WO2019064247A1 - NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME - Google Patents

NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME Download PDF

Info

Publication number
WO2019064247A1
WO2019064247A1 PCT/IB2018/057534 IB2018057534W WO2019064247A1 WO 2019064247 A1 WO2019064247 A1 WO 2019064247A1 IB 2018057534 W IB2018057534 W IB 2018057534W WO 2019064247 A1 WO2019064247 A1 WO 2019064247A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
aryl
transition metal
ethylene
Prior art date
Application number
PCT/IB2018/057534
Other languages
French (fr)
Korean (ko)
Inventor
신동철
오연옥
Original Assignee
사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180115040A external-priority patent/KR102643986B1/en
Application filed by 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 filed Critical 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디
Priority to RU2020114610A priority Critical patent/RU2783400C2/en
Priority to CN201880063246.XA priority patent/CN111148748B/en
Priority to EP18862289.8A priority patent/EP3689884B1/en
Priority to CA3075240A priority patent/CA3075240A1/en
Priority to US16/650,848 priority patent/US10919992B2/en
Priority to JP2020516841A priority patent/JP7177148B2/en
Publication of WO2019064247A1 publication Critical patent/WO2019064247A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/20Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a novel transition metal catalyst composition having a high catalytic activity for the production of a novel indene-based transition metal compound, an ethylene homopolymer containing the same, or a copolymer of ethylene and at least one alpha -olefin, an ethylene homopolymer or an ethylene- Olefins and copolymers of ethylene homopolymers or copolymers of ethylene and? -Olefins.
  • the so-called Ziegler-Natta catalyst system composed of the main catalyst component of a titanium or vanadium compound and the cocatalyst component of an alkyl aluminum compound has been generally used for preparing a copolymer of ethylene with a homopolymer or an? -Olefin.
  • the Ziegler-Natta catalyst system exhibits high activity for ethylene polymerization, the molecular weight distribution of the resulting polymer is generally broad due to the uneven catalytic activity point, and in particular, the disadvantage that the composition distribution is not uniform in the copolymer of ethylene and? .
  • metallocene catalyst system comprising a metallocene compound of Group 4 transition metal such as titanium, zirconium, and hafnium and a promoter, methylaluminoxane. Since the metallocene catalyst system is a homogeneous catalyst having a catalytic activity point of a single species, it is characterized in that polyethylene having a narrow molecular weight distribution and uniform composition distribution can be produced as compared with the conventional Ziegler-Natta catalyst system.
  • the polymerization activity is rapidly decreased and the? -Hydrogenolysis reaction predominates and the weight average molecular weight (Mw) Are not suitable for preparing high molecular weight polymers of 100,000 or more.
  • a so-called geometrically constrained nonmetalocene catalyst (Aka single-site catalyst).
  • EP 0416815 and EP 0420436 disclose an example in which an amide group is linked in the form of a ring to one cyclopentadiene ligand.
  • EP 0842939 a phenol-based ligand as an electron donor compound is reacted with a cyclopentadiene ligand An example of a catalyst in the form of a ring is shown.
  • a transition metal of the group 4 on the periodic table has a rigid planar structure and is rich in electrons and widely separated,
  • An alkyl group or an alkenyl group and an aryl group at the same time to a silyl group having a structure in which an indene or its derivative group is bonded to an amido group substituted with a silyl group,
  • Transition metal compound having a structural characteristic that is excellent in high temperature activity in the polymerization of ethylene and olefins and has excellent solubility in solvents such as n-hexane and cyclohexane,
  • the catalysts developed in the present invention despite the presence of diastereomeric properties Jaryang distribution is produced polymer is narrow, even in a high temperature, thereby completing the present invention and found to have the properties such as showing a high activity.
  • Another object of the present invention is to provide a process for economically producing an ethylene homopolymer or a copolymer of ethylene and an? -Olefin from a commercial standpoint using a catalyst composition comprising the above transition metal compound.
  • Another object of the present invention is to provide a method for producing a copolymer of ethylene and an? -Olefin, wherein the transition metal compound is used as a graph showing a chemical composition distribution of a single-pole or double-pole graph.
  • the present invention relates to a method for producing a transition metal compound, which comprises, as a center metal, an indene or a derivative thereof having a quadruple transition metal on the periodic table having a rigid plane structure and being electron-
  • the present invention relates to a transition metal compound having a structure which has a structure linked by a halogen atom, a halogen atom, a halogen atom, a halogen atom, a halogen atom, a halogen atom, a halogen atom, will be.
  • M is a transition metal of Group 4 on the Periodic Table
  • R 1 is (C 1 -C 20) alkyl or (C 2 -C 20) alkenyl and the alkyl or alkenyl of R 1 is halogen, (C 6 -C 30) aryl and (C 6 -C 20) Lt; / RTI > may be further substituted with one or more substituents selected from the group consisting of;
  • Ar 1 is (C6-C30) aryl, and the aryl of Ar 1 is a (C1-C20) alkyl, halo (C1-C20) alkyl and (C6-C30) aryl (C1-C20) is selected from the group consisting of alkyl Which may be further substituted with one or more substituents;
  • R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 may be connected to an adjacent substituent may form a fused ring, wherein the formed fused ring is (C1-C20) alkyl, (C6-C30) aryl, (C6-C30) aryloxy, (C6-C30) alkoxy, halo (C1- C20) alkyl, (C3- C20) cycloalkyl, (C 1 -C 20) alkyl (C 6
  • R 9 is (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl;
  • R 6 and R 7 are independently selected from the group consisting of (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, aryl, (C1-C20) alkoxy (C6-C30) aryl or (C6-C30) aryl (C1-C20) alkyl or, wherein R 6 and R 7 are connected to each other may form a ring, the formed ring is (C1-C60) alkyl, (C6-C60) aryl, (C6-C60) (C1-C20) alkyl (C6-C30) aryl and (C6-C20) aryloxy;
  • R < 8 &gt is hydrogen or (C1-C20) alkyl
  • X 1 and X 2 are independently of each other selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 1 -C 20) alkyl, (C 1 -C 20) alkyl ((C 1 -C 20) alkyl (C 6 -C 30) aryl) ) aryloxy, (C1-C20) alkoxy (C6-C30) aryloxy, -OSiR a R b R c, -SR d, -NR e R f, -PR g R h , or (C1-C20) alkylidene and ;
  • R a to R d are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl;
  • R e to R h are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
  • a transition metal compound represented by Formula 1 represented by Formula 1; And a cocatalyst selected from an aluminum compound, a boron compound or a mixture thereof, or a transition metal catalyst composition for preparing a copolymer of ethylene and an? -Olefin.
  • a method for preparing a copolymer of ethylene homopolymer or ethylene and an alpha -olefin using the transition metal catalyst composition is provided.
  • R 1 to R 9 and Ar 1 are the same as defined in the above formula (1).
  • a transition metal compound for use in producing a copolymer of ethylene and an? -Olefin having a GPC graph of a single rod is provided.
  • a method for preparing a copolymer of ethylene and an -olefin wherein the transition metal compound is used as a graph showing a chemical composition distribution of a monobon or a bimodal curve.
  • the transition metal compound or the catalyst composition comprising the transition metal compound according to the present invention can be easily produced by a high synthesis rate and an economical method and is excellent in thermal stability of the catalyst,
  • the present invention has commercial utility in comparison with the already known metallocene and non-metallocene single-site catalysts since it can produce a polymer having a high copolymerization reactivity with a high molecular weight and a high molecular weight.
  • the present invention has developed catalysts that exhibit narrow molecular weight distribution characteristics, such as single-site catalysts, despite the fact that they are diastereomeric catalysts depending on the control of the ligand.
  • the copolymer prepared by using the transition metal compound according to the present invention as a catalyst at high temperature and high activity can easily produce copolymers having a narrow molecular weight distribution and a narrow chemical composition distribution (CCD) Has a unique advantage of being able to manufacture a narrow (2peak) chemical composition distribution. Therefore, the transition metal catalyst composition according to the present invention can be advantageously used in the production of an ethylene polymer selected from copolymers of ethylene and an? -Olefin having various physical properties.
  • the transition metal compound according to one embodiment of the present invention is a transition metal compound based on an indenyl group into which a nitrogen-containing substituent represented by the following general formula (1) is introduced.
  • the transition metal compound is a rigid, An indene having a planar structure and rich in electrons and being broadly segmented and having a structure in which a nitrogen-containing substituent is introduced, or an amide group substituted with a silyl group, Or a silyl group connecting a derivative group thereof and an amido group, an alkyl or alkenyl group and an aryl group which induce a high molecular weight distribution, not a broad molecular weight distribution, which is a disadvantage of a diastereomer, , Which is a high-efficiency and high molecular weight ethylene Which has the advantage of being advantageous in obtaining the polymer at high temperature.
  • M is a transition metal of Group 4 on the Periodic Table
  • R 1 is (C 1 -C 20) alkyl or (C 2 -C 20) alkenyl and the alkyl or alkenyl of R 1 is halogen, (C 6 -C 30) aryl and (C 6 -C 20) Lt; / RTI > may be further substituted with one or more substituents selected from the group consisting of;
  • Ar 1 is (C6-C30) aryl, and the aryl of Ar 1 is a (C1-C20) alkyl, halo (C1-C20) alkyl and (C6-C30) aryl (C1-C20) is selected from the group consisting of alkyl Which may be further substituted with one or more substituents;
  • R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 may be connected to an adjacent substituent may form a fused ring, wherein the formed fused ring is (C1-C20) alkyl, (C6-C30) aryl, (C6-C30) aryloxy, (C6-C30) alkoxy, halo (C1- C20) alkyl, (C3- C20) cycloalkyl, (C 1 -C 20) alkyl (C 6
  • R 9 is (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl;
  • R 6 and R 7 are independently selected from the group consisting of (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, aryl, (C1-C20) alkoxy (C6-C30) aryl or (C6-C30) aryl (C1-C20) alkyl or, wherein R 6 and R 7 are connected to each other may form a ring, the formed ring is (C1-C60) alkyl, (C6-C60) aryl, (C6-C60) (C1-C20) alkyl (C6-C30) aryl and (C6-C20) aryloxy;
  • R < 8 &gt is hydrogen or (C1-C20) alkyl
  • X 1 and X 2 are independently of each other selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 1 -C 20) alkyl, (C 1 -C 20) alkyl ((C 1 -C 20) alkyl (C 6 -C 30) aryl) ) aryloxy, (C1-C20) alkoxy (C6-C30) aryloxy, -OSiR a R b R c, -SR d, -NR e R f, -PR g R h , or (C1-C20) alkylidene and ;
  • R a to R d are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl;
  • R e to R h are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
  • the transition metal compound of the present invention is a catalyst having a structural feature that simultaneously contains an alkyl group or an alkenyl group and an aryl group in a silyl group linking an indenyl group and an amido group into which a nitrogen-containing substituent is introduced.
  • the transition metal compound is an alkyl group or an alkenyl Terephthalic acid, and terephthalic acid.
  • H 1 -NMR it was confirmed by H 1 -NMR that two diastereomers are present as shown in FIG. 1 due to the structural characteristic that the silyl group simultaneously contains an alkyl group or an alkenyl group and an aryl group.
  • the catalysts developed in the present invention exhibit such properties that a polymer having a narrow molecular weight distribution is produced and exhibits high activity even at a high temperature, despite the existence of diastereomeric properties at a ratio of 1: 1 to 1: 8. It has been reported that, in the case of catalysts having a diastereomer in which an indenyl group and an amido group are linked by a silyl group, the molecular weight distribution has a broad characteristic. However, in the case of the catalysts developed in the present invention, a polymer having a narrow molecular weight distribution could be obtained at high temperature and high efficiency.
  • a polymer having a narrow molecular weight distribution and a narrow composition distribution can be obtained, and a polymer having broad characteristics can be obtained with a narrow molecular weight distribution and a chemical composition distribution, It can be said that the value is great.
  • alkyl &quot refers to a monovalent straight-chain or branched saturated hydrocarbon radical consisting solely of carbon and hydrogen atoms.
  • alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, Butyl, pentyl, hexyl, octyl, nonyl, and the like.
  • " aryl " refers to an organic radical derived from an aromatic hydrocarbon by the removal of one hydrogen, with a single or fused ring containing from 4 to 7, preferably 5 or 6 ring atoms, A ring system, and a form in which a plurality of aryls are connected by a single bond.
  • Fused ring systems may include aliphatic rings, such as saturated or partially saturated rings, and necessarily contain one or more aromatic rings.
  • the aliphatic ring may also contain nitrogen, oxygen, sulfur, carbonyl or the like in the ring.
  • aryl radical examples include phenyl, naphthyl, biphenyl, indenyl, fluorenyl, phenanthrenyl, anthracenyl, triphenylenyl, pyrenyl, crycenyl, naphthacenyl, 9,10-dihydro Anthracenyl, and the like.
  • " cycloalkyl " as used herein means a monovalent saturated carbocyclic radical consisting of one or more rings.
  • cycloalkyl radicals include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.
  • " halo " or " halogen " as used herein means a fluorine, chlorine, bromine or iodine atom.
  • &quot alkyl substituted by one or more halogens, such as trifluoromethyl.
  • " alkoxy " and " aryloxy " refer to an -O-alkyl radical and an -O-aryl radical, respectively, wherein alkyl and aryl are as defined above.
  • the transition metal compound of Formula 1 may be a transition metal compound represented by Formula 2:
  • M, R 1 , R 6 , R 7 , R 9 , X 1, and X 2 are the same as defined in Formula 1;
  • R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 is with or without an adjacent substituent via the aromatic ring (C3-C7) alkylene, (C3-C7) alkenyl (C1-C20) alkoxy, halo (C1-C20) alkyl, (C3-C60) alkynyl, (C6-C30) aryl, (C6-C30) aryloxy, (C1-C20) alkyl (C6-C30) ary
  • R 11 to R 15 are independently of each other hydrogen, (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl.
  • M of the transition metal compound is preferably a transition metal of Group 4 in the periodic table, preferably titanium (Ti), zirconium (Zr) or hafnium (Hf), more preferably titanium ) Or zirconium (Zr).
  • (C1-C20) alkyl groups is, for example, methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, sec - butyl, tert - butyl group, n- pentyl group, A neopentyl group, an amyl group, an n-hexyl group, an n-octyl group, a n-decyl group, an n-dodecyl group or an n-pentadecyl group; (C2-C20) alkenyl group is, for example, a vinyl group or an allyl group; (C3-C20) cycloalkyl group is, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclo
  • R 6 and R 7 are independently (C1-C20) alkyl, (C3-C20) cycloalkyl or (C6-C30) aryl, wherein R 6 and R each other 7 may be linked by a (C3-C7) alkylene containing or not containing an aromatic ring to form a ring, and the ring formed may be substituted by (C1-C20) alkyl, (C6-C30) aryl (C6-C60) alkoxy, (C3-C20) cycloalkyl, (C6-C20) aryl, (C1- Or more.
  • R 1 can be (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl;
  • Ar 1 can be (C6-C30) aryl or (C1-C20) alkyl (C6-C30) aryl;
  • R 2 to R 5 are each independently hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C1-C20) alkyl (C6-C30) aryl, (C6-C30) aryl, (C6-C30) (C6-C30) aryloxy or (C6-C30) aryl (C1-C20) alkyl, or wherein R 2 to R 5 contain an aromatic ring with or without adjacent substituents C3-C7) alkylene, (C3-C7) alkenylene or (C4-C7) alkadienylene to form
  • the R One Is more specifically a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a vinyl group, an allyl group Or a benzyl group;
  • the Ar One May be more specifically a phenyl group, a naphthyl group, a biphenyl group, a tolyl group, a trimethylphenyl group, a butylphenyl group, a pentylphenyl group, a hexylphenyl group, an octylphenyl group, a decylphenyl group, a dodecylphenyl group or a tetradecylphenyl group;
  • the R 2 To R 5 Is independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, A phenyl group, a naph
  • R 31 to R 35, R 41 and R 42 are each independently hydrogen, methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, 2-methyl butyl group, a sec - butyl group, tert - butyl group, n- pentyl group, neopentyl group, amyl, n- hexyl, n- octyl group, n- decyl group, n- dodecyl group, n- penta decyl group, a phenyl group, a 2-tolyl group, Xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, Xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5
  • the halogen atom may be exemplified by a fluorine, chlorine, bromine or iodine atom
  • the (C 1 -C 20) alkyl group may be a methyl group, group, an isopropyl group, n- butyl group, sec - butyl, tert - butyl group, n- pentyl group, neopentyl group, amyl, n- hexyl, n- octyl group, n- decyl group, n- A dodecyl group, an n-pentadecyl group or an n-eicosyl group;
  • the (C3-C20) cycloalkyl group may be exemplified by a cyclopropane group, a cyclobutyl group, a cyclopentyl group, a cyclo
  • X 1 and X 2 are independently halogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C30) aryl, (C6-C30) aralkyl (C1 each other -C20) alkyl, (C1-C20) alkoxy, (C6-C30) aryloxy, (C1-C20) alkyl -OSiR (C6-C30) aryloxy, a R b R c, -SR d, -NR e R f or -PR g R h ; R a to R h independently of one another can be (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
  • X 1 and X 2 independently represent fluorine, chlorine, bromine, methyl, ethyl, isopropyl, A tertiary butyl group, a tert -butyl group, a tert -butoxy group, a phenoxy group, a 4-tert-butylphenoxy group, a trimethylsilyl group, a tert- butyldimethylsilyl group, a dimethylamino group, a diphenylamino group, a dimethylphosphine group, a diethylphosphine group, , Ethylthio group or isopropylthio group.
  • M in the formula (2) is tetravalent titanium, zirconium or hafnium;
  • R < 1 > is (C1-C20) alkyl;
  • R 11 to R 15 independently from each other are hydrogen or (C 1 -C 20) alkyl;
  • R 2 to R 5 independently from each other are hydrogen or (C 1 -C 20) alkyl, or R 2 to R 5 are adjacent substituents and , or To form a fused ring;
  • R 21 to R 24 independently from each other are hydrogen or (C 1 -C 20) alkyl;
  • R 6 and R 7 are independently (C1-C20) alkyl each other, wherein R 6 and R 7 is , , , , , , , or To form a ring;
  • R 31 to R 35 , R 41 and R 42 independently of one another are hydrogen or (C 1 -C 20) alkyl;
  • m and n are each independently an integer of 1 to 4;
  • the transition metal compound may be selected from compounds having the following structures, but is not limited thereto.
  • X 1 and X 2 are each independently selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 6 -C 30) (C6-C30) aryloxy, (C6-C30) aryloxy, -OSiR a R b R c , -SR d , -NR e R f or -PR g R h ;
  • R a to R h are, independently of each other, (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
  • the transition metal compounds according to the invention are ethylene homopolymers and ethylene and to the ⁇ - olefin is an active catalytic component used in ethylene polymer produced is selected from the copolymer, and preferably X 1 or X of the transition metal complex 2 ligand may be extracted to cationize the center metal while acting as a co-catalyst with an aluminum compound, a boron compound, or a mixture thereof capable of acting as a counterion having a weak bonding force, that is, an anion, Catalyst compositions comprising catalysts are also within the scope of the present invention.
  • a transition metal catalyst composition comprising the transition metal compound and a cocatalyst selected from an aluminum compound, a boron compound, or a mixture thereof.
  • the aluminum compound which can be used as a cocatalyst is selected from an aluminoxane compound represented by Chemical Formula 3 or 4, an organoaluminum compound represented by Chemical Formula 5, or an organoaluminum oxide compound represented by Chemical Formula 6 or Chemical Formula 7 Lt; / RTI >
  • R 51 is (C 1 -C 20) alkyl, preferably a methyl group or an isobutyl group, and p is an integer of 5 to 20;
  • R 52 and R 53 are each (C 1 -C 20) alkyl;
  • E is hydrogen or halogen;
  • r is an integer from 0 to 3;
  • R < 54 > is (C1-C20) alkyl or (C6-C30)
  • the aluminum compound examples include aluminoxane compounds such as methylaluminoxane, modified methylaluminoxane, and tetraisobutylaluminoxane;
  • organoaluminum compound examples include trialkylaluminum including trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum and trihexylaluminum;
  • Dialkyl aluminum chlorides including dimethyl aluminum chloride, diethyl aluminum chloride, dipropyl aluminum chloride, diisobutyl aluminum chloride and dihexyl aluminum chloride;
  • Alkylaluminum dichlorides including methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride and hexylaluminum dichloride;
  • Dialkylaluminum hydrides including dimethylaluminum hydride, die
  • the aluminum compound is preferably one or a mixture of two or more selected from alkyl aluminoxane compounds or trialkyl aluminum, more preferably methyl aluminoxane, modified methyl aluminoxane, tetraisobutyl aluminum Naphthoic acid, niobic acid, trimethylaluminum, triethylaluminum, trioctylaluminum and triisobutylaluminum, or a mixture of two or more thereof.
  • boron compounds which can be used as cocatalysts are known from U.S. Patent No. 5,198,401 and can be selected from the compounds represented by the following formulas (8) to (10).
  • B is a boron atom
  • R 61 is a phenyl group and the phenyl group is substituted with 3 to 5 substituents selected from fluoro, (C1-C20) alkyl unsubstituted or substituted by fluoro, and (C1-C20) alkoxy unsubstituted or substituted with fluoro ≪ / RTI &gt
  • R 62 is a (C 5 -C 7) aromatic radical or a (C 1 -C 20) alkyl (C 6 -C 20) aryl radical or a (C 6 -C 30) aryl (C 1 -C 20) alkyl radical such as triphenylmethylium, Radical
  • Z is a nitrogen or phosphorus atom
  • R 63 is a (C 1 -C 20) alkyl radical and Ar 2 is a (C 5 -C 7) aromatic radical substituted with a phenyl or (C 1
  • boron-based co-catalyst include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluoro (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (triphenylphosphine) borane, (Pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis , 5,6-tetrafluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate
  • these compounds include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrocenium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, triphenyl (Pentafluorophenyl) borate, triphenylmethyleniumtetrakis (3,5-bistrifluoromethylphenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetra (Pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (Pentafluorophenyl) borate, tri (n-butyl) ammonium t
  • the cocatalyst may serve as a scavenger for removing impurities acting as a poison to the catalyst in the reactants.
  • the preferred range of the ratio between the transition metal compound and the promoter of the present invention is the ratio of the center metal (M) to the boron atom (B) May be in the range of 1: 0.1 to 100: 1 to 2,000, preferably 1: 0.5 to 30: 10 to 1,000, more preferably 1: 0.5 to 1: ⁇ 5: 10 ⁇ 500.
  • the ratio of the transition metal compound of the present invention to the cocatalyst is out of the above range, the amount of the cocatalyst is relatively small, so that the transition metal compound is not fully activated and the catalytic activity of the transition metal compound may not be sufficient, There may arise a problem that the production cost is greatly increased due to the use of co-catalyst. Within this range, it exhibits excellent catalytic activity for producing a homopolymer of ethylene or a copolymer of ethylene and? -Olefin, and the range of the ratio varies depending on the purity of the reaction.
  • a method for producing an ethylene polymer selected from a homopolymer of ethylene and a copolymer of ethylene and an? -Olefin using the transition metal compound or the transition metal catalyst composition will be.
  • a copolymerization method of copolymerizing ethylene, propylene and optionally a nonconjugated diene using the transition metal compound or the transition metal catalyst composition is provided.
  • the process for preparing the ethylene polymer using the transition metal catalyst composition can be carried out by contacting the transition metal catalyst, the cocatalyst, and the ethylene or? -Olefin comonomer in the presence of a suitable organic solvent.
  • the transition metal catalyst and the cocatalyst component may be separately introduced into the reactor, or the components may be premixed and introduced into the reactor, and the mixing conditions such as the order of introduction, temperature, and concentration are not limited.
  • Preferred organic solvents that can be used in the above production process are (C3-C20) hydrocarbons. Specific examples thereof include butane, isobutane, pentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, cyclohexane, Hexane, benzene, toluene, xylene, and the like.
  • ethylene when ethylene homopolymer is prepared, ethylene alone is used as a monomer, and the pressure of ethylene is suitably 1 to 1000 atm, and more preferably 6 to 150 atm. It is also effective that the polymerization reaction is carried out at a temperature of from 25 ° C to 220 ° C, preferably from 70 ° C to 220 ° C, more preferably from 100 ° C to 220 ° C.
  • a copolymer of ethylene and? -Olefin When a copolymer of ethylene and an? -Olefin is prepared, a copolymer of ethylene and? -Olefin, C4 to C20 diolefin, C5 to C20 cycloolefin or cycloolefin or styrene 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-hexene, and the like.
  • C4-C20 diolefins include 1,3-butadiene, 1,4-pentadiene and 2- Methyl-1,3-butadiene
  • preferred examples of the C5-C20 cycloolefin or the cyclodiolefin include cyclopentene, cyclohexene, cyclopentadiene, cyclohexadiene, norbonene, Vinylidene-2-norbornene (VNB), 5-methylene-2-norbornene (MNB) and 5-ethylidene- Bonenen (ENB).
  • the above olefins can be homopolymerized or two or more olefins can be copolymerized.
  • preferred ethylene pressure and polymerization reaction temperature may be the same as in the case of the ethylene homopolymer production, and the copolymer prepared according to the method of the present invention usually contains not less than 30% by weight of ethylene, preferably 60% % Ethylene, more preferably from 60 to 99 wt%, based on the total weight of the composition.
  • a C3-C10 alpha -olefin is appropriately used as ethylene and a comonomer, and a melt flow rate of 0.001 to 2000 dg / min with a density of 0.850 g / cc to 0.960 g / Can easily and economically be manufactured from an elastomer having a high density polyethylene (HDPE) region.
  • HDPE high density polyethylene
  • the ethylene / propylene (EP) elastomer and the ethylene / propylene / diene (EPDM) elastomer can be advantageously prepared using the catalyst of the present invention.
  • EP ethylene / propylene
  • EPDM ethylene / propylene / diene
  • hydrogen may be used as a molecular weight modifier and has a weight average molecular weight (Mw) generally in the range of 5,000 to 1,000,000 g / mol.
  • the catalyst composition presented in the present invention is present in a uniform form in a polymerization reactor, it is preferable to apply to a solution polymerization process carried out at a temperature above the melting point of the polymer.
  • the transition metal compound and cocatalyst may be supported on a porous metal oxide support as disclosed in U.S. Patent No. 4,752,597, and used as slurry polymerization or gas-phase polymerization processes as non-uniform catalyst systems.
  • the present invention also includes a compound represented by the following formula (Int-1) as an intermediate for preparing the transition metal compound of the above formula (1).
  • R 1 to R 9 and Ar 1 are the same as defined in the above formula (1).
  • the present invention also relates to a transition metal compound of the above formula (1) for use in producing a copolymer of ethylene and an? -Olefin having a GPC graph of a single rod, and a TGIC analysis using the same, To a method for producing a copolymer of ethylene and an? -Olefin.
  • Cyclohexane a polymerization solvent
  • the polymerized polymer was analyzed by the method described below.
  • MI Melt Flow Index
  • the content ratio of unreacted ethylene and nitrogen as a reference material was measured by gas chromatography (GC).
  • N - tert - butyl-1-chloro-1-methyl-1-phenyl-amine silane 7.16 g, 31.4 mmol was added to and dissolved in tetrahydrofuran (THF) (50 mL) was stirred at room temperature for 12 hours.
  • THF tetrahydrofuran
  • the solvent was removed in vacuo, dissolved in normal hexane (150 mL) and the solids were removed with a filter filled with dried celite. The solvent was removed to give compound 1-c, which was viscous oil (10.0 g, yield 90.8%, diastereomeric ratio 1: 1).
  • the compound 1-d (4.0 g, 11.0 mmol) was dissolved in diethyl ether (50 mL) in a 250 mL three-necked round-bottomed flask under nitrogen atmosphere, and the temperature was lowered to -78 ° C. Then, 1.5 M methyl lithium (14.7 mL, 22.1 mmol ) was slowly added thereto, and a solution of tetrachlorotitanium (TiCl 4 ) (2.1 g, 11.0 mmol) in anhydrous n-hexane (30 mL) was slowly added at -78 ° C. After stirring at room temperature for 3 hours, the solvent was removed in vacuo.
  • Compound 2-a was prepared by the method for preparation of US 6268444 B1.
  • the compound 2-b (4.14 g, 11.0 mmol) was dissolved in diethyl ether (50 mL) in a 250 mL three-necked round-bottomed flask under nitrogen atmosphere. The temperature was lowered to -78 ° C., and 1.5 M methyl lithium (29.4 mL, 44.2 mmol ) Is slowly injected, the temperature is raised to room temperature and stirred for 6 hours. The reaction mixture was cooled to -78 ° C, and a solution of tetrachlorotitanium (TiCl 4 ) (2.1 g, 11.0 mmol) in anhydrous n-hexane (30 mL) was slowly added at -78 ° C.
  • TiCl 4 tetrachlorotitanium
  • Copolymerization of ethylene with 1-octene was carried out using a continuous polymerization apparatus as follows.
  • the catalysts synthesized in Preparation Examples 1-3 and Comparative Preparation Example 1 were used as single-site catalysts, and cyclohexane was used as a solvent.
  • the amount of catalyst used is as shown in Table 1 below.
  • Ti represents a catalyst
  • Al represents triisobutylaluminum
  • B represents N, N-dioctadecyl anilinium tetrakis (pentafluorophenyl) borate as a cocatalyst.
  • the catalyst was dissolved in toluene at a concentration of 0.1 g / L, and the synthesis was carried out using 1-octene as the comonomer.
  • the conversion rate of the reactor could be estimated through the reaction conditions and the temperature gradient in the reactor when polymerizing with one polymer under each reaction condition.
  • the molecular weight was controlled by a function of the reactor temperature and the 1-octene content, and the conditions and results are shown in Tables 1 and 2 below.
  • -Ti means Ti in the catalyst.
  • Examples 1 to 7 which were obtained by polymerizing the catalysts developed in the present invention, exhibited a higher temperature (150 ° C. or higher) than Comparative Examples 1 and 2 Polymers with low MI values indicating a high conversion of ethylene and a low density and a high molecular weight were easily obtained.
  • the catalyst of the present invention exhibited a high ethylene conversion despite the use of a small amount of catalyst as compared with the catalyst of Comparative Example 2, indicating that the catalyst of the present invention is superior in catalytic activity. Also, in Example 4, a copolymer having a low density and a high molecular weight was easily produced even at a polymerization temperature of 181 degrees.
  • a copolymer having a high ethylene conversion of 77% or more, a low density of 0.893 g / cc or less, and an MI value of less than 5 can be produced at high temperature polymerization of 150 ° C or higher.
  • GPC graphs of the copolymers prepared in Examples 5 and 6 are shown in FIG. 2, and the number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution index (MWD) are shown in Table 3 below.
  • GPC graphs of copolymers prepared by catalyzing diastereomers have broad molecular weight distributions in a wide or two peak graph shape.
  • the complexes of Preparation Example 2 of the present invention and Preparation Example 3 The copolymer prepared in Example 5 and Example 6 exhibited a narrow molecular weight distribution of a single rod uniquely on the GPC graph.
  • the copolymer of Example 5 (Polymer 2) had a molecular weight distribution of 2.33
  • the copolymer of Example 6 (Polymer 3) had a molecular weight distribution of 2.2, all of which showed a narrow molecular weight distribution of a single rod.
  • FIG. 3 shows a TGIC (Thermal Gradient Interaction Chromatography) graph for examining the chemical composition distribution (CCD) of the copolymers prepared in Examples 5 and 6. From FIG. 3, it can be seen that the copolymer (Polymer 2) prepared using the complex 2 of Preparation Example 2 in Example 5 exhibits a narrow distribution of single peaks characteristic of a typical single-site catalyst, It can be seen that the copolymer (Polymer 3) prepared in Example 6 using the complex 3 of Production Example 3 as a polymerization catalyst exhibits a wide chemical composition distribution with a double peak which is difficult to obtain from a typical single-site catalyst.
  • TGIC Thermal Gradient Interaction Chromatography
  • Copolymerization of ethylene with 1-octene was carried out using a batch polymerization apparatus as follows.
  • the catalyst activity was significantly increased as compared with the case of using the complex C of Comparative Preparation Example 4 in which a nitrogen-containing substituent was not introduced in indene.
  • the polymers prepared using the complex B of Comparative Preparation Example 3 in which the diphenyl group was substituted were used as the polymerization catalysts, although the molecular weight was larger than that of the polymer prepared using the complex C of Comparative Preparation Example 4 as the polymerization catalyst The molecular weight distribution was remarkably narrow.
  • the complex according to the present invention a complex having a structure in which an indene and an amido group introduced with a nitrogen-containing substituent are connected with an alkyl group and an aryl group-substituted silyl group,
  • a high-temperature highly active diastereomeric catalyst capable of producing a copolymer having a narrow molecular weight distribution and a narrow chemical composition distribution, or having a narrow molecular weight distribution useful for the development of new products and having a wide chemical composition distribution, As shown in FIG.
  • the complex according to the present invention a complex having a structure in which an indene and an amido group introduced with a nitrogen-containing substituent are linked by an alkyl group or an alkenyl group and a silyl group substituted with an aryl group is easy to produce, It can be said that a copolymer having a narrow molecular weight distribution and a narrow molecular weight distribution and a copolymer having a narrow molecular weight distribution and a wide chemical composition distribution can be easily produced by simply changing a substituent, have.
  • the transition metal compound or the catalyst composition comprising the transition metal compound according to the present invention can be easily produced by a high synthesis rate and an economical method and is excellent in thermal stability of the catalyst,
  • the present invention has commercial utility in comparison with the already known metallocene and non-metallocene single-site catalysts since it can produce a polymer having a high copolymerization reactivity with a high molecular weight and a high molecular weight.
  • the present invention has developed catalysts that exhibit narrow molecular weight distribution characteristics, such as single-site catalysts, despite the fact that they are diastereomeric catalysts depending on the control of the ligand.
  • the copolymer prepared by using the transition metal compound according to the present invention as a catalyst at high temperature and high activity can easily produce copolymers having a narrow molecular weight distribution and a narrow chemical composition distribution (CCD) Has a unique advantage of being able to manufacture a narrow (2peak) chemical composition distribution. Therefore, the transition metal catalyst composition according to the present invention can be advantageously used in the production of an ethylene polymer selected from copolymers of ethylene and an? -Olefin having various physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to: a novel indene-based transition metal compound; a transition metal catalyst composition comprising same and having a high catalytic activity for preparing an ethylene homopolymer or a copolymer of ethylene and one or more α-olefins; a method for preparing an ethylene homopolymer or a copolymer of ethylene and an α-olefin by using the transition metal catalyst composition; and an ethylene homopolymer or a copolymer of ethylene and an α-olefin prepared thereby.

Description

신규한 인덴계 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법Novel indene-type transition metal compound, transition metal catalyst composition containing the same, and process for producing a copolymer of ethylene homopolymer or ethylene and? -Olefin using the same
본 발명은 신규한 인덴계 전이금속 화합물, 이를 포함하는 에틸렌 단독중합체 또는 에틸렌과 하나 이상의 α-올레핀의 공중합체 제조용으로 높은 촉매활성을 가진 전이금속 촉매 조성물, 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법 및 제조된 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체에 관한 것이다. The present invention relates to a novel transition metal catalyst composition having a high catalytic activity for the production of a novel indene-based transition metal compound, an ethylene homopolymer containing the same, or a copolymer of ethylene and at least one alpha -olefin, an ethylene homopolymer or an ethylene- Olefins and copolymers of ethylene homopolymers or copolymers of ethylene and? -Olefins.
종래에 에틸렌의 단독중합체 또는 α-올레핀과의 공중합체 제조에는 일반적으로 티타늄 또는 바나듐 화합물의 주촉매 성분과 알킬알루미늄 화합물의 조촉매 성분으로 구성되는 이른바 지글러-나타 촉매계가 사용되어 왔다. 그런데 지글러-나타 촉매계는 에틸렌 중합에 대하여 고활성을 나타내지만, 불균일한 촉매 활성점 때문에 일반적으로 생성 중합체의 분자량 분포가 넓고, 특히 에틸렌과 α-올레핀의 공중합체에 있어서는 조성분포가 균일하지 못한 단점이 있었다.Conventionally, the so-called Ziegler-Natta catalyst system composed of the main catalyst component of a titanium or vanadium compound and the cocatalyst component of an alkyl aluminum compound has been generally used for preparing a copolymer of ethylene with a homopolymer or an? -Olefin. However, although the Ziegler-Natta catalyst system exhibits high activity for ethylene polymerization, the molecular weight distribution of the resulting polymer is generally broad due to the uneven catalytic activity point, and in particular, the disadvantage that the composition distribution is not uniform in the copolymer of ethylene and? .
최근에 티타늄, 지르코늄, 하프늄 등 주기율표 4족 전이금속의 메탈로센 화합물과 조촉매인 메틸알루미녹산(methylaluminoxane)으로 구성되는 이른바 메탈로센 촉매계가 개발되었다. 메탈로센 촉매계는 단일 종의 촉매활성점을 갖는 균일계 촉매이기 때문에 기존의 지글러-나타 촉매계에 비하여 분자량분포가 좁고 조성분포가 균일한 폴리에틸렌을 제조할 수 있는 특징을 가지고 있다. 예를 들면, 유럽공개특허 제 320,762호, 제 372,632호 또는 일본 특개소63-092621호, 일본 특개평02-84405호, 또는 특개평03-2347호에서는 Cp 2TiCl 2, Cp 2ZrCl 2, Cp 2ZrMeCl, Cp 2ZrMe 2, 에틸렌(IndH 4) 2ZrCl 2 등에서 메탈로센 화합물을 조촉매 메틸알루미녹산으로 활성화시킴으로써 에틸렌을 고활성으로 중합시켜 분자량분포(Mw/Mn)가 1.5~2.0 범위인 폴리에틸렌을 제조할 수 있음을 발표하였다. 그러나 상기 촉매계로는 고분자량의 중합체를 얻기가 어렵고, 특히 100℃ 이상의 고온에서 실시되는 용액중합법에 적용할 경우 중합활성이 급격히 감소하고 β-수소이탈반응이 우세하여 중량평균분자량(Mw)이 100,000 이상의 고분자량 중합체를 제조하기에는 적합하지 않은 것으로 알려져 있다.Recently, a so-called metallocene catalyst system comprising a metallocene compound of Group 4 transition metal such as titanium, zirconium, and hafnium and a promoter, methylaluminoxane, has been developed. Since the metallocene catalyst system is a homogeneous catalyst having a catalytic activity point of a single species, it is characterized in that polyethylene having a narrow molecular weight distribution and uniform composition distribution can be produced as compared with the conventional Ziegler-Natta catalyst system. For example, European Patent Publication Nos. 320,762, 372,632 or 63-092621, Nos. 02-84405 and 03-2347 disclose that Cp 2 TiCl 2 , Cp 2 ZrCl 2 , Cp (Mw / Mn) in the range of 1.5 to 2.0, by polymerizing ethylene in a high activity by activating the metallocene compound with the promoter methyl aluminoxane in the presence of a catalyst such as 2 ZrMeCl, Cp 2 ZrMe 2 , ethylene (IndH 4 ) 2 ZrCl 2 , Polyethylene can be produced. However, it is difficult to obtain a polymer having a high molecular weight in the catalyst system. Especially when applied to a solution polymerization method which is carried out at a high temperature of 100 ° C or more, the polymerization activity is rapidly decreased and the? -Hydrogenolysis reaction predominates and the weight average molecular weight (Mw) Are not suitable for preparing high molecular weight polymers of 100,000 or more.
한편, 용액중합 조건에서 에틸렌 단독중합 또는 에틸렌과 α-올레핀 등과의 공중합에서 높은 촉매활성과 고분자량의 중합체를 제조할 수 있는 촉매로서 전이금속을 고리형태로 연결시킨 소위 기하구속형 비 메탈로센계 촉매 (일명 단일활성점 촉매)가 발표되었다. 유럽특허 제 0416815호와 동 특허 제 0420436 호에서는 하나의 시클로펜타디엔 리간드에 아미드기를 고리형태로 연결시킨 예를 제시하였고, 동특허 제 0842939호에서는 전자주게 화합물로서 페놀계 리간드를 시클로펜타디엔 리간드와 고리형태로 연결시킨 촉매의 예를 보여준다. 이러한 기하구속형 촉매의 경우 촉매 자체의 낮아진 입체 장애 효과로 인하여 고급 알파-올레핀과의 반응성이 현저히 개선되었으나, 상업적으로 고온에서 우수한 활성과 우수한 공중합 특성 등을 제공하는 촉매의 개발이 중요시되고 있다. On the other hand, as a catalyst capable of producing a polymer having a high catalytic activity and high molecular weight through ethylene homopolymerization or copolymerization with ethylene and an -olefin under solution polymerization conditions, a so-called geometrically constrained nonmetalocene catalyst (Aka single-site catalyst). EP 0416815 and EP 0420436 disclose an example in which an amide group is linked in the form of a ring to one cyclopentadiene ligand. In EP 0842939, a phenol-based ligand as an electron donor compound is reacted with a cyclopentadiene ligand An example of a catalyst in the form of a ring is shown. In this geometric constrained catalyst, the reactivity with the higher alpha-olefin is remarkably improved due to the lowered steric hindrance effect of the catalyst itself, but development of a catalyst that provides excellent activity at an elevated temperature and excellent copolymerization characteristics is important.
한편, 종래의 문헌 “Journal of Molecular Catalysis A: Chemical 174 (2001) 35-49”에 따르면 실릴연결기에 아릴기와 알킬기가 동시에 치환된 인덴계 촉매의 경우 부분입체이성질들(diastereomers)이 제조되며, 이들은 넓은 분자량 분포를 나타나는 특성을 보였다. 따라서, 제조되는 촉매마다 부분입체이성질체들의 비율이 상이할 수 있으며, 상이한 부분입체이성질체들의 비율로 인하여 최종 제품의 분자량 분포 또한 달라지는 등 일관성이 없어 상업적으로 적용하기가 매우 어렵다.On the other hand, according to the conventional literature "Journal of Molecular Catalysis A: Chemical 174 (2001) 35-49", diastereomers are produced in the case of an indene catalyst in which an aryl group and an alkyl group are simultaneously substituted with a silyl linking group, Showed broad molecular weight distribution. Therefore, the ratio of the diastereomers may be different for each catalyst to be produced, and the molecular weight distribution of the final product may vary depending on the ratio of the different diastereomers.
상기 종래 기술의 문제점을 극복하기 위하여 본 발명자들은 광범위한 연구를 수행한 결과, 주기율표 상의 4족 전이금속이 단단한(rigid) 평면구조를 가지면서 전자가 풍부하고 넓게 비편재화되어 있으면서 질소 함유 치환체가 도입된 인덴 또는 이의 유도체기;와 실릴기가 치환된 아미도 기;에 의해 연결된 구조를 가지면서 특히 질소 함유 치환체가 도입된 인덴 또는 이의 유도체기와 아미도기를 연결하는 실릴기에 알킬기 또는 알케닐기와 아릴기를 동시에 포함하는 구조적 특징을 가지고 있는 전이금속 화합물이 에틸렌 및 올레핀류의 중합에 있어서 고온 활성이 우수하며, 노말 헥산, 시클로헥산 등의 용매에 우수한 용해도를 가지는 등의 장점을 가지고 있음을 발견하고, 또한, 본 발명에서 개발한 촉매들은 부분입체이성질들이 존재함에도 불구하고 분자량 분포가 좁은 고분자가 제조되고, 고온에서도 높은 활성을 나타내는 등의 특성들을 가지는 것을 발견하고 본 발명을 완성하였다. In order to overcome the problems of the prior art, the inventors of the present invention have conducted extensive research, and as a result, they have found that a transition metal of the group 4 on the periodic table has a rigid planar structure and is rich in electrons and widely separated, An alkyl group or an alkenyl group and an aryl group at the same time to a silyl group having a structure in which an indene or its derivative group is bonded to an amido group substituted with a silyl group, Transition metal compound having a structural characteristic that is excellent in high temperature activity in the polymerization of ethylene and olefins and has excellent solubility in solvents such as n-hexane and cyclohexane, The catalysts developed in the present invention, despite the presence of diastereomeric properties Jaryang distribution is produced polymer is narrow, even in a high temperature, thereby completing the present invention and found to have the properties such as showing a high activity.
본 발명의 목적은 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조용 촉매로서 유용한 전이금속 화합물을 제공하고, 또한 이를 포함하는 촉매 조성물을 제공하는데 있다.It is an object of the present invention to provide a transition metal compound useful as a catalyst for the production of an ethylene homopolymer or a copolymer of ethylene and an? -Olefin, and to provide a catalyst composition containing the same.
본 발명의 다른 목적은 상기 전이금속 화합물을 포함하는 촉매 조성물을 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 상업적인 관점에서 경제적으로 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a process for economically producing an ethylene homopolymer or a copolymer of ethylene and an? -Olefin from a commercial standpoint using a catalyst composition comprising the above transition metal compound.
본 발명의 다른 목적은 단봉의 GPC 그래프를 가지는 에틸렌과 α-올레핀의 공중합체를 제조하는데 사용하기 위한 전이금속 화합물을 제공하는데 있다.It is another object of the present invention to provide a transition metal compound for use in preparing a copolymer of ethylene and an alpha -olefin having a GPC graph of a single rod.
본 발명의 다른 목적은 상기 전이금속 화합물을 이용하여 화학조성분포가 단봉 또는 쌍봉의 그래프로 나타나는 에틸렌과 α-올레핀의 공중합체를 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing a copolymer of ethylene and an? -Olefin, wherein the transition metal compound is used as a graph showing a chemical composition distribution of a single-pole or double-pole graph.
상기 목적을 달성하기 위한 본 발명의 한 측면은 하기 화학식 1로 표시되는 인덴계 전이금속 화합물에 관한 것이다. 더욱 상세하게는 중심금속으로서 주기율표 상의 4족 전이금속이 단단한(rigid) 평면구조를 가지면서 전자가 풍부하고 넓게 비편재화되어 있으면서 질소 함유 치환체가 도입된 인덴 또는 이의 유도체기;와 실릴기가 치환된 아미도 기;에 의해 연결된 구조를 가지면서, 특히 질소 함원 치환체가 도입된 인덴 또는 이의 유도체기와 아미도기를 연결하는 실릴기에 알킬기 또는 알케닐기와 아릴기를 동시에 포함하는 구조적 특징을 가지고 있는 전이금속 화합물에 관한 것이다.One aspect of the present invention for achieving the above object is an indene-based transition metal compound represented by the following general formula (1). More particularly, the present invention relates to a method for producing a transition metal compound, which comprises, as a center metal, an indene or a derivative thereof having a quadruple transition metal on the periodic table having a rigid plane structure and being electron- The present invention relates to a transition metal compound having a structure which has a structure linked by a halogen atom, a halogen atom, a halogen atom, a halogen atom, a halogen atom, a halogen atom, will be.
[화학식 1][Chemical Formula 1]
Figure PCT2018125-appb-img-000001
Figure PCT2018125-appb-img-000001
상기 화학식 1에서, In Formula 1,
M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the Periodic Table;
R 1는 (C1-C20)알킬 또는 (C2-C20)알케닐 이고, 상기 R 1의 알킬 또는 알케닐은 할로겐, (C6-C30)아릴 및 (C1-C20)알킬(C6-C30)아릴로 이루어진 군에서 선택되는 하나 이상의 치환체로 더 치환될 수 있고;Wherein R 1 is (C 1 -C 20) alkyl or (C 2 -C 20) alkenyl and the alkyl or alkenyl of R 1 is halogen, (C 6 -C 30) aryl and (C 6 -C 20) Lt; / RTI > may be further substituted with one or more substituents selected from the group consisting of;
Ar 1은 (C6-C30)아릴이고, 상기 Ar 1의 아릴은 (C1-C20)알킬, 할로(C1-C20)알킬 및 (C6-C30)아릴(C1-C20)알킬로 이루어진 군에서 선택되는 하나 이상의 치환체로 더 치환될 수 있고;Ar 1 is (C6-C30) aryl, and the aryl of Ar 1 is a (C1-C20) alkyl, halo (C1-C20) alkyl and (C6-C30) aryl (C1-C20) is selected from the group consisting of alkyl Which may be further substituted with one or more substituents;
R 2 내지 R 5는 서로 독립적으로 수소, (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와 연결되어 융합고리를 형성할 수 있고, 상기 형성된 융합고리는 (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 및 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 may be connected to an adjacent substituent may form a fused ring, wherein the formed fused ring is (C1-C20) alkyl, (C6-C30) aryl, (C6-C30) aryloxy, (C6-C30) alkoxy, halo (C1- C20) alkyl, (C3- C20) cycloalkyl, (C 1 -C 20) alkyl (C 6 -C 30) aryloxy, (C 6 -C 30) aryl (C 1 -C 20) alkyl and ((C 1 -C 20) alkyl Lt; / RTI >group;
R 9는 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C30)아릴(C1-C20)알킬이고;R 9 is (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl;
R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C1-C20)알킬(C6-C30)아릴, (C1-C20)알콕시(C6-C30)아릴 또는 (C6-C30)아릴(C1-C20)알킬이거나, 상기 R 6과 R 7는 서로 연결되어 고리를 형성할 수 있고, 상기 형성된 고리는 (C1-C20)알킬, 할로(C1-C20)알킬, (C6-C30)아릴(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C30)아릴 및 (C6-C20)아릴옥시로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 6 and R 7 are independently selected from the group consisting of (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, aryl, (C1-C20) alkoxy (C6-C30) aryl or (C6-C30) aryl (C1-C20) alkyl or, wherein R 6 and R 7 are connected to each other may form a ring, the formed ring is (C1-C60) alkyl, (C6-C60) aryl, (C6-C60) (C1-C20) alkyl (C6-C30) aryl and (C6-C20) aryloxy;
R 8는 수소 또는 (C1-C20)알킬이고;R < 8 > is hydrogen or (C1-C20) alkyl;
X 1 및 X 2는 서로 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C1-C20)알콕시(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f, -PR gR h 또는 (C1-C20)알킬리덴이고;X 1 and X 2 are independently of each other selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 1 -C 20) alkyl, (C 1 -C 20) alkyl ((C 1 -C 20) alkyl (C 6 -C 30) aryl) ) aryloxy, (C1-C20) alkoxy (C6-C30) aryloxy, -OSiR a R b R c, -SR d, -NR e R f, -PR g R h , or (C1-C20) alkylidene and ;
R a 내지 R d은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴 또는 (C3-C20)시클로알킬이고;R a to R d are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl;
R e 내지 R h은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴, (C3-C20)시클로알킬, 트리(C1-C20)알킬실릴 또는 트리(C6-C20)아릴실릴이고; R e to R h are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
단 X 1 또는 X 2 중 하나가 (C1-C20)알킬리덴인 경우 나머지 하나는 무시된다.With the proviso that if either X 1 or X 2 is (C 1 -C 20) alkylidene, the other is ignored.
상기 목적을 달성하기 위한 본 발명의 다른 한 측면은 상기 화학식 1의 전이금속 화합물; 및 알루미늄 화합물, 붕소 화합물 또는 이들의 혼합물로부터 선택된 조촉매;를 포함하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물에 관한 것이다.According to another aspect of the present invention, there is provided a transition metal compound represented by Formula 1; And a cocatalyst selected from an aluminum compound, a boron compound or a mixture thereof, or a transition metal catalyst composition for preparing a copolymer of ethylene and an? -Olefin.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 전이금속 촉매 조성물을 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a method for preparing a copolymer of ethylene homopolymer or ethylene and an alpha -olefin using the transition metal catalyst composition.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 전이금속 화합물 또는 전이금속 화합물을 포함하는 촉매 조성물을 이용하여 에틸렌, α-올레핀 및 디엔의 공중합체 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a process for preparing a copolymer of ethylene, an alpha -olefin and a diene using a catalyst composition comprising the transition metal compound or a transition metal compound.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 화학식 1의 전이금속 화합물을 제조하기 위한 중간체로서 하기 화학식 Int-1로 표시되는 화합물에 관한 것이다: According to another aspect of the present invention, there is provided a compound represented by the following formula (Int-1) as an intermediate for preparing the transition metal compound of the formula (1)
[화학식 Int-1][Chemical Formula Int-1]
Figure PCT2018125-appb-img-000002
Figure PCT2018125-appb-img-000002
상기 화학식 Int-1에서, R 1 내지 R 9 및 Ar 1은 상기 화학식 1에서 정의한 바와 동일하다.In the formula (Int-1), R 1 to R 9 and Ar 1 are the same as defined in the above formula (1).
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 단봉의 GPC 그래프를 가지는 에틸렌과 α-올레핀의 공중합체를 제조하는데 사용하기 위한 전이금속 화합물에 관한 것이다.According to another aspect of the present invention, there is provided a transition metal compound for use in producing a copolymer of ethylene and an? -Olefin having a GPC graph of a single rod.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 전이금속 화합물을 이용하여 화학조성분포가 단봉 또는 쌍봉의 그래프로 나타나는 에틸렌과 α-올레핀의 공중합체를 제조하는 방법에 관한 것이다.According to another aspect of the present invention, there is provided a method for preparing a copolymer of ethylene and an -olefin, wherein the transition metal compound is used as a graph showing a chemical composition distribution of a monobon or a bimodal curve.
본 발명에 따른 전이금속 화합물 또는 상기 전이금속 화합물을 포함하는 촉매 조성물은 합성 수율이 높고 경제적인 방법으로 용이하게 제조할 수 있으며, 또한 촉매의 열적 안정성이 뛰어나 고온에서도 높은 촉매활성을 유지하면서 다른 올레핀류와의 공중합 반응성이 좋고 고분자량의 중합체를 높은 수율로 제조할 수 있기 때문에 이미 알려진 메탈로센 및 비메탈로센계 단일활성점 촉매에 비해 상업적인 실용성이 높다. 본 발명은 리간드의 조절에 따라 부분입체이성질체 촉매임에도 불구하고, 단일활성점 촉매와 같은 좁은 분자량 분포 특성을 보이는 촉매들을 개발하였다. 즉, 본 발명에 따른 전이금속 화합물을 고온 고활성의 촉매로 하여 제조한 공중합체는 좁은 분자량 분포와 좁은 화학조성분포[Chemical Composition Distribution (CCD)]를 갖는 공중합체들을 쉽게 제조 가능하고, 분자량 분포는 좁고 화학조성분포는 넓은(2peak) 제품도 제조 가능한 독특한 장점을 갖는다. 따라서 본 발명에 따른 전이금속 촉매 조성물은 다양한 물성을 갖는 에틸렌과 α-올레핀의 공중합체로부터 선택되는 에틸렌계 중합체의 제조에 유용하게 사용될 수 있다.The transition metal compound or the catalyst composition comprising the transition metal compound according to the present invention can be easily produced by a high synthesis rate and an economical method and is excellent in thermal stability of the catalyst, The present invention has commercial utility in comparison with the already known metallocene and non-metallocene single-site catalysts since it can produce a polymer having a high copolymerization reactivity with a high molecular weight and a high molecular weight. The present invention has developed catalysts that exhibit narrow molecular weight distribution characteristics, such as single-site catalysts, despite the fact that they are diastereomeric catalysts depending on the control of the ligand. That is, the copolymer prepared by using the transition metal compound according to the present invention as a catalyst at high temperature and high activity can easily produce copolymers having a narrow molecular weight distribution and a narrow chemical composition distribution (CCD) Has a unique advantage of being able to manufacture a narrow (2peak) chemical composition distribution. Therefore, the transition metal catalyst composition according to the present invention can be advantageously used in the production of an ethylene polymer selected from copolymers of ethylene and an? -Olefin having various physical properties.
도 1 - 착물 1의 2가지의 이성질체Figure 1 - Two isomers of complex 1
도 2 - 실시예 5 및 6에서 제조된 공중합체의 GPC 그래프[Polymer 2: 제조예 2의 착물을 중합촉매로 사용하여 얻어진 고분자, 즉 실시예 5에서 제조된 고분자 / Polymer 3: 제조예 3의 착물을 중합촉매로 사용하여 얻어진 고분자, 즉 실시예 6에서 제조된 고분자]2 - Polymer 2: Polymer obtained by using the complex of Preparation Example 2 as a polymerization catalyst, that is, the polymer prepared in Example 5 / Polymer 3: Preparation Example 3 of the polymer prepared in Example 5 A polymer obtained by using the complex as a polymerization catalyst, that is, the polymer prepared in Example 6]
도 3 - 실시예 5 및 6에서 제조된 공중합체의 TGIC 그래프 [Polymer 2: 제조예 2의 착물을 중합촉매로 사용하여 얻어진 고분자, 즉 실시예 5에서 제조된 고분자 / Polymer 3: 제조예 3의 착물을 중합촉매로 사용하여 얻어진 고분자, 즉 실시예 6에서 제조된 고분자]Figure 3 - TGIC graph of the copolymer prepared in Examples 5 and 6 [Polymer 2: polymer obtained by using the complex of Preparation Example 2 as a polymerization catalyst, that is, polymer prepared in Example 5 / Polymer 3: A polymer obtained by using the complex as a polymerization catalyst, that is, the polymer prepared in Example 6]
도 4 - 비교예 3, 비교예 4 및 비교예 6에서 제조된 고분자들의 GPC 그래프 [Polymer A: 비교제조예 2의 착물 A을 중합촉매로 사용하여 얻어진 고분자, 즉 비교예 3에서 제조된 고분자 / Polymer B: 비교제조예 3의 착물 B을 중합촉매로 사용하여 얻어진 고분자, 즉 비교예 4에서 제조된 고분자 / Polymer C: 비교제조예 4의 착물 C을 중합촉매로 사용하여 얻어진 고분자, 즉 비교예 6에서 제조된 고분자]GPC graphs of the polymers prepared in Comparative Example 3, Comparative Example 4 and Comparative Example 6 [Polymer A: Polymer obtained by using complex A of Comparative Preparation Example 2 as a polymerization catalyst, that is, polymer / Polymer B: Polymer obtained by using Complex B of Comparative Preparation Example 3 as a polymerization catalyst, that is, polymer prepared in Comparative Example 4 / Polymer C: polymer obtained by using Complex C of Comparative Preparation Example 4 as a polymerization catalyst, that is, 6]
이하, 본 발명을 좀 더 구체적으로 설명한다. 이 때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, the present invention will be described in more detail. Unless otherwise defined, technical terms and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In the following description, And a description of the known function and configuration will be omitted.
본 발명의 일 구현예에 의한 전이금속 화합물은 하기 화학식 1로 표시되는 질소 함유 치환체가 도입된 인덴일(indenyl)기에 기초한 전이금속 화합물로, 중심금속으로서 주기율표 상의 4족 전이금속이 단단한(rigid) 평면구조를 가지면서 전자가 풍부하고 넓게 비편재화되어 있으면서 질소 함유 치환체가 도입된 인덴 또는 이의 유도체기;와 실릴기가 치환된 아미도 기;에 의해 연결된 구조를 가지면서 특히 질소 함유 치환체가 도입된 인덴 또는 이의 유도체기와 아미도기를 연결하는 실릴기에 일반적인 탄화수소 용매에 대해 용해도 향상과 고온 활성의 큰 증가와 부분입체이성질체의 단점인 넓은 분자량 분포가 아닌 좁은 분자량 분포를 유도하는 알킬기 또는 알케닐기와 아릴기를 동시에 포함하는 구조적 특징을 가지고 있어, 고효율 및 고분자량의 에틸렌계 중합체를 고온에서 수득하는데 유리한 구조적 장점을 가지고 있다.The transition metal compound according to one embodiment of the present invention is a transition metal compound based on an indenyl group into which a nitrogen-containing substituent represented by the following general formula (1) is introduced. The transition metal compound is a rigid, An indene having a planar structure and rich in electrons and being broadly segmented and having a structure in which a nitrogen-containing substituent is introduced, or an amide group substituted with a silyl group, Or a silyl group connecting a derivative group thereof and an amido group, an alkyl or alkenyl group and an aryl group which induce a high molecular weight distribution, not a broad molecular weight distribution, which is a disadvantage of a diastereomer, , Which is a high-efficiency and high molecular weight ethylene Which has the advantage of being advantageous in obtaining the polymer at high temperature.
[화학식 1][Chemical Formula 1]
Figure PCT2018125-appb-img-000003
Figure PCT2018125-appb-img-000003
상기 화학식 1에서, In Formula 1,
M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the Periodic Table;
R 1는 (C1-C20)알킬 또는 (C2-C20)알케닐이고, 상기 R 1의 알킬 또는 알케닐은 할로겐, (C6-C30)아릴 및 (C1-C20)알킬(C6-C30)아릴로 이루어진 군에서 선택되는 하나 이상의 치환체로 더 치환될 수 있고;Wherein R 1 is (C 1 -C 20) alkyl or (C 2 -C 20) alkenyl and the alkyl or alkenyl of R 1 is halogen, (C 6 -C 30) aryl and (C 6 -C 20) Lt; / RTI > may be further substituted with one or more substituents selected from the group consisting of;
Ar 1은 (C6-C30)아릴이고, 상기 Ar 1의 아릴은 (C1-C20)알킬, 할로(C1-C20)알킬 및 (C6-C30)아릴(C1-C20)알킬로 이루어진 군에서 선택되는 하나 이상의 치환체로 더 치환될 수 있고;Ar 1 is (C6-C30) aryl, and the aryl of Ar 1 is a (C1-C20) alkyl, halo (C1-C20) alkyl and (C6-C30) aryl (C1-C20) is selected from the group consisting of alkyl Which may be further substituted with one or more substituents;
R 2 내지 R 5는 서로 독립적으로 수소, (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와 연결되어 융합고리를 형성할 수 있고, 상기 형성된 융합고리는 (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 및 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 may be connected to an adjacent substituent may form a fused ring, wherein the formed fused ring is (C1-C20) alkyl, (C6-C30) aryl, (C6-C30) aryloxy, (C6-C30) alkoxy, halo (C1- C20) alkyl, (C3- C20) cycloalkyl, (C 1 -C 20) alkyl (C 6 -C 30) aryloxy, (C 6 -C 30) aryl (C 1 -C 20) alkyl and ((C 1 -C 20) alkyl Lt; / RTI >group;
R 9는 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C30)아릴(C1-C20)알킬이고;R 9 is (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl;
R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C1-C20)알킬(C6-C30)아릴, (C1-C20)알콕시(C6-C30)아릴 또는 (C6-C30)아릴(C1-C20)알킬이거나, 상기 R 6과 R 7는 서로 연결되어 고리를 형성할 수 있고, 상기 형성된 고리는 (C1-C20)알킬, 할로(C1-C20)알킬, (C6-C30)아릴(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C30)아릴 및 (C6-C20)아릴옥시로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 6 and R 7 are independently selected from the group consisting of (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, aryl, (C1-C20) alkoxy (C6-C30) aryl or (C6-C30) aryl (C1-C20) alkyl or, wherein R 6 and R 7 are connected to each other may form a ring, the formed ring is (C1-C60) alkyl, (C6-C60) aryl, (C6-C60) (C1-C20) alkyl (C6-C30) aryl and (C6-C20) aryloxy;
R 8는 수소 또는 (C1-C20)알킬이고;R < 8 > is hydrogen or (C1-C20) alkyl;
X 1 및 X 2는 서로 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C1-C20)알콕시(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f, -PR gR h 또는 (C1-C20)알킬리덴이고;X 1 and X 2 are independently of each other selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 1 -C 20) alkyl, (C 1 -C 20) alkyl ((C 1 -C 20) alkyl (C 6 -C 30) aryl) ) aryloxy, (C1-C20) alkoxy (C6-C30) aryloxy, -OSiR a R b R c, -SR d, -NR e R f, -PR g R h , or (C1-C20) alkylidene and ;
R a 내지 R d은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴 또는 (C3-C20)시클로알킬이고;R a to R d are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl;
R e 내지 R h은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴, (C3-C20)시클로알킬, 트리(C1-C20)알킬실릴 또는 트리(C6-C20)아릴실릴이고; R e to R h are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
단 X 1 또는 X 2 중 하나가 (C1-C20)알킬리덴인 경우 나머지 하나는 무시된다.With the proviso that if either X 1 or X 2 is (C 1 -C 20) alkylidene, the other is ignored.
본 발명의 전이금속 화합물은 질소 함유 치환체가 도입된 인데닐기와 아미도기를 연결해 주는 실릴기에 알킬기 또는 알케닐기와 아릴기를 동시에 포함하는 구조적 특징을 갖는 촉매로, 활성 및 용해도 측면에서 유리한 알킬기 또는 알케닐기와 고급 알파올레핀의 주입성이 좋은 아릴기의 장점을 동시에 갖는 구조적 특징을 가진다. 또한, 실릴기에 알킬기 또는 알케닐기와 아릴기를 동시에 포함하는 구조적 특징에 의해 도 1에 도시된 바와 같이 2가지의 부분입체이성질체가 존재함을 H 1-NMR로 확인하였다. 본 발명에서 개발한 촉매들은 1:1 내지 1:8의 비율로 부분입체이성질들이 존재함에도 불구하고 분자량 분포가 좁은 고분자가 제조되고, 고온에서도 높은 활성을 나타내는 등의 특성들을 나타낸다. 종래에 인데닐기와 아미도기가 실릴기에 의해서 연결된 부분입체이성질체를 갖는 촉매들의 경우 분자량 분포가 넓은 특징을 갖는 다고 기보고되었다. 그러나, 본 발명에서 개발한 촉매들의 경우 분자량 분포가 좁은 중합체를 고온에서 고효율로 수득할 수 있었다. 특히, 치환체의 조절에 의해 분자량 분포가 좁으면서 조성 분포가 좁은 특성을 갖는 중합체를 얻을 수도 있고, 분자량 분포가 좁으면서 화학조성분포(Chemical Composition Distribution)는 넓은 특성을 갖는 중합체를 얻을 수 있어서 상업적으로 가치가 크다고 할 수 있다.The transition metal compound of the present invention is a catalyst having a structural feature that simultaneously contains an alkyl group or an alkenyl group and an aryl group in a silyl group linking an indenyl group and an amido group into which a nitrogen-containing substituent is introduced. The transition metal compound is an alkyl group or an alkenyl Terephthalic acid, and terephthalic acid. In addition, it was confirmed by H 1 -NMR that two diastereomers are present as shown in FIG. 1 due to the structural characteristic that the silyl group simultaneously contains an alkyl group or an alkenyl group and an aryl group. The catalysts developed in the present invention exhibit such properties that a polymer having a narrow molecular weight distribution is produced and exhibits high activity even at a high temperature, despite the existence of diastereomeric properties at a ratio of 1: 1 to 1: 8. It has been reported that, in the case of catalysts having a diastereomer in which an indenyl group and an amido group are linked by a silyl group, the molecular weight distribution has a broad characteristic. However, in the case of the catalysts developed in the present invention, a polymer having a narrow molecular weight distribution could be obtained at high temperature and high efficiency. Particularly, by controlling the substituent, a polymer having a narrow molecular weight distribution and a narrow composition distribution can be obtained, and a polymer having broad characteristics can be obtained with a narrow molecular weight distribution and a chemical composition distribution, It can be said that the value is great.
본 명세서에 기재된 용어 “알킬”은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 노닐 등을 포함하지만 이에 한정되지는 않는다.The term " alkyl " as used herein refers to a monovalent straight-chain or branched saturated hydrocarbon radical consisting solely of carbon and hydrogen atoms. Examples of such alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, Butyl, pentyl, hexyl, octyl, nonyl, and the like.
본 명세서에 기재된 용어 “아릴”은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 융합 고리계는 포화 또는 부분적으로 포화된 고리와 같은 지방족 고리를 포함할 수 있고, 반드시 하나 이상의 방향족 고리를 포함하고 있다. 또한 상기 지방족 고리는 질소, 산소, 황, 카보닐 등을 고리 내에 포함할 수도 있다. 상기 아릴 라디칼의 구체적인 예로서는 페닐, 나프틸, 비페닐, 인데닐(indenyl), 플루오레닐, 페난트레닐, 안트라세닐, 트라이페닐레닐, 파이레닐, 크라이세닐, 나프타세닐, 9,10-다이하이드로안트라세닐 등을 포함한다.The term " aryl ", as used herein, refers to an organic radical derived from an aromatic hydrocarbon by the removal of one hydrogen, with a single or fused ring containing from 4 to 7, preferably 5 or 6 ring atoms, A ring system, and a form in which a plurality of aryls are connected by a single bond. Fused ring systems may include aliphatic rings, such as saturated or partially saturated rings, and necessarily contain one or more aromatic rings. The aliphatic ring may also contain nitrogen, oxygen, sulfur, carbonyl or the like in the ring. Specific examples of the aryl radical include phenyl, naphthyl, biphenyl, indenyl, fluorenyl, phenanthrenyl, anthracenyl, triphenylenyl, pyrenyl, crycenyl, naphthacenyl, 9,10-dihydro Anthracenyl, and the like.
본 명세서에 기재된 용어 “시클로알킬”은 하나 이상의 고리로 구성된 1가의 포화 카보사이클릭 라디칼을 의미한다. 시클로알킬 라디칼의 예는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸 등을 포함하지만, 이에 한정되지는 않는다.The term " cycloalkyl " as used herein means a monovalent saturated carbocyclic radical consisting of one or more rings. Examples of cycloalkyl radicals include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.
본 명세서에 기재된 용어 “할로” 또는 “할로겐”은 불소, 염소, 브롬 또는 요오드 원자를 의미한다. The term " halo " or " halogen " as used herein means a fluorine, chlorine, bromine or iodine atom.
본 명세서에 기재된 용어 “할로알킬”은 하나이상의 할로겐으로 치환된 알킬을 의미하며, 일례로 트리플루오로메틸 등을 들 수 있다.The term " haloalkyl " as used herein means alkyl substituted by one or more halogens, such as trifluoromethyl.
본 명세서에 기재된 용어 “알콕시” 및 “아릴옥시”는 각각 -O-알킬 라디칼 및 -O-아릴 라디칼을 의미하는 것으로, 여기서 ‘알킬’ 및 '아릴'은 상기 정의한 바와 같다. The terms " alkoxy " and " aryloxy ", as used herein, refer to an -O-alkyl radical and an -O-aryl radical, respectively, wherein alkyl and aryl are as defined above.
본 발명의 일 실시예에 있어서, 상기 화학식 1의 전이금속 화합물은 하기 화학식 2로 표시되는 전이금속 화합물일 수 있다:In one embodiment of the present invention, the transition metal compound of Formula 1 may be a transition metal compound represented by Formula 2:
[화학식 2](2)
Figure PCT2018125-appb-img-000004
Figure PCT2018125-appb-img-000004
상기 화학식 2에서, M, R 1, R 6, R 7, R 9, X 1 및 X 2는 상기 화학식 1에서의 정의와 동일하고;In Formula 2, M, R 1 , R 6 , R 7 , R 9 , X 1, and X 2 are the same as defined in Formula 1;
R 2 내지 R 5는 서로 독립적으로 수소, (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C3-C7)알킬렌, (C3-C7)알케닐렌 또는 (C4-C7)알카디에닐렌으로 연결되어 융합고리를 형성할 수 있고, 상기 형성된 융합고리는 (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 및 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 is with or without an adjacent substituent via the aromatic ring (C3-C7) alkylene, (C3-C7) alkenyl (C1-C20) alkoxy, halo (C1-C20) alkyl, (C3-C60) alkynyl, (C6-C30) aryl, (C6-C30) aryloxy, (C1-C20) alkyl (C6-C30) aryloxy, (C6-C30) aryl (C 1 -C 20) alkyl, (C 1 -C 20) alkyl, and ((C 1 -C 20) alkyl (C 6 -C 30) aryl) (C 1 -C 20) alkyl;
R 11 내지 R 15는 서로 독립적으로 수소, (C1-C20)알킬, 할로(C1-C20)알킬 또는 (C6-C30)아릴(C1-C20)알킬이다.R 11 to R 15 are independently of each other hydrogen, (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl.
본 발명의 일 실시예에 있어서, 상기 전이금속 화합물의 M은 주기율표 상 4 족의 전이금속으로, 바람직하게는 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf), 보다 바람직하게는 티타늄(Ti) 또는 지르코늄(Zr)일 수 있다. In one embodiment of the present invention, M of the transition metal compound is preferably a transition metal of Group 4 in the periodic table, preferably titanium (Ti), zirconium (Zr) or hafnium (Hf), more preferably titanium ) Or zirconium (Zr).
상기 (C1-C20)알킬기는, 예를 들면, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기 또는 n-펜타데실기이고; (C2-C20)알케닐기는, 예를 들면, 비닐기 또는 알릴기이고; (C3-C20)시클로알킬기는, 예를 들면, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기, 시클로데실기 또는 시클로도데실기이고; (C6-C30)아릴기 또는 (C1-C20)알킬(C6-C30)아릴기는, 예를 들면 페닐기, 2-톨릴기, 3-톨릴기, 4-톨릴기, 2,3-크실릴기, 2,4-크실릴기, 2,5-크실릴기, 2,6-크실릴기, 3,4-크실릴기, 3,5-크실릴기, 2,3,4-트리메틸페닐기, 2,3,5-트리메틸페닐기, 2,3,6-트리메틸페닐기, 2,4,6-트리메틸페닐기, 3,4,5-트리메틸페닐기, 2,3,4,5-테트라메틸페닐기, 2,3,4,6-테트라메틸페닐기, 2,3,5,6-테트라메틸페닐기, 펜타메틸페닐기, 에틸페닐기, n-프로필페닐기, 이소프로필페닐기, n-부틸페닐기, sec-부틸페닐기, tert-부틸페닐기, n-펜틸페닐기, 네오펜틸페닐기, n-헥실페닐기, n-옥틸페닐기, n-데실페닐기, n-도데실페닐기, n-테트라데실페닐기, 비페닐(biphenyl) 기, 플로레닐기, 트리페닐기, 나프틸기 또는 안트라세닐기이고; (C6-C30)아릴(C1-C10)알킬기 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬기는, 예를 들면 벤질기, (2-메틸페닐)메틸기, (3-메틸페닐)메틸기, (4-메틸페닐)메틸기, (2,3-디메틸페닐)메틸기, (2,4-디메틸페닐)메틸기, (2,5-디메틸페닐)메틸기, (2,6-디메틸페닐)메틸기, (3,4-디메틸페닐)메틸기, (4,6-디메틸페닐)메틸기, (2,3,4-트리메틸페닐)메틸기, (2,3,5-트리메틸페닐)메틸기, (2,3,6-트리메틸-페닐)메틸기, (3,4,5-트리메틸페닐)메틸기, (2,4,6-트리메틸페닐)메틸기, (2,3,4,5-테트라메틸페닐)메틸기, (2,3,4,6-테트라메틸페닐)메틸기, (2,3,5,6-테트라메틸페닐)메틸기, (펜타메틸페닐)메틸기, (에틸페닐)메틸기, (n-프로필페닐)메틸기, (이소프로필페닐)메틸기, (n-부틸페닐)메틸기, (sec-부틸페닐)메틸기, (tert-부틸페닐)메틸기, (n-펜틸페닐)메틸기, (네오펜틸페닐)메틸기, (n-헥실페닐)메틸기, (n-옥틸페닐)메틸기, (n-데실페닐)메틸기, (n-데실페닐)메틸기, (n-테트라데실페닐)메틸기, 나프틸메틸기 또는 안트라세닐메틸기이고; (C1-C20)알콕시기는, 예를 들면, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, sec-부톡시기, tert-부톡시기, n-펜톡시기, 네오펜톡시기, n-헥속시기, n-옥톡시기, n-도데속시기, n-펜타데속시기 또는 n-에이코속시기를 들 수 있다.Wherein the (C1-C20) alkyl groups is, for example, methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, sec - butyl, tert - butyl group, n- pentyl group, A neopentyl group, an amyl group, an n-hexyl group, an n-octyl group, a n-decyl group, an n-dodecyl group or an n-pentadecyl group; (C2-C20) alkenyl group is, for example, a vinyl group or an allyl group; (C3-C20) cycloalkyl group is, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group or a cyclododecyl group; (C6-C30) aryl group or (C1-C20) alkyl (C6-C30) aryl group is preferably a phenyl group, a 2-tolyl group, a 3-tolyl group, Xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2 , 3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3 , 4, 6-tetra-methylphenyl, 2,3,5,6-tetra methylphenyl, penta-methylphenyl group, ethylphenyl group, n- propyl group, isopropyl group, n- butyl group, a sec - butyl group, a tert - butyl An aryl group such as a phenyl group, an n-pentylphenyl group, a neopentylphenyl group, an n-hexylphenyl group, an n-octylphenyl group, a n-decylphenyl group, , A naphthyl group or an anthracenyl group; (C6-C30) aryl (C1-C10) alkyl group or ((C1-C20) (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,4,5-trimethylphenyl) methyl group, (2, 3, 4, 5-tetramethylphenyl) methyl group, Methylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (N-butylphenyl) methyl group, (n-butylphenyl) methyl group, (n-butylphenyl) methyl group, n-octane Phenyl) methyl group, (n- decyl phenyl) methyl group, (n- decyl phenyl) methyl group, (n- tetradecyl phenyl) methyl group, naphthylmethyl group, or an anthracenyl methyl group; (C1-C20) alkoxy group is, for example, methoxy, ethoxy, n- propoxy, iso-propoxy, n- butoxy, sec - butoxy, tert - butoxy group, n- pentoxy group, neo Pentoxy group, n-hexyl group, n-octoxy group, n-dodecyl group, n-pentadecyl group or n-eicosyl group.
본 발명의 일 실시예에 있어서, 상기 화학식 2에서 R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C30)아릴이거나, 상기 R 6과 R 7는 방향족고리를 포함하거나 포함하지 않는 (C3-C7)알킬렌 으로 연결되어 고리를 형성할 수 있고, 상기 형성된 고리는 (C1-C20)알킬, (C6-C30)아릴(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C30)아릴 및 (C6-C20)아릴옥시로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있다.In one embodiment of the present invention, in Formula 2 R 6 and R 7 are independently (C1-C20) alkyl, (C3-C20) cycloalkyl or (C6-C30) aryl, wherein R 6 and R each other 7 may be linked by a (C3-C7) alkylene containing or not containing an aromatic ring to form a ring, and the ring formed may be substituted by (C1-C20) alkyl, (C6-C30) aryl (C6-C60) alkoxy, (C3-C20) cycloalkyl, (C6-C20) aryl, (C1- Or more.
본 발명의 일 실시예에 있어서, 상기 R 1은 (C1-C20)알킬, (C2-C20)알케닐 또는 (C6-C30)아릴(C1-C20)알킬일 수 있고; Ar 1은 (C6-C30)아릴 또는 (C1-C20)알킬(C6-C30)아릴일 수 있고; R 2 내지 R 5는 서로 독립적으로 수소, (C1-C20)알킬, (C1-C20)알콕시, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시 또는 (C6-C30)아릴(C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C3-C7)알킬렌, (C3-C7)알케닐렌 또는 (C4-C7)알카디에닐렌으로 연결되어 융합고리를 형성할 수 있고, 상기 형성된 융합고리는 (C1-C20)알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴(C1-C20)알킬 및 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고; R 9는 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C30)아릴(C1-C20)알킬이고; R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C1-C20)알킬(C6-C30)아릴, (C1-C20)알콕시(C6-C30)아릴 또는 (C6-C30)아릴(C1-C20)알킬이거나, 상기 R 6과 R 7는 방향족고리를 포함하거나 포함하지 않는 (C3-C7)알킬렌 으로 연결되어 고리를 형성할 수 있고, 상기 형성된 고리는 (C1-C20)알킬, (C6-C30)아릴(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C30)아릴 및 (C6-C20)아릴옥시로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고; R 8는 수소 또는 (C1-C20)알킬일 수 있다.In one embodiment of the present invention, R 1 can be (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl; Ar 1 can be (C6-C30) aryl or (C1-C20) alkyl (C6-C30) aryl; R 2 to R 5 are each independently hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C1-C20) alkyl (C6-C30) aryl, (C6-C30) aryl, (C6-C30) (C6-C30) aryloxy or (C6-C30) aryl (C1-C20) alkyl, or wherein R 2 to R 5 contain an aromatic ring with or without adjacent substituents C3-C7) alkylene, (C3-C7) alkenylene or (C4-C7) alkadienylene to form a fused ring, (C1-C20) alkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryl ≪ / RTI > R 9 is (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl; R 6 and R 7 are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 1 -C 20) (C6-C30) aryl or (C6-C30) aryl (C1-C20) alkyl, wherein R 6 and R 7 are connected to the (C3-C7) alkylene with or without an aromatic ring to form a ring (C6-C20) alkyl, (C1-C20) alkoxy, (C3-C20) cycloalkyl, (C1-C20) alkyl (C6-C30) aryl and (C6-C20) aryloxy; R 8 can be hydrogen or (C 1 -C 20) alkyl.
본 발명의 일 실시예에 있어서, 상기 R 1은 보다 구체적으로 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 비닐기, 알릴기 또는 벤질기일 수 있고; 상기 Ar 1은 보다 구체적으로 페닐기, 나프틸기, 비페닐기, 톨릴기, 트리메틸페닐기, 부틸페닐기, 펜틸페닐기, 헥실페닐기, 옥틸페닐기, 데실페닐기, 도데실페닐기 또는 테트라데실페닐기일 수 있고; 상기 R 2 내지 R 5는 서로 독립적으로 수소, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 페닐기, 나프틸기, 비페닐(biphenyl)기, 2-이소프로필페닐기, 3,5-크실릴기, 2,4,6-트리메틸페닐기, 벤질기, 메톡시기, 에톡시기, 이소프로폭시기, 페녹시, 4-tert-부틸페녹시기 또는 나프톡시기이거나, 상기 R 2 내지 R 5는 인접한 치환체와
Figure PCT2018125-appb-img-000005
,
Figure PCT2018125-appb-img-000006
또는
Figure PCT2018125-appb-img-000007
으로 연결되어 융합고리를 형성할 수 있고, R 21 내지 R 24은 서로 독립적으로 수소, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, 2-메틸부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기, 페닐기, 2-톨릴기, 3-톨릴기, 4-톨릴기, 2,3-크실릴기, 2,4-크실릴기, 2,5-크실릴기, 2,6-크실릴기, 3,4-크실릴기, 3,5-크실릴기, 2,3,4-트리메틸페닐기, 2,3,5-트리메틸페닐기, 2,3,6-트리메틸페닐기, 2,4,6-트리메틸페닐기, 3,4,5-트리메틸페닐기, 2,3,4,5-테트라메틸페닐기, 2,3,4,6-테트라메틸페닐기, 2,3,5,6-테트라메틸페닐기, 펜타메틸페닐기, 에틸페닐기, n-프로필페닐기, 이소프로필페닐기, n-부틸페닐기, sec-부틸페닐기, tert-부틸페닐기, n-펜틸페닐기, 네오펜틸페닐기, n-헥실페닐기, n-옥틸페닐기, n-데실페닐기, n-도데실페닐기, n-테트라데실페닐기, 비페닐 (biphenyl) 기, 플로레닐기, 트리페닐기, 나프틸기, 안트라세닐기, 벤질기, (2-메틸페닐)메틸기, (3-메틸페닐)메틸기, (4-메틸페닐)메틸기, (2,3-디메틸페닐)메틸기, (2,4-디메틸페닐)메틸기, (2,5-디메틸페닐)메틸기, (2,6-디메틸페닐)메틸기, (3,4-디메틸페닐)메틸기, (4,6-디메틸페닐)메틸기, (2,3,4-트리메틸페닐)메틸기, (2,3,5-트리메틸페닐)메틸기, (2,3,6-트리메틸페닐)메틸기, (3,4,5-트리메틸페닐)메틸기, (2,4,6-트리메틸페닐)메틸기, (2,3,4,5-테트라메틸페닐)메틸기, (2,3,4,6-테트라메틸페닐)메틸기, (2,3,5,6-테트라메틸페닐)메틸기, (펜타메틸페닐)메틸기, (에틸페닐)메틸기, (n-프로필페닐)메틸기, (이소프로필페닐)메틸기, (n-부틸페닐)메틸기, (sec-부틸페닐)메틸기, (tert-부틸페닐)메틸기, (n-펜틸페닐)메틸기, (네오펜틸페닐)메틸기, (n-헥실페닐)메틸기, (n-옥틸페닐)메틸기, (n-데실페닐)메틸기, (n-데실페닐)메틸기, (n-테트라데실페닐)메틸기, 나프틸메틸기 또는 안트라세닐메틸기일 수 있고; 상기 R 9는 이소프로필기, n-부틸기, 이소부틸기, 2-메틸부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 벤질기 또는 디페닐메틸기일 수 있고; 상기 R 6 및 R 7는 서로 독립적으로 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, 2-메틸부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기, 페닐기, 2-톨릴기, 3-톨릴기, 4-톨릴기, 2,3-크실릴기, 2,4-크실릴기, 2,5-크실릴기, 2,6-크실릴기, 3,4-크실릴기, 3,5-크실릴기, 2,3,4-트리메틸페닐기, 2,3,5-트리메틸페닐기, 2,3,6-트리메틸페닐기, 2,4,6-트리메틸페닐기, 3,4,5-트리메틸페닐기, 2,3,4,5-테트라메틸페닐기, 2,3,4,6-테트라메틸페닐기, 2,3,5,6-테트라메틸페닐기, 펜타메틸페닐기, 에틸페닐기, n-프로필페닐기, 이소프로필페닐기, n-부틸페닐기, sec-부틸페닐기, tert-부틸페닐기, n-펜틸페닐기, 네오펜틸페닐기, n-헥실페닐기, n-옥틸페닐기, n-데실페닐기, n-도데실페닐기, n-테트라데실페닐기, 비페닐 (biphenyl), 플로레닐, 트리페닐, 나프틸기, 안트라세닐기, 벤질기, 나프틸메틸기, 안트라세닐메틸기 또는 4-메톡시페닐기이거나, 상기 R 6과 R 7
Figure PCT2018125-appb-img-000008
,
Figure PCT2018125-appb-img-000009
,
Figure PCT2018125-appb-img-000010
,
Figure PCT2018125-appb-img-000011
,
Figure PCT2018125-appb-img-000012
,
Figure PCT2018125-appb-img-000013
,
Figure PCT2018125-appb-img-000014
,
Figure PCT2018125-appb-img-000015
또는
Figure PCT2018125-appb-img-000016
으로 연결되어 고리를 형성할 수 있고;
In one embodiment of the present invention, the R                 OneIs more specifically a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a vinyl group, an allyl group                  Or a benzyl group; The Ar                 OneMay be more specifically a phenyl group, a naphthyl group, a biphenyl group, a tolyl group, a trimethylphenyl group, a butylphenyl group, a pentylphenyl group, a hexylphenyl group, an octylphenyl group, a decylphenyl group, a dodecylphenyl group or a tetradecylphenyl group; The R                 2 To R                 5Is independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl,                  A phenyl group, a naphthyl group, a biphenyl group, a 2-isopropylphenyl group, a 3,5-xylyl group, a 2,4,6-trimethylphenyl group, a benzyl group, a methoxy group, an ethoxy group, A 4-tert-butylphenoxy group or a naphthoxy group, or the R                 2 To R                 5Lt; RTI ID = 0.0 >                 
Figure PCT2018125-appb-img-000005
,                 
Figure PCT2018125-appb-img-000006
 or                 
Figure PCT2018125-appb-img-000007
To form a fused ring, and R                 21 To R                 24Are each independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl,                 sec- butyl group,                 tertN-hexyl, n-octyl, n-decyl, n-dodecyl, n-pentadecyl, phenyl, 2-tolyl, 3-pentyl Xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3-xylyl group, , 5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethyl Phenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, Isopropylphenyl group, n-butylphenyl group,                 sec- butylphenyl group,                 tertN-pentylphenyl group, n-pentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group, n-tetradecylphenyl group, biphenyl group, (2-methylphenyl) methyl group, (2-methylphenyl) methyl group, (2,4-dimethylphenyl) Dimethylphenyl) methyl group, (2, 4-dimethylphenyl) methyl group, (2, 4-dimethylphenyl) methyl group, (Trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) Methylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (Methylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (n-pentylphenyl) methyl group, (n-octylphenyl) methyl group, (n-pentylphenyl) methyl group, (N-decylphenyl) methyl group, naphtylmethyl group or anthracenylmethyl group; The R                 9Isopropyl group, n-butyl group, isobutyl group, 2-methylbutyl group,                 sec- butyl group,                 tertA butyl group, an n-pentyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a benzyl group or a diphenylmethyl group; The R                 6 And R                 7An ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a 2-methylbutyl group,                 sec- butyl group,                 tertN-hexyl, n-octyl, n-decyl, n-dodecyl, n-pentadecyl, phenyl, 2-tolyl, 3-pentyl Xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3-xylyl group, , 5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethyl Phenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, Isopropylphenyl group, n-butylphenyl group,                 sec- butylphenyl group,                 tert-Butylphenyl, n-pentylphenyl, neopentylphenyl, n-hexylphenyl, n-octylphenyl, n-decylphenyl, n-dodecylphenyl, n-tetradecylphenyl, biphenyl, A phenyl group, a naphthyl group, an anthracenyl group, a benzyl group, a naphthylmethyl group, an anthracenylmethyl group, or a 4-methoxyphenyl group,                 6And R                 7The                 
Figure PCT2018125-appb-img-000008
,                 
Figure PCT2018125-appb-img-000009
,                 
Figure PCT2018125-appb-img-000010
,                 
Figure PCT2018125-appb-img-000011
,                 
Figure PCT2018125-appb-img-000012
,                 
Figure PCT2018125-appb-img-000013
,                 
Figure PCT2018125-appb-img-000014
,                 
Figure PCT2018125-appb-img-000015
 or                 
Figure PCT2018125-appb-img-000016
To form a ring;
R 31 내지 R 35, R 41 및 R 42은 서로 독립적으로 수소, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, 2-메틸부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기, 페닐기, 2-톨릴기, 3-톨릴기, 4-톨릴기, 2,3-크실릴기, 2,4-크실릴기, 2,5-크실릴기, 2,6-크실릴기, 3,4-크실릴기, 3,5-크실릴기, 2,3,4-트리메틸페닐기, 2,3,5-트리메틸페닐기, 2,3,6-트리메틸페닐기, 2,4,6-트리메틸페닐기, 3,4,5-트리메틸페닐기, 2,3,4,5-테트라메틸페닐기, 2,3,4,6-테트라메틸페닐기, 2,3,5,6-테트라메틸페닐기, 펜타메틸페닐기, 에틸페닐기, n-프로필페닐기, 이소프로필페닐기, n-부틸페닐기, sec-부틸페닐기, tert-부틸페닐기, n-펜틸페닐기, 네오펜틸페닐기, n-헥실페닐기, n-옥틸페닐기, n-데실페닐기, n-도데실페닐기, n-테트라데실페닐기, 비페닐 (biphenyl) 기, 플로레닐기, 트리페닐기, 나프틸기, 안트라세닐기, 벤질기, 나프틸메틸기 또는 안트라세닐메틸기일 수 있고; m 및 n은 각각 독립적으로 1 내지 4의 정수이고; 상기 R 8는 수소, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, 2-메틸부틸기 또는 sec-부틸기일 수 있다.R 31 to R 35, R 41 and R 42 are each independently hydrogen, methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, 2-methyl butyl group, a sec - butyl group, tert - butyl group, n- pentyl group, neopentyl group, amyl, n- hexyl, n- octyl group, n- decyl group, n- dodecyl group, n- penta decyl group, a phenyl group, a 2-tolyl group, Xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, Xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5- A trimethylphenyl group, a 2,3,4,5-tetramethylphenyl group, a 2,3,4,6-tetramethylphenyl group, a 2,3,5,6-tetramethylphenyl group, a pentamethylphenyl group, an ethylphenyl group, , an isopropyl group, n- butyl group, a sec - butyl group, a tert - butyl group, a n- pentyl group, a neopentyl group, a n- hexyl group, a n- octyl group, n- decyl group, n- dodecyl group, a biphenyl group, a fluorenyl group, a triphenyl group, a naphthyl group, an anthracenyl group, a benzyl group, a naphthylmethyl group or an anthracenylmethyl group; m and n are each independently an integer of 1 to 4; The R 8 may be hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, 2-methylbutyl or sec -butyl.
본 발명의 일 실시예에 있어서, 상기 치환체 X 1 및 X 2의 정의 중, 할로겐 원자는 불소, 염소, 브롬 또는 요오드원자로 예시될 수 있고, (C1-C20)알킬기는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기 또는 n-에이코실기로 예시될 수 있고; (C3-C20)시클로알킬기는 시클로프로판기, 시클로부틸기, 시클로펜틸기, 시클로로헥실기, 시클로로헵틸기 또는 아다만틸기로 예시될 수 있고; (C6-C30)아릴기는 페닐기 또는 나프틸기로 예시될 수 있고; (C6-C30)아릴(C1-C20)알킬기 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬기는 벤질기, (2-메틸페닐)메틸기, (3-메틸페닐)메틸기, (4-메틸페닐)메틸기, (2,3-디메틸페닐)메틸기, (2,4-디메틸페닐)메틸기, (2,5-디메틸페닐)메틸기, (2,6-디메틸페닐)메틸기, (3,4-디메틸페닐)메틸기, (4,6-디메틸페닐)메틸기, (2,3,4-트리메틸페닐)메틸기, (2,3,5-트리메틸페닐)메틸기, (2,3,6-트리메틸-페닐)메틸기, (3,4,5-트리메틸페닐)메틸기, (2,4,6-트리메틸페닐)메틸기, (2,3,4,5-테트라메틸페닐)메틸기, (2,3,4,6-테트라메틸페닐)메틸기, (2,3,5,6-테트라메틸페닐)메틸기, (펜타메틸페닐)메틸기, (에틸페닐)메틸기, (n-프로필페닐)메틸기, (이소프로필페닐)메틸기, (n-부틸페닐)메틸기, (sec-부틸페닐)메틸기, (tert-부틸페닐)메틸기, (n-펜틸페닐)메틸기, (네오펜틸페닐)메틸기, (n-헥실페닐)메틸기, (n-옥틸페닐)메틸기, (n-데실페닐)메틸기, (n-데실페닐)메틸기, (n-테트라데실페닐)메틸기, 나프틸메틸기 또는 안트라세닐메틸기로 예시될 수 있고; (C1-C20)알콕시는 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, sec-부톡시기, tert-부톡시기, n-펜톡시기, 네오펜톡시기, n-헥속시기, n-옥톡시기, n-도데속시기, n-펜타데속시기 또는 n-에이코속시기로 예시될 수 있고; (C6-C30)아릴옥시는 페녹시기, 4ㅡ tert-부틸페녹시기 또는 4-메톡시페녹시기로 예시될 수 있고; 상기 -OSiR aR bR c 의 예로는 트리메틸실록시기, 트리에틸실록시기, 트리-n-프로필실록시기, 트리이프로필실록시기, 트리-n-부틸실록시기, 트리- sec-부틸실록시기, 트리-tert-부틸실록시기, 트리-이소부틸실록시기, tert-부틸디메틸실록시기, 트리-n-펜틸실록시기, 트리-n-헥실실록시기 또는 트리시클로헥실실록시기를 들 수 있고, -NR eR f 의 예로서 디메틸아미노기, 디에틸아미노기, 디-n-프로필아미노기, 디이소프로필아미노기, 디-n-부틸아미노기, 디- sec-부틸아미노기, 디- tert-부틸아미노기, 디이소부틸아미노기, tert-부틸이소프로필아미노기, 디-n-헥실아미노기, 디-n-옥틸아미노기, 디-n-데실아미노기, 디페닐아미노기, 디벤질아미노기, 메틸에틸아미노기, 메틸페닐아미노기, 벤질헥실아미노기, 비스트리메틸실릴아미노기 또는 비스-tert-부틸디메틸실릴아미노기를 들 수 있고; -PR gR h 의 예로서 디메틸포스핀기, 디에틸포스핀기, 디-n-프로필포스핀기, 디이소프로필포스핀기, 디-n-부틸포스핀기, 디- sec-부틸포스핀기, 디- tert-부틸포스핀기, 디이소부틸포스핀기, tert-부틸이소프로필포스핀기, 디-n-헥실포스핀기, 디-n-옥틸포스핀기, 디-n-데실포스핀기, 디페닐포스핀기, 디벤질포스핀기, 메틸에틸포스핀기, 메틸페닐포스핀기, 벤질헥실포스핀기, 비스트리메틸실릴포스핀기 또는 비스-tert-부틸디메틸실릴포스핀기를 들 수 있고; -SR d 의 예로서 메틸티오기, 에틸티오기, 프로필티오기, 이소프로필티오기, 1-부틸티오기 또는 이소펜틸티오기를 들 수 있다.In one embodiment of the present invention, among the substituents X 1 and X 2 , the halogen atom may be exemplified by a fluorine, chlorine, bromine or iodine atom, and the (C 1 -C 20) alkyl group may be a methyl group, group, an isopropyl group, n- butyl group, sec - butyl, tert - butyl group, n- pentyl group, neopentyl group, amyl, n- hexyl, n- octyl group, n- decyl group, n- A dodecyl group, an n-pentadecyl group or an n-eicosyl group; The (C3-C20) cycloalkyl group may be exemplified by a cyclopropane group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group or an adamantyl group; (C6-C30) aryl group may be exemplified by a phenyl group or a naphthyl group; (C1-C20) alkyl group or ((C1-C20) alkyl (C6-C30) aryl group) is preferably a benzyl group, a (2-methylphenyl) methyl group, Dimethylphenyl) methyl group, (2, 6-dimethylphenyl) methyl group, (3-methylphenyl) methyl group, Dimethylphenyl) methyl group, (4,6-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,5-trimethylphenyl) methyl group, Methylphenyl) methyl group, (n-propylphenyl) methyl group, (n-propylphenyl) methyl group, (N-pentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, )methyl , (N- decyl phenyl) methyl group, (n- decyl phenyl) methyl group, (n- tetradecyl phenyl) may be exemplified by a methyl group, a naphthylmethyl group, or anthracenyl group; (C1-C20) alkoxy is methoxy, ethoxy, n- propoxy, iso-propoxy, n- butoxy, sec - butoxy, tert - butoxy group, n- pentoxy group, neo-pentoxy group, n- Octyl group, n-octyl group, n-octyl group, n-pentyl group, n-pentyl group or n-eicosyl group; (C6-C30) aryloxy may be exemplified by a phenoxy group, a 4- tert -butylphenoxy group or a 4-methoxyphenoxy group; Examples of the -OSiR a R b R c is a trimethylsiloxy group, a siloxy triethyl, tri -n- propyl siloxy, teuriyi propyl siloxy, tri -n- butyl siloxy, tri - sec - butyl-siloxy group, tri tert -butyldimethylsilyl group, tri-n-pentylsilyl group, tri-n-hexylsiloxy group or tricyclohexylsiloxy group, and -NR e as examples of the R f dimethylamino group, diethylamino group, di -n- propylamino group, diisopropyl amino group, a di -n- butyl group, a di - sec - butyl group, a di - tert - butyl group, a di-isobutyl amino group, tert - butyl isopropyl group, a di -n- hexyl group, a di -n- octyl group, a di -n- decyl amino group, diphenyl amino group, dibenzyl amino group, methyl ethyl amino group, a phenyl group, a cyclohexyl benzyl group, a bistrimethylsilylamide Amino group or bis-tert-butyldimethylsilyl They include groups and unexposed; As examples of the phosphine group -PR g R h dimethyl, diethyl phosphine group, di -n- propyl phosphine group, diisopropyl phosphine group, di -n- butyl phosphine group, di - sec - butyl phosphine group, di - tert -Butylphosphine group, diisobutylphosphine group, tert -butylisopropylphosphine group, di-n-hexylphosphine group, di-n-octylphosphine group, di-n-decylphosphine group, diphenylphosphine group, dibenzyl A phosphine group, a methylethylphosphine group, a methylphenylphosphine group, a benzylhexylphosphine group, a bistrimethylsilylphosphine group or a bis-tert-butyldimethylsilylphosphine group; Examples of -SR d include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a 1-butylthio group or an isopentylthio group.
본 발명의 일 실시예에 있어서, X 1 및 X 2는 서로 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f 또는 -PR gR h이고; R a 내지 R h은 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴일 수 있다.In one embodiment of the present invention, X 1 and X 2 are independently halogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C30) aryl, (C6-C30) aralkyl (C1 each other -C20) alkyl, (C1-C20) alkoxy, (C6-C30) aryloxy, (C1-C20) alkyl -OSiR (C6-C30) aryloxy, a R b R c, -SR d, -NR e R f or -PR g R h ; R a to R h independently of one another can be (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
본 발명의 일 실시예에 있어서, 보다 구체적으로 상기 X 1 및 X 2는 서로 독립적으로 불소, 염소, 브롬, 메틸기, 에틸기, 이소프로필기, 아밀기, 벤질기, 메톡시기, 에톡시기, 이소프로폭시기, tert-부톡시기, 페녹시기, 4-tert-부틸페녹시기, 트리메틸실록시기, tert-부틸디메틸실록시기, 디메틸아미노기, 디페닐아미노기, 디메틸포스핀기, 디에틸포스핀기, 디페닐포스핀기, 에틸티오기 또는 이소프로필티오기일 수 있다.In one embodiment of the present invention, more specifically, X 1 and X 2 independently represent fluorine, chlorine, bromine, methyl, ethyl, isopropyl, A tertiary butyl group, a tert -butyl group, a tert -butoxy group, a phenoxy group, a 4-tert-butylphenoxy group, a trimethylsilyl group, a tert- butyldimethylsilyl group, a dimethylamino group, a diphenylamino group, a dimethylphosphine group, a diethylphosphine group, , Ethylthio group or isopropylthio group.
본 발명의 일 실시예에 있어서, 상기 화학식 2에서 더욱 더 바람직하게 M은 4가의 티타늄, 지르코늄 또는 하프늄이고; R 1는 (C1-C20)알킬이고; R 11 내지 R 15는 서로 독립적으로 수소 또는 (C1-C20)알킬이고; R 2 내지 R 5는 서로 독립적으로 수소 또는 (C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와
Figure PCT2018125-appb-img-000017
,
Figure PCT2018125-appb-img-000018
또는
Figure PCT2018125-appb-img-000019
으로 연결되어 융합고리를 형성할 수 있고; R 21 내지 R 24는 서로 독립적으로 수소 또는 (C1-C20)알킬이고; R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬이거나, 상기 R 6과 R 7
Figure PCT2018125-appb-img-000020
,
Figure PCT2018125-appb-img-000021
,
Figure PCT2018125-appb-img-000022
,
Figure PCT2018125-appb-img-000023
,
Figure PCT2018125-appb-img-000024
,
Figure PCT2018125-appb-img-000025
,
Figure PCT2018125-appb-img-000026
,
Figure PCT2018125-appb-img-000027
또는
Figure PCT2018125-appb-img-000028
으로 연결되어 고리를 형성할 수 있고,; R 31 내지 R 35, R 41 및 R 42는 서로 독립적으로 수소 또는 (C1-C20)알킬이고; m 및 n은 각각 독립적으로 1 내지 4의 정수이고; R 9는 (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; X 1 및 X 2는 서로 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f 또는 -PR gR h이고; R a 내지 R h은 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴일 수 있다.
In one embodiment of the present invention, even more preferably M in the formula (2) is tetravalent titanium, zirconium or hafnium; R < 1 > is (C1-C20) alkyl; R 11 to R 15 independently from each other are hydrogen or (C 1 -C 20) alkyl; R 2 to R 5 independently from each other are hydrogen or (C 1 -C 20) alkyl, or R 2 to R 5 are adjacent substituents and
Figure PCT2018125-appb-img-000017
,
Figure PCT2018125-appb-img-000018
or
Figure PCT2018125-appb-img-000019
To form a fused ring; R 21 to R 24 independently from each other are hydrogen or (C 1 -C 20) alkyl; R 6 and R 7 are independently (C1-C20) alkyl each other, wherein R 6 and R 7 is
Figure PCT2018125-appb-img-000020
,
Figure PCT2018125-appb-img-000021
,
Figure PCT2018125-appb-img-000022
,
Figure PCT2018125-appb-img-000023
,
Figure PCT2018125-appb-img-000024
,
Figure PCT2018125-appb-img-000025
,
Figure PCT2018125-appb-img-000026
,
Figure PCT2018125-appb-img-000027
or
Figure PCT2018125-appb-img-000028
To form a ring; R 31 to R 35 , R 41 and R 42 independently of one another are hydrogen or (C 1 -C 20) alkyl; m and n are each independently an integer of 1 to 4; R 9 is (C 1 -C 20) alkyl or (C 3 -C 20) cycloalkyl; X 1 and X 2 are independently halogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C30) aryl, (C6-C30) aralkyl (C1-C20) alkyl, (C1-C20 each other (C6-C30) aryloxy, (C6-C30) aryloxy, -OSiR a R b R c , -SR d , -NR e R f or -PR g R h ; R a to R h independently of one another can be (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
본 발명의 일 실시예에 있어서, 상기 전이금속 화합물은 하기 구조의 화합물들로부터 선택될 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the transition metal compound may be selected from compounds having the following structures, but is not limited thereto.
Figure PCT2018125-appb-img-000029
Figure PCT2018125-appb-img-000029
(상기 M은 4가의 티타늄, 지르코늄 또는 하프늄이고; (M is tetravalent titanium, zirconium or hafnium;
X 1 및 X 2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f 또는 -PR gR h이고;X 1 and X 2 are each independently selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 6 -C 30) (C6-C30) aryloxy, (C6-C30) aryloxy, -OSiR a R b R c , -SR d , -NR e R f or -PR g R h ;
R a 내지 R h은 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이다.)R a to R h are, independently of each other, (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
한편, 본 발명에 따른 전이금속 화합물은 에틸렌 단독중합체 및 에틸렌 및 α-올레핀의 공중합체로부터 선택되는 에틸렌계 중합체 제조에 사용되는 활성촉매 성분이 되기 위하여, 바람직하게는 전이금속 착체 중의 X 1 혹은 X 2 리간드를 추출하여 중심금속을 양이온화시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 알루미늄 화합물, 붕소 화합물, 또는 이들의 혼합물을 조촉매로서 함께 작용할 수 있으며, 상기한 전이금속 화합물과 조촉매를 포함하는 촉매 조성물 또한 본 발명의 범위 내이다.On the other hand, the transition metal compounds according to the invention are ethylene homopolymers and ethylene and to the α- olefin is an active catalytic component used in ethylene polymer produced is selected from the copolymer, and preferably X 1 or X of the transition metal complex 2 ligand may be extracted to cationize the center metal while acting as a co-catalyst with an aluminum compound, a boron compound, or a mixture thereof capable of acting as a counterion having a weak bonding force, that is, an anion, Catalyst compositions comprising catalysts are also within the scope of the present invention.
상기 목적을 달성하기 위한 본 발명의 다른 한 측면은 상기 전이금속 화합물, 및 알루미늄 화합물, 붕소 화합물 또는 이들의 혼합물로부터 선택된 조촉매를 포함하는 전이금속 촉매 조성물에 관한 것이다.According to another aspect of the present invention, there is provided a transition metal catalyst composition comprising the transition metal compound and a cocatalyst selected from an aluminum compound, a boron compound, or a mixture thereof.
본 발명의 일 실시예에 따른 촉매 조성물에 있어서, 조촉매로 사용될 수 있는 알루미늄 화합물은 화학식 3 또는 4의 알루미녹산 화합물, 화학식 5의 유기알루미늄 화합물 또는 화학식 6 또는 화학식 7의 유기알루미늄 옥사이드 화합물로부터 선택되는 하나 또는 둘 이상일 수 있다.In the catalyst composition according to an embodiment of the present invention, the aluminum compound which can be used as a cocatalyst is selected from an aluminoxane compound represented by Chemical Formula 3 or 4, an organoaluminum compound represented by Chemical Formula 5, or an organoaluminum oxide compound represented by Chemical Formula 6 or Chemical Formula 7 Lt; / RTI >
[화학식 3] (3)
(-Al(R 51)-O-) p (-Al (R 51) -O-) p
[화학식 4][Chemical Formula 4]
(R 51) 2Al-O-Al(R 51) 2 (R 51 ) 2 Al-O-Al (R 51 ) 2
[화학식 5] [Chemical Formula 5]
(R 52) 3- rAl(E) r (R < 52 > ) 3- r Al (E) r
[화학식 6][Chemical Formula 6]
(R 53) 2AlOR 54 (R 53 ) 2 AlOR 54
[화학식 7](7)
R 53Al(OR 54) 2 R 53 Al (OR 54 ) 2
[상기 화학식 3 내지 7에서, R 51은 (C1-C20)알킬로, 바람직하게는 메틸기 또는 이소부틸기이고, p은 5 내지 20의 정수이고; R 52 및 R 53 는 각각 (C1-C20)알킬이고; E는 수소 또는 할로겐이고; r은 0 내지 3의 정수이고; R 54은 (C1-C20)알킬 또는 (C6-C30)아릴이다.] In the above formulas 3 to 7, R 51 is (C 1 -C 20) alkyl, preferably a methyl group or an isobutyl group, and p is an integer of 5 to 20; R 52 and R 53 are each (C 1 -C 20) alkyl; E is hydrogen or halogen; r is an integer from 0 to 3; R < 54 > is (C1-C20) alkyl or (C6-C30)
상기 알루미늄 화합물로 사용할 수 있는 구체적인 예로서, 알루미녹산 화합물로서 메틸알루미녹산, 개량메틸알루미녹산, 테트라이소부틸알루미녹산이 있고; 유기알루미늄 화합물의 예로서 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리이소부틸알루미늄 및 트리헥실알루미늄을 포함하는 트리알킬알루미늄; 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄클로라이드 및 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드; 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 이소부틸알루미늄디클로라이드 및 헥실알루미늄디클로라이드를 포함하는 알킬알루미늄디클로라이드; 디메틸알루미늄히드리드, 디에틸알루미늄히드리드, 디프로필알루미늄히드리드, 디이소부틸알루미늄히드리드 및 디헥실알루미늄히드리드를 포함하는 디알킬알루미늄히드라이드를 들 수 있다.Specific examples of the aluminum compound include aluminoxane compounds such as methylaluminoxane, modified methylaluminoxane, and tetraisobutylaluminoxane; Examples of the organoaluminum compound include trialkylaluminum including trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum and trihexylaluminum; Dialkyl aluminum chlorides including dimethyl aluminum chloride, diethyl aluminum chloride, dipropyl aluminum chloride, diisobutyl aluminum chloride and dihexyl aluminum chloride; Alkylaluminum dichlorides including methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride and hexylaluminum dichloride; Dialkylaluminum hydrides including dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride and dihexylaluminum hydride.
본 발명의 일 실시예에 있어서, 상기 알루미늄 화합물은 바람직하게는 알킬알루미녹산 화합물 또는 트리알킬알루미늄으로부터 선택되는 하나 또는 둘 이상의 혼합물, 보다 바람직하게는 메틸알루미녹산, 개량 메틸알루미녹산, 테트라이소부틸알루미녹산, 트리메틸알루미늄, 트리에틸알루미늄, 트리옥틸알루미늄 및 트리이소부틸알루미늄으로부터 선택되는 단독 또는 둘 이상의 혼합물일 수 있다.In one embodiment of the present invention, the aluminum compound is preferably one or a mixture of two or more selected from alkyl aluminoxane compounds or trialkyl aluminum, more preferably methyl aluminoxane, modified methyl aluminoxane, tetraisobutyl aluminum Naphthoic acid, niobic acid, trimethylaluminum, triethylaluminum, trioctylaluminum and triisobutylaluminum, or a mixture of two or more thereof.
본 발명의 일 실시예에 따른 촉매 조성물에 있어서, 조촉매로 사용될 수 있는 붕소 화합물은 미국특허 제 5,198,401호에 공지된바 있으며, 하기 화학식 8 내지 10으로 표시되는 화합물 중에서 선택될 수 있다. In the catalyst composition according to one embodiment of the present invention, boron compounds which can be used as cocatalysts are known from U.S. Patent No. 5,198,401 and can be selected from the compounds represented by the following formulas (8) to (10).
[화학식 8][Chemical Formula 8]
B(R 61) 3 B (R < 61 >) 3
[화학식 9] [Chemical Formula 9]
[R 62] +[B(R 61) 4] - [R 62 ] + [B (R 61 ) 4 ] -
[화학식 10] [Chemical formula 10]
[(R 63) 2Ar 2ZH] +[B(R 61) 4] - [(R 63 ) 2 Ar 2 ZH] + [B (R 61 ) 4 ] -
상기 화학식 8 내지 10에서, B는 붕소원자이고; R 61는 페닐기이며, 상기 페닐기는 플루오로, 플루오로에 의해 치환되거나 치환되지 않은 (C1-C20)알킬, 및 플루오로로 치환되거나 치환되지 않은 (C1-C20)알콕시로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며; R 62은 (C5-C7)방향족 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C30)아릴(C1-C20)알킬 라디칼, 예를 들면 트리페닐메틸리니움(triphenylmethylium) 라디칼이고; Z는 질소 또는 인 원자이며; R 63은 (C1-C20)알킬 라디칼이고, Ar 2는 페닐 혹은 (C1-C20)알킬기가 치환된 (C5-C7)방향족 라디칼이다.In the general formulas (8) to (10), B is a boron atom; R 61 is a phenyl group and the phenyl group is substituted with 3 to 5 substituents selected from fluoro, (C1-C20) alkyl unsubstituted or substituted by fluoro, and (C1-C20) alkoxy unsubstituted or substituted with fluoro ≪ / RTI > R 62 is a (C 5 -C 7) aromatic radical or a (C 1 -C 20) alkyl (C 6 -C 20) aryl radical or a (C 6 -C 30) aryl (C 1 -C 20) alkyl radical such as triphenylmethylium, Radical; Z is a nitrogen or phosphorus atom; R 63 is a (C 1 -C 20) alkyl radical and Ar 2 is a (C 5 -C 7) aromatic radical substituted with a phenyl or (C 1 -C 20) alkyl group.
상기 붕소계 조촉매의 바람직한 예로는 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라플루오로페닐)보레인, 트리스(3,4,5-트리플루오로페닐)보레인, 트리스(2,3,4-트리플루오로페닐)보레인, 페닐비스(펜타플루오로페닐)보레인, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트, 테트라키스(2,3,4,5-테트라플루오로페닐)보레이트, 테트라키스(3,4,5,6-테트라플루오로페닐)보레이트, 테트라키스(2,2,4-트리플루오로페닐)보레이트, 페닐비스(펜타플루오로페닐)보레이트 또는 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트를 들 수 있다. 또한 그것들의 특정 배합예로는 페로세늄 테트라키스(펜타플루오로페닐)보레이트, 1,1'-디메틸페로세늄 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디테트라데실아닐리니움 테트라키스(펜타플루오로페닐)보레이트 N,N-디헥사데실아닐리니움 테트라키스(펜타플루오로페닐)보레이트 N,N-디옥타데실아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-2,4,6-펜타메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 또는 트리(디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트가 포함되고, 이 중 가장 바람직한 것은 N,N-디메틸 아닐리니움 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오르페닐)보레이트, N,N-디테트라데실아닐리니움 테트라키스(펜타플루오로페닐)보레이트 N,N-디헥사데실아닐리니움 테트라키스(펜타플루오로페닐)보레이트 N,N-디옥타데실아닐리니움 테트라키스(펜타플루오로페닐)보레이트, 또는 트리스(펜타플루오르)보레인이다.Preferable examples of the boron-based co-catalyst include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluoro (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (triphenylphosphine) borane, (Pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis , 5,6-tetrafluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate or tetrakis (3,5-bistrifluoromethylphenyl ) Borate. Specific examples of these compounds include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrocenium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, triphenyl (Pentafluorophenyl) borate, triphenylmethyleniumtetrakis (3,5-bistrifluoromethylphenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetra (Pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (Pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-ditetradecyl anilinium tetrakis (Pentafluorophenyl) borate N, N-dioctadecyl anilinium tetrakis (pentafluorophenyl) borate N, N-dihexadecyl anilinium tetrakis (Pentafluorophenyl) borate, dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, tri (methylphenyl) (Pentafluorophenyl) borate, or tri (dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, of which the most preferred is N, N-dimethylanilinium tetrakis (Pentafluorophenyl) borate, N, N-ditetradecyl anilinium tetrakis (pentafluorophenyl) borate N, N-dihexadecyl anilinium tetra Kiss is (pentafluorophenyl) borate and N, N- dioctadecyl (pentafluorophenyl) borate, or tris (penta-fluoro) Titanium tetrakis shall not borane.
한편, 상기 조촉매는 반응물 중 촉매에 독으로 작용하는 불순물을 제거하는 스캐빈져(scavenger)의 역할을 할 수 있다.Meanwhile, the cocatalyst may serve as a scavenger for removing impurities acting as a poison to the catalyst in the reactants.
본 발명에 따른 일 실시예에 있어서, 상기 알루미늄 화합물을 조촉매로 사용하는 경우 본 발명의 전이금속 화합물과 조촉매 간의 비율의 바람직한 범위는 전이금속(M): 알루미늄 원자(Al)의 비가 몰비 기준으로 1: 1 ~ 2,000일 수 있다. In one embodiment of the present invention, when the aluminum compound is used as a cocatalyst, the preferred range of the ratio between the transition metal compound and the cocatalyst of the present invention is a ratio of the transition metal (M): aluminum atom (Al) Lt; RTI ID = 0.0 > 1: < / RTI >
본 발명에 따른 일 실시예에 있어서, 상기 알루미늄 화합물 및 붕소 화합물을 동시에 조촉매로 사용하는 경우 본 발명의 전이금속 화합물과 조촉매 간의 비율의 바람직한 범위는 중심금속(M): 붕소원자(B): 알루미늄원자(Al)의 몰비 기준으로 1: 0.1~100: 1~2,000의 범위일 수 있고, 바람직하게는 1: 0.5~30: 10~1,000의 범위일 수 있고, 보다 바람직하게는 1: 0.5~5: 10~500의 범위일 수 있다. In one embodiment of the present invention, when the aluminum compound and the boron compound are simultaneously used as co-catalysts, the preferred range of the ratio between the transition metal compound and the promoter of the present invention is the ratio of the center metal (M) to the boron atom (B) May be in the range of 1: 0.1 to 100: 1 to 2,000, preferably 1: 0.5 to 30: 10 to 1,000, more preferably 1: 0.5 to 1: ~ 5: 10 ~ 500.
본 발명의 전이금속 화합물과 조촉매 간의 비율이 상기 범위를 벗어나는 경우 조촉매의 양이 상대적으로 적어서 전이금속 화합물의 활성화가 완전히 이루어지지 못해 전이금속 화합물의 촉매 활성도가 충분하지 못할 수 있거나, 필요 이상의 조촉매가 사용되어 생산 비용이 크게 증가하는 문제가 발생할 수 있다. 상기 범위 내에서 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 제조하기 위한 우수한 촉매활성을 나타내며, 반응의 순도에 따라 비율의 범위가 달라지게 된다.When the ratio of the transition metal compound of the present invention to the cocatalyst is out of the above range, the amount of the cocatalyst is relatively small, so that the transition metal compound is not fully activated and the catalytic activity of the transition metal compound may not be sufficient, There may arise a problem that the production cost is greatly increased due to the use of co-catalyst. Within this range, it exhibits excellent catalytic activity for producing a homopolymer of ethylene or a copolymer of ethylene and? -Olefin, and the range of the ratio varies depending on the purity of the reaction.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 전이금속 화합물 또는 상기 전이금속 촉매 조성물을 이용하여 에틸렌 단독중합체 및 에틸렌과 α-올레핀의 공중합체에서 선택되는 에틸렌계 중합체의 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a method for producing an ethylene polymer selected from a homopolymer of ethylene and a copolymer of ethylene and an? -Olefin using the transition metal compound or the transition metal catalyst composition will be.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 전이금속 화합물 또는 상기 전이금속 촉매 조성물을 이용하여 에틸렌, 프로필렌 및 선택적으로 비공액 디엔을 공중합시키는 공중합 방법에 관한 것이다.According to another aspect of the present invention, there is provided a copolymerization method of copolymerizing ethylene, propylene and optionally a nonconjugated diene using the transition metal compound or the transition metal catalyst composition.
상기 전이금속 촉매 조성물을 이용한 에틸렌계 중합체의 제조방법은 적절한 유기용매의 존재 하에 상기의 전이금속 촉매, 조촉매, 및 에틸렌 또는 α-올레핀 공단량체를 접촉시켜 진행될 수 있다. 이 때 전이금속 촉매와 조촉매 성분은 별도로 반응기 내에 투입하거나 또는 각 성분을 미리 혼합하여 반응기에 투입할 수 있으며, 투입 순서, 온도 또는 농도 등의 혼합조건은 별도의 제한이 없다. The process for preparing the ethylene polymer using the transition metal catalyst composition can be carried out by contacting the transition metal catalyst, the cocatalyst, and the ethylene or? -Olefin comonomer in the presence of a suitable organic solvent. At this time, the transition metal catalyst and the cocatalyst component may be separately introduced into the reactor, or the components may be premixed and introduced into the reactor, and the mixing conditions such as the order of introduction, temperature, and concentration are not limited.
상기 제조방법에 사용될 수 있는 바람직한 유기용매는 (C3-C20) 탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 크실렌 등을 들 수 있다.Preferred organic solvents that can be used in the above production process are (C3-C20) hydrocarbons. Specific examples thereof include butane, isobutane, pentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, cyclohexane, Hexane, benzene, toluene, xylene, and the like.
구체적으로 에틸렌 단독중합체 제조시에는 단량체로서 에틸렌을 단독으로 사용하며, 이때 적합한 에틸렌의 압력은 1 ~ 1000 기압이며 더욱 바람직하게는 6 ~ 150기압일 수 있다. 또한 중합반응 온도는 25℃ ~ 220℃ 사이에서, 바람직하기로는 70℃ ~ 220℃, 보다 바람직하기로는 100℃ ~ 220℃에서 행해지는 것이 효과적이다.Specifically, when ethylene homopolymer is prepared, ethylene alone is used as a monomer, and the pressure of ethylene is suitably 1 to 1000 atm, and more preferably 6 to 150 atm. It is also effective that the polymerization reaction is carried out at a temperature of from 25 ° C to 220 ° C, preferably from 70 ° C to 220 ° C, more preferably from 100 ° C to 220 ° C.
또한 에틸렌과 α-올레핀의 공중합체를 제조할 경우에는 에틸렌과 함께 공단량체로서 C3~C18의 α-올레핀, C4~C20의 디올레핀(Diolefin), C5~C20의 시클로올레핀 또는 시클로디올레핀 또는 스티렌 및 그 유도체를 사용할 수 있으며, C3~C18의 α-올레핀의 바람직한 예로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-헥사데센 및 1-옥타데센으로 이루어진 군으로부터 선택될 수 있으며, C4~C20의 디올레핀(Diolefin)의 바람직한 예로는 1,3-부타디엔, 1,4-펜타디엔 및 2-메틸-1,3-부타디엔으로 이루어진 군으로부터 선택될 수 있으며, C5~C20의 시클로올레핀 또는 시클로디올레핀의 바람직한 예로는 시클로펜텐, 시클로헥센, 시클로펜타디엔, 시클로헥사디엔, 노르보넨(Norbonene), 5-비닐리덴-2-노르보넨(VNB),5-메틸렌-2-노르보넨(MNB) 및 5-에틸리덴-2-노르보넨(ENB)으로 이루어진 군으로부터 선택될 수 있다. 본 발명에서는 상기한 올레핀을 단독 중합시키거나 2종류 이상의 올레핀을 공중합시킬 수 있다. 이 경우 바람직한 에틸렌의 압력 및 중합반응 온도는 상기 에틸렌 단독중합체 제조의 경우와 동일할 수 있으며, 본 발명의 방법에 따라 제조된 공중합체는 보통 에틸렌 30중량% 이상을 함유하며, 바람직하기로는 60 중량% 이상의 에틸렌을 함유하며, 더욱 바람직하기로는 60 내지 99중량%의 범위로 에틸렌을 함유한다.When a copolymer of ethylene and an? -Olefin is prepared, a copolymer of ethylene and? -Olefin, C4 to C20 diolefin, C5 to C20 cycloolefin or cycloolefin or styrene 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-hexene, and the like. -Dodecene, 1-hexadecene and 1-octadecene, and preferred examples of the C4-C20 diolefins include 1,3-butadiene, 1,4-pentadiene and 2- Methyl-1,3-butadiene, and preferred examples of the C5-C20 cycloolefin or the cyclodiolefin include cyclopentene, cyclohexene, cyclopentadiene, cyclohexadiene, norbonene, Vinylidene-2-norbornene (VNB), 5-methylene-2-norbornene (MNB) and 5-ethylidene- Bonenen (ENB). In the present invention, the above olefins can be homopolymerized or two or more olefins can be copolymerized. In this case, preferred ethylene pressure and polymerization reaction temperature may be the same as in the case of the ethylene homopolymer production, and the copolymer prepared according to the method of the present invention usually contains not less than 30% by weight of ethylene, preferably 60% % Ethylene, more preferably from 60 to 99 wt%, based on the total weight of the composition.
상기한 바와 같이, 본 발명의 촉매를 사용하면 에틸렌과 공단량체로 C3~C10의 α-올레핀을 적절히 사용하여 0.850g/cc 내지 0.960 g/cc의 밀도를 가지고 0.001 내지 2000 dg/분의 용융유량을 갖는 엘라스토머로부터 고밀도 폴리에틸렌(HDPE)영역까지 쉽게 경제적으로 제조할 수 있다. As described above, when the catalyst of the present invention is used, a C3-C10 alpha -olefin is appropriately used as ethylene and a comonomer, and a melt flow rate of 0.001 to 2000 dg / min with a density of 0.850 g / cc to 0.960 g / Can easily and economically be manufactured from an elastomer having a high density polyethylene (HDPE) region.
또한, 본 발명의 촉매를 사용하여 에틸렌/프로필렌(EP) 엘라스토머와 에틸렌/프로필렌/디엔(EPDM) 엘라스토머를 훌륭하게 제조 할 수 있다. 특히 고가의 디엔의 주입이 용이하여 경제적인 방법으로 무니점도(ASTM D1646-94, ML1+4@125 ℃)가 1 내지 250, 바람직하게는 10 내지 200으로 조절된 EPDM 제품을 쉽게 제조할 수 있는 특징을 가지고 있다. In addition, the ethylene / propylene (EP) elastomer and the ethylene / propylene / diene (EPDM) elastomer can be advantageously prepared using the catalyst of the present invention. In particular, it is possible to easily produce an EPDM product having a Mooney viscosity (ASTM D1646-94, ML1 + 4 @ 125 DEG C) of 1 to 250, preferably 10 to 200, .
그리고 본 발명에 따른 에틸렌 단독중합체 또는 공중합체 제조시 분자량을 조절하기 위해 수소를 분자량조절제로 사용할 수 있으며, 통상 5,000 내지 1,000,000 g/mol 범위의 중량평균분자량(Mw)을 갖는다.In order to control the molecular weight of the ethylene homopolymer or copolymer according to the present invention, hydrogen may be used as a molecular weight modifier and has a weight average molecular weight (Mw) generally in the range of 5,000 to 1,000,000 g / mol.
본 발명에서 제시된 촉매 조성물은 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체의 용융점 이상의 온도에서 실시하는 용액중합공정에 적용하는 것이 바람직하다. 그러나 미국특허 제4,752,597호에 개시된 바와 같이 다공성 금속옥사이드 지지체에 상기 전이금속 화합물 및 조촉매를 지지시켜 비균일 촉매계로서 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다.Since the catalyst composition presented in the present invention is present in a uniform form in a polymerization reactor, it is preferable to apply to a solution polymerization process carried out at a temperature above the melting point of the polymer. However, the transition metal compound and cocatalyst may be supported on a porous metal oxide support as disclosed in U.S. Patent No. 4,752,597, and used as slurry polymerization or gas-phase polymerization processes as non-uniform catalyst systems.
또한, 본 발명은 상기 화학식 1의 전이금속 화합물을 제조하기 위한 중간체로서 하기 화학식 Int-1로 표시되는 화합물도 포함한다.The present invention also includes a compound represented by the following formula (Int-1) as an intermediate for preparing the transition metal compound of the above formula (1).
[화학식 Int-1][Chemical Formula Int-1]
Figure PCT2018125-appb-img-000030
Figure PCT2018125-appb-img-000030
상기 화학식 Int-1에서, R 1 내지 R 9 및 Ar 1은 상기 화학식 1에서 정의한 바와 동일하다.In the formula (Int-1), R 1 to R 9 and Ar 1 are the same as defined in the above formula (1).
또한, 본 발명은 단봉의 GPC 그래프를 가지는 에틸렌과 α-올레핀의 공중합체를 제조하는데 사용하기 위한 상기 화학식 1의 전이금속 화합물 및 이를 이용하여 TGIC로 분석한 결과 화학조성분포가 단봉 또는 쌍봉의 그래프로 나타나는 에틸렌과 α-올레핀의 공중합체를 제조하는 방법에 관한 것이다.The present invention also relates to a transition metal compound of the above formula (1) for use in producing a copolymer of ethylene and an? -Olefin having a GPC graph of a single rod, and a TGIC analysis using the same, To a method for producing a copolymer of ethylene and an? -Olefin.
이하 실시예를 통하여 본 발명을 구체적으로 설명하지만, 하기의 실시예에 의하여 본 발명의 범주가 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples. However, the scope of the present invention is not limited by the following examples.
별도로 언급되는 경우를 제외하고 모든 리간드 및 촉매 합성 실험은 질소 분위기 하에서 표준 슐렝크 (Schlenk) 또는 글로브박스 기술을 사용하여 수행되었으며 반응에 사용되는 유기용매는 나트륨금속과 벤조페논 하에서 환류시켜 수분을 제거하여 사용직전 증류하여 사용하였다. 합성된 리간드 및 촉매의 1H-NMR 분석은 상온에서 Brucker 500 MHz을 사용하여 수행하였다.Except where otherwise noted, all ligand and catalyst synthesis experiments were carried out using standard Schlenk or glove box techniques under nitrogen atmosphere and organic solvents used in the reaction were refluxed under sodium metal and benzophenone to remove water And used by distillation just before use. The 1 H-NMR analysis of the synthesized ligand and catalyst was carried out using Brucker 500 MHz at room temperature.
중합용매인 시클로헥산은 분자체 5ÅA와 활성알루미나가 충진된 관을 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독 물질을 충분히 제거시킨 후 사용하였다. 중합된 중합체는 아래에 설명된 방법에 의하여 분석되었다.Cyclohexane, a polymerization solvent, was used after thoroughly removing water, oxygen, and other catalyst poison substances by passing through a tube filled with activated alumina and molecular sieve of 5 Å and bubbling with high purity nitrogen. The polymerized polymer was analyzed by the method described below.
1. 용융흐름지수 (MI)1. Melt Flow Index (MI)
ASTM D 2839에 의거하여 측정하였다.It was measured according to ASTM D 2839.
2. 밀도2. Density
ASTM D 1505에 의거, 밀도구배관을 사용하여 측정하였다.ASTM D 1505, using a mill tool piping.
3. C2 전환율(%) 분석3. C2 conversion rate (%) analysis
미반응 에틸렌과 표준물질인 질소의 함량비를 가스 크로마토그래피(GC)를 사용하여 측정하였다.The content ratio of unreacted ethylene and nitrogen as a reference material was measured by gas chromatography (GC).
4. 분자량 및 분자량분포4. Molecular weight and molecular weight distribution
PL Mixed-BX2+preCol이 장착된 PL210 GPC를 이용하여 135℃에서 1.0mL/min의 속도로 1,2,3-트리클로로벤젠 용매 하에서 측정하였으며, PL 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.PL Mixed-BX2 + preCol-loaded PL210 GPC at 135 ° C at a rate of 1.0 mL / min in 1,2,3-trichlorobenzene solvent, and the molecular weight was corrected using a PL polystyrene standard material.
[제조예 1] 착물 1의 제조[Preparation Example 1] Preparation of complex 1
화합물 1-a의 제조Preparation of compound 1-a
Figure PCT2018125-appb-img-000031
Figure PCT2018125-appb-img-000031
질소 분위기에서 500 mL 둥근 플라스크에 디클로로(메틸)(페닐)실란 (dichloro(methyl)(phenyl)silane, 30 g, 157.0 mmol)을 노말헥산 (400 mL)에 용해시켰다. tert-부틸아민 (tert-butylamine, 23.0 g, 314.0 mmol)를 강한 교반을 시키면서 천친히 넣고 12시간동안 교반하였다. 건조된 celite를 채운 필터로 고형분을 제거하였다. 용매를 진공으로 제거하여 무색 액체인 화합물 1-a을 수득하였다(5.0 g, 수율 94.2 %).Dichloro (methyl) (phenyl) silane (30 g, 157.0 mmol) was dissolved in n-hexane (400 mL) in a 500 mL round-bottomed flask under a nitrogen atmosphere. tert-Butylamine (23.0 g, 314.0 mmol) was intimately mixed with vigorous stirring and stirred for 12 hours. The solids were removed with a filter filled with dried celite. The solvent was removed in vacuo to give compound 1-a, a colorless liquid (5.0 g, 94.2% yield).
1H-NMR (500MHz, C 6D 6, ppm): δ 0.483(s, 3H), 1.040(s, 10H), 7.038-7.291(m, 3H), 7.713-7.879(m, 2H) 1 H-NMR (500MHz, C 6 D 6, 2H), 7.038-7. 291 (m, 3H), 7.713-7.879 (m, 2H)
화합물 1-b의 제조Preparation of compound 1-b
Figure PCT2018125-appb-img-000032
Figure PCT2018125-appb-img-000032
질소 분위기에서 250 mL 둥근 플라스크에 2,3-디하이드로-1H-인덴-1-온(2,3-dihydro-1H-inden-1-one, 5 g, 37.8 mmol)를 무수 노말헥산 (150 mL)에 용해시킨 다음 교반하면서 테트라키스(디메틸아미노)티타늄 (tetrakis(dimethylamino)titanium, 4.7 g, 20.8 mmol)를 넣고 12시간동안 교반하면 노란색 고형분이 생성되었다. 건조된 celite를 채운 필터로 고형분을 제거하였다. 용매를 진공으로 제거하여 액상의 화합물 1-b을 수득하였다(5.0 g, 수율 83.0%).2,3-dihydro-1H-inden-1-one (5 g, 37.8 mmol) was dissolved in anhydrous n-hexane (150 mL ), Tetrakis (dimethylamino) titanium (4.7 g, 20.8 mmol) was added thereto with stirring, and the mixture was stirred for 12 hours to form a yellow solid. The solids were removed with a filter filled with dried celite. The solvent was removed in vacuo to give compound 1-b in liquid form (5.0 g, 83.0% yield).
화합물 1-c의 제조Preparation of compound 1-c
Figure PCT2018125-appb-img-000033
Figure PCT2018125-appb-img-000033
질소 분위기에서 250 mL 둥근 플라스크에 화합물 1-b (5.0 g, 31.4mmol)을 무수 노말헥산 150 mL에 녹인 다음, 1.6M 노말부틸리튬 (19.6 mL, 31.4 mmol)를 넣고 12시간동안 교반한 후 용액을 필터하여 제거하고 고형분을 테트라하이드로퓨란(THF) (100 mL)에 녹인다음 250 mL 둥근 플라스크에 넣고 교반하였다. N- tert-부틸-1-클로로-1-메틸-1-페닐실란아민 (7.16 g, 31.4 mmol)을 테트라하이드로퓨란(THF) (50 mL)에 녹여 첨가한 후 상온에서 12시간동안 교반하였다. 용매를 진공으로 제거하고 노말헥산 (150 mL)를 첨가하여 녹인 다음, 건조된 celite를 채운 필터로 고형분을 제거하였다. 용매를 모두 제거하여 점성의 오일인 화합물 1-c을 수득하였다(10.0 g, 수율 90.8 %, 부분입체이성질체 비 1:1). Compound 1-b (5.0 g, 31.4 mmol) was dissolved in 150 mL of anhydrous n-hexane in a 250 mL round-bottomed flask under a nitrogen atmosphere, and then 1.6 M normal butyl lithium (19.6 mL, 31.4 mmol) Was filtered off and the solids were dissolved in tetrahydrofuran (THF) (100 mL), and the solution was added to a 250 mL round flask and stirred. N - tert - butyl-1-chloro-1-methyl-1-phenyl-amine silane (7.16 g, 31.4 mmol) was added to and dissolved in tetrahydrofuran (THF) (50 mL) was stirred at room temperature for 12 hours. The solvent was removed in vacuo, dissolved in normal hexane (150 mL) and the solids were removed with a filter filled with dried celite. The solvent was removed to give compound 1-c, which was viscous oil (10.0 g, yield 90.8%, diastereomeric ratio 1: 1).
Figure PCT2018125-appb-img-000034
Figure PCT2018125-appb-img-000034
1H-NMR (500MHz, C 6D 6, ppm): δ 0.076(d, 3H), 0.953(d, 9H), 2.532(m, 6H), 3.076(s, 1H), 3.475-3.531(m, 1H), 5.499(d, 1H), 7.098-7.569(m, 9H) 1 H-NMR (500MHz, C 6 D 6, (d, 1H), 7.098 (d, IH), 7.098 (m, IH) 7.569 (m, 9H)
화합물 1-d의 제조Preparation of compound 1-d
Figure PCT2018125-appb-img-000035
Figure PCT2018125-appb-img-000035
질소 분위기하에서 250 mL 둥근 플라스크에 화합물 1-c (5.1 g, 14.6 mmol)을 노말헥산 (150 mL)에 용해시켰다. 상온에서 1.6M 노말부틸리튬 (19.1 mL, 30.6 mmol)을 넣고 12시간동안 교반한 후 필터하여 고형분을 분리한 다음 진공으로 건조하여 화합물 1-d을 얻었으며(5 g, 수율: 94.8 %), 바로 다음 반응에 사용하였다. Compound 1-c (5.1 g, 14.6 mmol) was dissolved in n-hexane (150 mL) in a 250 mL round-bottomed flask under a nitrogen atmosphere. (19.1 mL, 30.6 mmol) was added thereto at room temperature, and the mixture was stirred for 12 hours. The solid was separated by filtration and dried under vacuum to obtain compound 1-d (5 g, yield: 94.8% The next reaction was used.
착물 Complex 1의 제조 1
Figure PCT2018125-appb-img-000036
Figure PCT2018125-appb-img-000036
질소 분위기에서 250 mL 3구 둥근 플라스크에 화합물 1-d (4.0 g, 11.0 mmol)을 디에틸에테르 (50 mL)로 녹인 후 -78℃로 온도를 내린다음 1.5M 메틸리튬 (14.7 mL, 22.1 mmol)을 서서히 주입한 후 테트라클로로티타늄(TiCl 4) (2.1 g, 11.0 mmol)을 무수 노말헥산 (30 mL)에 희석시킨 용액을 -78℃에서 서서히 첨가하였다. 상온에서 3시간동안 교반한 다음 용매를 진공으로 제거하였다. 다시 노말헥산 (100 mL)에 녹인 후 건조된 celite를 채운 필터로 고형분을 제거하였다. 용매를 모두 제거하여 적색의 착물 1을 얻었다(4.2 g, 수율: 89.2 %, 부분입체이성질체 비 1:1).The compound 1-d (4.0 g, 11.0 mmol) was dissolved in diethyl ether (50 mL) in a 250 mL three-necked round-bottomed flask under nitrogen atmosphere, and the temperature was lowered to -78 ° C. Then, 1.5 M methyl lithium (14.7 mL, 22.1 mmol ) Was slowly added thereto, and a solution of tetrachlorotitanium (TiCl 4 ) (2.1 g, 11.0 mmol) in anhydrous n-hexane (30 mL) was slowly added at -78 ° C. After stirring at room temperature for 3 hours, the solvent was removed in vacuo. After dissolving in n-hexane (100 mL), the solids were removed with a filter filled with dried celite. The solvent was removed to obtain a red complex 1 (4.2 g, yield: 89.2%, diastereomer ratio 1: 1).
1H-NMR (500MHz, C 6D 6, ppm): δ 0.055(d, 3H), 0.730-1.391(m, 6H), 1.474(d, 9H), 2.573(d, 6H) 5.499(d, 1H), 6.631-7.837(m, 9H) 1 H-NMR (500MHz, C 6 D 6, 6H), 2.573 (d, 6H), 5.499 (d, 1H), 6.631-7.837 (m, 9H)
[제조예 2] 착물 2의 제조[Preparation Example 2] Preparation of complex 2
화합물 2-a의 제조Preparation of compound 2-a
Figure PCT2018125-appb-img-000037
Figure PCT2018125-appb-img-000037
US 6268444 B1의 제조법으로 화합물 2-a을 제조하였다.Compound 2-a was prepared by the method for preparation of US 6268444 B1.
화합물 2-b의 제조Preparation of compound 2-b
Figure PCT2018125-appb-img-000038
Figure PCT2018125-appb-img-000038
질소 분위기에서 250 mL 둥근 플라스크에 화합물 2-a (6.00 g, 31.4 mmol)을 넣고 무수 THF 150 mL를 넣어 교반한다. N- tert-부틸-1-클로로-1-메틸-1-페닐실란아민 (7.16 g, 31.4 mmol)을 테트라하이드로퓨란(THF) (50 mL)에 녹여 첨가한 후 상온에서 12시간동안 교반하였다. 용매를 진공으로 제거하고 노말헥산 (150 mL)를 첨가하여 녹인 다음, 건조된 celite를 채운 필터로 고형분을 제거하였다. 용매를 모두 제거하여 점성의 오일인 화합물 2-b을 수득하였다(10.8 g, 수율 91.0 %, 부분입체이성질체 비 1:1). Compound 2-a (6.00 g, 31.4 mmol) was added to a 250 mL round-bottomed flask in a nitrogen atmosphere, and 150 mL of anhydrous THF was added thereto and stirred. N - tert - butyl-1-chloro-1-methyl-1-phenyl-amine silane (7.16 g, 31.4 mmol) was added to and dissolved in tetrahydrofuran (THF) (50 mL) was stirred at room temperature for 12 hours. The solvent was removed in vacuo, dissolved in normal hexane (150 mL) and the solids were removed with a filter filled with dried celite. The solvent was removed to give Compound 2-b, a viscous oil (10.8 g, yield 91.0%, diastereomer ratio 1: 1).
1H-NMR (500MHz, C 6D 6, ppm): δ 0.156(d, 3H), 0.703-0.830(m, 1H), 0.976(d, 9H), 1.501-1.528(m, 4H), 3.089-3.217(m, 4H), 3.501-3.604(m, 1H), 5.259(d, 1H), 7.034-7.652(m, 9H) 1 H-NMR (500MHz, C 6 D 6, (m, 4H), 3.089-3.217 (m, 4H), 3.501-3.604 (m, 4H) , ≪ / RTI > 1H), 5.259 (d, 1H), 7.034-7.652 (m, 9H)
착물Complex 2의 제조 Preparation of 2
Figure PCT2018125-appb-img-000039
Figure PCT2018125-appb-img-000039
질소 분위기에서 250 mL 3구 둥근 플라스크에 화합물 2-b (4.14 g, 11.0 mmol)을 디에틸에테르 (50 mL)로 녹인 후 -78℃로 온도를 내린다음 1.5M 메틸리튬 (29.4 mL, 44.2 mmol)을 서서히 주입한 후 상온으로 온도를 올려 6시간동안 교반한다. 다시 반응물을 -78℃로 온도를 내린다음 테트라클로로티타늄(TiCl 4) (2.1 g, 11.0 mmol)을 무수 노말헥산 (30 mL)에 희석시킨 용액을 -78℃에서 서서히 첨가하였다. 상온에서 3시간동안 교반한 다음 용매를 진공으로 제거하였다. 다시 노말헥산 (100 mL)에 녹인 후 건조된 celite를 채운 필터로 고형분을 제거하였다. 용매를 모두 제거하여 적색의 착물 2을 얻었다(4.14 g, 수율: 83.2 %; 부분입체이성질체 비 ~ 1:3). The compound 2-b (4.14 g, 11.0 mmol) was dissolved in diethyl ether (50 mL) in a 250 mL three-necked round-bottomed flask under nitrogen atmosphere. The temperature was lowered to -78 ° C., and 1.5 M methyl lithium (29.4 mL, 44.2 mmol ) Is slowly injected, the temperature is raised to room temperature and stirred for 6 hours. The reaction mixture was cooled to -78 ° C, and a solution of tetrachlorotitanium (TiCl 4 ) (2.1 g, 11.0 mmol) in anhydrous n-hexane (30 mL) was slowly added at -78 ° C. After stirring at room temperature for 3 hours, the solvent was removed in vacuo. After dissolving in n-hexane (100 mL), the solids were removed with a filter filled with dried celite. The solvent was removed to obtain the red complex 2 (4.14 g, yield: 83.2%; diastereomeric ratio ~ 1: 3).
1H-NMR (500MHz, C 6D 6, ppm): δ 0.153(d, 3H), 0.702-0.950(m, 6H), 1.490(d, 9H), 2.951-3.442(m, 8H), 5.360(d, 1H), 6.698-7.890(m, 9H) 1 H-NMR (500MHz, C 6 D 6, (m, 9H), 2.951-3.442 (m, 8H), 5.360 (d, 1H), 6.698-7.890 (m, 9H) )
[제조예 3] 착물 3의 제조[Preparation Example 3] Preparation of complex 3
Figure PCT2018125-appb-img-000040
Figure PCT2018125-appb-img-000040
N- tert-부틸-1-클로로-1-메틸-1-페닐실란아민 (7.16 g, 31.4 mmol) 대신에 N-이소프로필-1-클로로-1-메틸-1-페닐실란아민 (31.4 mmol)을 사용한 것을 제외하고는 상기 제조예 2의 착물 2의 제조방법과 동일한 방법으로 반응시켜 착물 3을 제조하였다(3.54 g, 수율: 75.3 %; 부분입체이성질체 비 1:2). In place of butyl-1-chloro-1-methyl-1-phenyl-amine silane (7.16 g, 31.4 mmol) N - - N - tert -isopropyl-1-chloro-1-methyl-1-phenyl-amine silane (31.4 mmol) (3.54 g, yield: 75.3%; diastereomer ratio = 1: 2). The reaction was carried out in the same manner as in the preparation of complex 2 of Preparation Example 2,
1H-NMR (500MHz, C 6D 6, ppm): δ 0.071(d, 3H), 0.660-0.851(m, 6H), 1.196-1.604(m, 10H), 2.843-3.422(m, 4H), 4.133-4.668(m, 1H), 5.380(d, 1H), 6.635-7.813(m, 9H) 1 H-NMR (500MHz, C 6 D 6, 1 H), 2.843-3.422 (m, 4H), 4.133-4.668 (m, 1H), 5.380 (d, 3H), 0.660-0.851 (m, 6H), 1.196-1.604 , ≪ / RTI > 1H), 6.635-7.813 (m, 9H)
[비교제조예 1] (t-부틸아미도)디메틸(테트라메틸시클로펜타디에닐)실란티타늄(IV) 디메틸의 제조[Comparative Preparation Example 1] Preparation of (t-butylamido) dimethyl (tetramethylcyclopentadienyl) silane titanium (IV) dimethyl
Figure PCT2018125-appb-img-000041
Figure PCT2018125-appb-img-000041
(t-부틸아미도)디메틸(테트라메틸시클로펜타디에닐)실란티타늄(IV) 디메틸 화합물은 미국의 Boulder Scientific사로부터 구입한 (t-부틸아미도)디메틸(테트라메틸시클로펜타디에닐)실란티타늄(IV) 디클로라이드를 디에틸에테르에 녹여 -78℃로 온도를 내린 다음 2당량의 메틸리튬과 반응시켜 제조하였다.(t-butylamido) dimethyl (tetramethylcyclopentadienyl) silane titanium (IV) dimethyl compound is commercially available from Boulder Scientific, (IV) dichloride was dissolved in diethyl ether and the reaction mixture was cooled to -78 DEG C and reacted with 2 equivalents of methyl lithium.
[비교제조예 2] 착물 A의 제조[Comparative Preparation Example 2] Preparation of complex A
Figure PCT2018125-appb-img-000042
Figure PCT2018125-appb-img-000042
US 6268444 B1의 제조방법으로 착물 A를 제조하였다.Complex A was prepared by the method of US 6268444 B1.
[비교제조예 3] 착물 B의 제조[Comparative Preparation Example 3] Preparation of complex B
Figure PCT2018125-appb-img-000043
Figure PCT2018125-appb-img-000043
WO 01/42315 A1의 제조방법으로 착물 B를 제조하였다.Complex B was prepared by the method for preparation of WO 01/42315 A1.
[비교제조예 4] 착물 C의 제조[Comparative Preparation Example 4] Preparation of complex C
Figure PCT2018125-appb-img-000044
Figure PCT2018125-appb-img-000044
1H-indene으로부터 상기 제조예 2의 착물 2의 제조방법으로 착물 C를 제조하였다.Complex C was prepared from 1H-indene by the process for the preparation of complex 2 of Preparation Example 2 above.
1H-NMR (500MHz, C 6D 6, ppm): δ -0.131(d, 3H), 0.404(d, 3H), 0.825(d, 3H), 1.455(d, 9H) 6.101-6.126(m, 1H), 7.010-7.531(m, 10H) 1 H-NMR (500MHz, C 6 D 6, (d, 3H), 1.455 (d, 9H) 6.101-6.126 (m, 1H), 7.010-7.531 (m, 10H)
에틸렌과 1-옥텐의 공중합Copolymerization of ethylene and 1-octene
[실시예 1-7 및 비교예 1-2] 연속 용액공정에 의한 에틸렌과 1-옥텐 공중합[Example 1-7 and Comparative Example 1-2] Ethylene and 1-octene copolymerization by a continuous solution process
연속식중합장치를 사용하여 다음과 같이 에틸렌과 1-옥텐과의 공중합을 수행하였다.Copolymerization of ethylene with 1-octene was carried out using a continuous polymerization apparatus as follows.
단일 활성점 촉매로서 제조예 1-3 및 비교제조예 1에서 합성된 촉매를 사용하였고, 용매는 시클로헥산을 사용하였으며 촉매 사용량은 하기 표 1에 기재된 바와 같다. Ti는 촉매, Al은 트리이소부틸알루미늄, B는 조촉매인 N,N-디옥타데실아닐리니움 테트라키스(펜타플루오르페닐)보레이트를 각각 나타낸다. 촉매는 톨루엔에 0.1 g/L의 농도로 용해시켜 주입하였고, 공단량체로 1-옥텐을 사용하여 합성을 실시하였다. 반응기의 전환률은 각각의 반응 조건에서 한 가지 중합체로 중합할 때의 반응 조건 및 반응기 내 온도 구배를 통해 추측할 수 있었다. 분자량은 반응기 온도 및 1-옥텐 함량의 함수로 제어하였고, 하기 표 1 및 표 2에 그 조건과 결과를 기재하였다. The catalysts synthesized in Preparation Examples 1-3 and Comparative Preparation Example 1 were used as single-site catalysts, and cyclohexane was used as a solvent. The amount of catalyst used is as shown in Table 1 below. Ti represents a catalyst, Al represents triisobutylaluminum, and B represents N, N-dioctadecyl anilinium tetrakis (pentafluorophenyl) borate as a cocatalyst. The catalyst was dissolved in toluene at a concentration of 0.1 g / L, and the synthesis was carried out using 1-octene as the comonomer. The conversion rate of the reactor could be estimated through the reaction conditions and the temperature gradient in the reactor when polymerizing with one polymer under each reaction condition. The molecular weight was controlled by a function of the reactor temperature and the 1-octene content, and the conditions and results are shown in Tables 1 and 2 below.
[표 1] 제조예 1과 제조예 2에서 제조된 착물을 중합촉매로 이용한 연속중합반응 결과[Table 1] Continuous polymerization reaction using the complexes prepared in Production Example 1 and Production Example 2 as polymerization catalysts
Figure PCT2018125-appb-img-000045
Figure PCT2018125-appb-img-000045
[표 2] 제조예 2, 제조예 3 및 비교제조예 1에서 제조된 착물을 중합촉매로 이용한 연속중합반응 결과[Table 2] Continuous polymerization reaction using the complexes prepared in Production Example 2, Production Example 3 and Comparative Production Example 1 as a polymerization catalyst
Figure PCT2018125-appb-img-000046
Figure PCT2018125-appb-img-000046
-Ti: 촉매 중의 Ti를 의미한다.-Ti: means Ti in the catalyst.
-Al: 조촉매 트리이소부틸알루미늄을 나타낸다.-Al: Co-catalyzed triisobutylaluminum.
-B: 조촉매 N,N-디옥타데실아닐리니움 테트라키스(펜타플루오르페닐)보레이트를 나타낸다.-B: Co-catalyst N, N-dioctadecyl anilinium tetrakis (pentafluorophenyl) borate.
상기 표 1 및 표 2에서 알 수 있는 바와 같이, 본 발명에서 개발한 촉매들로 중합한 실시예 1 내지 실시예 7은 비교예 1과 비교예 2와 비교 했을 때 고온(150℃ 이상)의 조건에서도 에틸렌의 높은 전환율과 저밀도와 높은 분자량을 의미하는 낮은 MI 값을 가진 중합체들을 쉽게 얻을 수 있었다. As can be seen from Tables 1 and 2, Examples 1 to 7, which were obtained by polymerizing the catalysts developed in the present invention, exhibited a higher temperature (150 ° C. or higher) than Comparative Examples 1 and 2 Polymers with low MI values indicating a high conversion of ethylene and a low density and a high molecular weight were easily obtained.
특히, 실시예 7의 경우 비교예 2에 비해 적은 양의 촉매 사용에도 불구하고 높은 에틸렌 전환율을 보여 본 발명의 촉매가 촉매활성이 우수함을 알 수 있었다. 또한, 실시예 4의 경우 중합온도 181 도에서도 저밀도이면서 높은 분자량의 공중합체를 쉽게 제조하였다.In particular, the catalyst of the present invention exhibited a high ethylene conversion despite the use of a small amount of catalyst as compared with the catalyst of Comparative Example 2, indicating that the catalyst of the present invention is superior in catalytic activity. Also, in Example 4, a copolymer having a low density and a high molecular weight was easily produced even at a polymerization temperature of 181 degrees.
즉, 본 발명의 착물을 중합촉매로 이용하는 경우 150℃ 이상의 고온 중합시 77% 이상의 높은 에틸렌 전환율, 0.893g/cc 이하의 저밀도 및 5 미만의 MI 값을 가진 공중합체를 제조할 수 있다.That is, when the complex of the present invention is used as a polymerization catalyst, a copolymer having a high ethylene conversion of 77% or more, a low density of 0.893 g / cc or less, and an MI value of less than 5 can be produced at high temperature polymerization of 150 ° C or higher.
한편, 실시예 5 및 6에서 제조된 공중합체의 GPC 그래프를 도 2에 도시하였으며, 하기 표 3에 수평균분자량(Mn), 중량평균분자량(Mw) 및 분자량분포지수(MWD)를 기재하였다.Meanwhile, GPC graphs of the copolymers prepared in Examples 5 and 6 are shown in FIG. 2, and the number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution index (MWD) are shown in Table 3 below.
[표 3][Table 3]
Figure PCT2018125-appb-img-000047
Figure PCT2018125-appb-img-000047
일반적으로 부분입체이성질체들(diastereomers)을 촉매로 제조한 공중합체들의 GPC 그래프의 경우 넓거나 2 peak의 그래프 모양에 분자량 분포가 넓은 특징을 가지는데, 본 발명의 제조예 2의 착물 및 제조예 3의 착물을 중합촉매로 사용한 실시예 5 및 실시예 6에서 제조된 공중합체는 특이하게도 GPC 그래프 상에 단일봉의 좁은 분자량분포를 나타냈다. 실시예 5의 공중합체(Polymer 2)는 2.33의 분자량 분포, 실시예 6의 공중합체(Polymer 3)는 2.2의 분자량 분포를 나타냈으며, 이들은 모두 단일봉의 좁은 분자량 분포를 보였다.Generally, GPC graphs of copolymers prepared by catalyzing diastereomers have broad molecular weight distributions in a wide or two peak graph shape. The complexes of Preparation Example 2 of the present invention and Preparation Example 3 The copolymer prepared in Example 5 and Example 6 exhibited a narrow molecular weight distribution of a single rod uniquely on the GPC graph. The copolymer of Example 5 (Polymer 2) had a molecular weight distribution of 2.33, and the copolymer of Example 6 (Polymer 3) had a molecular weight distribution of 2.2, all of which showed a narrow molecular weight distribution of a single rod.
또한, 도 3에 실시예 5 및 6에서 제조된 공중합체의 화학조성분포(CCD: Chemical Composition Distribution)을 알아보기 위한 TGIC(Thermal Gradient Interaction Chromatography) 그래프를 도시하였다. 도 3으로부터 실시예 5에서 제조예 2의 착물 2을 중합촉매로 이용하여 제조된 공중합체(Polymer 2)는 전형적인 단일활성점 촉매의 특성인 싱글피크의 좁은 분포를 나타내고 있음을 알 수 있고, 실시예 6에서 제조예 3의 착물 3을 중합촉매로 이용하여 제조된 공중합체(Polymer 3)는 전형적인 단일활성점 촉매로부터는 얻기 어려운 더블피크의 넓은 화학조성분포를 나타내고 있음을 알 수 있다.FIG. 3 shows a TGIC (Thermal Gradient Interaction Chromatography) graph for examining the chemical composition distribution (CCD) of the copolymers prepared in Examples 5 and 6. From FIG. 3, it can be seen that the copolymer (Polymer 2) prepared using the complex 2 of Preparation Example 2 in Example 5 exhibits a narrow distribution of single peaks characteristic of a typical single-site catalyst, It can be seen that the copolymer (Polymer 3) prepared in Example 6 using the complex 3 of Production Example 3 as a polymerization catalyst exhibits a wide chemical composition distribution with a double peak which is difficult to obtain from a typical single-site catalyst.
[실시예 8-10 및 비교예 3-6] 회분식중합장치를 사용한 에틸렌과 1-옥텐 공중합[Examples 8-10 and Comparative Example 3-6] Ethylene and 1-octene copolymerization using a batch polymerization apparatus
회분식중합장치를 사용하여 다음과 같이 에틸렌과 1-옥텐과의 공중합을 수행하였다. Copolymerization of ethylene with 1-octene was carried out using a batch polymerization apparatus as follows.
충분히 건조 후 질소로 치환시킨 1500 mL 용량의 스테인레스스틸 반응기에 메틸시클로헥산 600 mL와 1-옥텐 50-100 mL를 넣은 다음, 트리이소부틸알루미늄 1.0 M 헥산 용액 1 mL를 반응기에 투입하였다. 이후 반응기의 온도를 가열한 다음, 제조예 1 내지 2 및 비교제조예 2 내지 4에서 합성한 티타늄(IV) 화합물 (1.0 wt% 톨루엔 용액) 0.1 mL와 0.6 mL의 트리페닐메틸리니움 테트라키스 (펜타플루오르페닐)보레이트 (99%, Boulder Scientific) 10 mM 톨루엔 용액을 순차적으로 투입한 다음, 에틸렌으로 반응기내의 압력을 20 kg/cm 2까지 채운 후 연속적으로 공급하여 중합되도록 하였다. 5분간 반응을 진행한 후 회수된 반응생성물을 40℃의 진공오븐에서 8시간 동안 건조하였다. 하기 표 4에 반응온도, ΔT, 촉매활성도, 밀도 및 분자량을 기재하였다.600 mL of methylcyclohexane and 50-100 mL of 1-octene were placed in a 1500 mL capacity stainless steel reactor which had been sufficiently dried and replaced with nitrogen, and 1 mL of a 1.0 M hexane solution of triisobutylaluminum was added to the reactor. Thereafter, the temperature of the reactor was heated, and then 0.1 mL of the titanium (IV) compound (1.0 wt% toluene solution) synthesized in Production Examples 1 to 2 and Comparative Production Examples 2 to 4 and 0.6 mL of triphenylmethyllithium tetrakis Pentafluorophenyl) borate (99%, Boulder Scientific) 10 mM toluene solution were sequentially charged, and the pressure in the reactor was filled up to 20 kg / cm 2 with ethylene, followed by continuous feeding to polymerize. After the reaction was carried out for 5 minutes, the recovered reaction product was dried in a vacuum oven at 40 DEG C for 8 hours. Table 4 below shows the reaction temperature,? T, catalyst activity, density and molecular weight.
[표 4] 제조예 1, 제조예 2 및 비교제조예 2-4에서 제조된 착물을 중합촉매로 이용하고 회분식중합장치를 이용한 중합결과[Table 4] Polymerization results using a batch polymerization apparatus using the complexes prepared in Production Example 1, Production Example 2 and Comparative Production Example 2-4 as polymerization catalysts
Figure PCT2018125-appb-img-000048
Figure PCT2018125-appb-img-000048
상기 표 4의 중합결과로부터, 중합촉매의 구조로 인하여 촉매활성이 현저하게 달라짐을 확인할 수 있다.From the polymerization results in Table 4, it can be seen that the catalytic activity varies significantly due to the structure of the polymerization catalyst.
구체적으로, 피롤리디노기가 치환된 엔덴과 t-부틸아미도기를 연결하는 실릴기에 메틸기와 페닐기가 도입된 제조예 2의 착물 2를 중합촉매로 사용하는 경우 피롤리디노기가 치환된 인덴과 t-부틸아미도기를 연결하는 실릴기에 디메틸기가 치환된 구조의 비교제조예 2의 착물 B 및 피롤리디노기가 치환된 인덴과 t-부틸아미도기를 연결하는 실릴기에 디페닐기가 치환된 구조의 비교제조예 3의 착물 C을 사용한 경우에 비해 상당히 높아진 촉매활성을 나타내었다.Specifically, when the complex 2 of Production Example 2 in which a methyl group and a phenyl group are introduced into a silyl group connecting a pyrrolidino group-substituted end and a t-butylamido group is used as a polymerization catalyst, the pyrrolidino group-substituted indene and the t- Comparison of structure in which a dimethyl group is substituted for a silyl group connecting a butylamido group Comparative example of a structure in which a diphenyl group is substituted for a silyl group connecting a complex B of the preparation example 2 and an indene in which a pyrrolidino group is substituted and a t-butylamido group 3 < / RTI > complex C was used.
또한, 디메틸아미노기가 치환된 엔덴과 t-부틸아미도기를 연결하는 실릴기에 메틸기와 페닐기가 도입된 제조예 1의 착물 1 및 피롤리디노기가 치환된 엔덴과 t-부틸아미도기를 연결하는 실릴기에 메틸기와 페닐기가 도입된 제조예 2의 착물 2를 중합촉매로 사용하는 경우 인덴에 질소 함유 치환체가 도입되지 않은 비교제조예 4의 착물 C를 사용한 경우에 비해 상당히 높아진 촉매활성을 나타내었다.Further, the complex 1 of Preparation Example 1 in which a methyl group and a phenyl group are introduced into a silyl group connecting a dimethylamino group-substituted end and a t-butylamido group, and a silyl group in which a pyrrolidino group-substituted endene and a t- When the complex 2 of Preparation Example 2 in which a methyl group and a phenyl group were introduced was used as a polymerization catalyst, the catalyst activity was significantly increased as compared with the case of using the complex C of Comparative Preparation Example 4 in which a nitrogen-containing substituent was not introduced in indene.
즉, 질소 함유 치환체가 도입된 인덴과 아미도기를 알킬기와 아릴기가 치환된 실릴기로 연결시킨 구조의 착물을 중합촉매로 사용하는 경우 알킬기와 아릴기로 치환된 실릴 연결기의 최적화된 입체적/전기적 특성에 의해 나타나는 독특한 특성으로 인하여 그렇치 않은 착물에 비해 월등히 향상된 촉매활성이 나타나는 것을 알 수 있다. That is, when a complex having a structure in which a nitrogen-containing substituent is introduced and an amido group is connected to an alkyl group and an aryl group-substituted silyl group is used as a polymerization catalyst, the silyl group substituted with an alkyl group and an aryl group It can be seen that the catalytic activity remarkably improved as compared with the unlikely complexes due to the unique characteristics appearing.
한편, 비교예 3, 비교예 4 및 비교예 6에서 회분식 중합반응기를 사용하여 제조된 고분자들의 GPC 그래프를 도 4에 도시하였으며, 하기 표 5에 수평균분자량(Mn), 중량평균분자량(Mw) 및 분자량분포지수(MWD)를 기재하였다.4 shows the GPC graphs of the polymers prepared by using the batch polymerization reactor in Comparative Example 3, Comparative Example 4 and Comparative Example 6. The number average molecular weight (Mn), the weight average molecular weight (Mw) And molecular weight distribution index (MWD).
[표 5][Table 5]
Figure PCT2018125-appb-img-000049
Figure PCT2018125-appb-img-000049
질소 함유 치환체로 피롤리디노기가 치환된 인덴과 아미도기를 연결하는 실릴기에 디메틸기가 치환된 비교제조예 2의 착물 A 및 질소 함유 치환체로 피롤리디노기가 치환된 인덴과 아미도기를 연결하는 실릴기에 디페닐기가 치환된 비교제조예 3의 착물 B를 중합촉매로 사용하여 제조된 고분자들은 부분입체성질체인 비교제조예 4의 착물 C를 중합촉매로 사용하여 제조된 고분자에 비해 분자량이 큼에도 불구하고 분자량 분포가 상당히 좁게 나타났다.A complex A of Comparative Preparation Example 2 in which a dimethyl group is substituted for a silyl group connecting an indene in which a pyrrolidino group is substituted with a nitrogen-containing substituent and a silyl group for linking an indene in which a pyrrolidino group is substituted with a nitrogen- The polymers prepared using the complex B of Comparative Preparation Example 3 in which the diphenyl group was substituted were used as the polymerization catalysts, although the molecular weight was larger than that of the polymer prepared using the complex C of Comparative Preparation Example 4 as the polymerization catalyst The molecular weight distribution was remarkably narrow.
이상의 GPC 및 TGIC 결과로부터, 본 발명에 따른 착물, 질소 함유 치환체가 도입된 인덴과 아미도기를 알킬기와 아릴기가 치환된 실릴기로 연결시킨 구조의 착물은 부분입체이성질체가 존재함에도 불구하고 치환기의 조절에 의하여 분자량 분포와 화학조성분포가 모두 좁은 공중합체를 제조할 수 있거나, 또는 신규 제품의 개발에 유용한 분자량 분포는 좁으면서 화학조성분포는 넓은 공중합체를 제조할 수 있는 고온 고활성의 부분입체이성질체 촉매로 적용될 수 있음을 알 수 있다.From the above GPC and TGIC results, the complex according to the present invention, a complex having a structure in which an indene and an amido group introduced with a nitrogen-containing substituent are connected with an alkyl group and an aryl group-substituted silyl group, A high-temperature highly active diastereomeric catalyst capable of producing a copolymer having a narrow molecular weight distribution and a narrow chemical composition distribution, or having a narrow molecular weight distribution useful for the development of new products and having a wide chemical composition distribution, As shown in FIG.
따라서, 본 발명에 따른 착물, 질소 함유 치환체가 도입된 인덴과 아미도기를 알킬기 또는 알케닐기와 아릴기가 치환된 실릴기로 연결시킨 구조의 착물은 제조가 용이하고, 고온중합시 촉매활성이 우수하여 촉매비용을 절약할 수 있으며, 분자량분포가 좁으면서 조성분포를 좁은 공중합체 및 분자량분포가 좁으면서 화학조성분포가 넓은 공중합체를 단순히 치환체만을 변경하여 쉽게 제조할 수 있어 상업적 기대효과가 매우 크다고 할 수 있다. Therefore, the complex according to the present invention, a complex having a structure in which an indene and an amido group introduced with a nitrogen-containing substituent are linked by an alkyl group or an alkenyl group and a silyl group substituted with an aryl group is easy to produce, It can be said that a copolymer having a narrow molecular weight distribution and a narrow molecular weight distribution and a copolymer having a narrow molecular weight distribution and a wide chemical composition distribution can be easily produced by simply changing a substituent, have.
이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. And various modifications may be made to the invention.
본 발명에 따른 전이금속 화합물 또는 상기 전이금속 화합물을 포함하는 촉매 조성물은 합성 수율이 높고 경제적인 방법으로 용이하게 제조할 수 있으며, 또한 촉매의 열적 안정성이 뛰어나 고온에서도 높은 촉매활성을 유지하면서 다른 올레핀류와의 공중합 반응성이 좋고 고분자량의 중합체를 높은 수율로 제조할 수 있기 때문에 이미 알려진 메탈로센 및 비메탈로센계 단일활성점 촉매에 비해 상업적인 실용성이 높다. 본 발명은 리간드의 조절에 따라 부분입체이성질체 촉매임에도 불구하고, 단일활성점 촉매와 같은 좁은 분자량 분포 특성을 보이는 촉매들을 개발하였다. 즉, 본 발명에 따른 전이금속 화합물을 고온 고활성의 촉매로 하여 제조한 공중합체는 좁은 분자량 분포와 좁은 화학조성분포[Chemical Composition Distribution (CCD)]를 갖는 공중합체들을 쉽게 제조 가능하고, 분자량 분포는 좁고 화학조성분포는 넓은(2peak) 제품도 제조 가능한 독특한 장점을 갖는다. 따라서 본 발명에 따른 전이금속 촉매 조성물은 다양한 물성을 갖는 에틸렌과 α-올레핀의 공중합체로부터 선택되는 에틸렌계 중합체의 제조에 유용하게 사용될 수 있다.The transition metal compound or the catalyst composition comprising the transition metal compound according to the present invention can be easily produced by a high synthesis rate and an economical method and is excellent in thermal stability of the catalyst, The present invention has commercial utility in comparison with the already known metallocene and non-metallocene single-site catalysts since it can produce a polymer having a high copolymerization reactivity with a high molecular weight and a high molecular weight. The present invention has developed catalysts that exhibit narrow molecular weight distribution characteristics, such as single-site catalysts, despite the fact that they are diastereomeric catalysts depending on the control of the ligand. That is, the copolymer prepared by using the transition metal compound according to the present invention as a catalyst at high temperature and high activity can easily produce copolymers having a narrow molecular weight distribution and a narrow chemical composition distribution (CCD) Has a unique advantage of being able to manufacture a narrow (2peak) chemical composition distribution. Therefore, the transition metal catalyst composition according to the present invention can be advantageously used in the production of an ethylene polymer selected from copolymers of ethylene and an? -Olefin having various physical properties.

Claims (18)

  1. 하기 화학식 1로 표시되는 전이금속 화합물: A transition metal compound represented by the following general formula (1)
    [화학식 1][Chemical Formula 1]
    Figure PCT2018125-appb-img-000050
    Figure PCT2018125-appb-img-000050
    상기 화학식 1에서, In Formula 1,
    M은 주기율표 상 4족의 전이금속이고;M is a transition metal of Group 4 on the Periodic Table;
    R 1는 (C1-C20)알킬 또는 (C2-C20)알케닐이고, 상기 R 1의 알킬 또는 알케닐은 할로겐, (C6-C30)아릴 및 (C1-C20)알킬(C6-C30)아릴로 이루어진 군에서 선택되는 하나 이상의 치환체로 더 치환될 수 있고;Wherein R 1 is (C 1 -C 20) alkyl or (C 2 -C 20) alkenyl and the alkyl or alkenyl of R 1 is halogen, (C 6 -C 30) aryl and (C 6 -C 20) Lt; / RTI > may be further substituted with one or more substituents selected from the group consisting of;
    Ar 1은 (C6-C30)아릴이고, 상기 Ar 1의 아릴은 (C1-C20)알킬, 할로(C1-C20)알킬 및 (C6-C30)아릴(C1-C20)알킬로 이루어진 군에서 선택되는 하나 이상의 치환체로 더 치환될 수 있고;Ar 1 is (C6-C30) aryl, and the aryl of Ar 1 is a (C1-C20) alkyl, halo (C1-C20) alkyl and (C6-C30) aryl (C1-C20) is selected from the group consisting of alkyl Which may be further substituted with one or more substituents;
    R 2 내지 R 5는 서로 독립적으로 수소, (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와 연결되어 융합고리를 형성할 수 있고, 상기 형성된 융합고리는 (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 및 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 may be connected to an adjacent substituent may form a fused ring, wherein the formed fused ring is (C1-C20) alkyl, (C6-C30) aryl, (C6-C30) aryloxy, (C6-C30) alkoxy, halo (C1- C20) alkyl, (C3- C20) cycloalkyl, (C 1 -C 20) alkyl (C 6 -C 30) aryloxy, (C 6 -C 30) aryl (C 1 -C 20) alkyl and ((C 1 -C 20) alkyl Lt; / RTI >group;
    R 9는 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C30)아릴(C1-C20)알킬이고;R 9 is (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl;
    R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C1-C20)알킬(C6-C30)아릴, (C1-C20)알콕시(C6-C30)아릴 또는 (C6-C30)아릴(C1-C20)알킬이거나, 상기 R 6과 R 7는 서로 연결되어 고리를 형성할 수 있고, 상기 형성된 고리는 (C1-C20)알킬, 할로(C1-C20)알킬, (C6-C30)아릴(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C30)아릴 및 (C6-C20)아릴옥시로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 6 and R 7 are independently selected from the group consisting of (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, aryl, (C1-C20) alkoxy (C6-C30) aryl or (C6-C30) aryl (C1-C20) alkyl or, wherein R 6 and R 7 are connected to each other may form a ring, the formed ring is (C1-C60) alkyl, (C6-C60) aryl, (C6-C60) (C1-C20) alkyl (C6-C30) aryl and (C6-C20) aryloxy;
    R 8는 수소 또는 (C1-C20)알킬이고;R < 8 > is hydrogen or (C1-C20) alkyl;
    X 1 및 X 2는 서로 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C1-C20)알콕시(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f, -PR gR h 또는 (C1-C20)알킬리덴이고;X 1 and X 2 are independently of each other selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 2 -C 20) alkenyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 1 -C 20) alkyl, (C 1 -C 20) alkyl ((C 1 -C 20) alkyl (C 6 -C 30) aryl) ) aryloxy, (C1-C20) alkoxy (C6-C30) aryloxy, -OSiR a R b R c, -SR d, -NR e R f, -PR g R h , or (C1-C20) alkylidene and ;
    R a 내지 R d은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴 또는 (C3-C20)시클로알킬이고;R a to R d are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl;
    R e 내지 R h은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴, (C3-C20)시클로알킬, 트리(C1-C20)알킬실릴 또는 트리(C6-C20)아릴실릴이고; R e to R h are independently selected from the group consisting of (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) aryl (C 6 -C 20) C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
    단 X 1 또는 X 2 중 하나가 (C1-C20)알킬리덴인 경우 나머지 하나는 무시된다.With the proviso that if either X 1 or X 2 is (C 1 -C 20) alkylidene, the other is ignored.
  2. 제 1항에 있어서,The method according to claim 1,
    하기 화학식 2로 표시되는 전이금속 화합물: A transition metal compound represented by the following formula (2):
    [화학식 2](2)
    Figure PCT2018125-appb-img-000051
    Figure PCT2018125-appb-img-000051
    상기 화학식 2에서, M, R 1, R 6, R 7, R 9, X 1 및 X 2는 청구항 제1항의 화학식 1에서의 정의와 동일하고;Wherein M, R 1 , R 6 , R 7 , R 9 , X 1, and X 2 are the same as defined in Formula 1 of Claim 1;
    R 2 내지 R 5는 서로 독립적으로 수소, (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 또는 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬이거나, 상기 R 2 내지 R 5는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C3-C7)알킬렌, (C3-C7)알케닐렌 또는 (C4-C7)알카디에닐렌으로 연결되어 융합고리를 형성할 수 있고, 상기 형성된 융합고리는 (C1-C20)알킬, (C1-C20)알콕시, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C1-C20)알킬(C6-C30)아릴, (C6-C30)아릴, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, (C6-C30)아릴(C1-C20)알킬 및 ((C1-C20)알킬(C6-C30)아릴)(C1-C20)알킬로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있고;R 2 to R 5 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halo (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C6-C30) aryl, (C6-C30) aryl, (C6-C30) aryloxy, (CrC20) C20) alkyl (C6-C30) aryl) (C1-C20) alkyl, wherein R 2 to R 5 is with or without an adjacent substituent via the aromatic ring (C3-C7) alkylene, (C3-C7) alkenyl (C1-C20) alkoxy, halo (C1-C20) alkyl, (C3-C60) alkynyl, (C6-C30) aryl, (C6-C30) aryloxy, (C1-C20) alkyl (C6-C30) aryloxy, (C6-C30) aryl (C 1 -C 20) alkyl, (C 1 -C 20) alkyl, and ((C 1 -C 20) alkyl (C 6 -C 30) aryl) (C 1 -C 20) alkyl;
    R 11 내지 R 15는 서로 독립적으로 수소, (C1-C20)알킬, 할로(C1-C20)알킬 또는 (C6-C30)아릴(C1-C20)알킬이다.R 11 to R 15 are independently of each other hydrogen, (C 1 -C 20) alkyl, halo (C 1 -C 20) alkyl or (C 6 -C 30) aryl (C 1 -C 20) alkyl.
  3. 제 2항에 있어서,3. The method of claim 2,
    상기 R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C30)아릴이거나, 상기 R 6과 R 7는 방향족고리를 포함하거나 포함하지 않는 (C3-C7)알킬렌 으로 연결되어 고리를 형성할 수 있고, 상기 형성된 고리는 (C1-C20)알킬, (C6-C30)아릴(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C30)아릴 및 (C6-C20)아릴옥시로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있는 전이금속 화합물.Wherein R 6 and R 7 are independently (C1-C20) alkyl, (C3-C20) cycloalkyl or (C6-C30) aryl, wherein R 6 and R 7 is with or without an aromatic ring (C3 each other (C 1 -C 20) alkylene, (C 1 -C 20) alkoxy, (C 3 -C 20) alkylene, (C 1 -C 20) alkylene, (C6-C20) aryl, (C6-C20) aryl, and (C6-C20) aryloxy.
  4. 제 2항에 있어서,3. The method of claim 2,
    M은 4가의 티타늄, 지르코늄 또는 하프늄이고;M is tetravalent titanium, zirconium or hafnium;
    R 1는 (C1-C20)알킬이고;R < 1 > is (C1-C20) alkyl;
    R 11 내지 R 15는 서로 독립적으로 수소 또는 (C1-C20)알킬이고;R 11 to R 15 independently from each other are hydrogen or (C 1 -C 20) alkyl;
    R 3 내지 R 5는 서로 독립적으로 수소 또는 (C1-C20)알킬이거나, 상기 R 3 내지 R 5는 인접한 치환체와
    Figure PCT2018125-appb-img-000052
    ,
    Figure PCT2018125-appb-img-000053
    또는
    Figure PCT2018125-appb-img-000054
    으로 연결되어 융합고리를 형성할 수 있고;
    R 3 to R 5 independently from each other are hydrogen or (C 1 -C 20) alkyl, or R 3 to R 5 are adjacent substituents and
    Figure PCT2018125-appb-img-000052
    ,
    Figure PCT2018125-appb-img-000053
    or
    Figure PCT2018125-appb-img-000054
    To form a fused ring;
    R 21 내지 R 24는 서로 독립적으로 수소 또는 (C1-C20)알킬이고;R 21 to R 24 independently from each other are hydrogen or (C 1 -C 20) alkyl;
    R 6 및 R 7는 서로 독립적으로 (C1-C20)알킬이거나, 상기 R 6과 R 7
    Figure PCT2018125-appb-img-000055
    ,
    Figure PCT2018125-appb-img-000056
    ,
    Figure PCT2018125-appb-img-000057
    ,
    Figure PCT2018125-appb-img-000058
    ,
    Figure PCT2018125-appb-img-000059
    ,
    Figure PCT2018125-appb-img-000060
    ,
    Figure PCT2018125-appb-img-000061
    ,
    Figure PCT2018125-appb-img-000062
    또는
    Figure PCT2018125-appb-img-000063
    으로 연결되어 고리를 형성할 수 있고;
    R 6 and R 7 are independently (C1-C20) alkyl each other, wherein R 6 and R 7 is
    Figure PCT2018125-appb-img-000055
    ,
    Figure PCT2018125-appb-img-000056
    ,
    Figure PCT2018125-appb-img-000057
    ,
    Figure PCT2018125-appb-img-000058
    ,
    Figure PCT2018125-appb-img-000059
    ,
    Figure PCT2018125-appb-img-000060
    ,
    Figure PCT2018125-appb-img-000061
    ,
    Figure PCT2018125-appb-img-000062
    or
    Figure PCT2018125-appb-img-000063
    To form a ring;
    R 31 내지 R 35, R 41 및 R 42는 서로 독립적으로 수소 또는 (C1-C20)알킬이고;R 31 to R 35 , R 41 and R 42 independently of one another are hydrogen or (C 1 -C 20) alkyl;
    m 및 n은 각각 독립적으로 1 내지 4의 정수이고;m and n are each independently an integer of 1 to 4;
    R 9는 (C1-C20)알킬 또는 (C3-C20)시클로알킬이고;R 9 is (C 1 -C 20) alkyl or (C 3 -C 20) cycloalkyl;
    X 1 및 X 2는 서로 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f 또는 -PR gR h이고;X 1 and X 2 are independently halogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C30) aryl, (C6-C30) aralkyl (C1-C20) alkyl, (C1-C20 each other (C6-C30) aryloxy, (C6-C30) aryloxy, -OSiR a R b R c , -SR d , -NR e R f or -PR g R h ;
    R a 내지 R h은 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴인 전이금속 화합물.Wherein R < a > to R < h > independently from each other are (C1-C20) alkyl or (C6-C20) aryl.
  5. 제 1항에 있어서,The method according to claim 1,
    상기 전이금속 화합물은 하기 화합물들로부터 선택되는 것인 전이금속 화합물: Wherein the transition metal compound is selected from the following compounds:
    Figure PCT2018125-appb-img-000064
    Figure PCT2018125-appb-img-000064
    (상기 M은 4가의 티타늄, 지르코늄 또는 하프늄이고; (M is tetravalent titanium, zirconium or hafnium;
    X 1 및 X 2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C6-C30)아릴옥시, (C1-C20)알킬(C6-C30)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f 또는 -PR gR h이고;X 1 and X 2 are each independently selected from the group consisting of halogen, (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl, (C 6 -C 30) aryl, (C 6 -C 30) (C6-C30) aryloxy, (C6-C30) aryloxy, -OSiR a R b R c , -SR d , -NR e R f or -PR g R h ;
    R a 내지 R h은 서로 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이다.)R a to R h are, independently of each other, (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
  6. 제 1항 내지 제 5항의 어느 한 항에 따른 전이금속 화합물; 및 A transition metal compound according to any one of claims 1 to 5; And
    알루미늄 화합물, 붕소 화합물 또는 이들의 혼합물로부터 선택된 조촉매;A cocatalyst selected from an aluminum compound, a boron compound, or a mixture thereof;
    를 포함하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.Or a transition metal catalyst composition for the production of a copolymer of ethylene and an? -Olefin.
  7. 제 6항에 있어서, The method according to claim 6,
    상기 알루미늄 화합물은 알킬알루미녹산 및 유기알루미늄으로부터 선택되는 하나 또는 둘 이상의 혼합물로서, 메틸알루미녹산, 개량 메틸알루미녹산, 테트라이소부틸알루미녹산, 트리메틸알루미늄, 트리에틸아루미늄 및 트리이소부틸알루미늄 중에서 선택되는 단독, 또는 이들의 혼합물이고; Wherein the aluminum compound is at least one selected from the group consisting of alkylaluminoxane and organoaluminum, wherein the aluminum compound is selected from the group consisting of methylaluminoxane, modified methylaluminoxane, tetraisobutylaluminoxane, trimethylaluminum, triethylaluminium, and triisobutylaluminum Alone, or a mixture thereof;
    상기 붕소 화합물은 트리스(펜타플루오르페닐)보레인, N,N-디메틸아닐리니움 테트라키스(펜타플루오르페닐)보레이트, N,N-디테트라데실아닐리니움 테트라키스(펜타플루오르페닐)보레이트, N,N-디헥사데실아닐리니움 테트라키스(펜타플루오르페닐)보레이트, N,N-디옥타데실아닐리니움 테트라키스(펜타플루오르페닐)보레이트 및 트리페닐메틸리니움 테트라키스(펜타플루오르페닐)보레이트 중에서 선택되는 단독 또는 이들의 혼합물인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.The boron compound may be at least one selected from the group consisting of tris (pentafluorophenyl) borane, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-ditetradecyl anilinium tetrakis (pentafluorophenyl) (Pentafluorophenyl) borate, N, N-dihexadecyl anilinium tetrakis (pentafluorophenyl) borate, and triphenylmethylniumtetrakis (pentafluorophenyl) borate , Or a mixture thereof, or a transition metal catalyst composition for producing a copolymer of ethylene and an? -Olefin.
  8. 제 6항에 있어서, The method according to claim 6,
    상기 전이금속 화합물과 조촉매의 비율이 전이금속(M): 알루미늄 원자(Al)의 몰비가 1 : 1~2,000의 범위인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.Wherein the molar ratio of the transition metal (M) to the aluminum atom (Al) is in the range of 1: 1 to 2,000, or the transition metal compound and the co-catalyst are in the range of 1: 1 to 2,000.
  9. 제 6항에 있어서, The method according to claim 6,
    상기 전이금속 화합물과 조촉매의 비율이 전이금속(M): 붕소원자(B): 알루미늄원자(Al)의 몰비가 1 : 0.1~100 : 1~2,000의 범위인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.Wherein the molar ratio of the transition metal (M): boron atom (B): aluminum atom (Al) is in the range of 1: 0.1 to 100: 1 to 2,000, or the ethylene homopolymer or the α- Transition metal catalyst composition for the preparation of a copolymer of olefins.
  10. 제 6항에 따른 전이금속 촉매 조성물을 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법.A process for preparing a copolymer of ethylene homopolymer or ethylene and an? -Olefin using the transition metal catalyst composition according to claim 6.
  11. 제 10항에 있어서,11. The method of claim 10,
    상기 에틸렌과 중합되는 공단량체는 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 3-부타디엔, 1,4-펜타디엔, 2-메틸-1,3-부타디엔, 시클로펜텐, 시클로헥센, 시클로펜타디엔, 시클로헥사디엔, 노르보넨(Norbonene), 5-비닐리덴-2-노르보넨(VNB), 5-메틸렌-2-노르보넨(MNB), 5-에틸리덴-2-노르보넨(ENB) 및 스티렌(styrene)중에서 선택되는 단독 또는 2종 이상의 혼합물이고, 상기 에틸렌과 α-올레핀의 공중합체 중 에틸렌 함량은 30 내지 99 중량% 인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법.The comonomer to be polymerized with ethylene is at least one selected from the group consisting of propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, Cyclopentene, cyclopentadiene, cyclohexadiene, norbornene, norbornene, norbornene, norbornene, norbornene, and the like. (ENB) and styrene (s) selected from the group consisting of vinylidene-2-norbornene (VNB), 5-methylene-2-norbornene And the ethylene content of the copolymer of ethylene and the? -Olefin is 30 to 99% by weight, or a copolymer of ethylene and an? -Olefin.
  12. 제 10항에 있어서, 11. The method of claim 10,
    상기 에틸렌 단독중합 또는 에틸렌과 α-올레핀의 공중합 반응기 내의 압력은 6 ~ 150 기압이고, 중합 반응 온도는 50 ~ 200℃인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법.Wherein the pressure in the ethylene homopolymerization or copolymerization reactor of ethylene and an? -Olefin is 6 to 150 atm and the polymerization reaction temperature is 50 to 200 ° C, or a copolymer of ethylene and an? -Olefin.
  13. 제 1항 내지 제 5항의 어느 한 항에 따른 전이금속 화합물을 촉매를 이용하여 에틸렌, 프로필렌 및 선택적으로 비공액 디엔을 공중합시키는 공중합 방법.A process for copolymerizing a transition metal compound according to any one of claims 1 to 5 with ethylene, propylene and optionally a nonconjugated diene using a catalyst.
  14. 제 6항에 따른 전이금속 화합물을 포함하는 촉매 조성물을 이용하여 에틸렌, 프로필렌 및 선택적으로 비공액 디엔을 공중합시키는 공중합 방법.A method for copolymerizing ethylene, propylene and optionally a nonconjugated diene using a catalyst composition comprising the transition metal compound according to claim 6.
  15. 하기 화학식 Int-1로 표시되는 화합물: A compound represented by the following formula: Int-1:
    [화학식 Int-1][Chemical Formula Int-1]
    Figure PCT2018125-appb-img-000065
    Figure PCT2018125-appb-img-000065
    상기 화학식 Int-1에서, R 1 내지 R 9 및 Ar 1은 청구항 제1항의 화학식 1에서 정의한 바와 동일하다.In the above formula (Int-1), R 1 to R 9 and Ar 1 are the same as defined in formula (1) of claim 1.
  16. 단봉의 GPC 그래프를 가지는 에틸렌과 α-올레핀의 공중합체를 제조하는데 사용하기 위한 제1항의 전이금속 화합물.The transition metal compound of claim 1 for use in preparing a copolymer of ethylene and an alpha -olefin having a GPC graph of a single rod.
  17. 제 16항에 따른 전이금속 화합물을 이용하여 화학조성분포가 단봉의 그래프로 나타나는 에틸렌과 α-올레핀의 공중합체를 제조하는 방법.A method for producing a copolymer of ethylene and an? -Olefin, wherein the transition metal compound according to claim 16 is used as a graph showing the chemical composition distribution as a single rod.
  18. 제 16항에 따른 전이금속 화합물을 이용하여 화학조성분포가 쌍봉의 그래프로 나타나는 에틸렌과 α-올레핀의 공중합체를 제조하는 방법.A process for producing a copolymer of ethylene and an? -Olefin, wherein the chemical composition distribution is represented by a graph of bivalent bonds using the transition metal compound according to claim 16.
PCT/IB2018/057534 2017-09-29 2018-09-28 NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME WO2019064247A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2020114610A RU2783400C2 (en) 2017-09-29 2018-09-28 NEW COMPOUND OF TRANSITION METAL BASED ON INDENE, CATALYTIC COMPOSITION BASED ON TRANSITION METAL, CONTAINING SPECIFIED COMPOUND, AND METHOD FOR PRODUCTION OF ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN, USING SPECIFIED COMPOSITION
CN201880063246.XA CN111148748B (en) 2017-09-29 2018-09-28 Novel indene-based transition metal compound, transition metal catalyst composition comprising the same, and method for preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin by using the same
EP18862289.8A EP3689884B1 (en) 2017-09-29 2018-09-28 Novel indene-based transition metal compound, transition metal catalyst composition comprising same, and method for preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin by using same
CA3075240A CA3075240A1 (en) 2017-09-29 2018-09-28 Novel indene-based transition metal compound, transition metal catalyst composition comprising same, and method for preparing ethylene homopolymer or copolymer of ethylene and .alpha.-olefin by using same
US16/650,848 US10919992B2 (en) 2017-09-29 2018-09-28 Indene-based transition metal compound, transition metal catalyst composition comprising same, and method for preparing ethylene homopolymer or copolymer of ethylene and alpha-olefin by using same
JP2020516841A JP7177148B2 (en) 2017-09-29 2018-09-28 Novel indene-based transition metal compound, transition metal catalyst composition containing the same, and method for producing ethylene homopolymer or copolymer of ethylene and α-olefin using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170127528 2017-09-29
KR10-2017-0127528 2017-09-29
KR10-2018-0115040 2018-09-27
KR1020180115040A KR102643986B1 (en) 2017-09-29 2018-09-27 A novel indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same

Publications (1)

Publication Number Publication Date
WO2019064247A1 true WO2019064247A1 (en) 2019-04-04

Family

ID=65902338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/057534 WO2019064247A1 (en) 2017-09-29 2018-09-28 NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME

Country Status (1)

Country Link
WO (1) WO2019064247A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392621A (en) 1986-10-08 1988-04-23 Mitsubishi Petrochem Co Ltd Production of ethylene copolymer
US4752597A (en) 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
EP0320762A2 (en) 1987-12-18 1989-06-21 Hoechst Aktiengesellschaft Process for the preparation of a chiral, stereorigid metallocen compound
JPH0284405A (en) 1988-09-20 1990-03-26 Mitsubishi Petrochem Co Ltd Production of ethylene polymer
EP0372632A1 (en) 1988-12-02 1990-06-13 Shell Internationale Researchmaatschappij B.V. Process for the conversion of a hydrocarbonaceous feedstock
JPH032347A (en) 1989-02-22 1991-01-08 Sumitomo Electric Ind Ltd Nitrogen-containing cermet alloy
EP0416815A2 (en) 1989-08-31 1991-03-13 The Dow Chemical Company Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith
EP0420436A1 (en) 1989-09-13 1991-04-03 Exxon Chemical Patents Inc. Olefin polymerization catalysts
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
EP0842939A1 (en) 1995-07-14 1998-05-20 Sumitomo Chemical Company, Limited Transition metal complex, process for the preparation thereof, polymerization catalyst for olefins containing the complex, and process for producing olefin polymers
KR20000029833A (en) * 1996-08-08 2000-05-25 그레이스 스티븐 에스. 3-heteroatom substituted cyclopentadienyl-containing metal complexes and olefin polymerization process
WO2001042315A1 (en) 1999-12-10 2001-06-14 Dow Global Technologies Inc. Substituted group 4 metal complexes, catalysts and olefin polymerization process
US6555634B1 (en) * 1999-05-13 2003-04-29 The Dow Chemical Company Di- and tri-heteroatom substituted indenyl metal complexes
KR20040083922A (en) * 2003-03-25 2004-10-06 재단법인서울대학교산학협력재단 Metallocene derivative having benz[f]indene derivative ligand and method for preparation of the same
KR101002620B1 (en) * 2002-03-14 2010-12-21 다우 글로벌 테크놀로지스 인크. Substituted indenyl metal complexes and polymerization process

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752597A (en) 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
JPS6392621A (en) 1986-10-08 1988-04-23 Mitsubishi Petrochem Co Ltd Production of ethylene copolymer
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
EP0320762A2 (en) 1987-12-18 1989-06-21 Hoechst Aktiengesellschaft Process for the preparation of a chiral, stereorigid metallocen compound
JPH0284405A (en) 1988-09-20 1990-03-26 Mitsubishi Petrochem Co Ltd Production of ethylene polymer
EP0372632A1 (en) 1988-12-02 1990-06-13 Shell Internationale Researchmaatschappij B.V. Process for the conversion of a hydrocarbonaceous feedstock
JPH032347A (en) 1989-02-22 1991-01-08 Sumitomo Electric Ind Ltd Nitrogen-containing cermet alloy
EP0416815A2 (en) 1989-08-31 1991-03-13 The Dow Chemical Company Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith
EP0420436A1 (en) 1989-09-13 1991-04-03 Exxon Chemical Patents Inc. Olefin polymerization catalysts
EP0842939A1 (en) 1995-07-14 1998-05-20 Sumitomo Chemical Company, Limited Transition metal complex, process for the preparation thereof, polymerization catalyst for olefins containing the complex, and process for producing olefin polymers
KR20000029833A (en) * 1996-08-08 2000-05-25 그레이스 스티븐 에스. 3-heteroatom substituted cyclopentadienyl-containing metal complexes and olefin polymerization process
US6268444B1 (en) 1996-08-08 2001-07-31 Dow Chemical Company 3-heteroatom substituted cyclopentadienyl-containing metal complexes and olefin polymerization process
US6555634B1 (en) * 1999-05-13 2003-04-29 The Dow Chemical Company Di- and tri-heteroatom substituted indenyl metal complexes
WO2001042315A1 (en) 1999-12-10 2001-06-14 Dow Global Technologies Inc. Substituted group 4 metal complexes, catalysts and olefin polymerization process
KR20050112135A (en) * 1999-12-10 2005-11-29 다우 글로벌 테크놀로지스 인크. Substituted group 4 metal complexes, catalysts and olefin polymerization process
KR101002620B1 (en) * 2002-03-14 2010-12-21 다우 글로벌 테크놀로지스 인크. Substituted indenyl metal complexes and polymerization process
KR20040083922A (en) * 2003-03-25 2004-10-06 재단법인서울대학교산학협력재단 Metallocene derivative having benz[f]indene derivative ligand and method for preparation of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 174, 2001, pages 35 - 49
See also references of EP3689884A4 *

Similar Documents

Publication Publication Date Title
WO2017155149A1 (en) Hybrid catalyst composition, preparation method therefor, and polyolefin prepared using same
WO2017176074A1 (en) Propylene-diene copolymer resin having excellent melt tension
WO2013133595A1 (en) Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same
WO2012169812A2 (en) METHOD OF PREPARING ETHYLENE-α-OLEFIN-DIENE COPOLYMER
WO2019038605A1 (en) NOVEL TRANSITION METAL COMPOUND, CATALYST COMPOSITION INCLUDING THE SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN USING THE SAME
WO2017026605A1 (en) Transition metal compound, transition metal catalyst composition for olefin polymerization comprising same, and method for producing olefin-based polymer by using same
WO2019093630A1 (en) Method for preparing high-melt-strength polypropylene resin
WO2010053264A2 (en) METHOD FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS
WO2017003261A1 (en) Transition metal compound and catalyst composition containing same
KR101889978B1 (en) new transition metal complex with annulated ring substituted arylphenoxy ligand, catalyst composition containing the same for olefin copolymerization and methods for preparing copolymers of ethylene and α-olefins or copolymers of ethylene and olefin-diene using the same
WO2018097468A1 (en) Polyolefin catalyst and method for preparing polyolefin by using same
WO2010079906A2 (en) Ethylene-propylene-diene copolymer production method
KR20080039794A (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
KR20090075969A (en) TRANSITION METAL COMPLEXES, CATALYSTS COMPOSITION CONTAINING THE SAME, AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND alpha-OLEFINS USING THE SAME
WO2015183017A1 (en) Novel transition metal compound, transition metal catalyst composition for polymerizing olefin, containing same, and method for preparing ethylene homopolymer or copolymer of ethylene and α-olefin by using same
TWI754776B (en) A NOVEL INDENE-BASED TRANSITION METAL COMPLEXES, CATALYSTS COMPOSITION CONTAINING THE SAME, AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME
WO2023106779A1 (en) Catalyst for olefin polymerization comprising hybrid catalyst composition and olefinic polymer prepared using same
WO2023191519A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2017003262A1 (en) Transition metal compound and catalyst composition containing same
KR20150138042A (en) NEW TRANSITION METAL COMPLEXES, CATALYST COMPOSITIONS CONTAINING THE SAME FOR OLEFIN POLYMERIZATION AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME
WO2018127772A1 (en) NOVEL TRANSITION METAL COMPOUND, CATALYST COMPOSITION COMPRISING SAME, METHOD FOR PRODUCING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN USING SAME
WO2019064247A1 (en) NOVEL INDENE-BASED TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN BY USING SAME
KR101142122B1 (en) New transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and ?-olefins using the same
WO2012176946A1 (en) Transition metal catalyst system with excellent copolymerization and preparation method of ethylene homopolymer or copolymer of ethylene and α-olefin using same
KR101889980B1 (en) New Transition metal complex having Quinolin-1(2H)-yl group and catalyst composition containing the same for olefin polymerization, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3075240

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020516841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018862289

Country of ref document: EP

Effective date: 20200429