EP0570387B1 - Verfahren zur kontinuierlichen herstellung von htv-siliconmassen - Google Patents

Verfahren zur kontinuierlichen herstellung von htv-siliconmassen Download PDF

Info

Publication number
EP0570387B1
EP0570387B1 EP92902131A EP92902131A EP0570387B1 EP 0570387 B1 EP0570387 B1 EP 0570387B1 EP 92902131 A EP92902131 A EP 92902131A EP 92902131 A EP92902131 A EP 92902131A EP 0570387 B1 EP0570387 B1 EP 0570387B1
Authority
EP
European Patent Office
Prior art keywords
weight
parts
silicon dioxide
process according
diorgano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92902131A
Other languages
English (en)
French (fr)
Other versions
EP0570387A1 (de
Inventor
Manfred Heisler
Fridolin Stary
Rudolf Ratka
Alois Schlierf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6424500&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0570387(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP0570387A1 publication Critical patent/EP0570387A1/de
Application granted granted Critical
Publication of EP0570387B1 publication Critical patent/EP0570387B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to a process for the continuous production of hot-vulcanizing silicone compositions based on diorgano (poly) siloxanes, which are referred to in the art as (high temperature vulcanizing) HTV silicone compositions.
  • HTV silicone compositions differ in terms of the temperature during the vulcanization process from the (Room Temperature Vulcanizing) RTV silicone compositions. While the HTV silicone compositions only vulcanize at a temperature that is higher than room temperature via a radical reaction or addition reaction, vulcanization takes place with one-component RTV silicone compositions via a condensation reaction with atmospheric moisture, ie water, even at room temperature.
  • One-component RTV silicone compositions have reinforcing fillers in amounts of at most 10% by weight.
  • HTV silicone compositions 100 parts of diorganopolysiloxane rubber being mixed, for example, with at least 20 parts of finely divided silicon dioxide and homogenized.
  • HTV and RTV silicone compositions see also Winnacker, Küchler, Volume 6, Inorganic Technology II, 4th edition, 1982, Carl Hanser Verlag Kunststoff Vienna, pages 842 and 845, J. Bittera, rubber, rubber, plastics , 39th volume No. 1/86 or JC Weis in Progress of Rubber Technology, edited by SH Morell, Elsevier Applied Science Publishers, Ltd., England, 1984 pages 85-106.
  • HTV silicone masses are almost exclusively manufactured discontinuously in kneaders, internal mixers or mixing rolling mills by mixing the feed materials.
  • EP-B-258159 a process for the continuous production of mother mixtures in the form of homogeneous and thick pastes is known in order to later obtain hot-vulcanizable silicone elastomers, an endless twin-screw kneader being charged with a polysiloxane base polymer and a powdery batch.
  • the powdery batch is preferably silicon dioxide with a density above 0.1 kg / l.
  • the object of the invention is to provide a process for the continuous production of HTV silicone compositions which avoids the disadvantages of the prior art.
  • This object is achieved by a process for the continuous production of HTV silicone compositions, characterized in that 100 parts by weight of diorgano (poly) siloxane, the at 25 ° C has a viscosity of 50 to 100,000 Pas, mixed with at least 20 parts by weight of finely divided silicon dioxide, which has a tamped density above 0.01 kg / l, and homogenized.
  • HTV silicone compositions with positive product properties such as homogeneous and transparent appearance, good speck evaluation, constant Mooney viscosity and constant Shore hardness A.
  • HTV silicone compositions which have hitherto been processed batchwise can be processed continuously.
  • An overview of such formulations is given in Chemistry and Technology of Silicones, W. Noll, Academic Press, Inc, Orlando, USA, pages 400 to 407, to which express reference is made in this connection.
  • the HTV silicone compositions can contain other fillers, structure improvers, peroxides and, if appropriate, additives such as hot air stabilizers, flame retardants and pigments.
  • the uncrosslinked HTV silicone compositions obtained preferably have a Mooney viscosity (DIN 53523) of 15 to 130 Mooney units (final Mooney value, ML (1 + 4), 23 ° C.), which results in crosslinking with peroxides and subsequent tempering Elastomers with Shore hardness A (DIN 53505) of preferably 15 to 110, in particular 15 to 95, result.
  • diorgano (poly) siloxanes with a viscosity at 25 ° C. of 50 to 100,000 Pas, preferably 500 to 50,000 Pas, are used.
  • the organo residues in the diorgano (poly) siloxanes used according to the invention are preferably methyl, vinyl, phenyl and / or trifluoroalkyl residues.
  • a preferred trifluoroalkyl radical is the 3,3,3 trifluoropropyl radical. If vinyl and / or phenyl radicals are present in the chains of the diorgano (poly) siloxanes in addition to methyl and / or trifluoroalkyl radicals, a preferred quantitative range for these radicals is 0.001-30 mol%, in particular 0.001-25 mol%.
  • Diorgano (poly) siloxanes which are terminated with trimethyl, dimethylvinyl, methyldivinyl and / or trivinylsiloxy groups are preferably used. For special applications, however, the use of diorgano (poly) siloxanes that are not or only partially stopped is necessary.
  • Preferred diorgano (poly) siloxanes correspond to the general formulas where R is methyl and / or vinyl and R1 is methyl, vinyl and / or hydroxyl and n is within the limits of 500 to 10,000, preferably from 2,000 to 8,000, and n + m are within the limits of 500 to 10,000, preferably from 2,000 to 8,000, with the proviso that the quotient n / m is greater than or equal to 1, preferably within the limits of 3 to 10,000.
  • the diorgano (poly) siloxanes can, in addition to units of the formula R2SiO, up to 0.05 mol%, preferably less than 0.02 mol%, of other, mostly more or less difficult to avoid impurities, current units of the formula SiO 4 / 2 and RSiO 3/2 contain, where R is an organo, mostly methyl, ethyl, vinyl, phenyl and / or trifluoroalkyl.
  • finely divided silicon dioxide has a tamped density (ISO 787/11) above 0.01 kg / l, preferably in the range from 0.02 to 0.4 kg / l.
  • finely divided silicon dioxide are pyrogenic and / or precipitated silicon dioxide, which can be rendered hydrophobic by treatment, for example with organosilanes, -silazanes or -siloxanes, or by etherification of hydroxyl groups to give alkoxy groups.
  • a preferred water repellent for this process consists of 70 to 89% by weight of hexamethyldisiloxane and / or trimethylsilanol, 10 to 30 wt .-% hexamethyldisilazane and / or divinyltetramethyldisilazane and 1 to 5% by weight of water, the details in% by weight relating to the total weight of the water repellent.
  • Equally advantageous can be a wetting and densification of finely divided, hydrophilic silicon dioxide, the tamped density of which is less than 0.1 kg / l, with diorgano (poly) siloxane and / or low-viscosity polymethylsiloxane diol, as hereinafter referred to as diorgano (poly) siloxane and / or structure improver described, on tamped densities of preferably 0.03-0.5 kg / l.
  • the wetting and resulting increase in the tamped density of finely divided silicon dioxide is carried out with preferably 30 to 100%, in particular 50 to 100%, of the parts by weight of structure improvers present in the composition of the HTV silicone compositions prepared according to the invention.
  • the temperature here is preferably less than 180 ° C., in particular 10 to 120 ° C.
  • hydrophobic silicon dioxide preferably hydrophobic silicon dioxide with a carbon content of more than 1% by weight, based on the total weight of hydrophobic silicon dioxide, in particular from 2 to 8% by weight, and tamped densities of greater than 0.05 kg / l, in particular 0.2 to 0.4 kg / l, used.
  • reinforcing fillers to be used with a BET surface area (DIN 66131) of preferably more than 50 m2 / g are finely divided hydrophilic or hydrophobic silicon dioxide with a tamped density of less than 0.1 kg / l, preferably 0.01-0. 09 kg / l, furnace black and acetylene black. Preferred amounts of these substances are 0 to 60 parts by weight.
  • Non-reinforcing fillers such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, zeolites, metal oxide powders such as aluminum, titanium, iron or zinc oxide, barium silicate, barium sulfate, calcium carbonate, gypsum and plastic powders such as polyacrylonitrile powder can also be used.
  • Other fillers are fibrous components such as glass fibers and plastic fibers. The BET surface area of these fillers is usually less than 50 m2 / g.
  • these are preferably polydimethylsiloxane diols with a viscosity at 25 ° C. of preferably 10 to 200 mPas, in particular 20 to 150 mPas. They can contain phenyl groups and, in particular to influence the hardness of the vulcanizate, vinyl groups can also be present in the chain of these polydimethylsiloxane diols, the vinyl group density being recorded via the iodine number (DIN 53241).
  • the iodine number is preferably 1 to 75 g iodine per 100 g siloxane diol, in particular 7 to 70 g per 100 g.
  • pigments and crosslinkers are also preferably incorporated from the group of alkyl or aroyl peroxides.
  • alkyl peroxides are dicumyl peroxide, di-tert-butyl peroxide and 2,5-di-tert-butyl peroxy-2,5-dimethylhexane.
  • aroyl peroxides are benzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide and bis (4-methylbenzoyl) peroxide.
  • compositions of the HTV silicone compositions prepared according to the invention are as follows: 100 parts by weight of diorgano (poly) siloxane 20 to 200, preferably 30 to 100, parts by weight of finely divided silicon dioxide with a tamped density above 0.01 kg / l 0 to 100, preferably 0 to 60 parts by weight of further filler 0 to 30, preferably 0 to 20, parts by weight of structure improver 0 to 7, preferably 0 to 3, parts by weight of crosslinking agent 0 to 30, preferably 0 to 10, parts by weight of other additives
  • diorgano (poly) siloxane 20 to 200 preferably 30 to 100
  • parts by weight of finely divided silicon dioxide with a tamped density above 0.01 kg / l 0 to 100 preferably 0 to 60 parts by weight of further filler 0 to 30, preferably 0 to 20, parts by weight of structure improver 0 to 7, preferably 0 to 3, parts by weight of crosslinking agent 0 to 30, preferably 0 to 10, parts by weight of other
  • two- to five-component systems have proven their worth in many applications for diorgano (poly) siloxanes.
  • examples of such mixtures are 25-100 parts by weight of polymer or polymers of the formula II, where R is methyl and R1 are vinyl radicals, and n + m are within the limits of 2000 to 8000 and n / m are within the limits of 200 to 8000, 0 - 50 parts by weight of polymer or polymers of formula I, where R and R1 are methyl radicals, and n is within the limits of 2000 to 8000 and 0-25 parts by weight of polymer or polymers of formula II, where R and R1 are methyl radicals and n + m are within the limits of 500 to 8000 and n / m are within the limits of 3 to 50, with the proviso that the sum of the used Amounts are 100 parts by weight.
  • the entire length can be used here as a mixing zone, but is preferably divided into a mixing and a degassing zone, the mixing and degassing zone being separated, for example, by a baffle plate.
  • the separation of the two zones is, however, also by two successive kneaders connected in series possible, the mixing process taking place in the first kneader and the degassing process taking place in the second kneader.
  • Such vocational kneaders are also known in the art as kneaders (Ullmann's Encyclopedia of Industrial Chemistry, 4th Edition, Volume 2, page 296, Verlag Chemie, Weinheim / Bergstrasse B.R. Germany) or as Buss kneaders (Buss kneader).
  • the mix can be kept at a predetermined temperature level during the entire mixing process by heating or cooling.
  • the diorgano (poly) siloxanes used according to the invention are either removed from an upstream, continuous polymer reactor (2), preferably likewise a mit step kneader, and fed to the mixing zone of the single-shaft vocational step kneader without further intermediate storage, the material flow being known and free due to the metered amounts of the reaction components in the polymer reactor is adjustable, or pumped from storage containers, such as intermediate tanks, and suitable metering devices, such as liquid differential dosing scales, into the mixing zone, preferably in the range of 0-4D, in particular 0-2D, of the single-shaft mit step kneader.
  • the diorgano (poly) siloxanes are preferably fed from the polymer reactor using a conveying element such as, for example, a discharge screw and / or a gear pump (3), the diorgano (poly) siloxane preferably entering via a polymer cooler (4) before entering the single-shaft pilger kneader, such as a plate cooler.
  • a conveying element such as, for example, a discharge screw and / or a gear pump (3)
  • the diorgano (poly) siloxane preferably entering via a polymer cooler (4) before entering the single-shaft pilger kneader, such as a plate cooler.
  • the distance from the conveyor element should be as small as possible and preferably not exceed 10 m.
  • one or more diorgano (poly) siloxanes from continuous polymer reactors and / or storage containers, as described above, can be fed to the mixing zone of the single-shaft vocational step kneader in a controlled, time-constant mass flow.
  • the silicon dioxide used according to the invention and, if appropriate, further reinforcing or non-reinforcing fillers are preferably introduced into the mixing zone of the single-shaft pilger step kneader, preferably in the range from 0.5 to 10D, in particular 2-8D, via differential metering scales (5) and / or inlet aids. In particularly preferred embodiments, this takes place via at least two metering points distributed over this area. Cylindrical or conical vessels with built-in rotating helixes or screws are considered as entry aids, or alternatively single or multiple-shaft entry screws rotating in the same or opposite directions.
  • silicon dioxide is used, which results from the wetting of finely divided, hydrophilic silicon dioxide with structure improvers, this wetting takes place in continuous or discontinuous high-speed mixers (6).
  • metering pumps (7) such as piston pumps, diaphragm pumps or gear pumps, with a flow meter and control circuit.
  • the structure improver metering should preferably take place in the area of the polymer metering point, preferably in the range 0-4D, in particular before metering in the silicon dioxide used according to the invention and, if appropriate, other fillers used.
  • Another variant which may be used is the feeding of the structural improver in whole or in part into the mixing zone or into the degassing zone shortly before the discharge element, preferably in the range from 5 to 1D before the discharge element, of the single-shaft vocational step kneader.
  • additives can be added.
  • the place of addition and the quantity are not critical, they are based on the requirements of the recipe.
  • the recipe-specific dosed components are mixed, homogenized and degassed in the mixing and degassing zone.
  • the temperature control depends on the respective recipe. It is advantageous if the mixing and degassing zones are equipped with separate temperature control circuits.
  • the temperature within the single-shaft pilger kneader is preferably 20 to 280 ° C, in particular 80 to 220 ° C.
  • the degassing is preferably carried out in a vacuum.
  • the evacuation is preferably carried out with the aid of vacuum pumps (8) such as water ring pumps, optionally combined with rotary lobe pumps or jet pumps. It is also possible to work with a slight inert gas drag flow in the mixing and / or degassing zone. Nitrogen is then preferably used as the inert gas.
  • a discharge screw or a discharge pump is preferably used as the discharge element.
  • the mass is then preferably fed to a screening device, for example a screening head (9) with an automatic changing device.
  • a screening device for example a screening head (9) with an automatic changing device.
  • the pressure build-up required for this is preferably carried out using extruders (10) or gear pumps.
  • the resulting mass is preferably fed to a continuous rolling system (11), such as a shear roller extruder, for cooling to temperatures of preferably less than or equal to 100 ° C., in particular 40 to 100 ° C.
  • a continuous rolling system such as a shear roller extruder
  • crosslinking agents and / or pigments and / or other additives are incorporated into these rolling mills after cooling. These substances are preferably metered using differential weighers.
  • the masses which are preferably cooled to 20 to 90 ° C., can finally be converted into ready-to-sell goods using pressure build-up machines, such as a single-shaft extruder, with subsequent shaping (12).
  • systems used in the method according to the invention can contain further components known per se, such as metering and other conveying devices, measuring and control devices, for example for pressure, temperature and volume flows, valves, customary parts required for degassing and cooling, Conveying and packaging equipment, devices for charging the goods with inert gas, and devices for drying such gases.
  • metering and other conveying devices for example for pressure, temperature and volume flows, valves, customary parts required for degassing and cooling, Conveying and packaging equipment, devices for charging the goods with inert gas, and devices for drying such gases.
  • An oscillating single-shaft pilger kneader (type PR 140, process length 15D) was fed with diorganopolysiloxane via a gear pump and a differential dosing weigher suitable for highly viscous media.
  • the polymer is characterized by the following formula: The kneader was heated to 150 ° C. and the speed of the screw was set to 100 rpm. After a premixing section for the polymer of approximately 2 D, finely divided hydrophobic silica was metered in over a process length of a further 2 D using a powder differential metering scale. Total dosage: 30 kg / h. The tamped density of the silica is 0.30 kg / l.
  • the metered silica was homogenized with the polymer via 11 D and then discharged via a gear pump.
  • the melt temperature (exit from the vocational kneader) was 185 ° C during the test (duration: 3 h), it was only subject to slight fluctuations in the range of 183-187 ° C.
  • the product could be characterized by the following properties. Sample after 1 hour 2 hours 3 hours Appearance homogeneous and transparent Speck assessment Good Good Good Mooney viscosity DIN 53523 38 39 37 Shore hardness A * DIN 53505 48 49 48 * After vulcanization at 165 ° C (15 min) and subsequent tempering at 200 ° C (4 h).
  • Crosslinker dicumyl peroxide
  • the product can be characterized by the following properties. Sample after 1 hour 2 hours 3 hours Appearance homogeneous / transparent slight darkening not entirely homogeneous / transparent homogeneous / transparent darkening Speck assessment medium medium medium / bad Mooney viscosity, DIN 53523 in ML (1 + 4), 23 ° C 35 40 37 Shore hardness A, DIN 53505 47 50 47 * After vulcanization at 165 ° C (15 min) and subsequent tempering at 200 ° C (4 h). Crosslinker: dicumyl peroxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von heißvulkanisierenden Siliconmassen auf der Basis von Diorgano(poly)siloxanen, die in der Fachwelt, als (High Temperature Vulcanizing) HTV-Siliconmassen bezeichnet werden. Diese HTV-Siliconmassen unterscheiden sich hinsichtlich der Temperatur während des Vulkanisierungsvorgangs von den (Room Temperature Vulcanizing) RTV-Siliconmassen. Während die HTV-Siliconmassen erst bei gegenüber Raumtemperatur erhöhter Temperatur über eine Radikalreaktion bzw. Additionsreaktion vulkanisieren, erfolgt die Vulkanisation bei Einkomponenten-RTV-Siliconmassen über eine Kondensationsreaktion mit Luftfeuchtigkeit, d.h. Wasser, bereits bei Raumtemperatur. Einkomponenten-RTV-Siliconmassen weisen verstärkende Füllstoffe in Mengen von maximal 10 Gew.-% auf. Demgegenüber ist der Gehalt an verstärkendem Füllstoff bei HTV-Siliconmassen zumindest 20 Gew.-%. US-A-4,164,491 offenbart ein Verfahren zur Herstellung von HTV-Siliconmassen, wobei 100 Teile Diorganopolysiloxan Kautschuk z.B. mit zumindest 20 Teilen feinteiligem Siliciumdioxid vermischt und homogenisiert werden. Zur Unterscheidung zwischen HTV-und RTV-Siliconmassen sei beispielsweise auch auf Winnacker, Küchler, Band 6, Anorganische Technologie II, 4. Auflage, 1982, Carl Hanser Verlag München Wien, Seiten 842 und 845, J. Bittera, Kautschuk, Gummi, Kunststoffe, 39. Jahrgang Nr. 1/86 oder J.C. Weis in Progress of Rubber Technology, edited by S.H. Morell, Elsevier Applied Science Publishers, Ltd., England, 1984 Seiten 85 - 106 verwiesen.
  • Gemäß der EP-A-234226 bzw. der entsprechenden US-4737561 ist ein Verfahren zur kontinuierlichen Herstellung von Einkomponenten-RTV-Siliconmassen bekannt, bei dem man in einem ersten Schritt zu vernetzendes Diorgano(poly)siloxan, Füllstoff(e) und eventuell entweder Katalysator(en) oder Vernetzer und eventuell einen Teil oder alle gegebenenfalls zu verwendenden Hilfsstoffe in einem kontinuierlich arbeitenden geschlossenen Mischer vereinigt und in einem zweiten Schritt in einem oszillierenden Pilgerschrittkneter der so erhaltenen Masse die nicht im ersten Schritt zugegebenen Vernetzer und/oder Katalysator(en) sowie den Rest der gegebenenfalls zu verwendenden Hilfsstoffe zudosiert und die Masse in diesem Kneter homogenisiert und entgast.
  • HTV-Siliconmassen unterscheiden sich vor allem in folgenden Punkten von RTV-Siliconmassen:
    • wesentlich höheres Viskositätsniveau der eingesetzten Polymere bei HTV-Massen
    • unterschiedliche Vernetzungsart:
      HTV:
      Peroxide
      RTV:
      trifunkionelle Silane
    • unterschiedliche Strukturverbesserer:
      HTV:
      Siloxandiole
      RTV:
      Siliconöle
    • Konsistenz der erhaltenen Massen:
      HTV:
      Festkautschuk
      RTV:
      pastös
    Diese unterschiedliche Konsistenz ist schon aus den unterschiedlichen Methoden zur Viskositätsmessung ersichtlich. So werden bei HTV-Massen die in der kautschukverarbeitenden Industrie gebräuchlichen Mooney-Viskosimeter eingesetzt, wogegen bei RTV-Massen Rotationsviskosimeter und Auspreßgeräte verwendet werden.
  • Deshalb werden HTV-Siliconmassen nach derzeitigem Stand der Technik fast ausschließlich diskontinuierlich in Knetern, Innenmischern oder Mischwalzwerken durch Vermischen der Einsatzstoffe hergestellt.
  • Gemäß der EP-B-258159 ist ein Verfahren zur kontinuierlichen Herstellung von Muttermischungen in Form homogener und dicker Pasten bekannt, um später heißvulkanisierbare Silicon-Elastomere zu erhalten, wobei ein Endlos-Doppelschneckenkneter mit einem Polysiloxanbasispolymer und einer pulverigen Charge beschickt wird. Vorzugsweise ist die pulverige Charge Siliciumdioxid mit einer Dichte oberhalb 0,1 kg/l.
  • Nachteiligerweise resultieren bei diesem Verfahren wegen des wechselnden Einzugsverhaltens zeitlich nicht konstante Produkteigenschaften. Um eine positive Stippenbeurteilung zu erreichen, sind lange Mischzonen nötig, was zwangsläufig zu erhöhtem apparativem Aufwand und erhöhten Verweildauern führt. Außerdem besteht die Gefahr eines großen Maschinen-verschleisses und einer Produktverunreinigung durch Metallabrieb.
  • Aufgabe der Erfindung ist es, ein Verfahren zur kontinuierlichen Herstellung von HTV-Siliconmassen bereitzustellen, das die Nachteile des Standes der Technik vermeidet.
  • Gelöst wird diese Aufgabe durch ein Verfahren zur kontinuierlichen Herstellung von HTV-Siliconmassen, dadurch gekennzeichnet, daß in einem oszillierenden Einwellenpilgerschrittkneter 100 Gewichtsteile Diorgano(poly)siloxan, das bei 25° C eine Viskosität von 50 bis 100 000 Pas aufweist, mit zumindest 20 Gewichtsteilen feinteiligem Siliciumdioxid, das eine Stampfdichte oberhalb 0,01 kg/l aufweist, vermischt und homogenisiert werden.
  • Gemäß dem erfindungsgemäßen Verfahren ist es möglich HTV-Siliconmassen mit positiven Produkteigenschaften wie homogenes und transparentes Aussehen, guter Stippenbeurteilung, konstanter Mooneyviskosität und konstanter Shore Härte A zu erhalten.
  • Im erfindungsgemäßen Verfahren können alle diejenigen Rezepturen für HTV-Siliconmassen, die bisher diskontinuierlich verarbeitet wurden kontinuierlich verarbeitet werden. Eine Übersicht derartiger Rezepturen ist in Chemistry and Technology of Silicones, W. Noll, Academic Press, Inc, Orlando, USA, Seiten 400 bis 407 gegeben, worauf in diesem Zusammenhang ausdrücklich verwiesen wird.
    Die HTV-Siliconmassen können neben Diorgano(poly)siloxanen und feinteiligem Siliciumdioxid weitere Füllstoffe, Strukturverbesserer, Peroxide und ggf. Additive, wie beispielsweise Heißluftstabilisatoren, Flammschutzmittel und Pigmente, enthalten.
  • Die erhaltenen, unvernetzten HTV-Siliconmassen weisen vorzugsweise eine Mooney-Viskosität (DIN 53523) von 15 bis 130 Mooney-Einheiten (Mooney-Endwert, ML (1+4), 23° C) auf, woraus nach Vernetzung mit Peroxiden und anschließender Temperung Elastomere der Shore-Härte A (DIN 53505) von vorzugsweise 15 bis 110, insbesondere 15 bis 95 resultieren.
  • Erfindungsgemäß werden Diorgano(poly)siloxane mit einer Viskosität bei 25 °C von 50 bis 100 000 Pas, vorzugsweise 500 bis 50000 Pas verwendet.
  • Die Organoreste in den erfindungsgemäß eingesetzten Diorgano(poly)siloxanen sind vorzugsweise Methyl-, Vinyl-, Phenyl- und/oder Trifluoralkylreste. Ein bevorzugter Trifluoralkylrest ist der 3,3,3 Trifluorpropylrest. Sind in den Ketten der Diorgano(poly)siloxane neben Metyhl- und/oder Trifluoralkylresten Vinyl- und/oder Phenylreste vorhanden, so ist ein bevorzugter Mengenbereich für diese Reste 0,001 - 30 Mol-%, insbesondere 0,001 - 25 Mol-%.
  • Vorzugsweise werden mit Trimethyl-, Dimethylvinyl-, Methyldivinyl- und/oder Trivinylsiloxygruppen endgestopperte Diorgano(poly)siloxane eingesetzt. Für spezielle Anwendungen ist jedoch auch der Einsatz von nicht oder nur partiell gestopperten Diorgano(poly)siloxanen nötig.
  • Bevorzugte Diorgano(poly)siloxane entsprechen den allgemeinen Formeln
    Figure imgb0001

    wobei R Methyl- und/oder Vinylrest und R¹ Methyl-, Vinyl- und/oder Hydroxylrest bedeuten und n innerhalb der Grenzen von 500 bis 10000, vorzugsweise von 2000 bis 8000, und n + m innerhalb der Grenzen von 500 bis 10000, vorzugsweise von 2000 bis 8000, liegen, mit der Maßgabe, daß der Quotient n/m größer oder gleich 1, vorzugsweise innerhalb der Grenzen von 3 bis 10000, ist.
  • Obwohl oben nicht angegeben, können die Diorgano(poly)siloxane neben Einheiten der Formel R₂SiO bis zu 0,05 Mol%, vorzugsweise weniger als 0,02 Mol%, andere, zumeist als mehr oder weniger schwer vermeidbare Verunreinigungen gegenwärtige Einheiten der Formel SiO4/2 und RSiO3/2 enthalten, wobei R ein Organorest, zumeist Methyl-, Ethyl-, Vinyl-, Phenyl- und/oder Trifluoralkylrest ist.
  • Die Herstellung dieser erfindungsgemäß verwendeten Diorgano(poly)siloxane ist allgemein bekannt. Eine Übersicht gebräuchlicher Herstellungsverfahren ist in Polymerreaktionen und reaktives Aufarbeiten in kontinuierlichen Maschinen VDI-Verlag GmbH, Düsseldorf 1988 auf den Seiten 211-224 gegeben.
  • Erfindungsgemäß feinteiliges Siliciumdioxid weist eine Stampfdichte (ISO 787/11) oberhalb 0,01 kg/l, vorzugsweise im Bereich von 0,02 bis 0,4 kg/l auf. Beispiele für feinteiliges Siliciumdioxid sind pyrogenes und/oder gefälltes Siliciumdioxid, die durch Behandlung beispielsweise mit Organosilanen, -silazanen oder -siloxanen oder durch Veretherung von Hydroxylgruppen zu Alkoxygruppen hydrophobiert sein können.
  • Besonders günstiges Einarbeitungsverhalten zeigt feinteiliges Siliciumdioxid, das gemäß der EP-A-0378785, auf die in diesem Zusammenhang ausdrücklich verwiesen wird, hergestellt wird. Hierbei handelt es sich um ein Verfahren zur Hydrophobierung von Si-OH-Gruppen enthaltendem Feststoff, dessen Stampfdichte zumeist kleiner als 0,1 kg/l ist, durch Umsetzung eines Hydrophobierungsmittels auf Basis von Organosiliciumverbindungen mit Si-OH-Gruppen enthaltendem, teilchenförmigem Feststoff unter gleichzeitiger mechanischer Beanspruchung des Reaktionsgemisches, das dadurch gekennzeichnet ist, daß 5 bis 50 Gew.-% des Si-OH-Gruppen enthaltenden, teilchenförmigen Feststoffes, bezogen auf das Gesamtgewicht der Reaktionsmischung, bestehend aus teilchenförmigem Feststoff und Hydrophobierungsmittel, eingesetzt werden. Ein bevorzugtes Hydrophobierungsmittel für dieses Verfahren besteht aus
       70 bis 89 Gew.-% Hexamethyldisiloxan und/oder Trimethylsilanol,
       10 bis 30 Gew.-% Hexamethyldisilazan und/oder Divinyltetramethyldisilazan und
       1 bis 5 Gew.-% Wasser, wobei sich die Angaben in Gew.-% auf das Gesamtgewicht des Hydrophobierungsmittels beziehen.
  • Gleichermaßen von Vorteil kann eine Benetzung und Verdichtung von feinteiligem, hydrophilem Siliciumdioxid, dessen Stampfdichte kleiner als 0,1 kg/l ist, mit Diorgano(poly)siloxan und/oder niederviskosem Polymethylsiloxandiol, wie nachfolgend als Diorgano(poly)siloxan und/oder Strukturverbesserer beschrieben, auf Stampfdichten von vorzugsweise 0,03-0,5 kg/l, sein. Die Benetzung und daraus resultierende Erhöhung der Stampfdichte von feinteiligem Siliciumdioxid wird mit vorzugsweise 30 bis 100 %, insbesondere 50 bis 100 %, der in der Zusammensetzung der erfindungsgemäß hergestellten HTV-Siliconmassen vorhandenen Gewichtsteile, Strukturverbesserer vorgenommen. Die Temperatur ist hierbei vorzugsweise kleiner als 180C, insbesondere 10 bis 120°C.
  • Erfordert die Rezeptur den Einsatz von hydrophobem Siliciumdioxid, wird vorzugsweise hydrophobes Siliciumdioxid mit einem Kohlenstoffgehalt von mehr als 1 Gew.-%, bezogen auf das Gesamtgewicht hydrophoben Siliciumdioxids, insbesondere von 2 bis 8 Gew.-%, und Stampfdichten von größer als 0,05 kg/l, insbesondere 0,2 bis 0,4 kg/l, verwendet.
  • Weitere Beispiele für zu verwendende verstärkende Füllstoffe mit einer BET-Oberfläche (DIN 66131) von vorzugsweise mehr als 50 m²/g, sind feinteiliges hydrophiles oder hydrophobes Siliciumdioxid mit einer Stampfdichte kleiner als 0,1 kg/l, vorzugsweise 0,01 - 0,09 kg/l, Furnace-Ruß und Acetylen-Ruß. Bevorzugte Mengen dieser Stoffe sind 0 bis 60 Gewichtsteile.
  • Weiter können nicht verstärkende Füllstoffe wie Quarz, Diatomeenerde, Calciumsilikat, Zirkonsilikat, Zeolithe, Metalloxidpulver, wie Aluminium-, Titan-, Eisen-, oder Zinkoxid, Bariumsilikat, Bariumsulfat, Calciumcarbonat, Gips, und Kunststoffpulver wie Polyacrylnitrilpulver verwendet werden. Weitere Füllstoffe sind faserige Komponenten, wie Glasfasern und Kunststoffasern. Die BET-Oberfläche dieser Füllstoffe liegt in der Regel unter 50 m²/g.
  • Werden Strukturverbesserer eingesetzt, so sind dies vorzugsweise Polydimethylsiloxandiole mit einer Viskosität bei 25 °C von vorzugsweise 10 bis 200 mPas, insbesondere 20 bis 150 mPas. Sie können Phenylgruppen enthalten und insbesondere zur Beeinflussung der Härte des Vulkanisats können auch Vinylgruppen in der Kette dieser Polydimethylsiloxandiole vorhanden sein, wobei die Vinylgruppendichte über die Jodzahl (DIN 53241) erfaßt wird. Die Jodzahl beträgt vorzugsweise 1 bis 75 g Jod pro 100 g Siloxandiol, insbesondere 7 bis 70 g pro 100 g.
  • Die Herstellung dieser Polydimethylsiloxandiole ist allgemein bekannt und beispielsweise in A. Tomanek, Silicone und Technik, Hanser Verlag auf den Seiten 20 bis 22 beschrieben.
  • Falls erforderlich, werden auch Pigmente und Vernetzer vorzugsweise aus der Gruppe der Alkyl- bzw. Aroylperoxide eingearbeitet. Beispiele für Alkylperoxide sind Dicumylperoxid, Di-tert.-butylperoxid und 2,5-Di-tert.-butylperoxy-2,5-dimethylhexan. Beispiele für Aroylperoxide sind Benzoylperoxid, Bis(2.4-dichlorbenzoyl)peroxid und Bis(4-methylbenzoyl)peroxid.
  • Bevorzugte Zusammensetzungen der erfindungsgemäß hergestellten HTV-Siliconmassen sind wie folgt:
    100 Gewichtsteile Diorgano(poly)siloxan
    20 bis 200, vorzugsweise 30 bis 100, Gewichtsteile feinteiliges Siliciumdioxid mit einer Stampfdichte oberhalb 0,01 kg/l
    0 bis 100, vorzugsweise 0 bis 60, Gewichtsteile weiterer Füllstoff
    0 bis 30, vorzugsweise 0 bis 20, Gewichtsteile Strukturverbesserer
    0 bis 7, vorzugsweise 0 bis 3, Gewichtsteile Vernetzer
    0 bis 30, vorzugsweise 0 bis 10, Gewichtsteile weitere Additive
    Für sämtliche oben genannte Bestandteile ist es möglich, Gemische von Einzelvertretern der jeweiligen Bestandteile zu verwenden.
    So haben sich bei den Diorgano(poly)siloxanen für viele Anwendungen Zwei- bis Fünfkomponentensysteme besonders bewährt. Beispiele derartiger Gemische sind
    25 - 100 Gewichtsteile Polymer oder Polymere der Formel II, wobei R Methyl- und R¹ Vinylreste sind, sowie n + m innerhalb der Grenzen von 2000 bis 8000 und n/m innerhalb der Grenzen von 200 bis 8000 liegen,
    0 - 50 Gewichtsteile Polymer oder Polymere der Formel I, wobei R und R¹ Methylreste sind, sowie n innerhalb der Grenzen von 2000 bis 8000 liegt und
    0 - 25 Gewichtsteile Polymer oder Polymere der Formel II, wobei R und R¹ Methylreste sind sowie n + m innerhalb der Grenzen von 500 bis 8000 und n/m innerhalb der Grenzen von 3 bis 50 liegen, mit der Maßgabe, daß die Summe der eingesetzten Mengen 100 Gewichtsteile beträgt.
  • Erfindungsgemäß werden Diorgano(poly)siloxane und feinteiliges Siliciumdioxid und gegebenenfalls weitere zu dosierende Komponenten in oszillierenden Einwellenpilgerschrittknetern (1) mit einer Gesamtlänge von vorzugsweise 10 bis 30 D (D = Schneckendurchmesser), insbesondere 12 bis 25 D, vermischt, homogenisiert und gegebenenfalls entgast, wobei die Drehzahl der Schnecken vorzugsweise 5-300 UpM, insbesondere 30 bis 300 UpM ist. Hierbei kann die Gesamtlänge als Mischzone verwendet werden, vorzugsweise gliedert sich diese jedoch in eine Misch- und eine Entgasungszone, wobei die Misch- und Entgasungszone beispielsweise durch eine Stauscheibe getrennt sind. Die Trennung der beiden Zonen ist jedoch auch durch zwei hintereinander geschaltete Pilgerschrittkneter möglich, wobei im ersten Kneter der Mischvorgang und im zweiten Kneter der Entgasungsvorgang stattfindet.
  • Derartige Pilgerschrittkneter sind in der Fachwelt auch als KO-Kneter (Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 2, Seite 296, Verlag Chemie, Weinheim/Bergstraße B.R.Deutschland) oder als Buss-Kneter (Buss-Kneader) bekannt. In diesen Pilgerschrittknetern kann das Mischgut während des gesamten Mischvorgangs durch Heizung oder Kühlung auf einem vorgegebenen Temperaturniveau gehalten werden.
  • Die erfindungsgemäß eingesetzten Diorgano(poly)siloxane werden entweder aus einem vorgeschalteten, kontinuierlichen Polymerreaktor (2), vorzugsweise ebenfalls einem Pilgerschrittkneter, entnommen und ohne weitere Zwischenlagerung der Mischzone des Einwellenpilgerschrittkneters zugeführt, wobei der Stoffstrom auf Grund der Dosiermengen der Reaktionskomponenten im Polymerreaktor bekannt und frei einstellbar ist, oder aus Vorratsbehältern, wie beispielsweise Zwischentanks, und geeigneten Dosiervorrichtungen, wie Flüssigkeitsdifferentialdosierwaagen, in die Mischzone vorzugsweise im Bereich von 0-4D, insbesondere 0-2D, des Einwellenpilgerschrittkneters gepumpt. Die Zuführung der Diorgano(poly)siloxane aus dem Polymerreaktor erfolgt vorzugsweise mit einem Förderorgan wie beispielsweise einer Austragsschnecke und/oder einer Zahnradpumpe (3), wobei das Diorgano(poly)siloxan vor dem Eintritt in den Einwellenpilgerschrittkneter vorzugsweise über einen Polymerkühler (4), wie beispielsweise einem Plattenkühler, geführt wird. Zur Vermeidung von Druckverlusten sollte hierbei der Abstand vom Förderorgan möglichst gering sein und vorzugsweise 10 m nicht übersteigen.
  • Falls erforderlich, können ein oder mehrere Diorgano(poly)siloxane aus kontinuierlichen Polymerreaktoren und/oder Vorratsbehältern, wie oben beschrieben, der Mischzone des Einwellenpilgerschrittkneters in einem geregelten zeitkonstanten Massenstrom zugeführt werden.
  • Das erfindungsgemäß verwendete Siliciumdioxid sowie gegebenenfalls weitere verstärkende oder nicht verstärkende Füllstoffe werden vorzugsweise über Differentialdosierwaagen (5) und/oder Einlaufhilfen in die Mischzone des Einwellenpilgerschrittkneters, vorzugsweise im Bereich von 0,5 bis 10D, insbesondere 2-8D, gegeben. Bei besonders bevorzugten Ausführungsformen erfolgt dies über zumindest zwei über diesen Bereich verteilte Dosierstellen. Als Einlaufhilfen kommen zylindrische oder konische Gefäße mit eingebauten rotierenden Wendeln oder Schnecken in Frage bzw. alternativ dazu ein- oder mehrwellige gleich- oder gegensinnig drehende Einlaufschnecken.
  • Wird Siliciumdioxid verwendet, das aus der Benetzung von feinteiligem, hydrophilem Siliciumdioxid mit Strukturverbesserer resultiert, so erfolgt diese Benetzung in kontinuierlichen oder diskontinuierlichen Schnellmischern (6).
  • Rezepturspezifisch kann die Einarbeitung von Strukturverbesserern in der Mischzone des Einwellenpilgerschrittkneters erforderlich sein. Dies erfolgt vorzugsweise über Dosierpumpen (7), wie Kolbenpumpen, Membranpumpen oder Zahnradpumpen, mit Durchflußmesser und Regelkreis. Vorzugsweise sollte die Strukturverbessererdosierung im Bereich der Polymerdosierstelle, vorzugsweise also im Bereich von 0-4D, erfolgen, insbesondere vor der Dosierung des erfindungsgemäß eingesetzten Siliciumdioxids und gegebenenfalls weiterer, verwendeter Füllstoffe.
  • Eine weitere gegebenenfalls angewandte Variante ist die Einspeisung des Strukturverbesserers ganz oder teilweise in die Mischzone bzw. in die Entgasungszone kurz vor dem Austragsorgan, vorzugsweise im Bereich von 5 bis 1D vor dem Austragsorgan, des Einwellenpilgerschrittkneters.
  • Rezepturspezifisch können weitere Additive dosiert werden. Zugabeort und Menge sind hierbei nicht kritisch, sie richten sich nach den Vorgaben der Rezeptur.
  • Die rezepturspezifisch dosierten Komponenten werden in der Misch- und Entgasungszone vermischt, homogenisiert und entgast. Die Temperaturführung hängt dabei von der jeweiligen Rezeptur ab. Von Vorteil ist es, wenn Misch- und Entgasungszone mit getrennten Temperierkreisläufen ausgestattet sind. Die Temperatur innerhalb des Einwellenpilgerschrittkneters beträgt vorzugsweise 20 bis 280°C, insbesondere 80 bis 220°C.
  • Die Entgasung wird vorzugsweise im Vakuum vorgenommen. Die Evakuierung erfolgt vorzugsweise mit Hilfe von Vakuumpumpen (8) wie Wasserringpumpen gegebenenfalls kombiniert mit Drehkolbenpumpen oder Strahlpumpen. Ein Arbeiten mit einem leichten Inertgasschleppstrom in der Misch- und/oder Entgasungszone ist ebenfalls möglich. Vorzugsweise wird dann Stickstoff als Inertgas verwendet.
  • Nach dem Mischen und Entgasen wird die Masse dem Produktaustrag zugeführt. Als Austragsorgan wird vorzugsweise eine Austragsschnecke oder eine Austragspumpe eingesetzt.
  • Vorzugsweise wird die Masse dann einer Siebvorrichtung, beispielsweise einem Siebkopf (9) mit automatischer Wechseleinrichtung zugeführt. Der hierfür erforderliche Druckaufbau erfolgt vorzugsweise mit Extrudern (10) oder Zahnradpumpen.
  • Die hieraus resultierende Masse wird vorzugsweise zur Kühlung auf Temperaturen von vorzugsweise kleiner oder gleich 100 °C, insbesondere 40 bis 100°C, einer kontinuierlichen Walzanlage (11), wie beispielsweise einem Scherwalzenextruder, zugeführt.
  • Falls rezepturspezifisch erforderlich, werden auf diesen Walzanlagen nach der Kühlung Vernetzer und/oder Pigmente und/oder weitere Additive eingearbeitet. Die Dosierung dieser Stoffe erfolgt vorzugsweise über Differentialdosierwaagen.
  • Die vorzugsweise auf 20 bis 90 °C abgekühlten Massen können schließlich vorzugsweise über Druckaufbaumaschinen, wie einem Einwellenextruder, mit anschließender Formgebung (12) in verkaufsfertige Ware überführt werden.
  • Obwohl oben nicht explizit angegeben, können im erfindungsgemäßen Verfahren verwendete Anlagen weitere, an sich bekannte Bestandteile enthalten, wie Dosier- und andere Fördereinrichtungen, Meß- und Regeleinrichtungen, beispielsweise für Druck, Temperatur und Volumenströme, Ventile, übliche zur Entgasung und Kühlung benötigte Teile, Förder- und Verpackungseinrichtungen, Vorrichtungen zum Beaufschlagen des Guts mit Inertgas, sowie Vorrichtungen zum Trocknen solcher Gase.
  • Eine Ausführungsform des erfindungsgemäßen Verfahren ist in der Figur skizziert, wobei die dort aufgeführten Anlagenteile einen Gesamtüberblick einer zu verwendenden Anordnung geben sollen. Je nach dem rezepturspezifisch erforderlichen Dosierungen können natürlich die ggf. nicht benötigten Teile weggelassen bzw. Teile durch gleichwirkende Vorrichtungen ersetzt sein.
  • In der Figur bedeuten:
  • 1.
    Einwellenpilgerschrittkneter
    2.
    Polymerreaktor
    3.
    Austragschnecke/Austragpumpe
    4.
    Polymerkühler
    5.
    Differentialdosierwaage
    6.
    Schnellmischer
    7.
    Dosierpumpe
    8.
    Vakuumpumpe
    9.
    Siebkopf
    10.
    Extruder
    11.
    Walzanlage
    12.
    Formgebung
    Beispiel
  • Ein oszillierender Einwellenpilgerschrittkneter (Typ PR 140, Verfahrenslänge 15D) wurde über eine Zahnradpumpe und eine für hochviskose Medien geeignete Differentialdosierwaage mit Diorganopolysiloxan beschickt. Das Polymer ist über die folgende Formel charakterisiert:
    Figure imgb0002
    Figure imgb0003

    Der Kneter wurde auf 150°C temperiert und die Drehzahl der Schnecke auf 100 UpM eingestellt. Nach einer Vormischstrecke für das Polymer von ca. 2 D wurde auf einer Verfahrenslänge von weiteren 2 D über eine Pulverdifferentialdosierwaage feinteilige hydrophobe Kieselsäure dosiert. Gesamtdosiermenge: 30 kg/h. Die Stampfdichte der Kieselsäure beträgt 0,30 kg/l. Die zudosierte Kieselsäure wurde über 11 D mit dem Polymer homogenisiert und anschließend über eine Zahnradpumpe ausgetragen. Die Massetemperatur (Austritt Pilgerschrittkneter) lag während des Versuchs (Dauer: 3 h) bei 185°C, sie unterlag nur geringen Schwankungen im Bereich von 183-187°C. Das Produkt konnte durch folgende Eigenschaften charakterisiert werden.
    Probe nach
    1 Stunde 2 Stunden 3 Stunden
    Aussehen homogen und transparent
    Stippenbeurteilung gut gut gut
    Mooneyviskosität DIN 53523 38 39 37
    Shore Härte A * DIN 53505 48 49 48
    * Nach Vulkanisation bei 165° C (15 Min) und anschließender Temperung bei 200°C (4 h). Vernetzer: Dicumylperoxid
  • Gesamtbeurteilung: Positive Produkteigenschaften und unproblematischer Versuchsablauf.
  • Vergleichsbeispiel
  • Analog dem Beispiel wurde ein Vergleichsversuch auf einem Doppelschneckenextruder (Typ Kestermann, K 86) gefahren. Einsatzstoffe und Durchsatzmengen glichen denen aus dem Beispiel, identisch waren die Dosieraggregate und die Zahnradpumpe für den Produktaustrag. Die Vormischstrecke für das Polymer betrug ca. 5 D, die Kieselsäure wurde anschließend über eine Verfahrenslänge von ca. 2 D dem Kneter zugeführt. Weitere 13 D dienten zur Homogenisierung des Füllstoffes im Polymer.
    Schneckendurchmesser: 80 mm, Verfahrenslänge: 20 D,
    Temperierung von Gehäuse und Schnecke: 150°C
    Drehzahl: 40 UpM
    Die Massetemperatur lag während des Versuchs (Dauer: 3 h) bei 182-194°C mit Spitzen bis zu 210° C. Das Produkt kann durch folgende Eigenschaften charakterisiert werden.
    Probe nach
    1 Stunde 2 Stunden 3 Stunden
    Aussehen homogen/transparent leichte Dunkelfärbung nicht ganz homogen/transparent homogen/transparent Dunkelfärbung
    Stippenbeurteilung mittel mittel mittel/schlecht
    Mooneyviskosität, DIN 53523 in ML(1+4), 23°C 35 40 37
    Shore Härte A, DIN 53505 47 50 47
    * Nach Vulkanisation bei 165°C (15 Min) und anschließender Temperung bei 200°C (4 h). Vernetzer: Dicumylperoxid
  • Gesamtbeurteilung:
  • Auf Grund des wechselnden Einzugsverhaltens der Zweiwellenmaschine resultierten zeitlich nicht konstante Produkteigenschaften. Zudem deutet die Stippenbeurteilung auf die Notwendigkeit einer deutlich größeren Verfahrenslänge. Die Produktverfärbung resultiert augenscheinlich aus dem Verschleiß an der Zweiwellenmaschine vorwiegend durch Reibung an den Schneckenstegen und der Zylinderwand.

Claims (10)

  1. Verfahren zur kontinuierlichen Herstellung von HTV-Siliconmassen aus 100 Gewichtsteile Diorgano(poly)siloxan, das bei 25 °C eine Viskosität von 50 bis 100000 Pas aufweist, und zumindest 20 Gewichtsteilen feinteiligem Siliciumdioxid, das ein Stampfdichte oberhalb 0,01 Kg/l aufweist, dadurch gekennzeichnet, daß die Komponenten in einem oszillierenden Einwellenpilgerschrittkneter vermischt und homogenisiert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erhaltenen unvernetzten HTV-Siliconmassen eine Mooney-Viskosität von 15 - 130 Mooney-Einheiten aufweisen.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Diorgano(poly)siloxan mit einer Viskosität von 500 - 50000 Pas bei 25°C verwendet wird.
  4. Verfahren nach einen oder mehreren der Ansprüche 1 - 3, dadurch gekennzeichnet, daß als feinteiliges Siliciumdioxid pyrogenes und/oder gefälltes Siliciumdioxid verwendet wird.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 - 4, dadurch gekennzeichnet, daß die HTV-Siliconmassen folgende Zusammensetzung aufweisen:
    100 Gewichtsteile Diorgano(poly)siloxan
    20 bis 200 Gewichtsteile feinteiliges Siliciumdioxid mit einer Stampfdichte oberhalb 0,01 kg/l
    0 bis 100 Gewichtsteile weiterer Füllstoff
    0 bis 30 Gewichtsteile Strukturverbesserer
    0 bis 7 Gewichtsteile Vernetzer
    0 bis 30 Gewichtsteile weitere Additive
  6. Verfahren nach einem oder mehreren der Ansprüche 1 - 5, dadurch gekennzeichnet, daß der Einwellenpilgerschrittkneter eine Gesamtlänge von 10 bis 30 D (D = Schneckendurchmesser) aufweist.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 - 6, dadurch gekennzeichnet, daß das Diorgano(poly)siloxan im Bereich von 0 bis 4 D und das feinteilige Siliciumdioxid im Bereich von 0,5 bis 10 D des Einwellenpilgerschrittkneters dosiert wird.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 - 7, dadurch gekennzeichnet, daß die Temperatur innerhalb des Einwellenpilgerschrittkneters 20 bis 280°C beträgt.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 - 8, dadurch gekennzeichnet, daß die den Einwellenpilgerschrittkneter verlassende Masse nach erfolgtem Druckaufbau über eine Siebvorrichtung einer kontinuierlichen Walzanlage zur Kühlung auf Temperaturen von kleiner als 100°C zugeführt wird, auf der ggf. auch Vernetzer und/oder Pigmente und/oder Additive einarbeitbar sind.
  10. Verfahren zur kontinuierlichen Herstellung von HTV-Siliconmassen nach Anspruch 1, dadurch gekennzeichnet, daß die den Kneter verlassende Masse nach erfolgtem Druckaufbau über eine Siebvorrichtung einer kontinuierlichen Walzanlage zur Kühlung auf Temperaturen von kleiner als 100°C zugeführt wird, auf der ggf. auch Vernetzer und/oder Pigmente und/oder Additive einarbeitbar sind.
EP92902131A 1991-02-07 1992-01-16 Verfahren zur kontinuierlichen herstellung von htv-siliconmassen Expired - Lifetime EP0570387B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4103602A DE4103602A1 (de) 1991-02-07 1991-02-07 Verfahren zur kontinuierlichen herstellung von htv-siliconmassen
DE4103602 1991-02-07
PCT/EP1992/000080 WO1992013694A1 (de) 1991-02-07 1992-01-16 Verfahren zur kontinuierlichen herstellung von htv-siliconmassen

Publications (2)

Publication Number Publication Date
EP0570387A1 EP0570387A1 (de) 1993-11-24
EP0570387B1 true EP0570387B1 (de) 1994-12-21

Family

ID=6424500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92902131A Expired - Lifetime EP0570387B1 (de) 1991-02-07 1992-01-16 Verfahren zur kontinuierlichen herstellung von htv-siliconmassen

Country Status (11)

Country Link
US (1) US6124392A (de)
EP (1) EP0570387B1 (de)
JP (1) JP2531912B2 (de)
KR (1) KR970000921B1 (de)
AT (1) ATE115903T1 (de)
CZ (1) CZ280578B6 (de)
DE (2) DE4103602A1 (de)
ES (1) ES2065774T3 (de)
RU (1) RU2091222C1 (de)
TW (1) TW229221B (de)
WO (1) WO1992013694A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989120B2 (en) 1999-12-21 2006-01-24 General Electric Company Heat-vulcanizable silicone compositions from premix
US7097443B2 (en) 2000-11-03 2006-08-29 General Electric Company Extruder transition section
US7671125B2 (en) 2003-03-27 2010-03-02 Wacker-Chemie Gmbh Process for the continuous preparation of high-viscosity silicone compositions

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215205C1 (de) * 1992-05-08 1994-01-05 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Flüssigsiliconkautschuken
DE4313290A1 (de) * 1993-04-23 1994-10-27 Kempter Werner Verfahren und Vorrichtung zur Herstellung eines vernetzten extrudierten Polymerproduktes
US5676461A (en) * 1996-03-18 1997-10-14 M. A. Hanna Rubber Compounding A Division Of M. A. Hanna Company Oil injection apparatus and method for polymer processing
DE19617606A1 (de) * 1996-05-02 1997-11-06 Wacker Chemie Gmbh Kontinuierliches Verfahren zur Herstellung lagerstabiler Organopolysiloxanzusammensetzungen
US6407461B1 (en) 1997-06-27 2002-06-18 International Business Machines Corporation Injection molded integrated circuit chip assembly
DE19809548A1 (de) * 1998-03-05 1999-09-09 Wacker Chemie Gmbh Verfahren zur kontinuierlichen Herstellung von mit Feuchtigkeit vernetzbaren Organopolysiloxanmassen
EP1006164A3 (de) * 1998-11-30 2000-08-09 Dow Corning Toray Silicone Company, Ltd. Silikongummizusammensetzung und Silikonzusammensetzung zur Beschichtung von elektrischem Kabel und Verfahren zur Herstellung von mit Silikongummi überzogenen elektrischem Kabel
DE19909338A1 (de) * 1999-03-03 2000-09-07 Wacker Chemie Gmbh Verfahren zur kontinuierlichen Herstellung hochviskoser füllstoffhaltiger Siliconmassen
US6391234B1 (en) * 1999-12-21 2002-05-21 General Electric Company Compounding filled silicone compositions
US6388001B1 (en) 1999-12-21 2002-05-14 General Electric Company Compounding filled silicone compositions
EP1110696A3 (de) * 1999-12-21 2001-11-21 General Electric Company Kontinuierliches Verfahren zur Herstellung von Siliconzusammensetzungen
US6414054B1 (en) 1999-12-21 2002-07-02 General Electric Company Continuous preparation of heat-vulcanizable silicone compositions
GB2357497A (en) 1999-12-22 2001-06-27 Degussa Hydrophobic silica
US6491967B1 (en) 2000-10-24 2002-12-10 General Electric Company Plasma spray high throughput screening method and system
GB0122216D0 (en) * 2001-09-14 2001-11-07 Dow Corning Iberica S A Extruder
GB0402972D0 (en) * 2004-02-11 2004-03-17 Dow Corning Ltd Process for making filled silicone rubber compositions
DE102004019702B4 (de) * 2004-04-20 2007-05-16 Rehau Ag & Co Schlauchmembran aus Silikonelastomer
DE102005019874A1 (de) * 2005-04-28 2006-11-02 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von hochviskosen vernetzbaren Siliconmassen
DE102007024099A1 (de) * 2007-05-22 2008-11-27 Evonik Degussa Gmbh Klebstoffe
DE102008054536A1 (de) * 2008-12-11 2010-06-17 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von hochviskosen Siliconmassen
RU2550157C2 (ru) * 2010-12-23 2015-05-10 Призмиан С.П.А. Непрерывный способ для изготовления силового кабеля высокого напряжения
DE102011002279A1 (de) * 2011-04-27 2012-10-31 Troester Gmbh & Co. Kg Verfahren und Vorrichtung zur Herstellung einer Kautschukkomponente
DE102015226241A1 (de) 2015-12-21 2017-06-22 Wacker Chemie Ag Verfahren zur Herstellung von Organopolysiloxanzusammensetzungen
EP3755514A4 (de) * 2018-02-20 2021-12-15 Berry Global, Inc. Kontinuierliche compoundiersysteme und verwendungsverfahren
EP4005660A1 (de) * 2020-11-25 2022-06-01 Daw Se Vorrichtung und verfahren zur herstellung einer pigment- und/oder füllstoffdispersion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH466915A (de) * 1968-03-08 1968-12-31 Buss Ag Verfahren zum Behandeln von staub- und pulverförmigen Materialien und Einrichtung zur Ausübung des Verfahrens
CH507733A (de) * 1969-04-02 1971-05-31 Buss Ag Misch- und Kneteinrichtung
CH536655A (de) * 1970-11-20 1973-05-15 Aweta Anstalt Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Gummi-, gummiähnlichen oder Kunststoffmischungen
JPS5392866A (en) * 1977-01-27 1978-08-15 Shin Etsu Chem Co Ltd Thermosetting silicone rubber composition
DE3601324A1 (de) * 1986-01-17 1987-07-23 Wacker Chemie Gmbh Verfahren zur kontinuierlichen herstellung von bei raumtemperatur vulkanisierbaren silikonmassen
FR2602710B1 (fr) * 1986-08-12 1989-02-24 Rhone Poulenc Chimie Procede de preparation en continu de melanges-maitres pour elastomeres silicones vulcanisables a chaud

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989120B2 (en) 1999-12-21 2006-01-24 General Electric Company Heat-vulcanizable silicone compositions from premix
US7097443B2 (en) 2000-11-03 2006-08-29 General Electric Company Extruder transition section
US7671125B2 (en) 2003-03-27 2010-03-02 Wacker-Chemie Gmbh Process for the continuous preparation of high-viscosity silicone compositions

Also Published As

Publication number Publication date
DE59201026D1 (de) 1995-02-02
EP0570387A1 (de) 1993-11-24
US6124392A (en) 2000-09-26
ATE115903T1 (de) 1995-01-15
JPH06503048A (ja) 1994-04-07
TW229221B (de) 1994-09-01
ES2065774T3 (es) 1995-02-16
JP2531912B2 (ja) 1996-09-04
WO1992013694A1 (de) 1992-08-20
KR970000921B1 (ko) 1997-01-21
CZ280578B6 (cs) 1996-02-14
RU2091222C1 (ru) 1997-09-27
DE4103602A1 (de) 1992-08-13
CS9200034A3 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
EP0570387B1 (de) Verfahren zur kontinuierlichen herstellung von htv-siliconmassen
EP1717002B1 (de) Verfahren zur kontinuierlichen Herstellung von hochviskosen vernetzbaren Siliconmassen
EP1792944B1 (de) Kontinuierliche Herstellung von Flüssigsilikonkautschuk
EP0234226B1 (de) Verfahren zur kontinuierlichen Herstellung von bei Raumtemperatur vulkanisierbaren Silikonmassen
EP0611078B1 (de) Verfahren zur Bearbeitung von einer elastomeren Zusammensetzung
DE69810869T2 (de) Verfahren zur kontinuierlichen Herstellung von Silikongummi-Zusammensetzungen
DE69701614T2 (de) Verfahren zur Herstellung einer Siliconkautschukzusammensetzung
EP1033389B1 (de) Verfahren zur kontinuierlichen Herstellung hochviskoser füllstoffhaltiger Siliconmassen
DE60225057T2 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung einer elastomeren zusammensetzung
EP1468803B1 (de) Verfahren zur kontinuierlichen Herstellung von hochviskosen HTV-Siliconmassen
DE69622907T2 (de) Verfahren zur Herstellung von RTV-Einkomponenten-Silicon-Zusammensetzungen
KR930003375B1 (ko) 열가황형 실리콘고무 화합물의 연속적 제조방법
EP1375567B1 (de) Verfahren zur kontinuierlichen Herstellung von aus zwei Komponenten bestehenden additionsvernetzenden Siliconmassen
EP2199316B1 (de) Kontinuierliches Verfahren zur Herstellung von Grundmassen für Siliconzusammensetzungen mit verbesserter Stabilität
EP2206737B1 (de) Verfahren zur kontinuierlichen Herstellung von hochviskosen Siliconmassen
DE2847481A1 (de) Verfahren zur herstellung von zu elastomeren haertbaren organosiloxanmassen mit vermindertem druckverformungsrest
DE69903663T2 (de) Verfahren zur herstellung einer silicasuspension in einer durch polykondensation zu kautschuk vernetzbaren siliconmatrix
EP0807509B1 (de) Kontinuierliches Verfahren zur Herstellung lagerstabiler Organopolysiloxanzusammensetzungen
DE69323960T2 (de) Bei Raumtemperatur vulkanisierende Einkomponentenzusammensetzung
DE3914912A1 (de) Verfahren zur kontinuierlichen herstellung von hochmolekularen organosiliciumverbindungen
DE19653993A1 (de) Verfahren zur Herstellung von hochgefüllten Siliconpolymer-Feststoff-Vormischungen
CN111286202A (zh) 一种纳米二氧化硅-聚硅氧烷复合材料的连续化制备工艺
EP3184579A1 (de) Verfahren zur herstellung von organopolysiloxanzusammensetzungen
DE102004005156A1 (de) Verfahren zur Herstellung von Siliconpolymer-Mischungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19940120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 115903

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59201026

Country of ref document: DE

Date of ref document: 19950202

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2065774

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950123

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BAYER AG KONZERNZENTRALE RP PATENTE KONZERN

Effective date: 19950920

NLR1 Nl: opposition has been filed with the epo

Opponent name: BAYER AG KONZERNZENTRALE RP PATENTE KONZERN

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19970428

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070129

Year of fee payment: 16

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: WACKER-CHEMIE GMBH

Free format text: WACKER-CHEMIE GMBH#HANNS-SEIDEL-PLATZ 4#D-81737 MUENCHEN (DE) -TRANSFER TO- WACKER-CHEMIE GMBH#HANNS-SEIDEL-PLATZ 4#D-81737 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110202

Year of fee payment: 20

Ref country code: NL

Payment date: 20110117

Year of fee payment: 20

Ref country code: IT

Payment date: 20110125

Year of fee payment: 20

Ref country code: DE

Payment date: 20110121

Year of fee payment: 20

Ref country code: CH

Payment date: 20110124

Year of fee payment: 20

Ref country code: AT

Payment date: 20110113

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110104

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59201026

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59201026

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120116

BE20 Be: patent expired

Owner name: *WACKER-CHEMIE G.M.B.H.

Effective date: 20120116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 115903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120115