RU2091222C1 - Способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс - Google Patents

Способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс Download PDF

Info

Publication number
RU2091222C1
RU2091222C1 RU9293054013A RU93054013A RU2091222C1 RU 2091222 C1 RU2091222 C1 RU 2091222C1 RU 9293054013 A RU9293054013 A RU 9293054013A RU 93054013 A RU93054013 A RU 93054013A RU 2091222 C1 RU2091222 C1 RU 2091222C1
Authority
RU
Russia
Prior art keywords
mixer
diorgano
poly
siloxane
silicon dioxide
Prior art date
Application number
RU9293054013A
Other languages
English (en)
Other versions
RU93054013A (ru
Inventor
Хайслер Манфред
Стари Фридолин
Ратка Рудольф
Шлирф Алоис
Original Assignee
Вакер-Хеми ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6424500&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2091222(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Вакер-Хеми ГмбХ filed Critical Вакер-Хеми ГмбХ
Publication of RU93054013A publication Critical patent/RU93054013A/ru
Application granted granted Critical
Publication of RU2091222C1 publication Critical patent/RU2091222C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Polymers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Silicon Compounds (AREA)

Abstract

Использование: для непрерывного получения вулканизуемых при высоких температурах силиконовых масс. Сущность изобретения: в осциллирующий одновалковый пильгерный смеситель подают диоргано/поли/силоксан в количестве 100 мас. ч. с вязкостью 50-100000 Па.с и высокодисперсную двуокись кремния в количестве по меньшей мере 20 мас.ч. с плотностью после уплотнения выше 0,01 кг/л. Затем массу смешивают и гомогенизируют. Силиконовая масса имеет вязкость по Муни 15-130, она вулканизуемая при высоких температурах и имеет состав в мас.ч.: диоргано/поли/силоксан-100; двуокись кремния, тонкоизмельченная с плотностью после уплотнения, превышающей 0,01 кг/л - 20-200; наполнитель не более 100; средство для улучшения структуры не более 30; средство для образования поперечных связей не более 7, другие присадки не более 30. Диоргано/поли/силоксан используют с вязкостью от 500 до 50.000 Па.с при 25oC. Осциллирующий пильгерный смеситель (С) выполнен общей длиной (1-30) диаметров шнека. Подачу диоргано/поли/силоксана осуществляют на участке С, ограниченном длиной, не более 42 шнека, а подачу двуокиси кремния осуществляют на участке С, ограниченном длиной, равной (0,5-10)D шнека. Температуру внутри С поддерживают в пределах 20-280oC. Силиконовую массу из С после повышения давления через устройство просеивания подают на вальцовочную машину непрерывного действия для охлаждения до температуры ниже 100oC, причем средства для образования поперечных связей и/или пигменты, и/или присадки перерабатывают на вальцовочной машине. 8 з.п. ф-лы, 1 ил., 2 табл.

Description

Изобретение относится к способу непрерывного изготовления силиконовых масс путем горячей вулканизации на основе диоргано/поли/силоксанов, которые в мире специалистов имеют название силиконовых масс, полученных путем высокотемпературной вулканизации (НТУ).
Эти НТУ силиконовые массы отличаются температурой в процессе вулканизации от RTУ силиконовых масс вулканизация при комнатной температуре.
Известен способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс, при котором диоргано/поли/силоксан и двуокись кремния, полученную сжиганием и/или осаждением, подают в осциллирующий одновалковый пильгерный смеситель, смешивают и гомогенизируют массу (Европейская заявка N 0258159, кл. B 29 B 7/48, опубл. 1988).
Недостатком данного способа в связи с меняющимися условиями подачи являются непостоянные во времени свойства продукта. Чтобы оценка сгустков была позитивной, необходимо иметь длинные зоны смешивания, что неизбежно ведет к повышенным аппаратным затратам и к увеличению времени выдержки. Кроме того, существует опасность большого износа оборудования и загрязнения продукта металлической пылью, образовавшейся в результате истирания.
Техническим результатом данного способа является непрерывность изготовления НТУ силиконовых масс, возможность получения однородного продукта, имеющего прозрачный внешний вид, постоянную вязкость по Муни и постоянную твердость по Шору.
Для достижения технического результата в способе непрерывного получения вулканизуемых при высоких температурах силиконовых масс, при котором диоргано/поли/силоксан и двуокись кремния, полученную сжиганием и/или осаждением, подают в осциллирующий одновалковый пильгерный смеситель, смешивают и гомогенизируют массу, согласно изобретению, в осциллирующий одновалковый пильгерный смеситель подают диоргано/поли/силоксан в количестве 100 мас.ч. с вязкостью 50 100000 Па.с и высокодисперсную двуокись кремния в количестве по меньшей мере 20 мас.ч. с плотностью после уплотнения выше 0,01 кг/л. Вулканизуемая при высоких температурах силиконовая масса имеет вязкость по Муни 15-130. Диоргано/поли/силоксан используют с вязкостью от 500 до 50000 Па.с при 25oC.
Вулканизуемая при высоких температурах силиконовая масса имеет состав в мас.ч.
Диоргано/поли/силоксан 100
Двуокись кремния тонкоизмельченная с плотностью после уплотнения, превышающей 0,01 кг/л 20-200
Наполнитель не более 100
Средство для улучшения структуры не более 30
Средство для образования поперечных связей не более 7
Другие присадки не более 30.
Осциллирующий одновалковый пильгерный смеситель выполнен общей длиной (1-30) диаметров шнека. Подачу диоргано/поли/силоксана осуществляют на участке смесителя, ограниченном длиной не более 4 диаметров шнека, а подачу двуокиси кремния осуществляют на участке смесителя, ограниченном длиной, равной (0,5-10) диаметров шнека.
Температуру внутри осциллирующего одновалкового пильгерного смесителя поддерживают в пределах 20-280oC.
Силиконовую массу из осциллирующего одновалкового пильгерного смесителя после повышения давления через устройство просеивания подают на вальцовочную машину непрерывного действия для охлаждения до температуры ниже 100oC. Средство для образования поперечных связей и/или пигменты, и/или присадки перерабатывают на вальцовочной машине.
Способом согласно изобретению могут обрабатываться непрерывно все те рецептуры для НТУ силиконовых масс, которые до сих пор обрабатывались периодически. Обзор подобных рецептур представлен в работе "Химия и технология силиконов", В. Нолл, Academic Press, Inc, Орландо, США, с. 400-407.
НТУ силиконовые массы наряду с диоргано/поли/силоксанами и высокодисперсной двуокисью кремния могут содержать другие наполнители, средства для улучшения структуры, перекиси и по мере необходимости присадки, такие как, например, стабилизаторы с использованием горячего воздуха, огнезащитные средства и пигменты.
Органические остатки в используемых согласно изобретению диоргано/поли/силоксанах представляют собой преимущественно остатки метила, винила, фенила и/или трифторалкила. Предпочтительный остаток трифторалкила является остатком 3,3,4-трифторпропила. Если в цепях диоргано/поли/силоксанов наряду с остатками метила и/или трифторалкила имеются также остатки винила и/или фенила, то предпочтительным количественным диапазоном для этих остатков является диапазон 0,001-30 мол. в частности 0,001-25 мол.
С группами триметила, диметилвинила, метилдивинила и/или тривинилсилоксигруппой преимущественно используются диоргано/поли/силоксаны с прерыванием полимеризации. Для специальных областей применения необходимо использование диоргано/поли/силоксанов без прерывания или лишь с частичным прерыванием полимеризации.
Предпочтительные диоргано/поли/силоксаны соответствуют общим формулам:
Figure 00000002

где R означает остаток метила и/или винила;
R1 остаток метила, винила и/или гидроксила;
n находится в пределах от 500 до 10 000, преимущественно от 2000 до 8000, а п+m в пределах от 500 до 10000, преимущественно от 2000 до 8000, с оговоркой, что отношение n/m больше или равно 1, преимущественно находится в пределах от 3 до 10.000.
Хотя выше не показано, диоргано/поли/силоксаны наряду с частями формулы R2SiO могут содержать до 0,05 мол. преимущественно менее 0,02 мол. другие, в большинстве случаев в виде более или менее трудноисключимых загрязнений, настоящие части формулы SiO4/2 и RSiO3/2, причем R является органическим остатком, чаще всего остатком метила, этила, винила, фенила и/или трифторалкила.
Высокодисперсная двуокись кремния приобретает водоотталкивающие свойства, плотность которой после уплотнения в большинстве случаев меньше 0,1 кг/л, посредством реакции обмена средств, придающего водоотталкивающие свойства, на основе кремнийорганических соединений с содержанием Si-OH-группы твердым материалом в виде частиц при одновременной механической нагрузке реакционной смеси. При этом используются от 5 до 50% по массе содержащего Si-OH-группы твердого материала в виде частиц при соотнесении с общей массой реакционной смеси, состоящей из твердого материала в виде частиц и средства для придания водоотталкивающих свойств. Предпочтительное средство для придания водоотталкивающих свойств для данного способа состоит из:
70-80 мас. гексаметилдисилоксана и/или триметилсиланола;
10-30 мас. гексаметилдисилазана и/или дивинилтетраметилдисилазана и 1-5 мас. воды, причем данные в по массе относятся к общему весу средства.
Также в качестве преимущества можно рассматривать смачивание и уплотнение высокодисперсной, гидрофильной двуокиси кремния, плотность которой после уплотнения составляет менее 0,1 кг/л, с диоргано/поли/силоксаном и/или низковязким полиметилсилоксандиолом, как это описывается ниже в качестве диоргано/поли/силоксана и/или средства для улучшения структуры, до плотностей после уплотнения преимущественно от 0,03 до 0,5 кг/л. Смачивание и связанное с этим увеличение плотности после уплотнения высокодисперсной двуокиси кремния осуществляется преимущественно на 30-100% в частности на 50-100% от имеющихся в составе изготовляемых согласно изобретению НТУ силиконовых масс частей по массе, средств для улучшения структуры. При этом поддерживается температура преимущественно менее 180oС, в частности от 10 до 120oC.
Если для рецептуры требуется применение гидрофобной двуокиси кремния, то используется преимущественно гидрофобная двуокись кремния с содержанием углерода более 1 мас. при соотнесении с общей массой гидрофобной двуокиси кремния, в частности от 2 до 8 мас. и плотностью после уплотнения более 0,05 кг/л, в частности от 0,2 до 0,4 кг/л.
Дальнейшими примерами применяемых активных наполнителей с ВЕТ-поверхностью (ДИН 66131) преимущественно более 50 м2/г могут служить высокодисперсная гидрофильная или гидрофобная двуокиси кремния с плотностью после уплотнения менее 0,1 кг/л, преимущественно от 0,01 до 0,09 кг/л, печная сажа и ацетиленовая сажа. Преимущественные количества этих веществ составляет до 60 мас. ч.
Далее могут находить применение неактивные наполнители, такие как кварц, диатомовая земля, силикат кальция, силикат циркония, цеолиты, металлические окисные порошки, такие как порошки алюминия, титана, железа, или окиси цинка, силиката бария, сульфата бария, карбоната кальция, гипса и порошки синтетических материалов, такие как порошок полиакрилнитрила. Дальнейшими наполнителями являются волокнистые компоненты, такие как стеклянные и синтетические волокна. ВЕТ-поверхность этих наполнителей составляет, как правило, менее 30 м2/г.
Если применяются средства для улучшения структуры, то речь идет при этом преимущественно о полидиметилсилоксандиолах с вязкостью при 25oC преимущественно от 10 до 200 МПа•с, в частности от 20 до 150 МПа.с. Они могут содержать фениловые группы и, в частности, в целях воздействия на твердость вулканизата в цепи этих полидиметилсилоксандиолов могут также быть виниловые группы, причем плотность виниловых групп учитывается йодным числом (ДИН 53241). Йодное число составляет преимущественно от 1 до 75 г йода на 100 г силоксандиола, в частности от 7 до 70 г на 100 г.
В случае необходимости используются также пигменты и средства, образующие поперечные связи, преимущественно из группы переписей алкила или ароила. Примерами перекисей алкила могут служить перекись дикумила, перекись ди-терц-бутила и перекись 2,5-ди-терц-бутилперокси-2,5-диметилгексана. Примерами перекисей ароила являются перекись бензоила, бис/2,4-дихлорбензоила/и бис/4-метилбензоила/.
Изготовляемые согласно изобретению НТУ силиконовые массы имеют следующий преимущественный состав:
100 мас.ч. диоргано/поли/силоксана;
20-100 мас. ч. предпочтительно 30-100 мас.ч. высокодисперсной двуокиси кремния с плотностью после уплотнения более 0,01 кг/л;
не более 100 мас.ч. предпочтительно 60 мас.ч. последующего наполнителя;
не более 30 мас. ч. предпочтительно 20, мас.ч. средств для улучшения структуры;
не более 7мас.ч. предпочтительно 3, мас.ч. средств для образования поперечных связей;
0-30 мас.ч. предпочтительно 0-10 мас.ч. других присадок.
Для всех указанных выше компонентов представляется возможным использование смесей отдельных представителей соответствующих составных частей.
Так, в случае диоргано/поли/силоксанов для многих областей применения особенно хорошо зарекомендовали себя двухкомпонентные пятикомпонентные системы. Примерами такого рода смесей являются:
25-100 мас. ч. полимера или полимеров формулы II, причем R является остатком метила, а R1 остатком винила, n + m находится в пределах от 2000 до 8000, а n/m в пределах от 200 до 8000;
0-50 мас.ч. полимера или полимеров формулы I, причем R и R1 являются остатками метила, n находится в пределах от 2000 до 8000;
0-25 мас. ч. полимера или полимеров формулы II, причем R и R1 являются остатками метила, n + m находится в пределах от 500 до 8000, а n/m в пределах от 3 до 50, с оговоркой, что сумма используемых количеств составляет 100 мас.ч.
Согласно изобретению диоргано/поли/силоксаны и высокодисперсная двуокись кремния и по мере необходимости другие дозируемые компоненты смешиваются, подвергаются гомогенизации и по мере надобности дегазации в осциллирующих одновалковых обратноходовых смесителях I с общей длиной преимущественно (10-30)D (D диаметр шнека), в частности, (12-25)D, причем скорость вращения шнеков составляет преимущественно 5-300 об/мин, в частности 30-300 об/мин. При этом общая длина может использоваться в качестве зоны смешивания, однако она подразделяется преимущественно на зону смешивания и удаления газов, причем зона смешивания и зона удаления газов разделяются, например, решеткой. Разделение обеих зон возможно, однако, также за счет последовательного подключения двух смесителей с использованием обратноходового способа, причем в первом смесителе происходит процесс смешивания, а во втором смесителе - процесс удаления газов.
В этих смесителях с использованием обратноступенчатого способа смешиваемый материал в ходе всего процесса смешивания может поддерживаться на заданном температурном уровне посредством нагрева или охлаждения.
Используемые согласно изобретению диоргано/поли/силоксаны забираются или из подключенного впереди реактора полимеров 2 непрерывного действия, предпочтительно также из смесителя с использованием обратноступенчатого способа, и без дальнейшего промежуточного хранения направляются в зону смешивания одновального смесителя с использованием обратноступенчатого способа, причем поток материалов известен и свободно регулируется на основе дозируемых количеств компонентов реакции в реакторе полимеров, или из сборников, как, например, промежуточных емкостей, и подаются насосом к соответствующим дозирующим устройствам, таким как жидкостные дифференциальные весовые дозаторы, в зону смешивания, предпочтительно на участок не более 4D, в частности не более 2D, одновалкового смесителя с использованием обратноступенчатого способа. Подача диоргано/поли/силоксанов осуществляется предпочтительно с помощью несущего органа, такого как, например, шнековый питатель и/или шестеренчатый насос 3, причем диоргано/поли/силоксан перед поступлением в одновалковый смеситель с использованием обратноступенчатого способа проходит предпочтительно через охладитель полимеров 4, например пластинчатый охладитель. Во избежание падения давления расстояние от несущего органа должно быть при этом максимально малым и не должно превышать предпочтительно 10 м.
По мере необходимости один или несколько диоргано/поли/силоксанов могут подаваться из реакторов полимеров непрерывного действия и/или сборников, как это описано выше, в зону смешивания одновалкового смесителя с использованием обратноступенчатого способа в регулируемом, постоянном во времени потоке массы.
Используемая согласно изобретению двуокись кремния, а также по мере необходимости другие активные или неактивные наполнители, поступают предпочтительно через дифференциальные весовые дозаторы 5 и/или подводящие вспомогательные устройства в зону смешивания одновалкового смесителя с использованием обратноступенчатого способа, предпочтительно на участок (0,5-10)D, в частности (2-8)D. В случае особенно предпочтительных вариантов осуществления изобретения это производится с помощью по крайней мере двух мест дозировки, распределенных на данном участке. В качестве подводящих вспомогательных устройств находят применение цилиндрические или конические емкости со встроенными вращающимися спиралями или шнеками или в качестве альтернативы одновалковые или многовалковые, вращающиеся в одну или в противоположные стороны загрузочные шнеки.
При применении двуокиси кремния, получаемой в результате смачивания высокодисперсной, гидрофильной двуокиси кремния с помощью средства для улучшения структуры, это смачивание осуществляется в быстродействующих смесителях 6 непрерывного или периодического действия.
В зависимости от специфики рецептуры может возникнуть необходимость использования средств для улучшения структуры в зоне смешивания одновалкового пильгерного шнека. Это осуществляется предпочтительно с помощью дозировочных насосов 7, таких как поршневые насосы, мембранные насосы или шестеренчатые насосы с расходомером и контуром регулирования. Дозировка средств для улучшения структуры должна производиться преимущественно на участке дозировки полимеров, то есть предпочтительно на участке (0-4)D, в частности перед дозировкой используемой согласно изобретению двуокиси кремния и в зависимости от обстоятельств других, применяемых наполнителей.
Другим используемым в зависимости от обстоятельств вариантом является подача средства для улучшения структуры непосредственно или частично в зону смешивания или в зону удаления газов непосредственно перед несущим органом, предпочтительно на участок от (5 до 1)D перед несущим органом, одновалкового пильгерного шнека.
В зависимости от специфики рецептуры могут дозироваться и другие присадки. Место подачи и количество не являются при этом критическими факторами, они определяются заданными значениями рецептуры.
Дозируемые в зависимости от специфики рецептуры компоненты смешиваются, подвергаются гомогенизации и дегазации в зоне смешивания и удаления газов. Температурный режим зависит при этом от соответствующей рецептуры. Предпочтительно, если зона смешивания и удаления газов оснащена отдельными контурами дополнительной вытяжки при повышенной температуре. Температура в пределах одновалкового пильгерного шнека составляет предпочтительно 20-280oC, в частности 80-220oC.
Дегазация производится предпочтительно в вакууме. Вакуумирование осуществляется предпочтительно с помощью вакуумных насосов 8, таких как вакуумные водокольцевые насосы, которые по мере необходимости можно комбинировать с ротационными насосами или струйными насосами. Возможна также работа с легким потоком-носителем инертного газа в зоне смешивания и/или зоне удаления газов. В этом случае в качестве инертного газа применяется предпочтительно азот.
После смешивания и удаления газов масса подается к месту разгрузки продукта. В качестве несущего органа используется предпочтительно разгрузочный шнек или разгрузочный насос.
Затем масса поступает предпочтительно на устройство для просеивания, например на фильтрующую головку 9 с автоматическим устройством переключения. Необходимый для этого рост давления создается предпочтительно с помощью экструдеров 10 или шестеренчатых насосов.
Получаемая при этом масса в целях охлаждения до температуры, предпочтительно меньшей или равной 100oC, в частности от 40 до 100oC, подается на вальцовочную машину 11 непрерывного действия, например на экструдер с обрезными валками.
При необходимости в зависимости от специфики рецептуры на этих вальцовочных машинах после охлождения используются средства для сшивки и/или пигменты, и/или другие присадки. Дозировка этих веществ производится преимущественно с помощью дифференциальных весовых дозоторов.
Наконец, охлажденные предпочтительно до 20-90oC массы могут с помощью предпочтительно устройств для создания давления, таких как одновалковые экструдеры с последующей системой формообразования 12, приобретать вид готового к продаже товара.
Хотя это выше определенно не указано, используемые в способе согласно изобретению установки могут включать в себя другие, известные сами по себе компоненты, такие как дозировочные и другие подающие устройства, измерительные и регулировочные устройства, например, для давления, температуры и объемных потоков, вентили, обычные необходимые для удаления газов и охлаждения части, подающие и упаковочные устройства, приспособления для подачи в материал инертного газа, а также приспособления для сушки таких газов.
Вариант осуществления способа согласно изобретению представлен на чертеже, причем указанные там части установки предназначены для того, чтобы дать общее представление. В зависимости от специфики рецептуры для осуществления необходимых дозировок некоторые части, в которых в зависимости от обстоятельств отпадает необходимость, могут, конечно, исключаться или заменяться устройствами аналогичного действия.
Пример. Осцилярующий одновалковый пильгерный смесительный аппарат (тип PP 140, технологическая длина 15D) с помощью шестеренчатого насоса и предназначенного для высоковязких сред дифференциального весового дозатора загружался диорганополисилоксаном.
Полимер характеризуется следующей формулой:
Figure 00000003

Смеситель был нагрет до 150oC, а скорость вращения шнека была установлена на 100 об/мин. После участка предварительного смешивания полимера около 2D на технологической длине еще 2D осуществлялась дозировка высокодисперсной гидрофобной кремневой кислоты с помощью дифференциального весового дозатора порошков. Общее дозирующее количество: 30 кг/ч. Плотность после уплотнения кремневой кислоты составляла 0,30 кг/л. Дозируемая кремневая кислота на участке длиной 11D подвергалась гомогенизации с использованием полимера и затем выдавалась с помощью шестеренчатого насоса. Температура массы (выход пильгерного шнека) в процессе испытания (продолжительность 3 ч) составляла 185oC, она подвергалась лишь незначительным колебаниям в пределах от 183 до 187oC. Продукт характеризовался следующими свойствами (см. табл. 1).
Общая оценка: положительные свойства продукта и беспроблемное протекание процесса.
Сравнительный пример.
Аналогично предыдущему примеру на экструдере со спаренным шнеком (тип Кестерманн, К 86) проводилось сравнительное испытание. Исходные материалы и пропускные количества соответствовали условиям предыдущего примера, идентичными были дозировочные устройства и шестеренчатый насос для подачи продукта. Участок предварительного смешивания полимера составлял около 5D, кремневая кислота подавалась затем в смеситель через участок с технологической длиной около 2D. Последующие 13D предназначались для гомогенизации наполнителя в полимере.
Диаметр шнека: 80 мм, технологическая длина: 20D;
Термообработка корпуса и шнека: 150oC;
Скорость вращения: 40 об/мин.
Температура массы в процессе испытания (продолжительность 3 ч) находилась в пределах 182-194oC с пиковыми значениями до 210oC. Продукт характеризовался следующими свойствами (см. табл. 2):
Общая оценка.
В связи с меняющимися условиями захвата двухвалковой установки наблюдались непосредственные во времени свойства продукта. К тому же оценка сгустков указывает на необходимость значительно большей технологической длины. Потемнение продукта объясняется, вероятно, явлениями износа в двухвальной установке преимущественно в результате трения в витках шнека и на стенке цилиндра.

Claims (8)

1. Способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс, при котором диоргано(поли)силоксан и двуокись кремния, полученную сжиганием и/или осаждением, подают в осциллирующий одновалковый пильгерный смеситель, смешивают и гомогенизируют массу, отличающийся тем, что в осциллирующий однавалковый пильгерный смеситель подают диоргано(поли)силоксан в количестве 100 мас.ч. с вязкостью 50 100000 Па•с и высокодисперсную двуокись кремния в количестве по меньшей мере 20 мас.ч. с плотностью после уплотнения выше 0,01 кг/л.
2. Способ по п.1, отличающийся тем, что вулканизуемая при высоких температурах силиконовая масса имеет вязкость по Муни 15 130.
3. Способ по пп.1 и 2, отличающийся тем, что диоргано(поли)силоксан используют с вязкостью от 500 до 500000 Па•с при температуре 25oС.
4. Способ по пп. 1 3, отличающийся тем, что вулканизуемая при высоких температурах силиконовая масса имеет состав, мас.ч.
Диоргано(поли)силоксан 100
Двуокись кремния тонкоизмельченная с плотностью после уплотнения, превышающей 0,01 кг/л 20 200
Наполнитель Не более 100
Средство для улучшения структуры Не более 30
Средство для образования поперечных связей Не более 7
Другие присадки Не более 30
5. Способ по пп.1 4, отличающийся тем, что осциллирующий одновалковый пильгерный смеситель выполнен общей длиной 10 30 диаметров шнека.
6. Способ по пп.1 5, отличающийся тем, что подачу диоргано(поли)силоксана осуществляют на участке смесителя, ограниченном длиной не более 4 диаметров шнека, а подачу двуокиси кремния осуществляют на участке смесителя, ограниченном длиной, равной 0,5 10 диаметров шнека.
7. Способ по пп.1 6, отличающийся тем, что температуру внутри осциллирующего одновалкового пильгерного смесителя поддерживают в пределах 20 280oС.
8. Способ по пп.1 7, отличающийся тем, что силиконовую массу из осциллирующего одновалкового пильгерного смесителя после повышения давления через устройство просеивания подают на вальцовочную машину непрерывного действия до охлаждения до температуры ниже 100oС.
9. Способ по п.8, отличающийся тем, что средство для образования поперечных связей, и/или пигменты, и/или присадки перерабатывают на вальцовочной машине.
RU9293054013A 1991-02-07 1992-01-16 Способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс RU2091222C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4103602A DE4103602A1 (de) 1991-02-07 1991-02-07 Verfahren zur kontinuierlichen herstellung von htv-siliconmassen
DEP4103602.6 1991-02-07
PCT/EP1992/000080 WO1992013694A1 (de) 1991-02-07 1992-01-16 Verfahren zur kontinuierlichen herstellung von htv-siliconmassen

Publications (2)

Publication Number Publication Date
RU93054013A RU93054013A (ru) 1996-08-20
RU2091222C1 true RU2091222C1 (ru) 1997-09-27

Family

ID=6424500

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9293054013A RU2091222C1 (ru) 1991-02-07 1992-01-16 Способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс

Country Status (11)

Country Link
US (1) US6124392A (ru)
EP (1) EP0570387B1 (ru)
JP (1) JP2531912B2 (ru)
KR (1) KR970000921B1 (ru)
AT (1) ATE115903T1 (ru)
CZ (1) CZ280578B6 (ru)
DE (2) DE4103602A1 (ru)
ES (1) ES2065774T3 (ru)
RU (1) RU2091222C1 (ru)
TW (1) TW229221B (ru)
WO (1) WO1992013694A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552263B2 (en) 1997-06-27 2003-04-22 International Business Machines Corporation Method of injection molded flip chip encapsulation

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215205C1 (de) * 1992-05-08 1994-01-05 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Flüssigsiliconkautschuken
DE4313290A1 (de) * 1993-04-23 1994-10-27 Kempter Werner Verfahren und Vorrichtung zur Herstellung eines vernetzten extrudierten Polymerproduktes
US5676461A (en) * 1996-03-18 1997-10-14 M. A. Hanna Rubber Compounding A Division Of M. A. Hanna Company Oil injection apparatus and method for polymer processing
DE19617606A1 (de) * 1996-05-02 1997-11-06 Wacker Chemie Gmbh Kontinuierliches Verfahren zur Herstellung lagerstabiler Organopolysiloxanzusammensetzungen
DE19809548A1 (de) * 1998-03-05 1999-09-09 Wacker Chemie Gmbh Verfahren zur kontinuierlichen Herstellung von mit Feuchtigkeit vernetzbaren Organopolysiloxanmassen
EP1006164A3 (en) * 1998-11-30 2000-08-09 Dow Corning Toray Silicone Company, Ltd. Silicone rubber base compound for electrical wire coating, silicone composition for electrical wire coating, and process for the production of silicone rubber coated electrical wire
DE19909338A1 (de) * 1999-03-03 2000-09-07 Wacker Chemie Gmbh Verfahren zur kontinuierlichen Herstellung hochviskoser füllstoffhaltiger Siliconmassen
US6414054B1 (en) 1999-12-21 2002-07-02 General Electric Company Continuous preparation of heat-vulcanizable silicone compositions
US6391234B1 (en) 1999-12-21 2002-05-21 General Electric Company Compounding filled silicone compositions
US6548574B1 (en) 1999-12-21 2003-04-15 General Electric Company Heat-vulcanizable silicone compositions from premix
US6388001B1 (en) 1999-12-21 2002-05-14 General Electric Company Compounding filled silicone compositions
EP1110696A3 (en) * 1999-12-21 2001-11-21 General Electric Company Continuous process to prepare silicone compositions
GB2357497A (en) * 1999-12-22 2001-06-27 Degussa Hydrophobic silica
US6491967B1 (en) 2000-10-24 2002-12-10 General Electric Company Plasma spray high throughput screening method and system
US6511217B1 (en) 2000-11-03 2003-01-28 General Electric Company Method and system to compound silicone compositions
GB0122216D0 (en) * 2001-09-14 2001-11-07 Dow Corning Iberica S A Extruder
DE10313941A1 (de) * 2003-03-27 2004-10-14 Wacker-Chemie Gmbh Verfahren zur kontinuierlichen Herstellung von hochviskosen Siliconmassen
GB0402972D0 (en) * 2004-02-11 2004-03-17 Dow Corning Ltd Process for making filled silicone rubber compositions
DE102004019702B4 (de) * 2004-04-20 2007-05-16 Rehau Ag & Co Schlauchmembran aus Silikonelastomer
DE102005019874A1 (de) * 2005-04-28 2006-11-02 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von hochviskosen vernetzbaren Siliconmassen
DE102007024099A1 (de) * 2007-05-22 2008-11-27 Evonik Degussa Gmbh Klebstoffe
DE102008054536A1 (de) 2008-12-11 2010-06-17 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von hochviskosen Siliconmassen
WO2012084055A1 (en) * 2010-12-23 2012-06-28 Prysmian S.P.A. Continuous process for manufacturing a high voltage power cable
DE102011002279A1 (de) * 2011-04-27 2012-10-31 Troester Gmbh & Co. Kg Verfahren und Vorrichtung zur Herstellung einer Kautschukkomponente
DE102015226241A1 (de) 2015-12-21 2017-06-22 Wacker Chemie Ag Verfahren zur Herstellung von Organopolysiloxanzusammensetzungen
EP3755514A4 (en) * 2018-02-20 2021-12-15 Berry Global, Inc. CONTINUOUS COMPOSITION SYSTEMS AND METHODS OF USE
EP4005660A1 (de) * 2020-11-25 2022-06-01 Daw Se Vorrichtung und verfahren zur herstellung einer pigment- und/oder füllstoffdispersion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH466915A (de) * 1968-03-08 1968-12-31 Buss Ag Verfahren zum Behandeln von staub- und pulverförmigen Materialien und Einrichtung zur Ausübung des Verfahrens
CH507733A (de) * 1969-04-02 1971-05-31 Buss Ag Misch- und Kneteinrichtung
CH536655A (de) * 1970-11-20 1973-05-15 Aweta Anstalt Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Gummi-, gummiähnlichen oder Kunststoffmischungen
JPS5392866A (en) * 1977-01-27 1978-08-15 Shin Etsu Chem Co Ltd Thermosetting silicone rubber composition
DE3601324A1 (de) * 1986-01-17 1987-07-23 Wacker Chemie Gmbh Verfahren zur kontinuierlichen herstellung von bei raumtemperatur vulkanisierbaren silikonmassen
FR2602710B1 (fr) * 1986-08-12 1989-02-24 Rhone Poulenc Chimie Procede de preparation en continu de melanges-maitres pour elastomeres silicones vulcanisables a chaud

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка ЕПВ N 0258150, кл. B 29 B 7/48, 1988. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552263B2 (en) 1997-06-27 2003-04-22 International Business Machines Corporation Method of injection molded flip chip encapsulation

Also Published As

Publication number Publication date
CS9200034A3 (en) 1992-08-12
JP2531912B2 (ja) 1996-09-04
ES2065774T3 (es) 1995-02-16
TW229221B (ru) 1994-09-01
KR970000921B1 (ko) 1997-01-21
CZ280578B6 (cs) 1996-02-14
DE59201026D1 (de) 1995-02-02
EP0570387A1 (de) 1993-11-24
JPH06503048A (ja) 1994-04-07
US6124392A (en) 2000-09-26
WO1992013694A1 (de) 1992-08-20
ATE115903T1 (de) 1995-01-15
DE4103602A1 (de) 1992-08-13
EP0570387B1 (de) 1994-12-21

Similar Documents

Publication Publication Date Title
RU2091222C1 (ru) Способ непрерывного получения вулканизуемых при высоких температурах силиконовых масс
EP1792944B1 (en) Continuous preparation of a liquid silicone rubber composition
JP3245258B2 (ja) 加熱硬化型シリコーンゴムコンパウンドの連続的製造方法
US6013701A (en) Method for the continuous manufacturing of silicone rubber composition
US6572253B2 (en) System to compound silicone compositions
JPH10140007A (ja) 高疲労耐久性液状シリコーンゴム組成物の製造方法
KR930003375B1 (ko) 열가황형 실리콘고무 화합물의 연속적 제조방법
US6017996A (en) Method for the continuous manufacturing of silicone rubber composition
US6130272A (en) Process for making powdered base for formulating curable liquid silicone rubber compositions
US6323262B1 (en) Process for the continuous production of highly viscous filler-containing silicone compositions
US7671125B2 (en) Process for the continuous preparation of high-viscosity silicone compositions
JP4155718B2 (ja) 液状シリコーンゴムベースの連続的製造方法および連続的製造装置
CN101039923A (zh) 结晶形态的三聚氰胺氰尿酸酯
KR100521355B1 (ko) 2성분을 부가가교하는 실리콘 조성물의 연속적인 제조방법
US6474971B1 (en) Compounding heat cured rubber compositions
JP2004534861A (ja) 混合方法
US3803084A (en) Process for the production of high-polymer organo-siloxanes
US6001917A (en) Method for preparing heat-curable silicone rubber compounds
CN1274738C (zh) 制备硅橡胶组合物的综合方法
AU617227B2 (en) Spherical, cellular silicone rubber microparticles and method for their preparation
JPS63151407A (ja) 熱可塑性樹脂コンパウンドの製造方法
JP2001139814A (ja) シリコーンゴム組成物およびその製造方法