RU2097929C1 - Синхронно-асинхронный и асинхронно-синхронный преобразователь - Google Patents

Синхронно-асинхронный и асинхронно-синхронный преобразователь Download PDF

Info

Publication number
RU2097929C1
RU2097929C1 SU915001338A SU5001338A RU2097929C1 RU 2097929 C1 RU2097929 C1 RU 2097929C1 SU 915001338 A SU915001338 A SU 915001338A SU 5001338 A SU5001338 A SU 5001338A RU 2097929 C1 RU2097929 C1 RU 2097929C1
Authority
RU
Russia
Prior art keywords
zone
input
byte
synchronous
asynchronous
Prior art date
Application number
SU915001338A
Other languages
English (en)
Inventor
Бальзано Жан-Мишель
Ле Буффан Алэн
Original Assignee
Алкатель Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алкатель Н.В. filed Critical Алкатель Н.В.
Application granted granted Critical
Publication of RU2097929C1 publication Critical patent/RU2097929C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0632Synchronisation of packets and cells, e.g. transmission of voice via a packet network, circuit emulation service [CES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5672Multiplexing, e.g. coding, scrambling

Abstract

Изобретение относится к синхронно-асинхронному и асинхронно-синхронному преобразователю. Преобразователь включает ЗУ (SRAM), имеющее первый и второй порт, командную схему первого порта (SPM), соединенную с первым портом, с входной синхронной мультиплексной линией связи (ME) и выходной синхронной мультиплексной линией связи (MS), и командную схему второго порта (APM), соединенную со вторым портом, с входным асинхронным каналом связи (LE) через ЗУ ячеек (M) типа FIFO, и с выходным асинхронным каналом связи (LS). Команда (MF) вне преобразователя, подаваемая в командные схемы портов, позволяет выбрать режим работы преобразователя, в первом режиме работы (M32) каждый временной интервал кадра синхронной мультиплексной системы предназначается для одного канала связи, а во втором режиме работы (M1) все временные интервалы одного синхронного кадра предназначаются для одного канала. 3 з.п. ф-лы, 7 ил.

Description

Изобретение относится к области передачи данных, в частности к обеспечению подключения коммутационных систем, основанных на асинхронном режиме передачи (ATM-режиме), к системам, основанным на синхронном режиме передачи (STM- режиме). Действительно введение коммутаторов ATM-типа в современную сеть требует их функционирования во взаимосвязи с коммутаторами STM-типа.
STM-режим характеризуется мультиплексированием нескольких линий связи с пропускной способностью 64 кбит/с в одном и том же кадре (MIC). Этот кадр делится на 32 временных интервала (IT) от IT0 до IT32. Каждый временной интервал предназначается для отдельного канала связи и имеет пропускную способность 64 кбит/с. Начало кадра маркируется известной комбинацией элементов данных, содержащейся во временном интервале IT0, определяемой как комбинация синхронизации.
ATM-режим характеризуется мультиплексированием на одном и том же носителе ячеек (комбинаций элементов данных) из 36 байтов, например, идентифицируемых заголовком из 4 байтов и имеющих информационное содержание из 32 байтов. Пропускная способность носителя не зависит от пропускной способности каналов связи, которые он пропускает.
Синхронно-асинхронное преобразование кадра MIC включает:
запись в память 32 байтов каждого канала для формирования информационного содержания ячеек;
присоединение к каждой ячейке заголовка, задаваемого для каждого канала;
мультиплексирование различных ячеек в одном и том же носителе.
Асинхронно-синхронное преобразование включает:
идентификацию канала путем анализа заголовка принимаемой информации ячейки;
запись в память полезного содержимого принимаемой информации ячеек;
считывания байта в памяти и передача на MIC в каждый интервал времени IT.
Устройства, используемые обычно для синхронно-асинхронного преобразования, осуществляют преобразование единственного цифрового канала с низкой или высокой пропускной способностью и включают кодирующее устройство и декодирующее устройство. Кодирующее устройство создает ячейку (кодовую комбинацию), исходя из цифровой последовательности, путем считывания битов или восьмибитовых слов (байтов), затем добавляет метку для маркировки операции. Декодирующее устройство выполняет обратную операцию и восстанавливает рекуррентную последовательность, исходя из информации, содержащейся в ячейках с упомянутой меткой.
Задача изобретения создание синхронно-асинхронного и асинхронно-синхронного преобразователя, способного вводить в ячейки входные данные мультиплексированной синхронной системы, придавая либо номер виртуального канала каждому временному интервалу кадров этой мультиплексированной синхронной системы, либо номер виртуального канала тридцати двум временным интервалам кадра, и наоборот, способного преобразовывать в синхронные кадры ячейки входящей мультиплексированной асинхронной системы.
Указанный результат достигается тем, что синхронно-асинхронный и асинхронно-синхронный преобразователь, соединенный посредством входных и выходных синхронных мультиплексных линий с синхронной сетью для передачи по синхронным мультиплексным линиям информации с кадровой синхронизацией, каждый кадр которой разделен на тридцать два временных интервала, предназначенных, по меньшей мере, для одного канала связи, и соединенный также посредством входных и выходных мультиплексных асинхронных связей с асинхронной сетью для передачи информации, содержащей заголовок и информационную часть из тридцати двух байтов, при этом преобразователь содержит запоминающее устройство с произвольной выборкой с первым и вторым портами, а также, согласно изобретению, содержит:
командный блок первого порта, имеющий вход/выход, соединенный с первым портом запоминающего устройства с произвольной выборкой,
вход/выход, соединенный с входной синхронной мультиплексной линией,
вход/выход, соединенный с выходной синхронной мультиплексной линией,
вход сигнала кадровой синхронизации,
вход бит-сигнала синхронизации и вход сигнала выбора режима работы,
и командный блок второго порта, имеющий
первый вход/выход, соединенный с вторым портом запоминающего устройства с произвольной выборкой,
второй вход/выход, соединенный с входной асинхронной мультиплексной линией и с выходной мультиплексной асинхронной линией,
вход сигнала местного времени и
вход сигнала выбора режима работы, соединенный с командным блоком первого порта.
При этом предпочтительно, что в преобразователе для первого режима работы, при котором каждый временной интервал кадра предназначен для одного канала, запоминающее устройство включает:
две зоны адресов, каждая из которых имеет тридцать два блока адреса по тридцать два байта каждый,
тридцать две зоны данных, каждая из которых имеет четыре блока данных по тридцать два байта каждый,
зону дескрипторов, имеющую один дескриптор одного байта на блок данных,
зону указателя считывания, имеющую один указатель считывания байта на зону данных,
зону указателя записи, имеющую один указатель записи байта на зону данных,
и зону-семафор одного байта.
Также предпочтительно, что в преобразователе для второго режима работы, в котором все временные интервалы каждого кадра предназначены для одного и того же канала, запоминающее устройство включает две зоны адресов, каждая из которых имеет один блок по тридцать два байта, зону указателя записи, имеющую указатель записи одного байта, зону указателя считывания, имеющую указатель считывания одного байта, и зону-семафор одного байта.
И, кроме того, преобразователь предпочтительно содержит запоминающее устройство с ячейками типа FIFO, включенное между входной асинхронной мультиплексной линией связи от асинхронной сети и вторым входом командного блока второго порта.
Изобретение поясняется на примерах его осуществления, иллюстрируемых чертежами, на которых представлено следующее:
на фиг. 1 схема преобразователя, выполненного согласно изобретению; на фиг. 2 схемы структуры памяти с двумя портами (фиг.2,а относится к режиму работы М32, а фиг.2,б к режиму работы М1); на фиг.3 формат адресного слова памяти; на фиг.4 формат указателя записи памяти; на фиг.5 формат указателя считывания памяти; на фиг.6 формат дескриптора памяти; на фиг.7 формат заголовка ячеек, передаваемых преобразователем.
Как показано на фиг.1, преобразователь содержит память (SRAM) с двумя портами с произвольной выборкой, первый порт, называемый синхронным портом, и второй порт, называемый асинхронным портом, командный блок синхронного порта SPM, командный блок асинхронного порта APM и память M ячеек типа FIFO.
Командный блок синхронного порта SPM связан с входной синхронной мультиплексной линией связи МЕ и выходной синхронной мультиплексной линией связи МS, а также с синхронным портом памяти SRAM.
Командный блок SPM принимает кадровый синхросигнал HT и синхронизирующий бит-сигнал HB от восстановителя частоты синхроимпульсов (не показан), соединенного с входной синхронной мультиплексной линией связи МЕ.
Командный блок асинхронного порта APM соединен с асинхронным портом памяти SRAM, а также с выходным асинхронным каналом связи LS и через память M с входным асинхронным каналом связи LE. Командный блок APM принимает сигнал синхронизирующего канала HL местного тактового генератора (не показан). Входная и выходная асинхронные линии связи имеют 11 параллельных выводов каждая: 8 разрядных выводов для данных и по одному для начальной ячейки на нулевом уровне в начале соответствующей ячейки, т.е. в первом байте заполненной ячейки, для заполненной ячейки на нулевом уровне в течение всего времени заполнения ячейки и для байта синхросигнала с пропускной способностью канала асинхронной связи.
Вход памяти М соединен с входным асинхронным каналом связи LE, а выход - с командным блоком APM. Память М имеет разрядность 9 бит, из них 8 разрядов соединены с восемью разрядными выводами F1/8, а девятый разряд соединен с выводом начала запоминания ячейки F9, вход проверки правильности считывания соединен с выводом заполнения ячейки F10, для запоминания информации входных заполненных ячеек, а вход записи соединен с выводом синхросигнала F11. Память М образует буфер, предназначенный для снижения скорости передачи в битах, принимаемой по входному асинхронному каналу связи LE, чтобы обеспечить ее совместимость со скоростью обработки информации командным блоком второго порта APM. Память М содержит только заполненные ячейки.
Командные блоки синхронного порта SPM и асинхронного порта APM представляют собой программируемые логические схемы, например, микросхему XC 3090 компании XILINX.
Преобразователь, соответствующий изобретению, может работать в двух рабочих режимах, причем выбор режима осуществляется внешней командой MF, воздействующей на командные блоки SPM и APM. В первом режиме работы (М32) номер виртуального канала присваивается каждому временному интервалу кадра, а во втором режиме работы (М1) номер виртуального канала присваивается 32 временным интервалам кадра синхронной мультиплексной линии связи.
Память SRAM включает 8192 байтовых слова. На фиг.2 представлены структуры памяти для режимов М32 и М1 соответственно. Адреса Ad байтов представлены в шестнадцатиричном коде, причем адрес 0000 является адресом первого байта, а адрес IFFF адресом 8192-го байта памяти.
На фиг. 2,а изображены последовательно, начиная с первого байта, первая зона адресов Z0.С, вторая зона адресов Z1.C, тридцать две зоны данных от Z0. D до Z31.D, зона дескрипторов Z.DES, зона указателей считывания Z.PTL, зона указателей записи Z.PTE, неиспользуемая зона ZNUI и зона-семафор ZS.
Зоны адресов Z0.С и Z1.С включают каждая 32 блока адресов от BC0 до ВС31 по 32 байта каждый. Адреса начала и конца совокупности этих двух зон соответственно 00000 и 07FF.
Зоны данных от Z0.D до Z31.D включают каждая четыре блока данных от BD0 до BD3 по 32 байта каждая. Адреса начала и конца совокупности этих двух зон соответственно 0800 и 17FF.
Зона дескрипторов Z. DES включает 128 дескрипторов в один байт каждый, адреса начала и конца этой зоны соответственно 1800 и 187F.
Зона указателей считывания Z.PTL включает 32 указателя считывания в один байт каждый, адреса начала и конца этой зоны соответственно 1880 и 189F.
Неиспользуемая зона ZNUI включает 1855 байтов.
Зона-семафор является адресным байтом IFFF, это последний байт памяти.
На фиг. 2, б изображены последовательно, начиная с первого байта, адрес 00000, первая зона адресов Z0.C1, вторая зона адресов Z1.C1, неиспользуемая зона ZNU2, зона данных Z0.D, неиспользуемая зона ZNU3, дескрипторная зона Z. DES, зона указателя считывания Z.PTL, зона указателя записи Z.PTE, неиспользуемая зона ZNU1 и зона-семафор ZS.
Зоны адресов Z0. C1 и Z1.C1 образованы каждая блоком BC0 на 32 байта. Адреса начала и конца совокупности этих двух зон соответственно 0000 и 003F.
Неиспользуемая зона ZNU2 включает 1984 байта и заканчивается в адресе 07FF, который соответствует на фиг.2,а концу второй зоны адресов Z1.C.
Зона данных Z0.D включает, как в случае фиг.2,а, четыре блока данных от BD0 до BD3. Адреса начала и конца этой зоны 0800 и 087F. Адреса начала и конца те же, что и на фиг.2,а, для блока данных Z0.D.
Неиспользуемая зона ZNU3 насчитывает 3968 байтов и заканчивается в адресе 17FF, который соответствует на фиг.2,а концу зоны адресов Z31.D, эта неиспользуемая зона соответствует зонам данных Z1.D до Z31.D на фиг.2,а.
Дескрипторная зона Z. DES включает 128 байтов, из которых лишь четыре первых используются, как на фиг.2,а; адреса начала и конца этой зоны соответственно 1800 и 187F.
Зона указателя считывания Z.PTL включает 32 байта, из которых лишь первый используется, как на фиг.2,а; адреса начала и конца соответственно 1880 и 189F.
Зона указателя записи Z.PTE включает 32 байта, из которых лишь первый используется, как на фиг.2,а; адреса начала и конца этой зоны соответственно 18A0 и 18B0.
Неиспользуемая зона ZNU1 подобна показанной на фиг.2,а.
Зона-семафор ZS подобна зоне-семафору на фиг.2,а, образующий ее байт также имеет адрес IFFF.
На фиг.3 изображена структура байта зоны-семафора ZS по фиг.2. Этот байт используется для диалога между командным блоком синхронного порта SPM и командным блоком асинхронного порта APM, а используется лишь младший бит. Бит S позиционируется блоком SPM, он проходит от нуля до конца заполнения зоны адресов Z0.C или Z0.C1, и от какого-нибудь номера до конца заполнения зоны адресов Z1.C или Z1.C1 памяти SRAM, бит S используется блоком APM.
На фиг. 4 представлена структура указателя записи, образованного одним байтом и используемого блоком APM для присвоения блоков каждой зоны данных от Z0.D до Z31.D. Существует один указатель записи на зону данных для указания блока из названной зоны, в котором будет размещена информация ближайшей ячейки, поступающей в канал, соответствующий названному блоку. В байте одного указателя считывания биты 0 и 1, имеющие маркировку PTE 1, используются для указания номера блока, где должно быть размещено содержимое одной ячейки, принимаемой путем считывания памяти М ячеек.
На фиг.5 изображена структура указателя считывания, образованного одним байтом и используемого блоком SPM для идентификации считываемого байта в каждой зоне данных. Существует один указатель записи на зону данных для указания байта, который должен быть передан по выходной синхронной мультиплексной линии связи MS. В байте указателя считывания биты 0-6, маркируемые PTL, указывают номер байта для выходной синхронной мультиплексной линии MS, бит 7 байта не используется.
На фиг.6 изображена структура дескриптора, образованного одним байтом и используемого для определения состояния занятости блоков зон данных. Существует один дескриптор на блок, т.е. 128 дескрипторов. Дескриптор указывает состояние, свободное или занятое, блока. В байте дескриптора используется лишь бит 0, маркируемый D. Бит D имеет значение 0 для указания свободного состояния блока и значение 1 для указания занятого состояния блока.
Операции кодирования и декодирования полностью асинхронны. Конфликты с обращением к памяти SRAM разрешаются с использованием резервных зон для считывания или записи. Командный блок синхронного порта SPM действует в режиме записи в направлении кодирования (от входной синхронной мультиплексной линии связи ME к выходной асинхронной линии связи LS) и в режиме считывания в направлении декодирования (от входной асинхронной линии связи LE к выходной синхронной мультиплексной линии связи MS). Командный блок асинхронного порта APM действует в режиме считывания в направлении кодирования и записи в направлении декодирования.
Работа преобразователя при кодировании в режиме М32 использует зоны адресов Z0. C и Z1.C и зону-семафор ZS по фиг.2,а, образующие для этого режима раздел адресов памяти SRAM. Каждому байту одного и того же блока зон адресов соответствует один из 32 кодируемых каналов.
На практике, блок содержит данные 32 временных интервалов IT0 до IT31 одного кадра входного синхронного мультиплексного канала связи, следовательно, постоянно имеется 64 кадра, записываемые в память SRAM через блок SPM. Режим хранения в двух зонах адресов соответствует кольцевому буферу. Для кодирования блок SPM выполняет следующие функции:
прием информации из входного мультиплексного синхронного канала связи, маршрут которого задается входной синхронной мультиплексной линией ME;
параллельное включение, временной интервал за временным интервалом, восьми битов каждого временного интервала, причем первый принимаемый бит является старшим двоичным разрядом, последний принимаемый бит является младшим двоичным разрядом;
запись в память SRAM в порядке временных интервалов IT. Блок SPM включает счетчик адресов по модулю 2048, синхронизируемый тактовым сигналом кадра HT для обеспечения того, что целостность принимаемого кадра сохраняется в том блоке, где он хранится. Последовательные IT записываются с возрастающими адресами, от IT0 в первом до IT31 в последнем. Заданный адрес содержит всегда IT одного разряда. Запись в память SRAM осуществляется со скоростью входного мультиплексного синхронного канала связи, т.е. блок за 125 мкс и зона за 4 мс. Постоянно 64 последних принимаемых кадра хранятся в памяти SRAM, запись в один и тот же адрес будет происходить 64 кадра спустя, т.е. 6 мс;
запись семафорного байта ZS памяти SRAM в конце заполнения зоны. Он содержит 0 или 1 зоны адресов, в которой блок SPM не работает. Это указание об освобождении зоны используется блоком APM для передачи ячеек, соответствующих свободной зоне адресов.
Для кодирования блок APM включает счетчик IT и счетчик блоков. Счетчик IT указывает номер канала в ходе кодирования, а счетчик блоков указывает номер блока адресов в ходе кодирования. В режиме М32 эти оба счетчика являются счетчиками по модулю 32. Счетчик блоков получает приращение после считывания байта одного блока, а счетчик IT после считывания 32 байтов, т.е. после считывания байта в каждом из 32 блоков зоны адресов.
При кодировании функции, выполняемые блоком APM в режиме 32, указаны ниже, причем каждая зона адресов Z0.C и Z1.C включает 32 блока, а каждый блок содержит один байт каждого из кодируемых каналов, следовательно, полная зона содержит 32 рабочих байта каждого канала, т.е. содержимое одной ячейки каждого канала. После операции кодирования блок APM считывает адресный байт и, если бит адресного байта изменил состояние, блок APM запоминает новое значение бита и начинаются операции кодирования в зоне адресов, указанной битом S.
Счетчики IT и блоков установлены в нуль, поэтому блок APM осуществляет следующие операции:
посылка по выходному асинхронному каналу связи LS заголовка четырех байтов (фиг. 7), который соответствует каналу IT0, данные которого хранятся в байте 0 каждого блока зоны адресов;
считывание в память SRAM и посылка по выходному асинхронному каналу связи LS байта 0 блока BC0 зоны адресов;
приращение счетчика блоков, который указывает при этом блок BCI зоны адресов, считывание и посылку по каналу связи LS байта 0 блока BCI и т.д. до считывания байта 0 блока BC31 зоны адресов;
приращение счетчика IT, который указывает при этом ITI; предшествующие операции, указанные для IT0, повторяются для каждого из 31 остальных каналов. Когда байт 31 блока BC31 зоны адресов считывается и посылается по выходному синхронному каналу связи LS, счетчик IT и счетчик блоков установлены в нуль, а блок APM контролирует семафорный байт для обнаружения изменения состояния бита S; если состояние не изменилось, блок APM передает пустые ячейки по каналу связи LS.
На фиг. 7 представлена структура заголовка в поле, предназначенном для битов 8-15 виртуального канала, лишь младшие разряды битов 8-13 используются блоком APM. Эти 5 битов соответствуют номеру используемого IT, для IT0 индикация виртуального канала соответствует 00000, а для IT31 индикация виртуального канала соответствует 11111.
Быстродействие блока APM выбирается таким образом, что полное кодирование зоны осуществляется за промежуток времени, ниже продолжительности ее заполнения блоком SPM. В связи с этим в конце кодирования 32 каналов блок APM контролирует семафорный байт для обнаружения нового изменения бита S; пока состояние бита S не изменилось, блок APM передает пустые ячейки по выходному асинхронному каналу связи LS.
При работе преобразователя в режиме кодирования М1 используются зоны адресов Z0. C1 и Z1.C1 и зона-семафор ZS (фиг.2,б), образующие в этом режиме область адресов памяти SRAM. Каждая зона адресов сводится к одному блоку BC0, содержащему 32 байта, пронумерованных от 0 до 31, которые образуют информационное содержание кодируемого канала. Структура и использование семафорного байта такие же, что и при режиме работы М32, описанном ранее.
Работа блока SPM идентична работе в режиме М32, однако лишь два последних кадра входной синхронной мультиплексной системы связи хранятся в памяти SRAM, причем каждый блок двух зон адресов содержит один кадр. Таким образом, считывание с одного и того же адреса будет происходить спустя два кадра, т. е. 250 мс, при этом режиме М1 счетчик адресов блока SPM является счетчиком по модулю 64.
Как и в режиме М32, кодирование начинается при обнаружении блоком APM состояния бита S байта и семафора. В этом режиме М1 счетчик IT блока APM по-прежнему является счетчиком по модулю 32, но так как каждая зона адресов имеет лишь один блок, его счетчик блока при режиме М1 блокируется на нуле. Как только блок APM обнаружит изменение состояния бита S, он осуществляет следующие операции:
посылка по выходному асинхронному каналу связи LS заголовка четырех байтов, структура которого подобна структуре заголовка, указанного в режиме М32 и изображенного на фиг.7. Так как в режиме М1 кодируется единственный канал, то индикация виртуального канала соответствует 00000.
считывание в памяти SRAM и посылка по выходному асинхронному каналу связи LS 32 байтов блока зоны адресов, указанного битом S.
Порядок считывания байтов в блоке такой же, что и при записи, т.е. вначале байт, содержащийся в IT0.
Так же, как и при режиме работы М32, быстродействие блока APM выбирается таким образом, что продолжительность кодирования зоны адресов ниже продолжительности ее заполнения блоком SPM.
Работа преобразователя при декодировании использует в рабочих режимах М32 и М1 память М типа FIFO, в которой хранятся входные ячейки.
Разгрузка этой памяти М осуществляется через командный блок асинхронного порта APM, который располагает своим собственным синхросигналом для ячейки, образованным делением синхросигнала HL местного тактового генератора.
Для правильной разгрузки командный блок APM должен считывать в памяти М первый байт ячейки при переходе синхросигнала ячейки. Для этого память М имеет разрядность 9 бит, из которых 8 бит предназначены для хранения данных ячеек, и девятый бит предназначен для указания начала ячейки. Этот девятый бит устанавливается в нуль при записи в память М первого байта ячейки. Процесс синхронизации состоит в следующем:
систематическое считывание памяти М при переходе синхросигнала ячейки;
если девятый считываемый бит является действующим, то синхронизация эффективна, командный блок APM приступает к считыванию и обработке 35 остальных байтов ячейки;
если девятый бит является недействующим, считывания памяти М не происходит.
Работа преобразователя при декодировании в режиме М32 использует зоны данных Z0.D до Z31.D, дескрипторную зону Z.DES, зону указателя считывания Z. PLT и зону указателя записи Z.PTE памяти SRAM (фиг.2,а), которые образуют для этого режима M32 область данных памяти. Каждый блок зон данных содержит одну ячейку для декодирования, причем каждая зона предназначается для одного из каналов для декодирования. Каждый из 128 дескрипторов предназначается для одного блока зон данных, для указания свободного или занятого состояния этого блока. Каждый из 32 указателей записи предназначается для одной зоны данных, для указания блока, в котором будет размещена ближайшая ячейка, поступающая по соответствующему каналу. Каждый из 32 указателей считывания предназначается для одной зоны данных. Функции, выполняемые командным блоком APM, при достижении синхронизации памяти М, состоят в следующем:
считывание заголовка принимаемой ячейки и запоминание номера виртуального канала, содержащегося в заголовке; пять младших битов номера виртуального канала указывают двоичный номер зоны данных, где блок APM должен разместить содержимое принимаемой ячейки;
считывание указателя записи названной зоны, который указывает номер блока для хранения содержимого принимаемой ячейки;
размещение содержимого ячейки в блоке побайтно и по возрастающим адресам;
установление в 1 дескриптора блока;
приращение устройства по модулю 4 указателя записи зоны, где размещается ячейка.
Для декодирования командный блок синхронного порта SPM включает счетчик временных интервалов по модулю 32 и счетчик зон по модулю 32, используемые в режимах М32 и М1, причем счетчик зон блокируется в нуль в режиме М1, поскольку в этом режиме имеется лишь одна зона данных. Счетчик временных интервалов синхронизируется синхросигналом кадра HT (фиг.1). В режиме М32 счетчик зон действует со скоростью счетчика временных интервалов.
Функции, выполняемые блоком SPM, в режиме М32 состоят в следующем:
считывание указателя считывания, соответствующего зоне, указанной счетчиком зон;
считывание дескриптора блока, соответствующего указателю считывания, для определения свободного или занятого состояния блока; номер блока получают делением на 32 номера, содержащегося в указателе считывания;
если блок заполнен, считывание байта, заданного указателем считывания, и приращение указателя считывания блока; если блок считан не полностью, считывание указателя считывания, соответствующего новому временному интервалу; если блок считан полностью, установка в нуль дескриптора и считывание указателя считывания, соответствующего новому временному интервалу, указанному счетчиком интервалов;
если блок не заполнен, передача кода перерыва байта, по выходной синхронной мультиплексной линии связи.
При работе преобразователя при декодировании в режиме М1 используется зона данных Z0.D, дескрипторная зона Z.DES, зона указателя считывания Z.PTL и зона указателя записи Z. PTE памяти SRAM (фиг.2,б), которые образуют в режиме М1 область данных памяти. Каждый блок зоны данных содержит декодируемую ячейку, причем каждый блок предназначается для одного декодируемого канала.
Функции, выполняемые командным блоком APM, те же, что и указанные для декодирования в режиме М32. Следует заметить, что в режиме М1 имеется лишь одна зона данных Z0.D и что каждая принимаемая ячейка содержит 32 временных интервала одного канала, следовательно, одного кадра выходного синхронного мультиплексного канала связи. Номер виртуального канала всегда указывает упомянутую зону Z0. D, следовательно, имеется лишь один указатель записи для указания блока для хранения принимаемой ячейки и четыре дескриптора, по одному на каждый блок зоны.
Работа блока SPM в режиме М1 сравнима с работой в режиме М32, однако, в режиме М1 имеется лишь одна зона данных Z0.D, следовательно, лишь один указатель считывания, который считывается независимо от номера временного интервала, даваемого счетчиком временных интервалов блока SPM. Счетчик зон блокируется на нуле. Функции, выполняемые командным блоком SPM, состоят в следующем:
считывание указателя считывания;
считывание дескриптора блока, соответствующего указателю считывания, для определения состояния блока; один и тот же дескриптор считывается 32 раза последовательно, поскольку один дескриптор связан с одним блоком и блок содержит данные 32 последовательных IT, причем первый байт считывается в интервале IT 0, последний байт считывается в интервале IT 32;
если блок заполнен, считывание байта, заданного указателем считывания блока, и приращение указателя считывания; если блок считан не полностью, считывание указателя считывания, как только счетчик временных интервалов подает новый номер IT; если блок считан полностью, установка на нуль D 0 дескриптора и считывание указателя считывания, как только счетчик подает новый номер IT;
если блок не заполнен, передача кода перерыва байта по выходной синхронной мультиплексной линии связи.
Синхронно-асинхронный и асинхронно-синхронный преобразователь, выполненный согласно изобретению, обеспечивает работу в режимах М32 и М1, причем выбор осуществляется внешней командой MF, воздействующей на командные блоки SPM и APM, для ограничения в режиме М1 зон адресов и данных, используемых для памяти SRAM, а также числа дескрипторов, числа указателей считывания и числа указателей записи.

Claims (4)

1. Синхронно-асинхронный и асинхронно-синхронный преобразователь, соединенный посредством входных и выходных синхронных мультиплексных линий с синхронной сетью для передачи по синхронным мультиплексным линиям информации с кадровой синхронизацией, каждый кадр которой разделен на тридцать два временных интервала, предназначенных по меньшей мере для одного канала связи, и соединенный также посредством входных и выходных мультиплексных асинхронных связей с асинхронной сетью для передачи информации, содержащей заголовок и информационную часть из тридцати двух байтов, при этом преобразователь содержит запоминающее устройство с произвольной выборкой с первым и вторым портами, отличающийся тем, что содержит командный блок первого порта, имеющий вход/выход, соединенный с первым портом запоминающего устройства с произвольной выборкой, вход/выход, соединенный с выходной синхронной мультиплексной линией, вход сигнала кадровой синхронизации, вход бит-сигнала синхронизации и вход сигнала выбора режима работы, и командный блок второго порта, имеющий первый вход/выход, соединенный с вторым портом запоминающего устройства с произвольной выборкой, второй вход/выход, соединенный с входной асинхронной мультиплексной линией и с выходной мультиплексной асинхронной линией, вход сигнала местного времени и вход сигнала выбора режима работы, соединенный с командным блоком первого порта.
2. Преобразователь по п.1, отличающийся тем, что для первого режима работы, при котором каждый временной интервал кадра предназначен для одного канала, запоминающее устройство включает две зоны адресов, каждая из которых имеет тридцать два блока адреса по тридцать два байта каждый, тридцать две зоны данных, каждая из которых имеет четыре блока данных по тридцать два байта каждый, зону дескрипторов, имеющую один дескриптор одного байта на блок данных, зону указателя считывания, имеющую один указатель считывания байта на зону данных, зону указателя записи, имеющую один указатель записи байта на зону данных, и зону-семафор одного байта.
3. Преобразователь по п.1, отличающийся тем, что для второго режима работы, в котором все временные интервалы каждого кадра предназначены для одного и того же канала, запоминающее устройство включает две зоны адресов, каждая из которых имеет один блок по тридцать два байта, зону указателя записи, имеющую указатель записи одного байта, зону указателя считывания, имеющую указатель считывания одного байта, и зону-семафор одного байта.
4. Преобразователь по п.1, отличающийся тем, что содержит запоминающее устройство с ячейками типа FIF0, включенное между входной асинхронной мультиплексной линией связи от асинхронной сети и вторым входом командного блока второго порта.
SU915001338A 1989-12-13 1990-12-10 Синхронно-асинхронный и асинхронно-синхронный преобразователь RU2097929C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR8916497A FR2655794A1 (fr) 1989-12-13 1989-12-13 Convertisseur synchrone-asynchrone.
FR8916497 1989-12-13
PCT/FR1990/000897 WO1991009480A1 (fr) 1989-12-13 1990-12-10 Convertisseur synchrone-asynchrone

Publications (1)

Publication Number Publication Date
RU2097929C1 true RU2097929C1 (ru) 1997-11-27

Family

ID=9388472

Family Applications (1)

Application Number Title Priority Date Filing Date
SU915001338A RU2097929C1 (ru) 1989-12-13 1990-12-10 Синхронно-асинхронный и асинхронно-синхронный преобразователь

Country Status (14)

Country Link
US (1) US5239544A (ru)
EP (1) EP0433154B1 (ru)
JP (1) JP3084058B2 (ru)
KR (1) KR100192627B1 (ru)
CN (1) CN1021395C (ru)
AT (1) ATE133304T1 (ru)
AU (1) AU634328B2 (ru)
CA (1) CA2032101A1 (ru)
DE (1) DE69024928T2 (ru)
ES (1) ES2081958T3 (ru)
FR (1) FR2655794A1 (ru)
MX (1) MX172653B (ru)
RU (1) RU2097929C1 (ru)
WO (1) WO1991009480A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639956C1 (ru) * 2013-12-12 2017-12-25 Нортроп Грумман Литеф Гмбх Способ и устройство для передачи данных при несинхронизированных переходах между областями с разными тактовыми частотами

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519563A3 (en) * 1991-06-21 1997-08-27 Koninkl Philips Electronics Nv System for converting synchronous time-division-multiplex signals into asynchronous time-division data packets
FR2682244B1 (fr) * 1991-10-04 1995-01-13 Cit Alcatel Dispositif de synchronisation pour equipement d'extremite d'un reseau de telecommunications numerique a transfert en mode asynchrone.
EP0544217A1 (en) * 1991-11-25 1993-06-02 Nec Corporation Processing of time division multiplexed signal into ATM cells to decrease building time of each cell
JPH05244187A (ja) * 1992-02-14 1993-09-21 Nippon Telegr & Teleph Corp <Ntt> 装置内監視方法
GB2266033B (en) * 1992-03-09 1995-07-12 Racal Datacom Ltd Communications bus and controller
US5274635A (en) * 1992-11-18 1993-12-28 Stratacom, Inc. Method and apparatus for aligning a digital communication data stream across a cell network
US5412655A (en) * 1993-01-29 1995-05-02 Nec Corporation Multiprocessing system for assembly/disassembly of asynchronous transfer mode cells
FR2701180B1 (fr) * 1993-01-29 1995-03-10 Cit Alcatel Dispositif de cellulisation et dispositif de décellulisation de voies numériques synchromes, centre de commutation de voies numériques synchrones, et centre de commutation de voies numériques asynchrones.
AU667004B2 (en) * 1993-03-31 1996-02-29 Nec Corporation Cell processing system having first and second processing units capable of outputting first and second processed signals at the same time
FR2706722B1 (fr) * 1993-06-11 1995-07-13 Alcatel Business Systems Procédé et agencement pour une transmission en mode cellule d'informations fournies et restituées en mode à bande étroite.
CA2109534A1 (en) * 1993-11-19 1995-05-20 Mauricio Peres Interface device
DE4343720C1 (de) * 1993-12-21 1995-06-14 Siemens Ag Verfahren zum Übertragen von Digitalsignalen in einem ATM-Kommunikationsnetz
FR2717974B1 (fr) * 1994-03-28 1996-04-26 France Telecom Dispositif d'adaptation entre un réseau temporel synchrone et un réseau temporel asynchrone.
WO1995031054A1 (en) * 1994-05-06 1995-11-16 Circuit Path Network Systems, Corp. Method of assigning slots by mapping channels to slots based on a one-to-one transformation
FR2720210B1 (fr) * 1994-05-20 1996-07-19 Sextant Avionique Procédé et dispositif de transmission de données asynchrone au moyen d'un bus synchrone.
CA2124610C (en) * 1994-05-30 1998-10-06 Charles Kevin Huscroft Integrated user network interface device
US5459722A (en) * 1994-06-30 1995-10-17 At&T Ipm Corp. Asynchronous transfer mode (ATM) transport of voice-band signals
US5586273A (en) * 1994-08-18 1996-12-17 International Business Machines Corporation HDLC asynchronous to synchronous converter
US5450411A (en) * 1994-09-02 1995-09-12 At&T Global Information Solutions Company Network interface for multiplexing and demultiplexing isochronous and bursty data streams in ATM networks
US5539739A (en) * 1994-09-29 1996-07-23 Intel Corporation Asynchronous interface between parallel processor nodes
US5483527A (en) * 1994-12-21 1996-01-09 At&T Corp. Terminal adapter for interfacing an ATM network with a STM network
US5606553A (en) * 1995-02-28 1997-02-25 Christie; Joseph M. Cell processing for voice transmission
US5623491A (en) * 1995-03-21 1997-04-22 Dsc Communications Corporation Device for adapting narrowband voice traffic of a local access network to allow transmission over a broadband asynchronous transfer mode network
US6188692B1 (en) 1995-05-11 2001-02-13 Pmc-Sierra Ltd. Integrated user network interface device for interfacing between a sonet network and an ATM network
US5859850A (en) * 1995-12-28 1999-01-12 Lucent Technologies Inc. Elastic store circuit for composite cells switched through an ATM network
US5742765A (en) * 1996-06-19 1998-04-21 Pmc-Sierra, Inc. Combination local ATM segmentation and reassembly and physical layer device
US5892764A (en) * 1996-09-16 1999-04-06 Sphere Communications Inc. ATM LAN telephone system
US5909682A (en) * 1996-12-30 1999-06-01 Mci Worldcom, Inc. Real-time device data management for managing access to data in a telecommunication system
US6028867A (en) * 1998-06-15 2000-02-22 Covad Communications Group, Inc. System, method, and network for providing high speed remote access from any location connected by a local loop to a central office
US6373860B1 (en) 1998-07-29 2002-04-16 Centillium Communications, Inc. Dynamically-assigned voice and data channels in a digital-subscriber line (DSL)
US6853647B1 (en) 1999-02-17 2005-02-08 Covad Communications Group, Inc. System method and network for providing high speed remote access from any location connected by a local loop to a central office
KR100680072B1 (ko) * 1999-09-14 2007-02-09 유티스타콤코리아 유한회사 비동기 이동통신 시스템에서 호 처리 및 핸드오프 처리 방법
EP1305905B1 (de) 2000-07-31 2004-09-22 Siemens Aktiengesellschaft Verfahren zur fehlerkorrektur bei einer paketorientierten datenübertragung
KR100425134B1 (ko) * 2002-06-17 2004-03-30 엘지전자 주식회사 유도가열 전기밥솥의 자력선 차폐판 고정구조
KR100425135B1 (ko) * 2002-06-17 2004-03-30 엘지전자 주식회사 유도가열 전기밥솥의 자력선 차폐판 고정구조
US7366179B2 (en) * 2002-06-21 2008-04-29 Adtran, Inc. Dual-PHY based integrated access device
US7042792B2 (en) * 2004-01-14 2006-05-09 Integrated Device Technology, Inc. Multi-port memory cells for use in FIFO applications that support data transfers between cache and supplemental memory arrays
FR2875087A1 (fr) * 2004-09-03 2006-03-10 St Microelectronics Sa Interface de communication
JP2006114028A (ja) * 2004-09-16 2006-04-27 Interactic Holdings Llc 複数のデバイスを同期デバイスに相互接続する装置
US8139486B1 (en) * 2005-07-12 2012-03-20 Avaya Inc. Method and system for generating data frames for asynchronous over TCP/IP protocol
US20070076761A1 (en) * 2005-09-15 2007-04-05 Coke Reed Apparatus for interconnecting multiple devices to a synchronous device
CN100442897C (zh) * 2006-08-28 2008-12-10 华为技术有限公司 终端与服务器通信的方法、系统和装置
CN105592129A (zh) * 2014-12-15 2016-05-18 中国银联股份有限公司 在两组通信系统之间实现通信中转的方法和装置
CN107644662A (zh) * 2016-07-20 2018-01-30 北京迪文科技有限公司 一种同步接口的sram设计方法
CN108268416B (zh) * 2017-12-13 2021-02-23 深圳市国微电子有限公司 一种异步接口转同步接口控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2526615A1 (fr) * 1982-05-10 1983-11-10 Bodros Christian Coupleur a haut debit entre un multiplex de voies mic et un commutateur de paquets
US4541076A (en) * 1982-05-13 1985-09-10 Storage Technology Corporation Dual port CMOS random access memory
US4612636A (en) * 1984-12-31 1986-09-16 Northern Telecom Limited Multiple channel depacketizer
DE3580276D1 (de) * 1985-08-13 1990-11-29 Ibm Adaptives paket-/durchschaltvermitteltes transportsystem und verfahren.
FR2600224B1 (fr) * 1986-06-16 1992-05-22 Telecommunications Sa Procede de transmission de trains numeriques sur des voies a debits plus eleves et dispositif de mise en oeuvre
GB8618424D0 (en) * 1986-07-29 1986-09-03 Leslie I M Data rate channel for digital network
EP0312628B1 (en) * 1987-10-20 1993-12-29 International Business Machines Corporation High-speed modular switching apparatus for circuit and packet switched traffic
JPH01126760A (ja) * 1987-11-11 1989-05-18 Toshiba Corp 並列計算機システム
DE3816747A1 (de) * 1988-05-17 1989-11-30 Standard Elektrik Lorenz Ag Leistungsvermittelnde paket-vermittlungseinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. DE, 3527329, кл. H 04 N 3/16, 1987. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639956C1 (ru) * 2013-12-12 2017-12-25 Нортроп Грумман Литеф Гмбх Способ и устройство для передачи данных при несинхронизированных переходах между областями с разными тактовыми частотами
US10211973B2 (en) 2013-12-12 2019-02-19 Northrop Grumman Litef Gmbh Method and device for transmitting data on asynchronous paths between domains with different clock frequencies

Also Published As

Publication number Publication date
AU634328B2 (en) 1993-02-18
DE69024928D1 (de) 1996-02-29
CN1021395C (zh) 1993-06-23
KR920702116A (ko) 1992-08-12
ATE133304T1 (de) 1996-02-15
CA2032101A1 (fr) 1991-06-14
FR2655794A1 (fr) 1991-06-14
KR100192627B1 (ko) 1999-06-15
US5239544A (en) 1993-08-24
ES2081958T3 (es) 1996-03-16
EP0433154B1 (fr) 1996-01-17
DE69024928T2 (de) 1996-06-05
JP3084058B2 (ja) 2000-09-04
JPH04504641A (ja) 1992-08-13
WO1991009480A1 (fr) 1991-06-27
CN1054158A (zh) 1991-08-28
MX172653B (es) 1994-01-05
AU6910291A (en) 1991-07-18
EP0433154A1 (fr) 1991-06-19
FR2655794B1 (ru) 1994-12-16

Similar Documents

Publication Publication Date Title
RU2097929C1 (ru) Синхронно-асинхронный и асинхронно-синхронный преобразователь
EP0232437B1 (en) Multiplex interface for a communication controller
KR920010853B1 (ko) 네트워크에서의 수신패키트를 메시지로 재조립하기 위한 통신장치
EP0719050B1 (en) Device for transmitting, receiving and decoding compressed audiovisual streams
US7724672B2 (en) ATM cell transfer apparatus with hardware structure for OAM cell generation
US4797654A (en) Data format conversion circuit
WO1998044759A9 (en) Combined signalling and pcm cross-connect and packet engine
EP0976293A1 (en) Combined signalling and pcm cross-connect and packet engine
US5291485A (en) Method and apparatus for translating differently-sized virtual tributaries organized according to a synchronous optical network (SONET) standard
US4298979A (en) Decoding TIM bus structure
JPH02226926A (ja) 多重チャネルpcmタイプのリング上にhdlcフレームを伝送するためのシステム
US4160877A (en) Multiplexing of bytes of non-uniform length with end of time slot indicator
US4922485A (en) System for changing priority of packets of data
USRE34896E (en) Multiplex interface for a communication controller
JPH0297152A (ja) 時間スイッチ回路
US4943958A (en) ISDN interface trunk circuit
US7515598B2 (en) Configurable transmit and receive system interfaces for a network device
EP0592842B1 (en) Serial rate conversion circuit with jitter tolerate payload
EP0606729A2 (en) Asynchronous transfer mode (ATM) expanded internal cell format
RU2180992C2 (ru) Переключатель с однобитовым разрешением
JP2563770B2 (ja) 回線設定回路
JP3067368B2 (ja) Atm伝送用インタフェース回路
JPH0758753A (ja) インタフェース回路
JPH10135971A (ja) 速度変換回路
KR100258766B1 (ko) 비동기전송모드셀 다중화장치