RU2017790C1 - Способ конверсии гидрообработанного и/или гидрокрекированного углеводородного сырья - Google Patents

Способ конверсии гидрообработанного и/или гидрокрекированного углеводородного сырья Download PDF

Info

Publication number
RU2017790C1
RU2017790C1 SU4742676A RU2017790C1 RU 2017790 C1 RU2017790 C1 RU 2017790C1 SU 4742676 A SU4742676 A SU 4742676A RU 2017790 C1 RU2017790 C1 RU 2017790C1
Authority
RU
Russia
Prior art keywords
catalyst
zeolite
conversion
hydrotreated
raw materials
Prior art date
Application number
Other languages
English (en)
Inventor
Эрнест Максвелл Ян
Бисвас Джейдин
Корнелис Миндерхауд Йоханнес
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10647877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2017790(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Application granted granted Critical
Publication of RU2017790C1 publication Critical patent/RU2017790C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Сущность изобретения: гидрообработанное и/или гидрокрекированное углеводородное сырье конвертируют в присутствии катализатора с размером пор цеолита 0,4-0,7 нм при температуре 480-900°С, давлении 1-10 бар и времени контакта 0,1-1- с. Цеолит используют в водородной форме. Процесс ведут в нисходящем движущемся слое. Углеводородное сырье гидрообработано и/или гидрокрекировано в присутствии подходящего катализатора. Продукт конверсии подвергают фракционированию и отделенную остаточную фракцию возвращают на гидрообработку и/или гидрокрекирование. 3 з.п. ф-лы, 3 табл.

Description

Изобретение относится к способам конверсии углеводородного сырья и, главным образом, к обогащению некоторых видов сырья.
В прототипе-патенте США 4.401.555 описан типичный каталитический процесс депарафинизации, т.е. процесс, в котором нежелательные парафины удаляют из углеводородных фракций при высоком давлении H2 и относительно низкой температуре в присутствии катализатора. Это ясно показано в примерах данного патента, где в присутствии особого катализатора с низким содержанием натрия и водорода применяют давление в области от 28 до не менее 70 бар и температуре в области 405-482оС. Из таблицы патента США видно, что максимальный суммарный выход низших олефинов составляет 6,1 мас.%, что значительно ниже суммарного выхода настоящего изобретения.
Получение олефинов является желательным, поскольку их реакционная способность делает их пригодными для превращения в другие продукты в отличие от малоценных низших парафинов. Однако описанный способ имеет недостаток, состоящий в том, что исходное сырье должно быть существенно денитрифицированно с тем, чтобы избежать быстрой дезактивации катализатора.
Неожиданно было установлено, что может быть достигнут сравнительно высокий выход олефинов при менее строгих условиях, касающихся содержания азота, при использовании цеолитных катализаторов при высокой температуре и коротком времени пребывания сырья в зоне реакции. Также было неожиданно обнаружено, что такая конверсия благоприятна для тяжелого углеводородного сырья и из него может быть получен улучшенный продукт обогащенный низшими олефинами.
В соответствии с этим, изобретение обеспечивает способ конверсии гидрообработанного и/или гидрокрекированнго углеводородного сырья в присутствии цеолитного катализатора, отличающийся тем, что процесс ведут при 480-900оС, давлении 1-10 бар и времени контакта 0,1-10 с с использованием цеолитного катализатора с размером пор цеолита 0,4-0,7 нм.
Сырье контактирует с цеолитным катализатором в течение времени менее 10 секунд. Лучше всего, когда минимальное время контакта составляет 0,1 с.
В такой реакции используют относительно высокую температуру. Однако комбинация высокой температуры и короткого времени пребывания сырья в зоне реакции позволяет достичь высокую конверсию в олефины. Предпочтительный температурный интервал составляет 500-750оС.
Цеолитный катализатор включает цеолит с диаметром пор 0,4-0,7 нм. Полезно, когда такой катализатор дополнительно содержит огнеупорный оксид, служащий связующим материалом. Подходящие огнеупорные оксиды включают оксид алюминия, оксид кремния, смешанный оксид кремния-алюминия, оксид магния, титана, циркония и их смеси. Особенно предпочтительным является оксид алюминия. Массовое соотношение огнеупорного оксида к цеолиту лежит в интервале 10:90-90:10, предпочтительно, 50:50-85:15. Такой катализатор может включать дополнительные цеолиты с диаметром пор выше 0,7 нм. Подходящими примерами таких цеолитов могут служить цеолиты фаугазитного типа, цеолит бета, цеолит омега и, в особенности, цеолит X и Y. Цеолитный катализатор, предпочтительно, включает в качестве цеолита практически исключительно, цеолиты с диаметром пор в интервале 0,4-0,7 нм.
Термин цеолит, используемый в описании, относится не только к кристаллическим силикатам алюминия. Такой термин включает также кристаллический кремний (силикалит), силикоалюминофосфаты (SAPO), хромосиликаты, силикаты гелия, силикаты железа, фосфаты алюминия (AIPO), алюминосиликаты титана (TASO); силикаты бора, алюминофосфаты титана (ТАРО) и алюминосиликаты железа.
Обычно, при получении таких цеолитов в конечном продукте присутствует значительное количество оксида щелочного металла. Предпочтительно, щелочной металл удаляют известными методами, такими как обмен, необязательно с последующим обжигом, с получением цеолита в водородной форме. Предпочтительно, чтобы цеолит, используемый в способе изобретения, находился в его водородной форме.
Получение олефина облегчается отсутствием водорода или его донора. Следовательно, современные процессы следует проводить в отсутствии добавленного водорода и/или пара. Разумеется, естественно, что в ходе реакции могут образовываться такие малые молекулы, как молекулы водорода. Однако такие количества обычно пренебрежимо малы и составляют менее 0,5 мас.% от количества продукта.
Давление, используемое в настоящем процессе, может меняться в широком интервале. Однако, предпочтительно, когда давление таково, что сырье при используемых температурах в основном находится в газовой фазе. В этом случае легче обеспечить малые времена пребывания сырья в зоне реакции. Следовательно, предпочтительно, чтобы давление было невысоким. Это еще более предпочтительно в том отношении, что отпадает необходимость в использовании дорогостоящих компрессоров и сосудов для работы под высоким давлением. Могут применяться давления до 10 бар. Давления выше атмосферного возможны, но не предпочтительны. Минимальное давление может составлять 1 бар. Экономически выгодно работать при атмосферном давлении.
Массовое соотношение катализатор/сырье может изменяться в широких пределах, например, в интервале до 200 кг катализатора на кг сырья. Предпочтительно, чтобы весовое соотношение катализатор/сырье составляло 2-200.
Способ согласно изобретению можно осуществлять в неподвижном слое катализатора. Однако следует иметь в виду, что для реализации коротких времен контакта могут понадобиться чрезвычайно высокие значения объемных скоростей. Поэтому, способ настоящего изобретения предпочтительно осуществлять с движущимся слоем катализатора. Слой катализатора может двигаться в направлении вверх или вниз. В том случае, когда слой движется вверх, процесс приобретает черты процесса каталитического крекинга. Предпочтительно осуществлять процесс с движением слоя вниз.
В ходе процесса на катализаторе образуется некоторое количество кокса. Поэтому катализатор следует регенерировать. Предпочтительно катализатор регенерируют после контактирования с сырьем путем обработки окисляющим газом, например, воздухом. Особенно предпочтительной следует считать непрерывную регенерацию, аналогичную регенерации, осуществляемой в процессе крекинга с псевдоожиженным слоем катализатора.
При очень высоких скоростях образование кокса не должно иметь места. Следовательно, появляется возможность так организовать процесс, что время пребывания частиц катализатора в зоне реакции, например, при реализации движущегося слоя, будет больше, чем время пребывания сырья в зоне реакции. Разумеется, что время контакта сырья с катализатором должно быть менее 10 с. Обычно время контакта соответствует времени пребывания сырья в зоне реакции. Лучше всего, когда время пребывания катализатора составляет величину, в 1-20 раз меньшую от времени пребывания сырья.
Сырье, подвергаемое конверсии в способе по изобретению, включает гидрообработанное и/или гидрокрекированное углеводородное сырье, предпочтительно хотя и не обязательно тяжелое сырье. Подходящим сырьем могут служить гидрообработанные и/или гидрокрекированные фракции тяжелого дистиллята хвостового остатка или деасфальтизированных масел, полученных из короткоцепного остатка. Сырье, подвергают фракционированию с целью удаления низкокипящих фракций после гидрообработки и/или гидрокрекинга и перед контактированием с цеолитным катализатором в соответствии с изобретением.
Продукт, полученный согласно способу изобретения, необязательно фракционируют с получением фракции, обогащенной олефинами, бензиновой фракции и кубового остатка, все количество которого или его часть необязательно рециркулируются в поток сырья, идущий в верх установки гидрообработки и/или гидрокрекинга. В результате таких операций достигается высокая степень конверсии тяжелого деасфальтизированного масла или тяжелого дистиллированного сырья в более ценный обогащенный олефинами газ.
В связи с этим в соответствии с еще одним аспектом изобретения предусматривается процесс конверсии углеводородного сырья, включающий гидрообработку и/или гидрокрекинг сырья, в присутствии подходящего катализатора, контактирование, по крайней мере, части гидрообработанного и/или гидрокрекированного продукта с цеолитным катализатором, включающим цеолит с размером пор 0,4-0,7 нм, при температуре выше 480оС и давлении до 10 бар, в течение времени менее 10 с, фракционирование полученного в результате конвертированного материала и рециркуляцию наиболее тяжелой фракции на указанную стадию гидрообработки /или гидрокрекинга.
Указанная стадия гидрообработки известна в данной области и может осуществляться при известных условиях. Подходящие условия включают температуру в интервале 150-400оС, парциальное давление водорода 30-150 бар, объемную скорость 0,5-4,0 кг/л ч и соотношение водород/сырье 100-200011 л/кг. Подходящие для процесса гидрообработки катализаторы включают никель, кобальт, вольфрам, молибден, платину, палладий или их смеси на таком носителе, как оксиды алюминия, кремния-алюминия, кремния, цирконий, цеолиты и т.п. Такие катализаторы могут дополнительно включать фтор, фосфор и/или бор. Температура, скорость подачи газа и объемная скорость могут выбираться специалистом в данной области из указанных выше интервалов.
Гидрокрекинг представляет собой также известный процесс и может осуществляться при известных условиях, например в присутствии катализатора гидрокрекинга при 300-450оС, парциальном давлении водорода 50-200 бар, объемной скорости 0,5-2,0 кг/л катализатора в час и при соотношении водород/фракция минерального масла 500-2000 нл/кг. Катализатор гидрокрекинга может выбираться из любых катализаторов гидрокрекинга, известных из литературы. Подходящий гидрокрекирующий катализатор включает носитель и, по крайней мере, один гидрирующий металл или его соединение, причем носитель выбирают из группы, состоящей из оксидов кремния, алюминия, кремния-алюминия и цеолитов файязитного типа. Наиболее предпочтительным цеолитом файязитного типа является цеолит Y. Наиболее предпочтительными гидрирующими металлами является никель, кобальт, вольфрам и молибден, а также их смеси, кроме этого могут также использоваться платина и/или палладий. Такой катализатор может дополнительно включать фтор и/или фосфор, и/или бор. При использовании никеля, кобальта, молибдена и/или вольфрама в качестве гидрирующего металла, они присутствуют в виде сульфидов.
П р и м е р 1. Сырье, используемое в этом примере, представляет собой Арабскую легкую деасфальтизированную нефть, со следующими свойствами: IBP, оС 453 50 мас.% 591 67 мас.% 620 Плотность 70/4 0,8532 кг/л Содержание серы 232 мас.ч./мин Содержание азота 12 мас.ч./мин.
Сырье ДАО подвергали обогащению в реакторе с направлением потока вниз путем пропускания его вниз противотоком с потоком частиц катализатора. Катализатор представлял собой ZS M-5 в матрице из оксида алюминия (весовое соотношение ZS M-5/оксид алюминия 1:3). Эксперимент проводили при атмосферном давлении. Другие условия процесса и результаты, полученные в эксперименте, приведены в табл.1.
Из представленных результатов видно, что большая часть газообразных продуктов содержит олефиновую ненасыщенность и что продукт содержит относительно высокую долю средних дистиллятов.
П р и м е р 2. Сырье, используемое в этом примере, представляло собой гидрокрекированный тяжелый дистиллят мгновенного испарения, имеющий следующие свойства: IBP, оС 330 50 мас.% 432 IБР, оС 620
Фракция, кипящая ниже 370оС, мас.% 7,7 Плотность 70/4 0,8157 кг/л Содержание серы 20 мас.ч./мин Содержание азота 2 мас.ч./мин.
Эксперимент проводили в соответствии с методикой, описанной в примере 1, но используя условия, указанные в табл.2 с получением результатов, приведенных в табл.2.
П р и м е р 3. В этом примере в качестве сырья использовали тяжелый дистиллят Арабской нефти, который после начального гидрокрекинга, имел свойства, указанные в табл.3.
Отогнанный дистиллят обрабатывали в соответствии с известным способом.
Сырье вводили по линии после смешивания с водородом из в ячейку для гидрообработки/гидрокрекинга, работающую при парциальном давлении водорода 90 бар и температуре 400оС с использованием катализатора гидрообработки, представляющими Ni:/Mo/оксид алюминия.
Гидрообработанный продукт фракционировали в ячейке на газообразную фракцию, нефтяную фракцию, керосиновую фракцию, газойлевую фракцию и кубовую фракцию. При указанных условиях кубовые фракции пропускали в реактор с нисходящим потоком, описанный в примере 1, содержащий указанный в этом примере катализатор и имеющий соответствующие регенерационные средства, из которых по мере необходимости может удаляться кокс, при этом газообразный и жидкий продукт разделялись в секции фракционирования на газообразный продукт, газойлевый продукт и кубовый поток, который рециркулировали в сырье с целью повторной обработки.
Кубовая фракция, обогащенная в реакторе, составляет около 69 мас.% в расчете на исходное сырье в линии, при фракционировании в секции. Состав фракции, полученной из указанной, приведен в табл.3.
Из приведенных результатов можно видеть, что кубовый компонент, выделенный из исходного дистиллята мгновенного испарения, содержит большую долю олефинов ненасыщенных газообразных продуктов и бензина, при этом возможности рециркуляции позволяют осуществить максимальное обогащение в более ценные продукты.

Claims (4)

1. СПОСОБ КОНВЕРСИИ ГИДРООБРАБОТАННОГО И/ИЛИ ГИДРОКРЕКИРОВАННОГО УГЛЕВОДОРОДНОГО СЫРЬЯ в присутствии цеолитного катализатора, отличающийся тем, что процесс ведут при 480 - 900oС, 1 - 10 бар и времени контакта 0,1 - 10,0 с с использованием цеолитного катализатора с размером пор цеолита 0,4 - 0,7 нм.
2. Способ по п.1, отличающийся тем, что используют цеолитный катализатор в водородной форме.
3. Способ по пп.1 и 2, отличающийся тем, что процесс ведут в нисходящем движущемся слое.
4. Способ по пп.1 - 3, отличающийся тем, что используют углеводородное сырье, гидрообработанное и/или гидрокрекированное в присутствии подходящего катализатора, продукт конверсии подвергают фракционированию и отделенную остаточную фракцию возвращают на гидрообработку и/или гидрокрекирование.
SU4742676 1988-12-02 1989-12-01 Способ конверсии гидрообработанного и/или гидрокрекированного углеводородного сырья RU2017790C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888828206A GB8828206D0 (en) 1988-12-02 1988-12-02 Process for conversion of hydrocarbonaceous feedstock
GB8828206 1988-12-02

Publications (1)

Publication Number Publication Date
RU2017790C1 true RU2017790C1 (ru) 1994-08-15

Family

ID=10647877

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4742676 RU2017790C1 (ru) 1988-12-02 1989-12-01 Способ конверсии гидрообработанного и/или гидрокрекированного углеводородного сырья

Country Status (11)

Country Link
EP (1) EP0372632B1 (ru)
JP (1) JPH02212594A (ru)
CN (1) CN1025216C (ru)
AU (1) AU621169B2 (ru)
BR (1) BR8906158A (ru)
CA (1) CA2004390A1 (ru)
DE (1) DE68925574T2 (ru)
ES (1) ES2082769T3 (ru)
GB (1) GB8828206D0 (ru)
PH (1) PH27238A (ru)
RU (1) RU2017790C1 (ru)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8904408D0 (en) * 1989-02-27 1989-04-12 Shell Int Research Process for the conversion of a hydrocarbonaceous feedstock
CN1034223C (zh) * 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
CN1034586C (zh) * 1993-11-05 1997-04-16 中国石油化工总公司 多产低碳烯烃的催化转化方法
FR2778345B1 (fr) * 1998-05-06 2000-11-24 Inst Francais Du Petrole Catalyseur a base de zeolithe y contenant du bore et/ou du silicium, utilisable en hydrocraquage
FR2778343B1 (fr) * 1998-05-06 2000-06-16 Inst Francais Du Petrole Catalyseur a base de zeolithe y non globalement desaluminee, de bore et/ou de silicium et procede d'hydrocraquage
FR2778582B1 (fr) * 1998-05-13 2000-06-16 Inst Francais Du Petrole Procede pour l'amelioration du point d'ecoulement et catalyseur a base d'au moins une zeolithe mtt, ton, fer
US6222087B1 (en) 1999-07-12 2001-04-24 Mobil Oil Corporation Catalytic production of light olefins rich in propylene
US6835863B2 (en) 1999-07-12 2004-12-28 Exxonmobil Oil Corporation Catalytic production of light olefins from naphtha feed
KR100639696B1 (ko) 2005-07-01 2006-10-30 에스케이 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용아릴페녹시 촉매계
CN101210200B (zh) 2006-12-27 2010-10-20 中国石油化工股份有限公司 一种渣油加氢处理与催化裂化组合工艺方法
KR101589565B1 (ko) 2007-12-20 2016-01-28 차이나 페트로리움 앤드 케미컬 코포레이션 탄화수소유의 수소화처리 및 촉매식 분해의 결합된 방법
KR101151606B1 (ko) 2007-12-31 2012-06-08 에스케이이노베이션 주식회사 전이금속 화합물, 이를 포함하는 촉매조성물 및 이를이용한 올레핀 단독중합 또는 공중합체의 제조방법
KR101186489B1 (ko) 2008-01-07 2012-09-27 에스케이이노베이션 주식회사 전이금속 화합물 및 이를 포함하는 에틸렌 단독중합체 또는공중합체 제조용 전이금속 촉매 조성물
KR101142115B1 (ko) 2008-01-07 2012-07-06 에스케이이노베이션 주식회사 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및이를 이용한 에틸렌 단독중합체 또는 에틸렌과α-올레핀의 공중합체의 제조방법
KR101142117B1 (ko) 2008-09-25 2012-05-09 에스케이이노베이션 주식회사 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101167082B1 (ko) 2008-11-05 2012-07-20 에스케이이노베이션 주식회사 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
KR101248423B1 (ko) 2011-06-09 2013-04-02 에스케이종합화학 주식회사 에틸렌 - α-올레핀 - 디엔 공중합체의 제조방법
CN103003315B (zh) 2011-06-24 2016-06-15 沙特基础工业爱思开Nexlene私人有限公司 具有优异共聚性能的过渡金属催化体系以及使用其制备乙烯均聚物或乙烯与α-烯烃的共聚物的方法
KR102300853B1 (ko) 2014-05-29 2021-09-13 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 새로운 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
US10689586B2 (en) 2015-12-21 2020-06-23 Sabic Global Technologies B.V. Methods and systems for producing olefins and aromatics from coker naphtha
KR102038977B1 (ko) 2016-12-30 2019-11-01 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 시클로펜타[b]티오펜일 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR101980683B1 (ko) 2017-01-06 2019-05-22 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR102034133B1 (ko) 2017-01-09 2019-11-18 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR102100134B1 (ko) 2017-08-21 2020-04-13 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2019064247A1 (ko) 2017-09-29 2019-04-04 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 인덴계 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR102643986B1 (ko) 2017-09-29 2024-03-07 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 인덴계 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2019123028A1 (ko) 2017-12-21 2019-06-27 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 금속-리간드 착체, 이를 포함하는 에틸렌계 중합용 촉매 조성물 및 이를 이용한 에틸렌계 중합체의 제조방법
KR102100142B1 (ko) 2017-12-21 2020-04-14 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 금속-리간드 착체, 이를 포함하는 에틸렌계 중합용 촉매 조성물 및 이를 이용한 에틸렌계 중합체의 제조방법
WO2020174346A1 (ko) 2019-02-28 2020-09-03 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 신규한 테트라아릴보레이트 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR20240045992A (ko) 2022-09-30 2024-04-08 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420770A (en) * 1966-09-28 1969-01-07 Mobil Oil Corp Catalytic cracking of hydrocarbons
US3856659A (en) * 1972-12-19 1974-12-24 Mobil Oil Corp Multiple reactor fcc system relying upon a dual cracking catalyst composition
US4171257A (en) * 1978-10-23 1979-10-16 Chevron Research Company Petroleum distillate upgrading process
US4502945A (en) * 1982-06-09 1985-03-05 Chevron Research Company Process for preparing olefins at high pressure
DE3479225D1 (en) * 1983-04-18 1989-09-07 Shell Int Research A process for the production of low-asphaltenes hydrocarbon mixtures
NL8301352A (nl) * 1983-04-18 1984-11-16 Shell Int Research Werkwijze voor de bereiding van asfaltenenarme koolwaterstofmengsels.
PH25773A (en) * 1988-06-16 1991-10-18 Shell Int Research Process for the conversion of hydrocarbonaceous feedstock

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 4401555, кл. C 10G 11/06, 1983. *

Also Published As

Publication number Publication date
EP0372632B1 (en) 1996-01-31
PH27238A (en) 1993-05-04
GB8828206D0 (en) 1989-01-05
JPH02212594A (ja) 1990-08-23
CN1025216C (zh) 1994-06-29
DE68925574D1 (de) 1996-03-14
BR8906158A (pt) 1990-07-31
EP0372632A1 (en) 1990-06-13
CA2004390A1 (en) 1990-06-02
AU621169B2 (en) 1992-03-05
CN1043156A (zh) 1990-06-20
AU4579989A (en) 1990-06-07
DE68925574T2 (de) 1996-08-08
ES2082769T3 (es) 1996-04-01

Similar Documents

Publication Publication Date Title
RU2017790C1 (ru) Способ конверсии гидрообработанного и/или гидрокрекированного углеводородного сырья
US4585545A (en) Process for the production of aromatic fuel
US6123830A (en) Integrated staged catalytic cracking and staged hydroprocessing process
US4126538A (en) Process for the conversion of hydrocarbons
US4183801A (en) Process for preparing hydrocarbons
US5770043A (en) Integrated staged catalytic cracking and hydroprocessing process
US5152883A (en) Process for the production of improved octane numbers gasolines
JPH11189777A (ja) 移動床式水素化変換工程と水素化処理工程とを含む石油重留分変換法
US3238118A (en) Conversion of hydrocarbons in the presence of a hydrogenated donor diluent
US5770044A (en) Integrated staged catalytic cracking and hydroprocessing process (JHT-9614)
US4201659A (en) Process for the preparation of gas oil
CA2404277A1 (en) Two stage fcc process incorporating interstage hydroprocessing
US4120778A (en) Process for the conversion of hydrocarbons in atmospheric crude residue
US3843508A (en) Split flow hydrodesulfurization and catalytic cracking of residue-containing petroleum fraction
US3444071A (en) Process for the hydrogenative cracking of a hydrocarbon oil to produce lubricating oil
EP0349036B1 (en) Process for the conversion of a hydrocarbonaceous feedstock
JPS6132356B2 (ru)
US4163707A (en) Asphalt conversion
JP2980436B2 (ja) 重質炭化水素油の処理方法
EP0354623B1 (en) Process for the hydrocracking of a hydrocarbonaceous feedstock
SU1681735A3 (ru) Способ получени керосина и/или газойл
EP0354626B1 (en) Process for the hydrocracking of a hydrocarbonaceous feedstock
JPS6154838B2 (ru)