EP0372632A1 - Process for the conversion of a hydrocarbonaceous feedstock - Google Patents
Process for the conversion of a hydrocarbonaceous feedstock Download PDFInfo
- Publication number
- EP0372632A1 EP0372632A1 EP89203038A EP89203038A EP0372632A1 EP 0372632 A1 EP0372632 A1 EP 0372632A1 EP 89203038 A EP89203038 A EP 89203038A EP 89203038 A EP89203038 A EP 89203038A EP 0372632 A1 EP0372632 A1 EP 0372632A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- feedstock
- process according
- catalyst
- zeolite
- conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 42
- 239000010457 zeolite Substances 0.000 claims abstract description 29
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 20
- 239000011148 porous material Substances 0.000 claims abstract description 9
- 238000004517 catalytic hydrocracking Methods 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052675 erionite Inorganic materials 0.000 claims description 3
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052914 metal silicate Inorganic materials 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000000047 product Substances 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 229910000323 aluminium silicate Inorganic materials 0.000 description 5
- -1 gallium silicates Chemical class 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
Definitions
- the present invention relates to a process for the conversion of a hydrocarbonaceous feedstock and is particularly concerned with the upgrading of certain feedstocks.
- US 4,171,257 describes a process for upgrading a hydrocarbonaceous feedstock by contacting the feedstock with a ZSM-5 crystalline aluminosilicate catalyst at a pressure below 14 bar, a temperature of 260 to 427 °C and a space velocity of 0.1 to 15 l/l.h.
- the feedstock exemplified as gas oil having a boiling point range of 230 to 437 °C, must contain loss than 5 ppmw of nitrogen-containing compounds, calculated as nitrogen.
- the upgraded product includes olefinic hydrocarbons, such as propene and butenes.
- the present invention provides a process for the conversion of a hydrotreated and/or hydrocracked heavy hydrocarbonaceous feedstock, which process comprises contacting the feedstock with a zeolitic catalyst comprising a zeolite with a pore diameter of 0.4 to 0.7 nm at a temperature of greater than 480 °C and a pressure of up to 10 bar during less than 10 seconds.
- the feedstock is contacted with the zeolitic catalyst for less than 10 seconds.
- the minimum contact time is 0.1 second. Very good results are obtainable with a process in which the feedstock is contacted with the zeolitic catalyst during 1 to 6 seconds.
- the temperature during the reaction is relatively high. However, the combination of high temperature and short residence time allows a high conversion to olefins.
- a preferred temperature range is 480 to 900 °C, more preferably 500 to 750 °C.
- the zeolitic catalyst comprises a zeolite with a pore diameter of from 0.4 to 0.7 nm.
- the catalyst suitably further comprises a refractory oxide that serves as binder material. Suitable refractory oxides include alumina, silica, silica-alumina, magnesia, titania, zirconia and mixtures thereof. Alumina is especially preferred.
- the weight ratio of refractory oxide and zeolite suitably ranges from 10:90 to 90:10, preferably from 50:50 to 85:15.
- the catalyst may comprise further zeolites with a pore diameter above 0.7 nm.
- zeolites include the faujasite-type zeolites, zeolite beta, zeolite omega and in particular zeolite X and Y.
- the zeolitic catalyst preferably comprises as zeolite substantially only zeolites with a pore diameter of from 0.4 to 0.7 nm.
- zeolite in this specification is not to be regarded as comprising only crystalline aluminium silicates.
- the term also includes crystalline silica (silicalite), silicoaluminophosphates (SAPO), chromosilicates, gallium silicates, iron silicates, aluminium phosphates (ALPO), titanium aluminosilicates (TASO), boron silicates, titanium aluminophosphates (TAPO) and iron aluminosilicates.
- Examples of zeolites that may be used in the process of the invention and that have a pore diameter of 0.4 to 0.7 nm include SAPO-4 and SAPO-11, which are described in US-A-4,440,871, ALPO-11, described in US-A-4,310,440, TAPO-11, described in US-A-4,5OO,651, TASO-45, described in EP-A-229,295, boron silicates, described in e.g. US-A-4,254,297, aluminium silicates like erionite, ferrierite, theta and the ZSM-type zeolites such as ZSM-5, ZSM-11, ZSM-12, ZSM-35, ZSM-23, and ZSM-38.
- SAPO-4 and SAPO-11 which are described in US-A-4,440,871, ALPO-11, described in US-A-4,310,440, TAPO-11, described in US-A-4,5OO,651, TASO-45, described in EP-A-229,29
- the zeolite is selected from the group consisting of crystalline metal silicates having a ZSM-5 structure, ferrierite, erionite and mixtures thereof.
- crystalline metal silicates with ZSM-5 structure are aluminium, gallium, iron, scandium, rhodium and/or scandium silicates as described in e.g. GB-B-2,110,559.
- the zeolites usually a significant amount of alkali metal oxide is present in the prepared zeolite.
- the amount of alkali metal is removed by methods known in the art, such as ion exchange, optionally followed by calcination, to yield the zeolite in its hydrogen form.
- the zeolite used in the present process is substantially in its hydrogen form.
- Olefin production is facilitated by the absence of hydrogen or a hydrogen donor.
- the present process is advantageously carried out in the absence of added hydrogen and/or steam. It is, of course, possible that during the reaction some small molecules, such as hydrogen molecules are formed. However, this amount is usually negligible and will be less than 0.5 %wt of the product.
- the pressure in the present process can be varied within wide ranges. It is, however, preferred that the pressure is such that at the prevailing temperature the feedstock is substantially in its gaseous phase. Then it is easier to achieve the short contact times envisaged. Hence, the pressure is preferably relatively low. This is the more advantageous since no expensive compressors and high-pressure vessels and other equipment are necessary. Pressures up to 10 bar can be employed. Subatmospheric pressures are possible, but not preferred. The minimum pressure is suitably 1 bar. It is economically advantageous to operate at atmospheric pressure.
- the catalyst/feedstock weight ratio may vary widely, for example up to 200 kg of catalyst per kg of feedstock. Preferably, the catalyst/feedstock weight ratio is from 2 to 200.
- the process according to the present invention may be carried out in a fixed bed. However, this would imply that extremely high space velocities be required to attain the short contact times envisaged. Therefore, the present process is preferably carried out in a moving bed.
- the bed of catalyst may move upwards or downwards. When the bed moves upwards a process similar to a fluidized catalytic cracking process is obtained. Preferably, the process is carried out in a downwardly moving bed.
- the catalyst is regenerated by subjecting it, after having been contacted with the feedstock, to a treatment with an oxidizing gas, such as air.
- a continuous regeneration similar to the regeneration carried out in a fluidized catalytic cracking process, is especially preferred.
- the coke formation does not occur at a very high rate.
- the contact time between feedstock and catalyst should be less than 10 seconds.
- the contact time generally corresponds with the residence time of the feedstock.
- the residence time of the catalyst is from 1 to 20 times the residence time of the feedstock.
- the feedstock which is to be convert in the present process comprises hydrotreated and/or hydrocracked hydrocarbons, preferably, though not necessarily, heavy feedstocks.
- Suitable feedstocks are obtained by hydrotreating and/or hydrocracking heavy flashed distillate fractions from long residue or deasphalted oils obtained from short residue.
- the feedstock is suitably fractionated to remove lower boiling fractions after hydrotreating and/or hydrocracking and prior to contacting with the zeolitic catalyst in accordance with the invention.
- the product obtained by the process of the invention is optionally fractionated to yield an olefin-rich gas fraction, a gasoline fraction and a bottom fraction, all or part of which is optionally recycled to the feedstock upstream of the hydrotreating and/or hydrocracking unit. In this way, high conversion of the heavy deasphalted oil or heavy flashed distillate feedstock to more valuable olefin-rich gas is obtained.
- a process for the conversion of a hydrocarbonaceous feedstock comprising hydrotreating and/or hydrocracking said feedstock in the presence of a suitable catalyst, contacting at least a part of the hydrotreated and/or hydrocracked product with a zeolitic catalyst comprising a zeolite with a pore diameter of 0.4 to 0.7 nm at a temperature of greater than 480 °C and a pressure of up to 10 bar during less than 10 seconds, fractionating the resulting converted material and recycling a heavier fraction to said hydrotreating and/or hydrocracking step.
- the said hydrotreating step is known in the art and may be carried out at known conditions. Suitable conditions include a temperature of 150 to 400 °C, a hydrogen (partial) pressure of 30 to 150 bar, a space velocity of 0.5 to 4.0 kg/l.h and a hydrogen/feedstock ratio of 100 to 2000 Nl/kg.
- Suitable hydrotreating catalysts comprise nickel, cobalt, tungsten, molybdenum, platinum, palladium or mixtures thereof on a carrier, such as alumina, silica-alumina, silica, zirconia, zeolites and the like.
- the catalyst may further comprise fluorine, phosphorus and/or boron.
- the temperature, gas rate and space velocity can be selected by the person skilled in the art, suitably from the range given above.
- Hydrocracking is also known in the art and may be carried out under known conditions, such as over a hydrocracking catalyst at a temperature of 300 to 450 °C, a hydrogen (partial) pressure of 50 to 200 bar, a space velocity of 0.5 to 2.0 kg/l.catalyst.h and a H2/mineral oil fraction ratio of 500 to 2000 Nl/kg.
- the hydrocracking catalyst can be selected from any hydrocracking catalyst known in the art.
- the hydrocracking catalyst comprises a carrier and at least one hydrogenating metal or a compound thereof, which carrier has been selected from the group consisting of silica, alumina, silica-alumina and the faujasite-type zeolites.
- the most preferred faujasite-type zeolite is zeolite Y.
- the most preferred hydrogenating metals are nickel, cobalt, tungsten and molybdenum and mixtures thereof, but platinum and/or palladium may also be used.
- the catalyst may further comprise fluorine and/or phosphorus and/or boron.
- nickel, cobalt, molybdenum and/or tungsten are used as hydrogenating metal, they are preferably present in the form of their sulphides.
- a feedstock with a nitrogen content greater than 5 ppmw may be used with substantially no effect on the catalyst activity.
- Suitable feedstocks may have a nitrogen content of more than 10 ppmw, calculated as nitrogen.
- the feedstock may even have a nitrogen content of 1000 ppmw or more, calculated as nitrogen.
- the feedstock in this example was a hydrotreated Arabian light deasphalted oil having the following properties: IBP, °C 453 50 %wt 591 67 %wt 620 density 70/4 0.8532 kg/l sulphur 232 ppmw nitrogen 12 ppmw
- the DAO feedstock was upgraded in a downflow reactor by passing it downwards co-currently with a flow of catalyst particles.
- the catalyst comprised ZSM-5 in an alumina matrix (weight ratio ZSM-5/alumina 1:3).
- the experiment was carried out at atmospheric pressure. Further process conditions and the results of the experiment are given in Table 1 below.
- the feedstock in this example was a hydrocracked heavy flashed distillate having the following properties:
- Feedstock was introduced on line 1, after mixing with hydrogen from line 2, to a hydrotreating/hydrocracking unit 3 operated at 90 bar hydrogen partial pressure at 400 °C with a suitable Ni/Mo/alumina hydrotreating catalyst.
- the hydrotreated product was fractionated in unit 4 into a gaseous fraction 5, a naphtha fraction 6, a kerosine fraction 7, a gas oil fraction 8 and a bottoms fraction 9.
- bottoms fraction 9 was passed to a downflow reactor 10 as described in Example 1, containing catalyst as described in Example 1 and provided with suitable regeneration means from which coke can be removed in line 11 when necessary, while gaseous and liquid product is separated in fractionation unit 12 into a gaseous product 13, a gasoline product 14 and a bottoms stream 15, which is recycled to the feedstock in line 1 for re-processing.
- Bottoms fraction 9 which is upgraded in reactor 10 comprises about 69% by weight based on the initial feed in line 1 when fractionated in unit 12.
- the composition of the fraction obtained from unit 12 is given in Table 3 below:
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Description
- The present invention relates to a process for the conversion of a hydrocarbonaceous feedstock and is particularly concerned with the upgrading of certain feedstocks.
- US 4,171,257 describes a process for upgrading a hydrocarbonaceous feedstock by contacting the feedstock with a ZSM-5 crystalline aluminosilicate catalyst at a pressure below 14 bar, a temperature of 260 to 427 °C and a space velocity of 0.1 to 15 l/l.h. The feedstock, exemplified as gas oil having a boiling point range of 230 to 437 °C, must contain loss than 5 ppmw of nitrogen-containing compounds, calculated as nitrogen. The upgraded product includes olefinic hydrocarbons, such as propene and butenes.
- The production of olefins is desirable as their reactivity renders them suitable for conversion to further products, in contrast to the low value lower paraffins. However, the above described process has the drawback that the initial feedstock must have been severely denitrified in order to avoid rapid catalyst deactivation.
- It has surprisingly been found that a comparatively high yield of olefins can be obtained, under less stringent conditions as regards nitrogen content, using certain zeolitic catalysts, at high temperature with a short feedstock residence time. Furthermore, it has been surprisingly found that the conversion is suitable for heavy hydrocarbon feedstock and an upgraded product rich in lower olefins can be obtained therefrom.
- Accordingly, the present invention provides a process for the conversion of a hydrotreated and/or hydrocracked heavy hydrocarbonaceous feedstock, which process comprises contacting the feedstock with a zeolitic catalyst comprising a zeolite with a pore diameter of 0.4 to 0.7 nm at a temperature of greater than 480 °C and a pressure of up to 10 bar during less than 10 seconds.
- The feedstock is contacted with the zeolitic catalyst for less than 10 seconds. Suitably, the minimum contact time is 0.1 second. Very good results are obtainable with a process in which the feedstock is contacted with the zeolitic catalyst during 1 to 6 seconds.
- The temperature during the reaction is relatively high. However, the combination of high temperature and short residence time allows a high conversion to olefins. A preferred temperature range is 480 to 900 °C, more preferably 500 to 750 °C.
- The zeolitic catalyst comprises a zeolite with a pore diameter of from 0.4 to 0.7 nm. The catalyst suitably further comprises a refractory oxide that serves as binder material. Suitable refractory oxides include alumina, silica, silica-alumina, magnesia, titania, zirconia and mixtures thereof. Alumina is especially preferred. The weight ratio of refractory oxide and zeolite suitably ranges from 10:90 to 90:10, preferably from 50:50 to 85:15. The catalyst may comprise further zeolites with a pore diameter above 0.7 nm. Suitable examples of such zeolites include the faujasite-type zeolites, zeolite beta, zeolite omega and in particular zeolite X and Y. The zeolitic catalyst preferably comprises as zeolite substantially only zeolites with a pore diameter of from 0.4 to 0.7 nm.
- The term zeolite in this specification is not to be regarded as comprising only crystalline aluminium silicates. The term also includes crystalline silica (silicalite), silicoaluminophosphates (SAPO), chromosilicates, gallium silicates, iron silicates, aluminium phosphates (ALPO), titanium aluminosilicates (TASO), boron silicates, titanium aluminophosphates (TAPO) and iron aluminosilicates.
- Examples of zeolites that may be used in the process of the invention and that have a pore diameter of 0.4 to 0.7 nm, include SAPO-4 and SAPO-11, which are described in US-A-4,440,871, ALPO-11, described in US-A-4,310,440, TAPO-11, described in US-A-4,5OO,651, TASO-45, described in EP-A-229,295, boron silicates, described in e.g. US-A-4,254,297, aluminium silicates like erionite, ferrierite, theta and the ZSM-type zeolites such as ZSM-5, ZSM-11, ZSM-12, ZSM-35, ZSM-23, and ZSM-38. Preferably the zeolite is selected from the group consisting of crystalline metal silicates having a ZSM-5 structure, ferrierite, erionite and mixtures thereof. Suitable examples of crystalline metal silicates with ZSM-5 structure are aluminium, gallium, iron, scandium, rhodium and/or scandium silicates as described in e.g. GB-B-2,110,559.
- During the preparation of the zeolites usually a significant amount of alkali metal oxide is present in the prepared zeolite. Preferably the amount of alkali metal is removed by methods known in the art, such as ion exchange, optionally followed by calcination, to yield the zeolite in its hydrogen form. Preferably the zeolite used in the present process is substantially in its hydrogen form.
- Olefin production is facilitated by the absence of hydrogen or a hydrogen donor. Hence, the present process is advantageously carried out in the absence of added hydrogen and/or steam. It is, of course, possible that during the reaction some small molecules, such as hydrogen molecules are formed. However, this amount is usually negligible and will be less than 0.5 %wt of the product.
- The pressure in the present process can be varied within wide ranges. It is, however, preferred that the pressure is such that at the prevailing temperature the feedstock is substantially in its gaseous phase. Then it is easier to achieve the short contact times envisaged. Hence, the pressure is preferably relatively low. This is the more advantageous since no expensive compressors and high-pressure vessels and other equipment are necessary. Pressures up to 10 bar can be employed. Subatmospheric pressures are possible, but not preferred. The minimum pressure is suitably 1 bar. It is economically advantageous to operate at atmospheric pressure.
- The catalyst/feedstock weight ratio may vary widely, for example up to 200 kg of catalyst per kg of feedstock. Preferably, the catalyst/feedstock weight ratio is from 2 to 200.
- The process according to the present invention may be carried out in a fixed bed. However, this would imply that extremely high space velocities be required to attain the short contact times envisaged. Therefore, the present process is preferably carried out in a moving bed. The bed of catalyst may move upwards or downwards. When the bed moves upwards a process similar to a fluidized catalytic cracking process is obtained. Preferably, the process is carried out in a downwardly moving bed.
- During the process some coke forms on the catalyst. Therefore, it is advantageous to regenerate the catalyst. Preferably the catalyst is regenerated by subjecting it, after having been contacted with the feedstock, to a treatment with an oxidizing gas, such as air. A continuous regeneration, similar to the regeneration carried out in a fluidized catalytic cracking process, is especially preferred.
- The coke formation does not occur at a very high rate. Hence, it would be possible to arrange for a process in which the residence time of the catalyst particles in a reaction zone, e.g. a moving bed, is longer than the residence time of the feedstock in the reaction zone. Of course the contact time between feedstock and catalyst should be less than 10 seconds. The contact time generally corresponds with the residence time of the feedstock. Suitably the residence time of the catalyst is from 1 to 20 times the residence time of the feedstock.
- The feedstock which is to be convert in the present process comprises hydrotreated and/or hydrocracked hydrocarbons, preferably, though not necessarily, heavy feedstocks. Suitable feedstocks are obtained by hydrotreating and/or hydrocracking heavy flashed distillate fractions from long residue or deasphalted oils obtained from short residue. The feedstock is suitably fractionated to remove lower boiling fractions after hydrotreating and/or hydrocracking and prior to contacting with the zeolitic catalyst in accordance with the invention.
- The product obtained by the process of the invention is optionally fractionated to yield an olefin-rich gas fraction, a gasoline fraction and a bottom fraction, all or part of which is optionally recycled to the feedstock upstream of the hydrotreating and/or hydrocracking unit. In this way, high conversion of the heavy deasphalted oil or heavy flashed distillate feedstock to more valuable olefin-rich gas is obtained.
- Therefore, in accordance with a further aspect of the invention, there is provided a process for the conversion of a hydrocarbonaceous feedstock comprising hydrotreating and/or hydrocracking said feedstock in the presence of a suitable catalyst, contacting at least a part of the hydrotreated and/or hydrocracked product with a zeolitic catalyst comprising a zeolite with a pore diameter of 0.4 to 0.7 nm at a temperature of greater than 480 °C and a pressure of up to 10 bar during less than 10 seconds, fractionating the resulting converted material and recycling a heavier fraction to said hydrotreating and/or hydrocracking step.
- The said hydrotreating step is known in the art and may be carried out at known conditions. Suitable conditions include a temperature of 150 to 400 °C, a hydrogen (partial) pressure of 30 to 150 bar, a space velocity of 0.5 to 4.0 kg/l.h and a hydrogen/feedstock ratio of 100 to 2000 Nl/kg. Suitable hydrotreating catalysts comprise nickel, cobalt, tungsten, molybdenum, platinum, palladium or mixtures thereof on a carrier, such as alumina, silica-alumina, silica, zirconia, zeolites and the like. The catalyst may further comprise fluorine, phosphorus and/or boron. The temperature, gas rate and space velocity can be selected by the person skilled in the art, suitably from the range given above.
- Hydrocracking is also known in the art and may be carried out under known conditions, such as over a hydrocracking catalyst at a temperature of 300 to 450 °C, a hydrogen (partial) pressure of 50 to 200 bar, a space velocity of 0.5 to 2.0 kg/l.catalyst.h and a H₂/mineral oil fraction ratio of 500 to 2000 Nl/kg. The hydrocracking catalyst can be selected from any hydrocracking catalyst known in the art. Suitably the hydrocracking catalyst comprises a carrier and at least one hydrogenating metal or a compound thereof, which carrier has been selected from the group consisting of silica, alumina, silica-alumina and the faujasite-type zeolites. The most preferred faujasite-type zeolite is zeolite Y. The most preferred hydrogenating metals are nickel, cobalt, tungsten and molybdenum and mixtures thereof, but platinum and/or palladium may also be used. The catalyst may further comprise fluorine and/or phosphorus and/or boron. When nickel, cobalt, molybdenum and/or tungsten are used as hydrogenating metal, they are preferably present in the form of their sulphides.
- One of the advantages of the present invention over the process according to US 4,171,257 resides in the fact that a feedstock with a nitrogen content greater than 5 ppmw may be used with substantially no effect on the catalyst activity. Suitable feedstocks may have a nitrogen content of more than 10 ppmw, calculated as nitrogen. The feedstock may even have a nitrogen content of 1000 ppmw or more, calculated as nitrogen.
- The invention will now be further described with reference to the following examples and the accompanying drawing:
- The feedstock in this example was a hydrotreated Arabian light deasphalted oil having the following properties:
IBP, °C 453 50 %wt 591 67 %wt 620 density 70/4 0.8532 kg/l sulphur 232 ppmw nitrogen 12 ppmw - The DAO feedstock was upgraded in a downflow reactor by passing it downwards co-currently with a flow of catalyst particles. The catalyst comprised ZSM-5 in an alumina matrix (weight ratio ZSM-5/alumina 1:3). The experiment was carried out at atmospheric pressure. Further process conditions and the results of the experiment are given in Table 1 below.
- From the above results it will be seen that a high proportion of the gaseous products was olefinically unsaturated and the product contained a comparatively high proportion of middle distillates.
-
-
- This example employed as feedstock an Arabian heavy heavy flashed distillate which, after initial hydrocracking, typically had the properties given in Table 3 below.
- The flashed distillate was treated in accordance with the process illustrated in Fig. 1 as follows.
- Feedstock was introduced on line 1, after mixing with hydrogen from
line 2, to a hydrotreating/hydrocracking unit 3 operated at 90 bar hydrogen partial pressure at 400 °C with a suitable Ni/Mo/alumina hydrotreating catalyst. - The hydrotreated product was fractionated in unit 4 into a
gaseous fraction 5, a naphtha fraction 6, a kerosine fraction 7, agas oil fraction 8 and abottoms fraction 9. Under conditions as described herein,bottoms fraction 9 was passed to adownflow reactor 10 as described in Example 1, containing catalyst as described in Example 1 and provided with suitable regeneration means from which coke can be removed in line 11 when necessary, while gaseous and liquid product is separated infractionation unit 12 into agaseous product 13, a gasoline product 14 and a bottoms stream 15, which is recycled to the feedstock in line 1 for re-processing. -
- It will be seen from the above results that the bottoms component separated from the initial flashed distillate has yielded a high proportion of olefinically unsaturated gaseous products and gasoline while the recycling facility enables maximum upgrading to more valuable products.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB888828206A GB8828206D0 (en) | 1988-12-02 | 1988-12-02 | Process for conversion of hydrocarbonaceous feedstock |
GB8828206 | 1988-12-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0372632A1 true EP0372632A1 (en) | 1990-06-13 |
EP0372632B1 EP0372632B1 (en) | 1996-01-31 |
Family
ID=10647877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890203038 Revoked EP0372632B1 (en) | 1988-12-02 | 1989-11-29 | Process for the conversion of a hydrocarbonaceous feedstock |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0372632B1 (en) |
JP (1) | JPH02212594A (en) |
CN (1) | CN1025216C (en) |
AU (1) | AU621169B2 (en) |
BR (1) | BR8906158A (en) |
CA (1) | CA2004390A1 (en) |
DE (1) | DE68925574T2 (en) |
ES (1) | ES2082769T3 (en) |
GB (1) | GB8828206D0 (en) |
PH (1) | PH27238A (en) |
RU (1) | RU2017790C1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5380690A (en) * | 1993-03-29 | 1995-01-10 | China Petro-Chemical Corporation | Cracking catalyst for the production of light olefins |
US5670037A (en) * | 1993-11-05 | 1997-09-23 | China Petro-Chemical Corporation | Process for producing light olefins by catalytic conversion of hydrocarbons |
EP0955091A1 (en) * | 1998-05-06 | 1999-11-10 | Institut Francais Du Petrole | Catalyst based on zeolite y containing silicium suitable for hydrocracking |
EP0955092A1 (en) * | 1998-05-06 | 1999-11-10 | Institut Francais Du Petrole | Catalyst based on y zeolite not totally dealuminated, boron and/or silicium and process for hydrocracking |
FR2778582A1 (en) * | 1998-05-13 | 1999-11-19 | Inst Francais Du Petrole | Lowering flow point of paraffinic charge to produce high viscosity index base lubricants |
EP2077270A1 (en) | 2008-01-07 | 2009-07-08 | SK Energy Co., Ltd. | Transition metal complexes, and catalysts compositions for preparing ethylene homopolymers or copolymers |
EP2077269A1 (en) | 2008-01-07 | 2009-07-08 | SK Energy Co., Ltd. | Transition metal complexes, catalyst compositions containing the same, and methods for preparing ethylene polymers using the same |
US7589042B2 (en) | 2005-07-01 | 2009-09-15 | Sk Corporation | Arylphenoxy catalyst system for producing ethylene homopolymer or copolymers of ethylene and α-olefins |
WO2010053264A2 (en) | 2008-11-05 | 2010-05-14 | Sk Energy Co., Ltd. | METHOD FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS |
US7928173B2 (en) | 2008-09-25 | 2011-04-19 | Sk Energy Co., Ltd. | Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
WO2012169811A2 (en) | 2011-06-09 | 2012-12-13 | Sk Innovation Co., Ltd. | NEW CYCLOPENTA[B]FLUORENYL TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND METHOD OF PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN USING THE SAME |
WO2012176946A1 (en) | 2011-06-24 | 2012-12-27 | Sk 이노베이션 주식회사 | Transition metal catalyst system with excellent copolymerization and preparation method of ethylene homopolymer or copolymer of ethylene and α-olefin using same |
US8344081B2 (en) | 2007-12-31 | 2013-01-01 | Sk Innovation Co., Ltd. | Transition metal complexes, catalysts composition containing the same, and process for preparing ethylene homopolymers or copolymers of ethylene and alpha-olefins using the same |
KR20150138042A (en) | 2014-05-29 | 2015-12-09 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | NEW TRANSITION METAL COMPLEXES, CATALYST COMPOSITIONS CONTAINING THE SAME FOR OLEFIN POLYMERIZATION AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME |
US9260667B2 (en) | 2007-12-20 | 2016-02-16 | China Petroleum & Chemical Corporation | Combined process of hydrotreating and catalytic cracking of hydrocarbon oils |
KR20180079181A (en) | 2016-12-30 | 2018-07-10 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | New cyclopenta[b]thiophenyl transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
KR20180081448A (en) | 2017-01-06 | 2018-07-16 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | New indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
KR20180082314A (en) | 2017-01-09 | 2018-07-18 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | New transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
WO2019064247A1 (en) | 2017-09-29 | 2019-04-04 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME |
WO2019123028A1 (en) | 2017-12-21 | 2019-06-27 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | Metal-ligand complex, catalyst composition comprising same for ethylene-based polymerization, and method for preparing ethylene-based polymer by using same |
WO2020174346A1 (en) | 2019-02-28 | 2020-09-03 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | NOVEL TETRAARYLBORATE COMPOUND, CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFIN BY USING SAME |
KR20200105409A (en) | 2019-02-28 | 2020-09-07 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | Novel tetraaryl borate compounds, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
US10919992B2 (en) | 2017-09-29 | 2021-02-16 | Sabic Sk Nexlene Company Pte. Ltd. | Indene-based transition metal compound, transition metal catalyst composition comprising same, and method for preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin by using same |
US11339230B2 (en) | 2017-08-21 | 2022-05-24 | Sabic Sk Nexlene Company Pte. Ltd. | Transition metal compound, catalyst composition including the same, and method for preparing ethylene homopolymer or copolymer of ethylene and α-olefin using the same |
US11505563B2 (en) | 2017-12-21 | 2022-11-22 | Sabic Sk Nexlene Company Pte. Ltd. | Metal-ligand complex, catalyst composition for ethylene-based polymerization including the same, and method for preparing ethylene-based polymer using the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8904408D0 (en) * | 1989-02-27 | 1989-04-12 | Shell Int Research | Process for the conversion of a hydrocarbonaceous feedstock |
US6835863B2 (en) | 1999-07-12 | 2004-12-28 | Exxonmobil Oil Corporation | Catalytic production of light olefins from naphtha feed |
US6222087B1 (en) | 1999-07-12 | 2001-04-24 | Mobil Oil Corporation | Catalytic production of light olefins rich in propylene |
CN101210200B (en) | 2006-12-27 | 2010-10-20 | 中国石油化工股份有限公司 | Hydrogenation treatment and catalytic cracking combined process for residual oil |
CN108431180B (en) | 2015-12-21 | 2021-09-03 | 沙特基础工业全球技术公司 | Method and system for producing olefins and aromatics from coker naphtha |
KR20240045992A (en) | 2022-09-30 | 2024-04-08 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | Transition metal compound, catalyst composition comprising the same, and method for preparing olefin polymer using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420770A (en) * | 1966-09-28 | 1969-01-07 | Mobil Oil Corp | Catalytic cracking of hydrocarbons |
US3856659A (en) * | 1972-12-19 | 1974-12-24 | Mobil Oil Corp | Multiple reactor fcc system relying upon a dual cracking catalyst composition |
US4171257A (en) * | 1978-10-23 | 1979-10-16 | Chevron Research Company | Petroleum distillate upgrading process |
EP0125709A2 (en) * | 1983-04-18 | 1984-11-21 | Shell Internationale Researchmaatschappij B.V. | A process for the production of low-asphaltenes hydrocarbon mixtures |
US4502945A (en) * | 1982-06-09 | 1985-03-05 | Chevron Research Company | Process for preparing olefins at high pressure |
EP0347003A1 (en) * | 1988-06-16 | 1989-12-20 | Shell Internationale Researchmaatschappij B.V. | Process for the conversion of a hydrocarbonaceous feedstock |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8301352A (en) * | 1983-04-18 | 1984-11-16 | Shell Int Research | PROCESS FOR THE PREPARATION OF LOW-ASPHALTENE HYDROCARBON MIXTURES. |
-
1988
- 1988-12-02 GB GB888828206A patent/GB8828206D0/en active Pending
-
1989
- 1989-11-29 DE DE1989625574 patent/DE68925574T2/en not_active Revoked
- 1989-11-29 ES ES89203038T patent/ES2082769T3/en not_active Expired - Lifetime
- 1989-11-29 EP EP19890203038 patent/EP0372632B1/en not_active Revoked
- 1989-12-01 AU AU45799/89A patent/AU621169B2/en not_active Ceased
- 1989-12-01 RU SU4742676 patent/RU2017790C1/en active
- 1989-12-01 CN CN 89109758 patent/CN1025216C/en not_active Expired - Fee Related
- 1989-12-01 CA CA 2004390 patent/CA2004390A1/en not_active Abandoned
- 1989-12-01 JP JP31084489A patent/JPH02212594A/en active Pending
- 1989-12-04 BR BR8906158A patent/BR8906158A/en not_active Application Discontinuation
- 1989-12-08 PH PH39654A patent/PH27238A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420770A (en) * | 1966-09-28 | 1969-01-07 | Mobil Oil Corp | Catalytic cracking of hydrocarbons |
US3856659A (en) * | 1972-12-19 | 1974-12-24 | Mobil Oil Corp | Multiple reactor fcc system relying upon a dual cracking catalyst composition |
US4171257A (en) * | 1978-10-23 | 1979-10-16 | Chevron Research Company | Petroleum distillate upgrading process |
US4502945A (en) * | 1982-06-09 | 1985-03-05 | Chevron Research Company | Process for preparing olefins at high pressure |
EP0125709A2 (en) * | 1983-04-18 | 1984-11-21 | Shell Internationale Researchmaatschappij B.V. | A process for the production of low-asphaltenes hydrocarbon mixtures |
EP0347003A1 (en) * | 1988-06-16 | 1989-12-20 | Shell Internationale Researchmaatschappij B.V. | Process for the conversion of a hydrocarbonaceous feedstock |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5380690A (en) * | 1993-03-29 | 1995-01-10 | China Petro-Chemical Corporation | Cracking catalyst for the production of light olefins |
US5670037A (en) * | 1993-11-05 | 1997-09-23 | China Petro-Chemical Corporation | Process for producing light olefins by catalytic conversion of hydrocarbons |
US6420296B2 (en) | 1998-05-06 | 2002-07-16 | Institut Francais Du Petrole | Catalyst comprising a zeolite Y globally non-dealuminated and containing boron and/or silicon |
EP0955091A1 (en) * | 1998-05-06 | 1999-11-10 | Institut Francais Du Petrole | Catalyst based on zeolite y containing silicium suitable for hydrocracking |
FR2778345A1 (en) * | 1998-05-06 | 1999-11-12 | Inst Francais Du Petrole | ZEOLITH-BASED CATALYST CONTAINING BORON AND / OR SILICON FOR USE IN HYDROCRACKING |
FR2778343A1 (en) * | 1998-05-06 | 1999-11-12 | Inst Francais Du Petrole | CATALYST BASED ON ZEOLITH Y NOT GLOBALLY DESALUMINATED, BORON AND / OR SILICON AND HYDROCRACKING PROCESS |
US6719895B2 (en) | 1998-05-06 | 2004-04-13 | Institut Français du Pétrole | Catalyst comprising a zeolite Y globally non-dealuminated and containing boron and/or silicon |
EP0955092A1 (en) * | 1998-05-06 | 1999-11-10 | Institut Francais Du Petrole | Catalyst based on y zeolite not totally dealuminated, boron and/or silicium and process for hydrocracking |
US6171474B1 (en) | 1998-05-06 | 2001-01-09 | Institut Francais Du Petrole | Zeolite Y catalyst containing silicon useful for hydrocracking |
EP0962251A1 (en) * | 1998-05-13 | 1999-12-08 | Institut Francais Du Petrole | Process for improving the pour point and catalyst based on at least a MTT, TON, or FER zeolite |
US6235960B1 (en) | 1998-05-13 | 2001-05-22 | Institut Francais Du Petrole | Process for improving the pour point, and a catalyst based on at least one MTT, Ton or Fer zeolite |
FR2778582A1 (en) * | 1998-05-13 | 1999-11-19 | Inst Francais Du Petrole | Lowering flow point of paraffinic charge to produce high viscosity index base lubricants |
US7589042B2 (en) | 2005-07-01 | 2009-09-15 | Sk Corporation | Arylphenoxy catalyst system for producing ethylene homopolymer or copolymers of ethylene and α-olefins |
US9309467B2 (en) | 2007-12-20 | 2016-04-12 | China Petroleum And Chemical Corp. | Integrated process for hydrogenation and catalytic cracking of hydrocarbon oil |
US9260667B2 (en) | 2007-12-20 | 2016-02-16 | China Petroleum & Chemical Corporation | Combined process of hydrotreating and catalytic cracking of hydrocarbon oils |
US8344081B2 (en) | 2007-12-31 | 2013-01-01 | Sk Innovation Co., Ltd. | Transition metal complexes, catalysts composition containing the same, and process for preparing ethylene homopolymers or copolymers of ethylene and alpha-olefins using the same |
EP2077270A1 (en) | 2008-01-07 | 2009-07-08 | SK Energy Co., Ltd. | Transition metal complexes, and catalysts compositions for preparing ethylene homopolymers or copolymers |
EP2077269A1 (en) | 2008-01-07 | 2009-07-08 | SK Energy Co., Ltd. | Transition metal complexes, catalyst compositions containing the same, and methods for preparing ethylene polymers using the same |
US7645844B2 (en) | 2008-01-07 | 2010-01-12 | Sk Energy Co., Ltd. | Transition metal complexes, catalyst compositions containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
US7847039B2 (en) | 2008-01-07 | 2010-12-07 | Sk Energy Co., Ltd. | Transition metal complexes, and catalysts compositions for preparing ethylene homopolymers or copolymers |
US8232359B2 (en) | 2008-09-25 | 2012-07-31 | Sk Innovation Co., Ltd. | Process for preparing ethylene homopolymers or copolymers of ethylene with α-olefin by using the transition metal compound |
US7928173B2 (en) | 2008-09-25 | 2011-04-19 | Sk Energy Co., Ltd. | Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
WO2010053264A2 (en) | 2008-11-05 | 2010-05-14 | Sk Energy Co., Ltd. | METHOD FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS |
US8013086B2 (en) | 2008-11-05 | 2011-09-06 | Sk Energy Co., Ltd. | Method for preparing elastomeric copolymers of ethylene and α-olefins |
US8921499B2 (en) | 2011-06-09 | 2014-12-30 | Sk Innovation Co., Ltd. | Method of preparing ethylene-α-olefin-diene copolymer |
US9120884B2 (en) | 2011-06-09 | 2015-09-01 | Sk Innovation Co., Ltd. | Cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and α-olefin using the same |
US10323111B2 (en) | 2011-06-09 | 2019-06-18 | Sabic Sk Nexlene Company Pte. Ltd. | Cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin using the same |
US9926394B2 (en) | 2011-06-09 | 2018-03-27 | Sabic Sk Nexlene Company Pte. Ltd. | Cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin using the same |
WO2012169811A2 (en) | 2011-06-09 | 2012-12-13 | Sk Innovation Co., Ltd. | NEW CYCLOPENTA[B]FLUORENYL TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND METHOD OF PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN USING THE SAME |
US10487163B2 (en) | 2011-06-09 | 2019-11-26 | Sabic Sk Nexlene Company Pte. Ltd. | Cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin using the same |
WO2012176946A1 (en) | 2011-06-24 | 2012-12-27 | Sk 이노베이션 주식회사 | Transition metal catalyst system with excellent copolymerization and preparation method of ethylene homopolymer or copolymer of ethylene and α-olefin using same |
KR20150138042A (en) | 2014-05-29 | 2015-12-09 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | NEW TRANSITION METAL COMPLEXES, CATALYST COMPOSITIONS CONTAINING THE SAME FOR OLEFIN POLYMERIZATION AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME |
US10053481B2 (en) | 2014-05-29 | 2018-08-21 | Sabic Sk Nexlene Company Pte. Ltd. | Transition metal compound, transition metal catalyst composition for polymerizing olefin, containing same, and method for preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin by using same |
KR20180079181A (en) | 2016-12-30 | 2018-07-10 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | New cyclopenta[b]thiophenyl transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
KR20180081448A (en) | 2017-01-06 | 2018-07-16 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | New indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
KR20180082314A (en) | 2017-01-09 | 2018-07-18 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | New transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
US11339230B2 (en) | 2017-08-21 | 2022-05-24 | Sabic Sk Nexlene Company Pte. Ltd. | Transition metal compound, catalyst composition including the same, and method for preparing ethylene homopolymer or copolymer of ethylene and α-olefin using the same |
WO2019064247A1 (en) | 2017-09-29 | 2019-04-04 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME |
US10919992B2 (en) | 2017-09-29 | 2021-02-16 | Sabic Sk Nexlene Company Pte. Ltd. | Indene-based transition metal compound, transition metal catalyst composition comprising same, and method for preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin by using same |
WO2019123028A1 (en) | 2017-12-21 | 2019-06-27 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | Metal-ligand complex, catalyst composition comprising same for ethylene-based polymerization, and method for preparing ethylene-based polymer by using same |
US11505563B2 (en) | 2017-12-21 | 2022-11-22 | Sabic Sk Nexlene Company Pte. Ltd. | Metal-ligand complex, catalyst composition for ethylene-based polymerization including the same, and method for preparing ethylene-based polymer using the same |
WO2020174346A1 (en) | 2019-02-28 | 2020-09-03 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | NOVEL TETRAARYLBORATE COMPOUND, CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFIN BY USING SAME |
KR20200105409A (en) | 2019-02-28 | 2020-09-07 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | Novel tetraaryl borate compounds, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same |
Also Published As
Publication number | Publication date |
---|---|
CA2004390A1 (en) | 1990-06-02 |
CN1025216C (en) | 1994-06-29 |
AU4579989A (en) | 1990-06-07 |
AU621169B2 (en) | 1992-03-05 |
RU2017790C1 (en) | 1994-08-15 |
BR8906158A (en) | 1990-07-31 |
DE68925574D1 (en) | 1996-03-14 |
GB8828206D0 (en) | 1989-01-05 |
DE68925574T2 (en) | 1996-08-08 |
JPH02212594A (en) | 1990-08-23 |
PH27238A (en) | 1993-05-04 |
ES2082769T3 (en) | 1996-04-01 |
EP0372632B1 (en) | 1996-01-31 |
CN1043156A (en) | 1990-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0372632B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0355928B1 (en) | Process for the catalytic cracking of a hydrocarbon feedstock | |
EP1205530B1 (en) | Catalytic converting process for producing prolifically diesel oil and liquefied gas | |
US5637207A (en) | Fluid catalytic cracking process | |
US20010042700A1 (en) | Naphtha and cycle oil conversion process | |
EP0347003B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
JPH0135874B2 (en) | ||
US5152883A (en) | Process for the production of improved octane numbers gasolines | |
EP1153109A1 (en) | Integrated staged catalytic cracking and staged hydroprocessing process | |
US5770043A (en) | Integrated staged catalytic cracking and hydroprocessing process | |
US5770044A (en) | Integrated staged catalytic cracking and hydroprocessing process (JHT-9614) | |
US3801493A (en) | Slack wax cracking in an fccu with a satellite reactor | |
EP0349036B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0490435B1 (en) | Process for the preparation of an olefins-containing mixture of hydrocarbons | |
EP0600686A1 (en) | Fluid catalytic cracking process for producing light olefins | |
EP0385538B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0392590B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0436253A1 (en) | Process for preparing one or more light hydrocarbon oil distillates | |
US5320745A (en) | FCC for producing low emission fuels from high hydrogen and low nitrogen and aromatic feeds with Cr-containing catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19901016 |
|
17Q | First examination report despatched |
Effective date: 19910528 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 68925574 Country of ref document: DE Date of ref document: 19960314 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2082769 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960926 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961018 Year of fee payment: 8 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAV | Examination of admissibility of opposition |
Free format text: ORIGINAL CODE: EPIDOS OPEX |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19961105 Year of fee payment: 8 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19961118 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19961127 Year of fee payment: 8 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961211 Year of fee payment: 8 |
|
26 | Opposition filed |
Opponent name: AKZO NOBEL N.V. Effective date: 19961029 Opponent name: MOBIL OIL CORPORATION Effective date: 19961029 |
|
26 | Opposition filed |
Opponent name: EXXON CHEMICAL TECHNICAL CENTRE Effective date: 19961031 Opponent name: AKZO NOBEL N.V. Effective date: 19961029 Opponent name: MOBIL OIL CORPORATION Effective date: 19961029 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL TECHNICAL CENTRE Opponent name: AKZO NOBEL N.V. Opponent name: MOBIL OIL CORPORATION |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: MOBIL OIL CORPORATION * 961029 AKZO NOBEL N.V. * 9 Effective date: 19961029 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL TECHNICAL CENTRE Opponent name: AKZO NOBEL N.V. Opponent name: MOBIL OIL CORPORATION |
|
27W | Patent revoked |
Effective date: 19970823 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 970823 |
|
NLR2 | Nl: decision of opposition |