низкой воздухопроницаемостью, используемую в качестве герметизирующего слоя бескамерной шины или композиции для изготовления камеры шины. Эта пониженная воздухопроницаемость не приводит к значительному уменьшению эластичности каучука, необходимой для его использования в производстве шин. Таким образом, стало возможным изготавливать дешевые герметизирующие слои, пневматические шины, содержащие этот слой и камеры шин из каучука общего назначения.
Чешуйки силиката могут содержаться в матрице бутилкаучука. Это приводит к меньшей диффузии воздуха и очень эффективно для герметизирующих слоев, пневматических шин, содержащих этот слой, и камер шин с исключительно высоким сохранением степени наполнения воздухом.
В описываемой группе изобретений слои силикатной глины диспергируются в каучуковой композиции, образуя чешуйки толщиной 7-12 ангстрем. Расстояние между слоями равно примерно 12 ангстрем или больше. Чешуйки должны быть расположены таким образом, чтобы поверхность большинства чешуек была перпендикулярна направлению диффузии газа. В этом случае чешуйки образуют барьер для воздуха, предотвращающий диффузию воздуха через каучук герметизирующего слоя.
Пневматические шины изготавливают таким образом, что газ, которым их наполняют, обычно воздух, удерживается при помощи барьера. Этим барьером может быть камера, герметизирующий слой или часть каркаса шины, или каркас шины целиком. Барьер выполняет функции, обеспечивающие критическую безопасность и полезность шины. Если диффузия воздуха через шину является минимальной, давление в шине сохраняется в течение длительного времени. Недозаполнение газом приводит к повреждению шины и возможному разрушению с катастрофическими последствиями.
Более того, внутреннее или внутриканальное давление в шине способствует окислительной деструкции каучука и армирующих волокон и росту внутренних дефектов во время эксплуатации.
Описываемые композиции обладают значительно лучшими свойствами при задерживании воздуха по сравнению с каучуками, используемыми для конструирования корпуса шины, и в этой связи их можно применять для изготовления герметизирующих слоев, пневматических шин и камер шин.
Композиции, используемые в описываемой группе изобретений, можно вводить непосредственно в каркас шины. Однако для того, чтобы поддерживать давление в области, прилегающей к армирующим элементам в шине, максимально низким, композиция с минимальной диффузией должна находиться в шине на той стороне этих элементов, где создается высокое давление.
Композиции для герметизирующего слоя, пневматической шины и камеры шины или перегородки представляют собой каучук, содержащий диспергированный в нем слоистый силикат. Содержание слоистого силиката должно составлять 1-50 масс. частей на 100 масс. частей реакционноспособного каучука. При содержании менее 0,5 частей количество силиката недостаточно для соответствующего уменьшения воздухопроницаемости композиции. При использовании более 50 масс. частей композиция является слишком жесткой для использования ее в качестве композиции для герметизирующих слоев шины. Наиболее предпочтительное содержание силиката составляет от 2 до 30 масс. частей.
Слоистый силикат создает в композиции барьер для воздуха, уменьшая диффузию воздуха через композицию. Силикат представляет собой слоистый филлосиликатный материала, состоящий из слоев силиката магния или силиката алюминия, имеющих толщину 7-12 ангстрем. Эти слоистые глинистые материалы заряжены отрицательно вследствие изоморфного ионообмена. Они отличаются друг от друга характеристическими свойствами, которые зависят от плотности и распределения отрицательных зарядов. Предпочтительным слоистым силикатом согласно данному изобретению является силикат, у которого один отрицательный заряд занимает площадь 25-200 квадратных ангстрем на поверхности слоя.
Примерами слоистых силикатов, которые могут быть использованы в описываемой группе изобретений, являются различные глинистые минералы, включая смектитовые глины, минералы (например, монтромориллонит, сапонит, байделлит, монтронит, гекторит и стивенсит), вермикулит и галлосит. Это могут быть природные и синтетические глины. Из указанных глин предпочтительным является монтмориллонит. Предпочтительно также слоистый силикат представляет собой филлосиликат.
В указанной группе изобретений композиция герметизирующего слоя должна состоять из комплекса и твердого каучука. Комплекс состоит из реакционноспособного каучука, содержащего положительно заряженные группы, и слоистого силиката, равномерно диспергированного в указанном реакционноспособном каучуке при межслойном расстоянии более 12 ангстрем. Кроме того, комплекс должен иметь такую структуру, чтобы реакционноспособный каучук был солюбилизирован в твердом каучуке. Эта структура обеспечивает композиционному материалу превосходные механические свойства, включая низкую воздухопроницаемость. Эти ярко выраженные результаты объясняются следующим образом.
Слоистый силикат равномерно диспергирован в каучуковом компоненте вследствие того, что слоистый силикат непосредственно связан с реакционноспособным каучуком, содержащим положительно заряженные группы, посредством ионных связей и реакционноспособный каучук хорошо смешивается с твердым каучуком. Кроме того, в случае использования вулканизированного каучука слоистый силикат непосредственно присоединен к структурной сетке вулканизированного каучука, образованной каучуковым компонентом, таким образом, что слоистый силикат в значительной степени ограничивает молекулярное движение структурной сетки вулканизированного каучука вблизи границы раздела фаз.
Тот факт, что слоистый силикат равномерно диспергирован в каучуковом компоненте и ориентирован поверхностями слоев к дифференциалу давления, приводит к низкой воздухопроницаемости композиции.
Совместимость каучука с комплексом, состоящим из слоистого силиката и реакционноспособного каучука, приводит к низкой вязкости и хорошей перерабатывающей способности во время переработки. Это является преимуществом по сравнению с другими системами, у которых может проявляться тенденция к увеличению вязкости в процессе переработки. Кроме того, слоистый силикат, непосредственно соединенный с реакционноспособным каучуком, является легко подвижным и способствует диспергируемости слоистого силиката. Композиция герметизирующего слоя имеет такую структуру, что слоистый силикат равномерно диспергирован в каучуковой композиции. Эта структура образована путем диспергирования слоистого силиката в виде молекул в реакционноспособном каучуке и солюбилизации реакционноспособного каучука комплекса в твердом каучуке. Любая попытка равномерно диспергировать слоистый силикат в твердом каучуке будет безуспешной из-за несовместимости двух компонентов. Следовательно, вышеупомянутую структуру нельзя получить другим образом.
Реакционноспособным каучуком, используемым в группе изобретений, является каучук, который содержит положительно заряженную группу. Положительно заряженная группа может быть в основной цепи или боковой цепи реакционноспособного каучука или на конце цепи. Реакционноспособный каучук может содержать одну или несколько положительно заряженных групп в одной молекуле. Реакционноспособный каучук представляет собой один или несколько каучуков, выбранных из группы, включающей полибутадиен; сополимеры бутадиена, содержащие стирол, изопрен, акрилонитрил; полиизобутилен; сополимеры изобутилена, содержащие бутадиен, изопрен, стирол, параметилстирол, полихлорпрен; этиленпропилендиеновые сополимеры; полиизопрены; сополимеры изопрена, содержащие изобутилен, стирол, бутадиен или акрилонитрил; натуральный каучук или модифицированный продукт указанного реакционноспособного каучука, дополнительно содержащего ониевую соль или предшественник ониевой соли.
Предпочтительно ониевая соль имеет общую формулу
M+R1R2R3,
где M обозначает азот, серу, фосфор или
Figure 00000001

и R1, R2 и R3 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или различными.
Предпочтительно предшественник ониевой соли характеризуется общей формулой
-MR1R2,
где M обозначает азот, серу или фосфор или
Figure 00000002

и R1 и R2 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или различными.
Предпочтительно указанный реакционноспособный каучук представляет собой каучук с концевыми аминогруппами.
Предпочтительно указанный реакционноспособный каучук представляет собой бутадиенакрилонитрильный каучук с концевыми аминогруппами.
Можно использовать один или несколько реакционноспособных каучуков. Совместная вулканизация реакционноспособного каучука и твердого каучука зависит от молекулярной массы реакционноспособного каучука и типов центров сшивки и их концентрации. Для успешной совместной вулканизации реакционноспособный каучук предпочтительно должен иметь молекулярную массу, превышающую 450.
Комплекс, состоящий из слоистого силиката и реакционноспособного каучука, содержит реакционноспособный каучук и слоистый силикат, равномерно диспергированный в реакционноспособном каучуке. Дисперсия слоистого силиката в виде молекул способствует образованию ионной связи между жидким каучук и слоистым силикатом. Эта ионная связь может образовать сшитую структуру реакционноспособного каучука. Другими словами, отдельные слои силиката полностью отделены друг от друга силой, превышающей прочность связи (такой, как силы Ван дер Ваальса и электростатическая сила притяжения) между слоями. Более того, отрицательный заряд у силиката связан с положительным зарядом (ониевым ионом) в реакционноспособном каучуке ионной связью или ассоциацией.
Значительная фракция слоистого силиката в комплексе должна иметь расстояние между слоями, превышающее 12 ангстрем. При расстоянии между слоями менее 12 ангстрем комплекс не будет равномерно диспергироваться в твердом каучуке.
Твердый каучук предпочтительно должен иметь молекулярную массу более 10000 для того, чтобы его можно было вулканизировать или сшить в массе. Твердые каучуки, которые могут быть использованы в описываемой группе изобретений, включают полибутадиен, сополимеры бутадиена, содержащие стирол, изопрен или акрилонитрил; полиизобутилен, сополимеры изобутилена, содержащие бутадиен, изопрен, стирол или параметилстирол; полихлорпрен; сополимеры этилена, пропилена и диена; полиизопрен, сополимеры изопрена, содержащие бутадиен, стирол, акрилонитрил, и натуральный каучук.
Предпочтительно твердый каучук выбирают из группы, включающей натуральный каучук, синтетический каучук, термопластичный эластомер и их смеси. Предпочтительно также твердым каучуком является полибутадиен.
Комплекс, состоящий из слоистого силиката и реакционноспособного каучука, следует смешивать с твердым каучуком в соотношении 1-100 масс. частей первого на 100 масс. частей последнего. Если количество комплекса меньше 1 масс. части, слоистый силикат оказывает небольшое влияние на каучуковую фазу, содержащую твердый каучук и реакционноспособный каучук. При содержании реакционноспособного каучука более 100 масс.частей его количество в каучуковой фазе становится настолько большим, что он приводит к ухудшению свойств твердого каучука.
Предпочтительно содержание указанного комплекса составляет 2-50 масс. частей на 100 мас. частей твердого каучука.
В каучуковую композицию при необходимости может быть введена углеродная сажа для усиления и улучшения других характеристик каучука. Примеры углеродной сажи включают SAF (N11), ISAF (N220), HAF (N330), FEF (N550), GPF (N660) и SRF (N770) (в скобках приведены обозначения согласно ASTM). Углеродную сажу следует добавлять в количестве от 0 до 100 масс. частей, предпочтительно 0-70 масс. частей на 100 масс. частей твердого каучука. При ее содержании более 100 масс. частей получаемая каучуковая композиция имеет настолько высокую вязкость, что улучшение перерабатываемости комплекса становится менее значительным.
Для регулирования реологических и физических свойств можно использовать другие добавки, хорошо известные из уровня техники. Они включают в себя неармирующие наполнители, например глины и пластификаторы, например углеводородные переработанные масла, низкомолекулярные углеводородные смолы и алкилфталаты.
Содержание слоистого силиката в композициях для герметизирующих слоев предпочтительно должно составлять 2-50 масс. частей на 100 масс. частей всего каучука. При содержании менее 1 масс части слоистый силикат незначительно уменьшает воздухопроницаемость композиции для герметизирующего слоя. При содержании более 50 масс. частей получаемая композиция является слишком жесткой для использования при создании герметизирующего слоя в шине.
Каучуковая композиция характеризуется тем, что реакционноспособный каучук в комплексе солюбилизируется в твердом каучуке или взаимодействует с ним. Другими словами, реакционноспособный каучуковый компонент комплекса характеризуется хорошей смешиваемостью с твердым каучуком или же его можно заставить реагировать с твердым каучуком. Твердый каучук включает эластомерные композиции, которые характеризуются температурами стеклования менее -25oC. Примеры таких твердых каучуков включают полибутадиен, сополимеры бутадиена со стиролом, изопреном или акрилонитрилом, полиизобутилен, сополимеры изобутилена, содержащие бутадиен, изопрен, стирол или параметилстирол; полихлоропрен, сополимеры этилена, пропилена и диена; полиизопрен; сополимеры изопрена, содержащие бутадиен, стирол или акрилонитрил, и натуральный каучук. Термопластичные эластомеры также могут быть использованы в качестве твердого каучука в описываемой группе изобретений.
В каучуковую композицию могут быть добавлены углеродная сажа, акцепторы кислоты или антиоксиданты или другие обычно используемые добавки в соответствии с необходимостью. Эта каучуковая композиция может быть вулканизирована серой, перекисью и т.п. или другими вулканизирующими агентами и ускорителями вулканизации, обычно используемыми для твердых каучуков. Следует добавить, что вулканизацию можно проводить в любой литьевой машине, предназначенной для вулканизации.
Композиция для герметизирующих слоев согласно данному изобретению может быть получена в соответствии со следующим способом. Сначала в воде равномерно диспергируют глинистый минерал, состоящий из слоистого силиката, в концентрации менее 5 мас.%. Отдельно диспергируют в растворителе реакционноспособный каучук, содержащий положительно заряженную концевую группу, с концентрацией менее 50 мас.%. Затем их смешивают вместе при интенсивном перемешивании с получением однородной смеси. Отношение слоистого силиката к реакционноспособному каучуку при смешении предпочтительно должна составлять от 1:0,1 до 1:5 в расчете на сухое вещество. Комплекс, который представляет собой слоистый силикат в реакционноспособном каучуке и диспергирован в воде, содержащей примешанный растворитель, выделяют вакуумным фильтрованием или фильтрованием под давлением с последующей предварительной сушкой при 50-100oC на воздухе и сушкой при 80-150oC в вакууме. Солюбилизацию реакционноспособного каучука в составе комплекса в твердом каучуке можно осуществить смешением комплекса с твердым каучуком или смешением с эмульсией или латексом каучука. Во время смешения добавляют углеродную сажу или другие добавки. Таким образом получают желаемый композиционный материал на основе каучука в качестве полимера.
Затем каучуковые композиции можно переработать в герметизирующие слои или камеры шин, используя обычные методы переработки, такие как каландрование или экструзию с последующими сборкой шины и формованием.
Было установлено, что полученные композиции характеризуются температурой хрупкости менее приблизительно -20oC и диффузией воздуха, равной менее половины величины соответствующего показателя для бутадиенстирольного каучука, и способны к сшиванию предпочтительно с использованием химических сшивающих агентов.
При получении композиции для герметизирующих слоев шины необходимо обращать внимание на то, что длина чешуек должна быть в 25 раз больше и ширина их должна быть в 25 раз больше, чем их толщина, и что чешуйки должны быть в среднем расположены так, чтобы примерно 40% поверхности слоев силиката было расположено перпендикулярно направлению диффузии газа, обусловленной дифференциалом давления (давлением в шине).
Расположение чешуек может быть достигнуто несколькими путями. Экструдирование, удлинение или сдвиговая деформация материала перед сшивкой ориентирует чешуйки в направлении течения. Кроме того, если чешуйки маленькие и имеют на поверхности заряды, это может способствовать морфологии самоориентации для ингибирования диффузии. Использование свойства самоориентации особенно полезно, если материалы получают с использованием растворителя для уменьшения вязкости системы. В этом случае герметизирующий слой может быть сформован в виде пленки и использован обычным образом или наложен на вулканизированную шину.
Пример 1
Слоистый силикат, монтмориллонитовую глину, диспергируют в воде, используя 1 часть глины на 100 частей воды, и центрифугируют для удаления примесей. Суспензию глины затем вводят в контакт с избытком ионообменной смолы. Смола находится в кислой форме и поэтому получают кислую форму глины. Водную суспензию кислой глины в смесителе Уоринга (Waring) вводят в контакт с 5%-ным (по массе) толуольным раствором реакционноспособного каучука Hycar 1300 (бутадиенакрилонитрильный олигомер, с концевыми аминогруппами, выпускаемый B. F. Goodrich Co., со среднечисленной молекулярной массой около 1300). При контактировании в смесителе Уоринга наблюдается резкое увеличение вязкости. Затем материал перемешивают в микрофлюидизаторе и отгонкой удаляют воду и толуол. Конечный продукт содержит 25 частей глины на 75 частей реакционноспособного каучука. Материал окрашен в светлокоричневый цвет и является прозрачным. Расстояние между слоями, определенное методом рассеяния рентгеновских лучей, равно 14 ангстрем. Температуру стеклования измеряют методом динамического механического термического анализа. У материала проявляется основной пик потерь (максимальное значение tg δ) при -37oC. У Hycar 1300, не содержащего глины, основной пик потерь наблюдается при -41oC.
Композицию, содержащую полимер и глину, перерабатывают прессованием в пленку толщиной 17 мил (1 мил равен 0,0254 мм) в прессе, нагретом до 125oC с получением прозрачной гибкой пленки. Диффузию газа через пленку измеряют при помощи установки Oxtran 2/20, производимой Mocon, Minneapolis, MN. Эксперименты проводят при 30oC и относительной влажности, равной 0%. В качестве диффузионного газа используют воздух. В этих условиях композиция, содержащая полимер и глину, характеризуется скоростью пропускания кислорода, равной 4,2 см3 - мил/м2 • день • 103. При тех же условиях бутадиенстирольный сополимер (SBR-1500), обычно используемый в производстве шин, характеризуется скоростью пропускания кислорода, равной 91,2 см3 - мил/м2 • день • 103 или примерно в 22 раза превышающей соответствующий показатель для композиционного материала.
Пример 2
Композицию, содержащую полимер и глину, по примеру 1 наносят толщиной 15 мил на внутреннюю поверхность шины легкового автомобиля. До нанесения композиции, содержащей полимер и глину, шина теряет давление со скоростью примерно 1,5 ф/дюйм2/мес (10,29 кПа/мес) при 30oC при давлении наполнения, равном 32 ф/дюйм2(220,63 кПа). После нанесения композиции, содержащей полимер и глину, потеря давления составляет менее 0,2 ф/дюйм2/мес (1,38 кПа).
Пример 3
Композицию на основе полимера и глины, включающую 4,8 частей монтмориллонитовой глины, 19 частей Hycar 1300-бутадиенакрилонитрильного олигомера с концевыми аминогруппами и 76 масс.частей бутадиенстирольного сополимера (SBR-1500) получают путем первоначального взаимодействия кислой глины с реакционноспособным полимером по способу, описанному в примере 1. После того, как получают смесь реакционноспособного полимера и глины, добавляют эмульсию SBR-1500 при перемешивании в микрофлюидизаторе. Затем удаляют толуол и воду путем отгонки и последующей сушки в вакууме. Композицию на основе полимера и глины перерабатывают прессованием в пленку толщиной 22 мил в нагретом прессе при 125oC.
Пленка является мягкой и гибкой при комнатной температуре и имеет температуру хрупкости приблизительно ниже 45oC. Скорость пропускания кислорода измеряют в условиях примера 1, она равна 42,5 см3 - мил/м2 • день • 103. Это составляет менее половины величины скорости пропускания кислорода, характерной для SBR-1500.
Пример 4
Композицию на основе полимера и глины по примеру 3 смешивают в двухвалковой мельнице с 2 phr (phr - частей на сто частей каучука по массе) стеариновой кислоты, 5 phr оксида цинка, 2 phr серы и 1,5 phr Альтакса (бензотиазилдисульфида) и вулканизуют с получением прокладки толщиной 20 мил путем нагревания в форме в течение 20 мин при 153oC.
Композиция не растворяется в толуоле, что свидетельствует о полном отверждении, она характеризуется той же величиной скорости пропускания кислорода, что и неотвержденный образец.
Из композиции, содержащей вулканизующие агенты получают лист в двухвалентной мельнице, при этом получают лист от неотвержденного материала толщиной 35 мил. SBR-1500 смешивают с теми же количествами вулканизирующих агентов и также перерабатывают в двухвалковой мельнице, получая лист из неотвержденного материала толщиной 30 мил. Лист подвергают совместному прессованию в форме и вулканизуют в прессе при нагревании в течение 20 мин при 153oC. После вулканизации листы нельзя разделить.

Claims (44)

1. Герметизирующий слой бескамерной шины, включающий твердый каучук и комплекс, представляющий собой реакционноспособный каучук, содержащий положительно заряженную группу, и слоистый силикат, равномерно диспергированный в этом каучуке, а слои силиката имеют толщину 7-12 ангстрем, отличающийся тем, что по меньшей мере 40% поверхности слоев силиката расположено перпендикулярно направлению диффузии газа, обусловленной давлением в шине, слои силиката имеют длину и ширину, которые по меньшей мере в 25 раз больше их толщины, расстояние между слоями указанного слоистого силиката составляет более 12 ангстрем, реакционноспособный каучук является растворимым в твердом каучуке или способен сшиваться с твердым каучуком с слоистый силикат содержится в комплексе в количестве 1-50 мас.ч. на 100 мас.ч. реакционноспособного каучука.
2. Герметизирующий слой по п.1, отличающийся тем, что реакционноспособный каучук имеет мол.м. более 450.
3. Герметизирующий слой по п.1, отличающийся тем, что твердый каучук выбран из группы, включающий натуральный каучук, синтетический каучук, термопластичный эластомер и их смеси.
4. Герметизирующий слой по п.1, что твердым каучуком является полибутадиен.
5. Герметизирующий слой по п.1, отличающийся тем, что твердым каучуком является каучук с мол.м. не менее 10000.
6. Герметизирующий слой по п.1, отличающийся тем, что содержание указанного комплекса составляет 2-50 мас.ч. на 100 мас.ч. твердого каучука.
7. Герметизирующий слой по п.1, отличающийся тем, что он дополнительно содержит углеродную сажу.
8. Герметизирующий слой по п.1, отличающийся что указанный реакционноспособный каучук представляет собой один или несколько каучуков, выбранных из группы, включающей полибутадиен; сополимер бутадиена, который содержит стирол, изопрен или акрилонитрил; полиизобутилен; сополимеры изобутилена, содержащие бутадиен, изопрен, стирол, параметилстирол, полихлоропрен; этиленпропилендиеновые сополимеры; полиизопрен; сополимеры, изопрена, содержащие изобутилен, бутадиен, стирол или акрилонитрил; натуральный каучук или модифицированный продукт указанного реакционноспособного каучука, дополнительно содержащего ониевую соль или предшественник ониевой соли.
9. Герметизирующий слой по п.8, отличающийся тем, что указанная ониевая соль имеет общую формулу
M+ R1R2R3,
где М обозначает азот, серу, фосфор или
Figure 00000003

R1, R2 и R3 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или различными.
10. Герметизирующий слой по п.8, отличающийся тем, что указанный предшественник ониевой соли характеризуется общей формулой
-MR1R2,
где М обозначает азот, серу, фосфор или
Figure 00000004

R1 и R2 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или различными.
11. Герметизирующий слой по п.1, отличающийся тем, что указанный реакционноспособный каучук представляет собой каучук с концевыми аминогруппами.
12. Герметизирующий слой по п.10, отличающийся тем, что указанный реакционноспособный каучук представляет собой бутадиенакрилонитрильный каучук с концевыми аминогруппами.
13. Герметизирующий слой по п.1, отличающийся тем, что указанный слоистый силикат представляет собой филлосиликат.
14. Герметизирующий слой по п.1, отличающийся тем, что указанный слоистый силикат представляет собой глину, выбранную из группы, включающей смектитовые глины, вермикулит и галлосит.
15. Герметизирующий слой по п.1, отличающийся тем, что указанная слоистая глина представляет собой монтмориллонит.
16. Пневматическая шина, содержащая герметизирующий слой, включающий твердый каучук и комплекс, представляющий собой реакционноспособный каучук, содержащий положительно заряженную группу, и равномерно диспергированный в нем слоистый силикат, а слои силиката имеют толщину 7-12 ангстрем, отличающийся тем, что по меньшей мере 40% поверхности слоев силиката расположено перпендикулярно направлению диффузии газа, обусловленной давлением в шине, слои силиката имеют длину и ширину, которые по меньшей мере в 25 раз больше их толщины, расстояние между слоями указанного слоистого силиката составляет более 12 ангстрем, а слоистый силикат содержится в комплексе и количестве примерно 1-50 мас.ч. на 100 мас.ч. реакционноспособного каучука.
17. Шина по п.16, отличающаяся тем, что реакционноспособный каучук растворим в твердом каучуке.
18. Шина по п. 16, отличающаяся тем, что твердый каучук представляет собой каучук, выбранный из группы, включающей натуральный каучук, синтетический каучук, термопластичный эластомер и их смеси.
19. Шина по п.16, отличающаяся тем, что твердый каучук представляет собой полибутадиен.
20. Шина по п.16, отличающаяся тем, что твердый каучук представляет собой каучук, который имеет мол.м. не менее 10000.
21. Шина по п.16, отличающаяся тем, что содержание указанного комплекса составляет 2-50 мас.ч. на 100 мас.ч. твердого каучука.
22. Шина по п.16, отличающаяся тем, что она дополнительно содержит углеродную сажу.
23. Шина по п.16, отличающаяся тем, что указанный реакционноспособный каучук представляет собой один или несколько каучуков, выбранных из группы, включающей полибутадиен; сополимер бутадиена, который содержит стирол, изопрен или акрилонитрил; полиизобутилен; сополимеры изобутилена, содержащие бутадиен, изопрен, стирол, параметилстирол; полихлоропрен; этиленпропилендиеновые сополимеры; полиизопрен; сополимеры изопрена, содержащие изобутилен, бутадиен, стирол или акрилонитрил; натуральный каучук или модифицированный продукт указанного реакционноспособного каучука, причем указанный реакционноспособный каучук содержит ониевую соль или предшественник ониевой соли.
24. Шина по п. 23, отличающаяся тем, что указанная ониевая соль имеет общую формулу
M+R1R2R3,
где М обозначает азот, серу, фосфор или
Figure 00000005

R1, R2 и R3 независимо друг от друга обозначают водород, алкильные группы, арильные группы или алллильные группы, которые могут быть одинаковыми или различными.
25. Шина по п.23, отличающаяся тем, что указанный предшественник ониевой соли имеет общую формулу
-MR1R2,
где М обозначает азот, серу, фосфор или
Figure 00000006

R1 и R2 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или разными.
26. Шина по п.16, отличающаяся тем, что указанный реакционноспособный каучук представляет собой каучук с концевыми аминогруппами.
27. Шина по п.24, отличающаяся тем, что указанный реакционноспособный каучук представляет собой бутадиенакрилонитрильный каучук, содержащий концевые аминогруппы.
28. Шина по п.16, отличающаяся тем, что указанный слоистый силикат представляет собой филлосиликат.
29. Шина по п.16, отличающаяся тем, что указанный слоистый силикат представляет собой глину, выбранную из группы, включающей смектитовые глины, вермикулит и галлосит.
30. Шина по п.16, отличающаяся тем, что указанная слоистая глина представляет собой монтмориллонит.
31. Камера шины, включающая твердый каучук и комплекс, представляющий собой реакционноспособный каучук, содержащий положительно заряженную группу, и слоистый силикат, равномерно диспергированный в этом каучуке, а слои силиката имеют толщину 7-12 ангстрем, отличающаяся тем, что по меньшей мере 40% поверхности слоев силиката расположено перпендикулярно направлению диффузии газа, обусловленной давлением в шине, слои силиката имеют длину и ширину, которые по меньшей мере в 25 раз больше их толщины, слоистый силикат содержится в комплексе в количестве 1-50 мас.ч. на 100 мас.ч. реакционноспособного каучука и расстояние между слоями указанного слоистого силиката составляет более 12 ангстрем, реакционноспособный каучук является растворимым в твердом каучуке или способен сшиваться с твердым каучуком.
32. Камера шины по п.31, отличающаяся тем, что реакционноспособный каучук представляет собой каучук, который имеет мол.м. более 450.
33. Камера шины по п.31, отличающаяся тем, что твердый каучук представляет собой каучук, выбранной из группы, включающей натуральный каучук, синтетический каучук, термопластичный эластомер и их смеси.
34. Камера шины по п.31, отличающаяся тем, что твердый каучук представляет собой полибутадиен.
35. Камера шины по п.31, отличающаяся тем, что твердый каучук представляет собой каучук с мол.м. не менее 10000.
36. Камера шины по п.31, отличающаяся тем, что содержание указанного комплекса составляет 2-50 мас.ч. на 100 мас.ч. твердого каучука.
38. Камера шины по п.31, отличающаяся тем, что указанный реакционноспособный каучук представляет собой один или несколько каучуков, выбранных из группы, включающей полибутадиен; сополимер бутадиена, который содержит стирол, изопрен или акрилонитрил; полиизобутилен; сополимеры изобутилена, содержащие бутадиен, изопрен, стирол, параметилстирол; полихлоропрен; этиленпропилендиеновые сополимеры; полиизопрен; сополимеры изопрена, содержащие изобутилен, бутадиен, стирол или акрилонитрил; натуральный каучук или модифицированный продукт указанного реакционноспособного каучука, дополнительно содержащий ониевую соль или предшественник ониевой соли.
39. Камера шины по п.38, отличающаяся тем, что указанная ониевая соль имеет общую формулу
M+R1R2R3,
где М обозначает азот, серу, фосфор или
Figure 00000007

R1, R2 и R3 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или различными.
40. Камера шины по п.38, отличающаяся тем, что указанный предшественник ониевой соли имеет общую формулу
-MR1R2,
где М обозначает азот, серу, фосфор или
Figure 00000008

R1 и R2 независимо друг от друга обозначают водород, алкильные группы, арильные группы или аллильные группы, которые могут быть одинаковыми или различными.
41. Камера шины по п.31, отличающаяся тем, что указанный реакционноспособный каучук представляет собой каучук с концевыми аминогруппами.
42. Камера шины по п.40, отличающаяся тем, что указанный реакционноспособный каучук представляет собой бутадиенакрилонитрильный каучук с концевыми аминогруппами.
43. Камера шины по п.31, отличающаяся тем, что указанный слоистый силикат представляет собой филлосиликат.
44. Камера шины по п.31, отличающаяся тем, что указанный слоистый силикат представляет собой глину, выбранную из группы, включающей смектитовые глины, вермикулит и галлосит.
45. Камера шины по п.31, отличающаяся тем, что указанная слоистая глина представляет собой монтмориллонит.
RU95119584A 1993-04-05 1994-04-05 Герметизирующий слой бескамерной шины, пневматическая шина, содержащая этот слой и камера шины RU2124534C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4297293A 1993-04-05 1993-04-05
US08/042.972 1993-04-05
PCT/US1994/003711 WO1994022680A1 (en) 1993-04-05 1994-04-05 Composite tire inner-liners and inner tubes

Publications (2)

Publication Number Publication Date
RU95119584A RU95119584A (ru) 1997-12-10
RU2124534C1 true RU2124534C1 (ru) 1999-01-10

Family

ID=21924756

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95119584A RU2124534C1 (ru) 1993-04-05 1994-04-05 Герметизирующий слой бескамерной шины, пневматическая шина, содержащая этот слой и камера шины

Country Status (15)

Country Link
US (1) US5665183A (ru)
EP (1) EP0695239B1 (ru)
JP (1) JP3240057B2 (ru)
KR (1) KR100275391B1 (ru)
CN (1) CN1043327C (ru)
BR (1) BR9405852A (ru)
CA (1) CA2159897C (ru)
CZ (1) CZ291645B6 (ru)
DE (1) DE69411161T2 (ru)
ES (1) ES2120031T3 (ru)
HU (1) HU212876B (ru)
PL (1) PL310998A1 (ru)
RU (1) RU2124534C1 (ru)
TW (1) TW260639B (ru)
WO (1) WO1994022680A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649043B2 (en) 2004-10-22 2010-01-19 Michelin Recherche Et Technique S.A. Barrier layer for elastomeric articles
US7879272B2 (en) 2003-03-06 2011-02-01 Exxonmobil Chemicals Patents, Inc. Oriented thermoplastic elastomer film and process for producing the same
WO2016108714A1 (en) * 2014-12-30 2016-07-07 Public Joint Stock Company "Sibur Holding" Method for preparing elastomer composites based on general-purpose solution rubber for use in tread rubber
US10815364B2 (en) 2015-07-27 2020-10-27 Arlanxeo Deutschland Gmbh Sealing gels, process for production thereof and use thereof in sealing compounds for self-sealing tyres

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763563A1 (en) * 1995-09-13 1997-03-19 The Goodyear Tire & Rubber Company Innerliner for pneumatic tires
US6034164A (en) * 1997-02-21 2000-03-07 Exxon Research And Engineering Co. Nanocomposite materials formed from inorganic layered materials dispersed in a polymer matrix
US6232389B1 (en) 1997-06-09 2001-05-15 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier and coated articles
EP1512552A3 (en) * 1997-06-09 2006-02-15 InMat, Inc. Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier, and coating compositions, particularly for tires
US6087016A (en) * 1997-06-09 2000-07-11 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier
CN1079409C (zh) * 1998-06-04 2002-02-20 北京化工大学 粘土/橡胶纳米复合材料的制备方法
US6454974B1 (en) 1998-12-21 2002-09-24 Magna International Of America, Inc. Method for vacuum pressure forming reinforced plastic articles
US6977115B1 (en) 1998-12-21 2005-12-20 Magna International Of America, Inc. Low pressure compression molded parts having nano-particle reinforced protrusions and method of making the same
RU2247132C2 (ru) 1999-05-19 2005-02-27 Эксон Кемикэл Пейтентс Инк. Эластомерные смеси на изобутиленовой основе, обладающие повышенной прочностью и эластичностью и пониженной проницаемостью
JP4386504B2 (ja) * 1999-09-08 2009-12-16 横浜ゴム株式会社 タイヤ用ゴム組成物
US6988305B1 (en) 1999-12-17 2006-01-24 Magna International Of America, Inc. Method and apparatus for blow molding large reinforced plastic parts
DE60019806T2 (de) * 1999-12-28 2006-01-19 Exxonmobil Chemical Patents Inc., Baytown Innenreifen mit verbesserten hitzeresistenten eigenschaften
US7328733B2 (en) 1999-12-28 2008-02-12 Exxonmobil Chemical Patents Inc. Inner tube compositions having improved heat resistance characteristics
DE10014664A1 (de) 2000-03-24 2001-09-27 Sued Chemie Ag Mit Schwefel vernetzbare Kautschukmischung sowie Verfahren zu Ihrer Herstellung und daraus erhältliche vernetzte Kautschukmischungen und Formkörper
JP4588177B2 (ja) * 2000-06-30 2010-11-24 株式会社ブリヂストン 空気入りタイヤおよびその製造方法
GB0020179D0 (en) * 2000-08-17 2000-10-04 Imerys Minerals Ltd Kaolin products and their use
GB0020180D0 (en) 2000-08-17 2000-10-04 Imerys Minerals Ltd Kaolin products and their production
US6598645B1 (en) * 2000-09-27 2003-07-29 The Goodyear Tire & Rubber Company Tire with at least one of rubber/cord laminate, sidewall insert and apex of a rubber composition which contains oriented intercalated and/or exfoliated clay reinforcement
KR20040012672A (ko) * 2000-10-18 2004-02-11 엑손모빌 케미칼 패턴츠 인코포레이티드 탄성 중합체 조성물
US7425591B2 (en) * 2001-10-16 2008-09-16 Exxonmobil Chemical Patents Inc Elastomeric composition
RU2346961C1 (ru) * 2001-06-08 2009-02-20 Эксонмобил Кемикэл Пейтентс Инк. Нанокомпозиты с низкой проницаемостью
EP1406959B1 (en) * 2001-06-08 2009-08-19 Exxonmobil Chemical Patents Inc. Low permeability nanocomposites
ATE335784T1 (de) 2001-06-13 2006-09-15 Exxonmobil Chem Patents Inc Nanoverbundwerkstoffe mit geringer permeabilität
US7169467B2 (en) 2001-06-21 2007-01-30 Magna International Of America, Inc. Structural foam composite having nano-particle reinforcement and method of making the same
KR100472574B1 (ko) * 2001-09-04 2005-03-07 금호타이어 주식회사 타이어용 에이팩스 고무조성물
US20030085012A1 (en) * 2001-09-07 2003-05-08 Jones J Philip E Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
JP3897556B2 (ja) * 2001-10-11 2007-03-28 横浜ゴム株式会社 パンク防止シーラント用ゴム組成物をタイヤ本体内に具備してなる空気入りタイヤ
WO2003026906A1 (fr) * 2001-09-14 2003-04-03 The Yokohama Rubber Co., Ltd. Pneumatique, procede de fabrication associe et composition de caoutchouc destinee a un materiau de scellement
US6939921B2 (en) * 2001-10-16 2005-09-06 Exxonmobil Chemical Patents Inc. Colorable elastomeric composition
US20040030036A1 (en) * 2001-10-16 2004-02-12 Waddell Walter H. Elastomeric composition
JP4162519B2 (ja) 2002-03-27 2008-10-08 横浜ゴム株式会社 有機化処理された層状粘土鉱物並びにそれを含む有機重合体組成物及びタイヤ用インナーライナー
JP4090264B2 (ja) * 2002-04-18 2008-05-28 株式会社ブリヂストン インナーライナー用ゴム組成物及びタイヤ
ATE388193T1 (de) * 2002-05-24 2008-03-15 Continental Ag Kautschukmischung
JP4619780B2 (ja) * 2002-07-05 2011-01-26 エクソンモービル・ケミカル・パテンツ・インク 官能化されたエラストマーナノ複合物
CA2490248C (en) * 2002-07-05 2011-12-20 Exxonmobil Chemical Patents Inc. Functionalized elastomer nanocomposite
KR100502045B1 (ko) * 2002-08-30 2005-07-18 금호타이어 주식회사 승용차용 트레드 고무 조성물
CN100491140C (zh) * 2002-10-08 2009-05-27 住友橡胶工业株式会社 无内胎轮胎
CA2406895A1 (en) * 2002-10-09 2004-04-09 Richard Pazur Filled elastomeric butyl compounds
US20040092648A1 (en) * 2002-11-07 2004-05-13 Jones Glenn Edward Elastomeric blend for air barriers comprising low glass transition temperature petroleum hydrocarbon resins
WO2004044052A1 (en) * 2002-11-07 2004-05-27 Exxonmobil Chemical Patents Inc. Elastomeric blend for air barriers comprising grafted resin components
JP4683928B2 (ja) 2002-12-18 2011-05-18 株式会社ブリヂストン クレイの剥離方法、該方法から得られた組成物、及び該組成物を含む変性ゴム
US6809057B2 (en) 2003-02-10 2004-10-26 Exxonmobil Chemical Patents Inc. Chromium compounds and olefin polymerization processes utilizing them
GB2399083B (en) * 2003-03-07 2007-09-19 Schlumberger Holdings flexible cementing compositions and methods for high-temperature wells
US20040197270A1 (en) * 2003-04-01 2004-10-07 Mundschenk David D. Topical formulations and delivery systems
US7078453B1 (en) 2003-08-29 2006-07-18 Inmat Inc. Barrier coating of a non-butyl elastomer and a dispersed layered filler in a liquid carrier and coated articles
US8063119B2 (en) * 2003-08-29 2011-11-22 Inmat Inc. Barrier coating of a non-elastomeric polymer and a dispersed layered filler in a liquid carrier and coated articles
US7473729B2 (en) * 2003-08-29 2009-01-06 Inmat Inc. Barrier coating mixtures containing non-elastomeric acrylic polymer with silicate filler and coated articles
JP4493314B2 (ja) * 2003-10-08 2010-06-30 住友ゴム工業株式会社 タイヤ用ゴム組成物
US7119138B1 (en) 2003-12-19 2006-10-10 Inmat Inc. Barrier coating of a mixture of cured and uncured elastomeric polymers and a dispersed layered filler in a liquid carrier and coated articles
US7371793B2 (en) * 2004-03-15 2008-05-13 Exxonmobil Chemical Patents Inc. Nanocomposite comprising stabilization functionalized thermoplastic polyolefins
CN1774451A (zh) * 2004-05-13 2006-05-17 横滨橡胶株式会社 马来酰亚胺封端橡胶和用所述马来酰亚胺封端橡胶制备的可固化组合物
KR100635599B1 (ko) 2004-10-29 2006-10-18 금호타이어 주식회사 기체 내투과성이 우수한 공기입 타이어용 인너라이너 조성물
WO2006062572A1 (en) 2004-12-03 2006-06-15 Exxonmobil Chemical Patents Inc. Modified layered fillers and their use to produce nanocomposite compositions
EP1833856B1 (en) 2004-12-29 2013-10-23 ExxonMobil Chemical Patents Inc. Select elastomeric blends and their use in articles
US7906600B2 (en) 2004-12-29 2011-03-15 Exxonmobil Chemical Patents Inc. Processable filled, curable halogenated isoolefin elastomers
US7572855B2 (en) * 2005-01-28 2009-08-11 Bridgestone Corporation Nano-composite and compositions manufactured thereof
US7579398B2 (en) 2005-02-02 2009-08-25 Bridgestone Corporation Nano-composite and compositions therefrom
JP4672410B2 (ja) * 2005-03-28 2011-04-20 住友ゴム工業株式会社 ラジアルタイヤ
JP4796327B2 (ja) * 2005-04-27 2011-10-19 住友ゴム工業株式会社 澱粉の複合体およびそれを含むゴム組成物
US7514491B2 (en) 2005-07-18 2009-04-07 Exxonmobil Chemical Patents Inc. Functionalized isobutylene polymer-inorganic clay nanocomposites and organic-aqueous emulsion process
US7501460B1 (en) 2005-07-18 2009-03-10 Exxonmobile Chemical Patents Inc. Split-stream process for making nanocomposites
US7605205B2 (en) * 2005-11-07 2009-10-20 Exxonmobil Chemical Patents, Inc. Nanocomposite compositions and processes for making the same
US8048947B2 (en) 2005-11-08 2011-11-01 Exxonmobil Chemical Patents Inc. Nanocomposites and methods for making the same
US7632886B2 (en) 2005-12-02 2009-12-15 Exxonmobil Chemical Patents Inc. Elastomer nanocomposites comprising isobutylene and multifunctional oligomers
US7601772B2 (en) 2005-12-20 2009-10-13 Bridgestone Corporation Nano-composite and method thereof
CA2635050C (en) * 2006-01-10 2011-10-04 The Yokohama Rubber Co., Ltd Laminate of thermoplastic polymer composition having low air permeability and pneumatic tire using same as inner liner
US7638573B2 (en) 2006-04-07 2009-12-29 Exxonmobil Chemical Patents Inc. Butyl nanocomposite via low Mw elastomer pre-blend
GB0608126D0 (en) * 2006-04-24 2006-06-07 Imerys Minerals Ltd Barrier compositions
US7935184B2 (en) * 2006-06-19 2011-05-03 Bridgestone Corporation Method of preparing imidazolium surfactants
US7498381B1 (en) 2006-08-02 2009-03-03 Exxonmobil Chemical Patents Inc. Low permeability elastomeric-metal phosphate nanocomposites
KR100837863B1 (ko) 2007-03-05 2008-06-13 금호타이어 주식회사 타이어용 고무조성물
US8487033B2 (en) * 2007-05-16 2013-07-16 Exxonmobil Chemical Patents Inc. Thermoplastic elastomer compositions, methods for making the same, and articles made therefrom
FR2916679B1 (fr) * 2007-05-29 2009-08-21 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique
WO2009064295A1 (en) 2007-11-14 2009-05-22 Exxonmobil Chemical Patents, Inc. Triethylamine functionalized elastomer in barrier applications
JP5347274B2 (ja) * 2008-01-25 2013-11-20 日本ゼオン株式会社 ゴム組成物および架橋物
FR2928299B1 (fr) * 2008-03-10 2010-03-19 Michelin Soc Tech Chambre a air pour bandage pneumatique a base d'un elastomere
US7923491B2 (en) * 2008-08-08 2011-04-12 Exxonmobil Chemical Patents Inc. Graphite nanocomposites
FR2939142B1 (fr) * 2008-12-03 2010-12-31 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base de deux elastomeres thermoplastiques
CA2770878C (en) * 2009-09-10 2015-02-03 Exxonmobil Chemical Patents Inc. Elastomeric copolymers, copolymer compositions, and their use in articles
US20110076474A1 (en) * 2009-09-25 2011-03-31 Eaton Corporation Nanocomposite composition and system
US8454778B2 (en) 2010-11-15 2013-06-04 Ramendra Nath Majumdar Pneumatic tire with barrier layer and method of making the same
US9200152B2 (en) 2011-01-25 2015-12-01 Exxonmobil Chemical Patents Inc. Elastomeric nanocomposites, nanocomposite compositions, and methods of manufacture
KR101457865B1 (ko) * 2012-12-21 2014-11-04 한국타이어 주식회사 타이어 이너라이너 및 이를 포함하는 타이어
KR102196802B1 (ko) 2013-03-13 2020-12-30 바스프 에스이 공기입 타이어 조립체용 내부 라이너
WO2015032000A1 (en) * 2013-09-09 2015-03-12 Lanxess Inc. Filled butyl rubber ionomer compounds
RU2759546C2 (ru) 2017-03-10 2021-11-15 Эксонмобил Кемикэл Пейтентс Инк. Привитые полимеры, предназначенные для диспергирования графена и графита

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795545A (en) * 1953-04-14 1957-06-11 Monsanto Chemicals Organic materials
DE3806548C2 (de) * 1987-03-04 1996-10-02 Toyoda Chuo Kenkyusho Kk Verbundmaterial und Verfahren zu dessen Herstellung
JPH0778089B2 (ja) * 1987-03-26 1995-08-23 株式会社豊田中央研究所 複合材料の製造方法
CA2086837C (en) * 1990-07-18 1997-11-25 Bernard Jean Costemalle Tire innerliner composition
JPH0517641A (ja) * 1991-07-15 1993-01-26 Ohtsu Tire & Rubber Co Ltd :The タイヤのインナーライナー用ゴム組成物
WO1993004118A1 (en) * 1991-08-12 1993-03-04 Allied-Signal Inc. Melt process formation of polymer nanocomposite of exfoliated layered material
WO1993004117A1 (en) * 1991-08-12 1993-03-04 Allied-Signal Inc. Melt process formation of polymer nanocomposite of exfoliated layered material
WO1993011190A1 (en) * 1991-11-26 1993-06-10 Allied-Signal Inc. Polymer nanocomposites formed by melt processing of a polymer and an exfoliated layered material derivatized with reactive organo silanes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US, 4889885 C 04 B 26/02, 1989. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879272B2 (en) 2003-03-06 2011-02-01 Exxonmobil Chemicals Patents, Inc. Oriented thermoplastic elastomer film and process for producing the same
US7649043B2 (en) 2004-10-22 2010-01-19 Michelin Recherche Et Technique S.A. Barrier layer for elastomeric articles
WO2016108714A1 (en) * 2014-12-30 2016-07-07 Public Joint Stock Company "Sibur Holding" Method for preparing elastomer composites based on general-purpose solution rubber for use in tread rubber
RU2659791C1 (ru) * 2014-12-30 2018-07-04 Публичное акционерное общество "СИБУР Холдинг" Способ получения эластомерных композитов на основе растворных каучуков общего назначения, предназначенных для использования в протекторной резине
US10815364B2 (en) 2015-07-27 2020-10-27 Arlanxeo Deutschland Gmbh Sealing gels, process for production thereof and use thereof in sealing compounds for self-sealing tyres
RU2742276C2 (ru) * 2015-07-27 2021-02-04 Арланксео Дойчланд Гмбх Герметизирующие гели, способ их получения и их применение в герметизирующих компаундах для самогерметизирующихся шин

Also Published As

Publication number Publication date
KR100275391B1 (ko) 2000-12-15
BR9405852A (pt) 1995-12-05
EP0695239A1 (en) 1996-02-07
TW260639B (ru) 1995-10-21
JPH08510421A (ja) 1996-11-05
CN1043327C (zh) 1999-05-12
EP0695239B1 (en) 1998-06-17
JP3240057B2 (ja) 2001-12-17
DE69411161D1 (de) 1998-07-23
CA2159897A1 (en) 1994-10-13
CZ257895A3 (en) 1996-03-13
DE69411161T2 (de) 1999-02-25
HU9502912D0 (en) 1995-12-28
ES2120031T3 (es) 1998-10-16
HUT72811A (en) 1996-05-28
KR960702389A (ko) 1996-04-27
US5665183A (en) 1997-09-09
HU212876B (en) 1996-12-30
PL310998A1 (en) 1996-01-22
CA2159897C (en) 2004-06-15
CN1122586A (zh) 1996-05-15
CZ291645B6 (cs) 2003-04-16
WO1994022680A1 (en) 1994-10-13

Similar Documents

Publication Publication Date Title
RU2124534C1 (ru) Герметизирующий слой бескамерной шины, пневматическая шина, содержащая этот слой и камера шины
US5576372A (en) Composite tire innerliners and inner tubes
US5576373A (en) Composite tire innerliners and inner tubes
EP2258770B1 (en) Pneumatic tire
EP1969054B1 (en) Tire and crosslinkable elastomeric composition
US20080185087A1 (en) Tire and Crosslinkable Elastomeric Composition
NO329972B1 (no) Dekk for kjoretoyhjul med slitebane oppbygget av topp og bunn
US20230166469A1 (en) Pneumatic tire having a sealant layer and air barrier layer
EP1228900A2 (en) Pneumatic tire having dual air retention quasi envelopes
EP1781729B1 (en) Tire comprising an elastomeric polymer including a functional group and crosslinkable elastomeric composition
EP3541612B1 (en) Pneumatic tires with applied air barrier layers
EP1543998B1 (en) Tire with innerliner for prevention of vapor permeation
WO2008135061A1 (en) Tire comprising an elastomeric polymer including a functional group and crosslinkable elastomeric composition
JPH03182532A (ja) 空気入りラジアルタイヤ