RU2011135621A - Многоточечный многопараметрический волоконно-оптический датчик бокового освещения - Google Patents

Многоточечный многопараметрический волоконно-оптический датчик бокового освещения Download PDF

Info

Publication number
RU2011135621A
RU2011135621A RU2011135621/28A RU2011135621A RU2011135621A RU 2011135621 A RU2011135621 A RU 2011135621A RU 2011135621/28 A RU2011135621/28 A RU 2011135621/28A RU 2011135621 A RU2011135621 A RU 2011135621A RU 2011135621 A RU2011135621 A RU 2011135621A
Authority
RU
Russia
Prior art keywords
light
sensing
fiber
aforementioned
sensing system
Prior art date
Application number
RU2011135621/28A
Other languages
English (en)
Other versions
RU2555175C2 (ru
Inventor
Клаудио Оливейра ЭГАЛОН
Original Assignee
Клаудио Оливейра ЭГАЛОН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42396384&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2011135621(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Клаудио Оливейра ЭГАЛОН filed Critical Клаудио Оливейра ЭГАЛОН
Publication of RU2011135621A publication Critical patent/RU2011135621A/ru
Application granted granted Critical
Publication of RU2555175C2 publication Critical patent/RU2555175C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2925Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means
    • G01F23/2927Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means for several discrete levels, e.g. with more than one light-conducting sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N2021/635Photosynthetic material analysis, e.g. chrorophyll
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/7736Reagent provision exposed, cladding free
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06193Secundary in-situ sources, e.g. fluorescent particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/088Using a sensor fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Optical Integrated Circuits (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Optical Transform (AREA)

Abstract

1. Система зондирования, содержащая:чувствительное оптоволокно (98),имеющее первый (120) и второй (118) конец,сердцевину (106),скомпонованную таким образом, чтобы ее можно было разместить в окружающей среде содержащей люминесцирующие, фосфоресцирующие, флуоресцирующие, рассеивающие или поглощающие свет вещества,наличие, по крайней мере, одной оголенной области сердцевины (92) в прямом контакте с окружающей средой и работающей как зондирующая область, в которой данное чувствительное оптоволокно подвержено оптическому воздействию от окружающей среды;по крайней мере, один источник света зондирования (100) излучающий свет зондирования, который взаимодействует со средой измеряемой величины данной области зондирования для того, чтобы произвести там измененный свет зондирования, который, по существу, с взаимодействует с окружающей средой, и;который по сути собран в вышеупомянутую сердцевину как оптический сигнал (104).2. Система зондирования по п.1, в дальнейшем включающаядатчик (108) с оптической связью с данным первым концом (120) из данного зондирующего оптоволокна для приема светового сигнала после перехода из данного первого конца (120) для того, чтобы измерять интенсивность светового сигнала по данному диапазону длин волн и для того, чтобы связывать эту интенсивность с электрическим сигналом.3. Система зондирования по п.2, включающаясигнальный процессор (110) связан с вышеупомянутым датчиком (108); посредством чего электрический сигнал связывается с измеряемой величиной.4. Система зондирования по п.3, содержащая дисплей, связанный с вышеупомянутым сигнальным процессором и электропитанием (114) для передачи энергии вышеупомянут�

Claims (35)

1. Система зондирования, содержащая:
чувствительное оптоволокно (98),
имеющее первый (120) и второй (118) конец,
сердцевину (106),
скомпонованную таким образом, чтобы ее можно было разместить в окружающей среде содержащей люминесцирующие, фосфоресцирующие, флуоресцирующие, рассеивающие или поглощающие свет вещества,
наличие, по крайней мере, одной оголенной области сердцевины (92) в прямом контакте с окружающей средой и работающей как зондирующая область, в которой данное чувствительное оптоволокно подвержено оптическому воздействию от окружающей среды;
по крайней мере, один источник света зондирования (100) излучающий свет зондирования, который взаимодействует со средой измеряемой величины данной области зондирования для того, чтобы произвести там измененный свет зондирования, который, по существу, с взаимодействует с окружающей средой, и;
который по сути собран в вышеупомянутую сердцевину как оптический сигнал (104).
2. Система зондирования по п.1, в дальнейшем включающая
датчик (108) с оптической связью с данным первым концом (120) из данного зондирующего оптоволокна для приема светового сигнала после перехода из данного первого конца (120) для того, чтобы измерять интенсивность светового сигнала по данному диапазону длин волн и для того, чтобы связывать эту интенсивность с электрическим сигналом.
3. Система зондирования по п.2, включающая
сигнальный процессор (110) связан с вышеупомянутым датчиком (108); посредством чего электрический сигнал связывается с измеряемой величиной.
4. Система зондирования по п.3, содержащая дисплей, связанный с вышеупомянутым сигнальным процессором и электропитанием (114) для передачи энергии вышеупомянутому источнику света зондирования, сигнальному процессору и дисплею.
5. Система зондирования по п.3, содержащая дисплей связанный с вышеупомянутым сигнальным процессором и электропитанием (114) для передачи энергии вышеупомянутому источнику света зондирования, датчику, сигнальному процессору и дисплею.
6. Система зондирования по п.1, в которой:
у данного чувствительного оптоволокна есть, по крайней мере, две области с удаленной оболочки (92) и, по крайней мере, с одной обнаженной областью сердцевины (92) в прямом контакте с окружающей средой, чтобы обеспечить, по крайней мере, две чувствительных области;
данный источник света зондирования освещает каждую чувствительную область индивидуально, по отдельности; и
данный свет зондирования оптически взаимодействует индивидуально с окружающей средой в каждом вышеупомянутом чувствительном регионе таким образом, что преобразованный свет зондирования приходящий оттуда, каждая такая произведенная модификация существенно изменена средой измеряемой величины (93).
7. Система зондирования по п.1, в которой:
у данного чувствительного оптоволокна должно быть, по крайней мере, две области с удаленной оболочкой (92) и, по крайней мере, с одной обнаженной областью сердцевины (92) в прямом контакте с окружающей средой, чтобы обеспечить по крайней мере две чувствительных области;
данные источники света зондирования освещают две или несколько чувствительных области одновременно и
данный свет зондирования оптически взаимодействует с окружающей средой в каждой вышеупомянутой чувствительной области таким образом, что преобразованный свет зондирования, приходящий оттуда, существенно изменен средой измеряемой величины (93).
8. Система зондирования по п.1, в которой данный источник света зондирования освещает каждую чувствительную область индивидуально, по одному.
9. Система зондирования по п.1, в котором источник света можно расположить на любом расстоянии от вышеупомянутой чувствительной области, достаточном для ее освещения.
10. Система зондирования по п.1, в котором вышеупомянутая чувствительную область не содержит химических индикаторов.
11. Система зондирования по п.1, в котором данное измерительное волокно (98), включает свою оригинальную оболочку (116).
12. Система зондирования по п.1, в которой данное измерительное волокно (98) включает чувствительную пленку (99), покрытую по данной оригинальной оболочке волокна.
13. Система зондирования по п.1, в которой среда измеряемой величины характеризируется или цветом, или помутнением, определяемым веществом и показателем преломления.
14. Система зондирования по п.1, в которой измеряемая среда расположена между одним вышеупомянутой сердцевиной волокна и источником света, и позади данной сердцевины волокна.
15. Система зондирования по п.1, где данная сердцевина волокна окружена средой.
16. Система зондирования по п.1, в которой оптическое взаимодействие света зондирования со средой измеряемой величины приводит в результате к явлению поглощения света, рассеивания, флюоресценции, фосфоресценции и хемилюминесценции.
17. Система зондирования по п.13, в которой данное определяемое вещество химически взаимодействует с окружающей средой, тем самым вызывая изменение в цвете окружающей среды.
18. Система зондирования по п.1, в которой данное чувствительное оптоволокно содержит рефрактометр, чтобы различить в окружающих веществах различные показатели преломления.
19. Система зондирования по п.1, в котором данное чувствительное оптоволокно функционирует для определения уровня жидкости на контакте с датчиком.
20. Система зондирования по п.1, в которой данная система зондирования является многоточечным оптоволоконным датчиком, в котором данные области зондирования могут обнаруживать различные измеряемые величины.
21. Система зондирования по п.1, в которой данная система зондирования является многоточечным оптоволоконным датчиком, в котором каждая данная область зондирования освещена множеством источников света с различными длинами волн для обнаружения множества измеряемых величин.
22. Система зондирования по п.1, в которой данный зондирующий свет проводится оптоволокном освещения, данное волокно освещения, имеющее множество диэлектрических зеркал (180) и помещенное параллельно данному чувствительному оптоволокну, данные диэлектрические зеркала, освещающие под углом данную чувствительную область данного чувствительного оптоволокна в дискретных областях, в которых источник света зондирования вводит свет зондирования в данный монохроматор, фильтрующий свет зондирования с указанной длиной волны, данный свет зондирования с указанной длиной волны, в осевом направлении вводимый данному оптоволокну освещения, данный свет зондирования с указанной длиной волны, распространяющийся к ее указанным диэлектрическим зеркалам, имеющим подобные особенности длины волны, и данное определенное диэлектрическое зеркало, переадресовывающее свет зондирования под углом к данной чувствительной области даннго чувствительного волокна, в котором каждый данный диэлектрик предназначен для отклонения света от данной связанной волны данного оптоволокна освещения в моды удельных длин волны, и в котором находятся радиационные моды удельного освещения длины волны данной чувствительной области.
23. Система зондирования по п.1, в которой у оптоволокна освещения удалена оболочка, по крайней мере, в одной его области, вышеупомянутая область с удаленной оболочкой, освещенная множеством источников света зондирования, которые собирают свет в сердцевину волокна освещения как связанные затухающие моды для того, чтобы осветить вышеупомянутое чувствительное волокно.
24. Система зондирования, по п.1, в которой каждая вышеупомянутая чувствительная область освещена множеством источников света с различной длиной волны, чтобы измерять одну величину.
25. Волокно освещения (144), включающее
оптоволокно, имеющее первый (120) и второй (118) концы,
наличие сердцевины (106) и, по крайней мере, одной оголенной области (92),
по крайней мере, один источник света зондирования (100),
вышеупомянутый зондирующий свет облучает со стороны вышеупомянутую данную область сердцевины и, по существу, собран в вышеупомянутую сердцевину.
26. Волокно освещения по п.25, содержащее коническую сердцевину (107), расходящуюся в направлении распространения света, чтобы увеличить количество света освещения, который распространяется в этом направлении.
27. Волокно освещения по п.25, имеющее заостренную сердцевину (107), расходящуюся в оба направления распространения света, для увеличения количества света, распространяющегося в обоих направлениях.
28. Волокно освещения по п.25, имеющее, по крайней мере, одно диэлектрическое зеркало (180) и, по крайней мере, одну периодическую решетку вдоль его длины для перенаправления света от данного источника света зондирования в пределах отдельного диапазона волн за пределы данного волокна освещения.
29. Волокно освещения по п.26, далее содержащее, по крайней мере, одно диэлектрическое зеркало (180) и, по крайней мере, одну Брэгговскую решетку с длинным периодом вдоль его длины, каждые из которых способны перенаправлять свет от данного источника света зондирования в пределах отдельного диапазона волн за пределы данного волокна освещения.
30. Волокно освещения по п.27, содержащее, по крайней мере, одно диэлектрическое зеркало (180) и, по крайней мере, одну периодическую решетку вдоль каждого направления распространения света, данное диэлектрическое зеркало и Брэгговскую решетку с длинным периодом, отвечающие за перенаправление света от вышеупомянутого источника света зондирования в пределах удельного диапазона волн за пределы вышеупомянутого волокна освещения.
31. Система зондирования по п.1, содержащая коническую сердцевину (107), отклоняющуюся в направлении распространения света для увеличения количество оптического сигнала, который ведется к концу волокна.
32. Система зондирования по п.2, включающая второй датчик (108) с оптической связью с вышеупомянутым вторым концом (118) вышеупомянутого оптоволокна для приема светового сигнала после перехода из вышеупомянутого второго конца (118), для измерения интенсивности светового сигнала в данном диапазоне длин волн и для того, чтобы связать интенсивность с электрическим сигналом.
33. Система зондирования по п.22 с отсутствием монохроматора, в котором, по крайней мере, одна область данного освещенного волокна имеет удаленную оболочку, данная область с удаленной оболочкой освещается со стороны множеством источников света зондирования, которые посылают их свет в сердцевину волокна освещения как связанные затухающие моды для того, чтобы осветить вышеупомянутое чувствительное волокно.
34. Система зондирования по п.1. в которой вышеупомянутая система зондирования - многоточечный многопараметрический оптоволоконный датчик, в котором каждая вышеупомянутая точка зондирования освещена одновременно множеством источников света различных длин волны, чтобы обнаружить множество измеряемых величин.
35. Способ измерения свойства вещества, включающий:
обеспечение аппарата, совместимого с п.3;
использование, по крайней мере, одного вещества, которое нужно исследовать, по крайней мере, к одной обнаженной области сердцевины;
включение, по крайней мере, одного источника света зондирования, чтобы осветить, по крайней мере, одну обнаженную область сердцевины;
обнаружение и измерение света, испускаемого от конца аппарата;
сопоставление световых измерений с ранее проведенными измерениями с веществами известных свойств.
RU2011135621/28A 2009-01-30 2010-02-01 Многоточечный многопараметрический волоконно-оптический датчик бокового освещения RU2555175C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14856409P 2009-01-30 2009-01-30
US61/148,564 2009-01-30
PCT/US2010/022715 WO2010088591A2 (en) 2009-01-30 2010-02-01 Side illuminated multi point multi parameter optical fiber sensor

Publications (2)

Publication Number Publication Date
RU2011135621A true RU2011135621A (ru) 2013-03-10
RU2555175C2 RU2555175C2 (ru) 2015-07-10

Family

ID=42396384

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011135621/28A RU2555175C2 (ru) 2009-01-30 2010-02-01 Многоточечный многопараметрический волоконно-оптический датчик бокового освещения

Country Status (19)

Country Link
US (4) US8463083B2 (ru)
EP (1) EP2391871B1 (ru)
JP (3) JP2012517019A (ru)
CN (2) CN105300421A (ru)
AU (1) AU2010207995B2 (ru)
BR (1) BRPI1007091B1 (ru)
CA (1) CA2750515C (ru)
DK (1) DK2391871T3 (ru)
ES (1) ES2804761T3 (ru)
HU (1) HUE050691T2 (ru)
IL (1) IL214120B (ru)
MX (1) MX2011007835A (ru)
NZ (2) NZ619094A (ru)
PH (1) PH12015500907B1 (ru)
PL (1) PL2391871T3 (ru)
PT (1) PT2391871T (ru)
RU (1) RU2555175C2 (ru)
SG (2) SG10201407920SA (ru)
WO (1) WO2010088591A2 (ru)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463083B2 (en) * 2009-01-30 2013-06-11 Claudio Oliveira Egalon Side illuminated multi point multi parameter optical fiber sensor
EP2790580A4 (en) 2011-12-14 2015-08-12 Univ Pennsylvania OPTICAL FIBER OXYGENATION AND FLUX MONITORING USING DIFFUSED CORRELATION AND COEFFICIENT OF REFLECTION
CN102645253B (zh) 2012-04-26 2014-06-18 宝力马(苏州)传感技术有限公司 一种光电式连续液位测量方法及装置
JP2014096288A (ja) * 2012-11-09 2014-05-22 Fuji Xerox Co Ltd 導光部材、光照射装置、除電装置、及び画像形成装置
US9244046B2 (en) * 2012-12-03 2016-01-26 International Business Machines Corporation System for preventing undue bending of cables
CN103063645B (zh) * 2013-01-04 2017-12-05 南开大学 基于新型微结构光纤的高效荧光检测
CN103217187B (zh) * 2013-03-01 2015-07-15 合肥京东方光电科技有限公司 识别实物在容器内的层号的设备及自动取出实物的系统
EP3152539A4 (en) 2013-06-08 2018-02-21 Université Laval Fiber-optic thermometer
CN106537126B (zh) 2014-08-01 2020-11-27 普通感应股份有限公司 利用温度感测来优化的液体测量系统、装置和方法
CN105629401A (zh) * 2014-10-28 2016-06-01 富士康(昆山)电脑接插件有限公司 光电转换装置
EP3216012B1 (en) * 2014-11-03 2023-08-02 American University Of Beirut Smart anti-counterfeiting optical system (sacos) for the detection of fraud using advanced spectroscopy-based technique
US9645004B2 (en) * 2014-11-19 2017-05-09 The Boeing Company Optical impedance modulation for fuel quantity measurement comprising a fiber encased by a tube having a longitudinal slot with a lens
CN104515771B (zh) * 2014-12-25 2017-10-17 贵州大学 一种基于光谱显色法的重金属光纤传感器及其制备方法
CN104568883B (zh) * 2014-12-31 2018-02-23 中国科学院深圳先进技术研究院 一种光纤耦合的全内反射荧光显微成像芯片
EP3096131A1 (en) * 2015-05-18 2016-11-23 International Iberian Nanotechnology Laboratory An optical fibre for use in a system for detection of one or more compounds in a fluid
DE102015217425A1 (de) * 2015-09-11 2017-03-16 Robert Bosch Gmbh Lichtleitvorrichtung, Messsystem und Verfahren zum Herstellen einer Lichtleitvorrichtung
US10969572B2 (en) 2016-05-11 2021-04-06 Douglas D. Churovich Electronic visual food probe
US9851338B1 (en) * 2016-06-23 2017-12-26 SPI—Security Protection International/Securite Protection Internationale Fiber-optic fluorescence sensor for highly sensitive and specific detection of chemical hazards
EP4361580A2 (en) 2016-07-15 2024-05-01 Bigfoot Biomedical, Inc. Dose measurement systems and methods
CN106482805A (zh) * 2016-09-28 2017-03-08 深圳华中科技大学研究院 一种可实时故障监测的多路光纤液位测量系统及故障监测方法
EP3343203B1 (en) * 2016-12-28 2019-11-13 Vito NV Optical methods for phase change materials
FR3062907B1 (fr) * 2017-02-10 2021-07-02 Safran Electrical & Power Sonde optique de mesure du niveau d'un liquide dans un reservoir
US10371559B2 (en) * 2017-04-17 2019-08-06 The Boeing Company Differential spectral liquid level sensor
US11061019B2 (en) * 2017-06-14 2021-07-13 Jinghong Chen High sensitivity optical detection system
RU2659192C1 (ru) * 2017-06-20 2018-06-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения примесей в жидких средах
CN110944573B (zh) * 2017-11-28 2023-05-12 多特有限公司 光学相干断层扫描系统
US10337918B1 (en) * 2018-02-20 2019-07-02 Baker Hughes, A Ge Company, Llc Spectrometer with fiber bragg grating
JP7117869B2 (ja) * 2018-03-22 2022-08-15 株式会社日立製作所 分析装置
US10976201B2 (en) 2018-06-25 2021-04-13 Ranzy Morgan, III Liquid color, haze, and clarity instrument, and method of measurement
JP7205123B2 (ja) * 2018-09-14 2023-01-17 横河電機株式会社 温度測定装置、温度測定システム、及び温度測定方法
CN109405759A (zh) * 2018-11-14 2019-03-01 深圳市迈步机器人科技有限公司 光纤传感器、形变检测装置、检测方法及数据手套
WO2020130790A1 (en) * 2018-12-19 2020-06-25 Mimos Berhad A multi-point optical waveguide sensor device and a method for generating fluorescence signals with distinct emission wavelength
US11668652B2 (en) * 2019-01-14 2023-06-06 Uvic Industry Partnerships Inc. Optical fiber-based sensor for determining the concentration of fluoride in water
CN111442815B (zh) * 2019-01-17 2023-12-01 上海树诚实业有限公司 一种大量程同位素液位检测合成电路
US10935413B2 (en) * 2019-04-10 2021-03-02 The Boeing Company Non-contact time-of-flight fuel level sensor using plastic optical fiber
USD911859S1 (en) 2019-04-26 2021-03-02 Ranzy Morgan, III Color, haze and clarity measurement instrument
FR3099572B1 (fr) * 2019-07-29 2021-08-27 Safran Dispositif de mesure comprenant une fibre optique de connexion et un équipement de mesure pour l’instrumentation d’un appareillage aéronautique, et un appareillage aéronautique comprenant un tel dispositif de mesure
WO2021061126A1 (en) * 2019-09-26 2021-04-01 Hewlett-Packard Development Company, L.P. Determining surface levels
CN112558291B (zh) * 2019-09-26 2024-03-05 成都理想境界科技有限公司 一种光纤扫描装置、扫描检测方法及扫描显示设备
JPWO2021065996A1 (ru) * 2019-10-03 2021-04-08
MX2022006341A (es) * 2019-12-09 2022-06-23 Claudio Oliveira Egalon Sistemas y metodos de iluminacion lateral de guias de ondas.
CN111103029B (zh) * 2019-12-26 2021-04-30 河南理工大学 一种用于煤仓煤位光纤光栅智能监测装置及监测方法
EP4107509A1 (en) 2020-02-21 2022-12-28 Ecolab USA Inc. Modular optical sensor
CN111337126B (zh) * 2020-03-09 2023-01-31 安徽大学 一种光源模式测量仪
EP4153970A1 (en) * 2020-05-20 2023-03-29 YSI, Inc. Extended solid angle turbidity sensor

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200110A (en) 1977-11-28 1980-04-29 United States Of America Fiber optic pH probe
JPS568512A (en) 1979-07-02 1981-01-28 Sumitomo Electric Ind Ltd Liquid amount detector
US4321057A (en) 1979-09-20 1982-03-23 Buckles Richard G Method for quantitative analysis using optical fibers
JPS5761962A (en) 1980-09-30 1982-04-14 Fujitsu Ltd Optical sensor coupling
US4582809A (en) 1982-06-14 1986-04-15 Myron J. Block Apparatus including optical fiber for fluorescence immunoassay
US4447546A (en) 1982-08-23 1984-05-08 Myron J. Block Fluorescent immunoassay employing optical fiber in capillary tube
GB2128354B (en) 1982-09-29 1986-07-16 Standard Telephones Cables Ltd Integrated optic devices
EP0145343B1 (en) 1983-11-18 1988-05-18 Nippon Telegraph And Telephone Corporation Optical fibre test method and apparatus for performing the method
JPH0610636B2 (ja) 1985-02-04 1994-02-09 東京瓦斯株式会社 気体の分光装置
EP0211587B1 (en) 1985-07-31 1993-09-29 Ciba Corning Diagnostics Corp. Dielectric waveguide for use in an assay
GB8531430D0 (en) 1985-12-20 1986-02-05 Rosemount Eng Co Ltd Displacement sensing apparatus
US4820016A (en) 1986-02-21 1989-04-11 American Telephone And Telegraph Company, At&T Bell Laboratories Waveguide-containing communications and sensing systems
US4834496A (en) 1987-05-22 1989-05-30 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber sensors for chemical detection
US4909990A (en) 1987-09-02 1990-03-20 Myron J. Block Immunoassay apparatus
GB2213954A (en) 1987-12-23 1989-08-23 British Telecomm Optical waveguide connecting component having tapered core
US4898444A (en) 1988-11-30 1990-02-06 American Telephone And Telegraph Company Non-invasive optical coupler
CH681570A5 (ru) 1989-09-15 1993-04-15 Suisse Electronique Microtech
US5191206A (en) 1991-04-16 1993-03-02 Electric Power Research Institute, Inc. Distributed fiber optic sensor using clad material light backscattering
US5262638A (en) * 1991-09-16 1993-11-16 The United States Of America As Represented By The United States National Aeronautics And Space Administration Optical fibers and fluorosensors having improved power efficiency and methods of producing same
US5249251A (en) 1991-09-16 1993-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical fiber sensor having an active core
US5239176A (en) 1991-10-03 1993-08-24 Foster-Miller, Inc. Tapered optical fiber sensing attenuated total reflectance
US5295208A (en) 1992-02-26 1994-03-15 The University Of Alabama In Huntsville Multimode waveguide holograms capable of using non-coherent light
JPH0634550A (ja) 1992-07-21 1994-02-08 Fujikura Ltd ガスセンサ
US5343599A (en) * 1992-10-19 1994-09-06 Reeves Rudolph E Eyeglasses holder
US5248673A (en) * 1992-12-23 1993-09-28 Bristol-Myers Squibb Co. Bisamidine derivatives as thrombin inhibitors
US5343550A (en) 1993-02-25 1994-08-30 The United States Of America As Represented By The United States National Aeronautics And Space Administration Transversely polarized source cladding for an optical fiber
DE4341086A1 (de) 1993-12-02 1995-06-08 Hoechst Ag Optischer Y-Koppler
US5629515A (en) * 1994-03-23 1997-05-13 Kabushiki Kaisha Toshiba Radiation measuring system having scintillation detectors coupled by optical fibers for multipoint measurement
US5517590A (en) 1994-05-31 1996-05-14 At&T Ipm Corp. Bending process for optical coupling of glass optical fibers
US5577137A (en) 1995-02-22 1996-11-19 American Research Corporation Of Virginia Optical chemical sensor and method using same employing a multiplicity of fluorophores contained in the free volume of a polymeric optical waveguide or in pores of a ceramic waveguide
US5567622A (en) 1995-07-05 1996-10-22 The Aerospace Corporation Sensor for detection of nitrogen dioxide and nitrogen tetroxide
JPH0943141A (ja) * 1995-08-01 1997-02-14 Sumitomo Electric Ind Ltd ガス検知装置
US5701006A (en) 1995-11-21 1997-12-23 Simula Inc. Method and apparatus for measuring distances using fiber optics
US5705834A (en) 1996-04-23 1998-01-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Increased efficiency LED
JPH1013345A (ja) 1996-06-27 1998-01-16 Sumitomo Electric Ind Ltd 波長多重光信号監視装置
JP3739537B2 (ja) 1997-03-26 2006-01-25 大日本印刷株式会社 光学的分析装置用測定チップ
US6328932B1 (en) 1997-05-08 2001-12-11 Eltron Research, Inc. Devices and methods for the detection of basic gases
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
US6188812B1 (en) * 1998-09-01 2001-02-13 Hung Pin Kao Method and apparatus for enhanced evanescent fluorescence and color filtering using a high refractive index thin film coating
US6205263B1 (en) 1999-06-16 2001-03-20 Intelligent Optical Systems Distributed optical fiber sensor with controlled response
US6137117A (en) * 1999-06-21 2000-10-24 The United States Of America As Represented By The Secretary Of The Navy Integrating multi-waveguide sensor
US6263132B1 (en) 1999-08-25 2001-07-17 Lucent Technologies Inc. Apparatus and method for laterally displacing an optical signal
JP2001116687A (ja) * 1999-10-18 2001-04-27 Rikogaku Shinkokai 化学変化モニター方法および装置
US6671451B1 (en) * 2000-03-10 2003-12-30 Wired Japan Co., Ltd. Optical fiber, optical fiber cable, and radiation detecting system using such
US7244572B1 (en) 2000-03-24 2007-07-17 Wisys Technology Foundation, Inc. One-dimensional arrays on optical fibers
GB2365119B (en) 2000-06-02 2004-09-15 Oxford Fiber Optic Tools Ltd Apparatus for interrogating an optical signal
JP2002148185A (ja) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct装置
US8073293B2 (en) * 2002-03-18 2011-12-06 Weatherford, Lamb, Inc. Sensing device having a large diameter D-shaped optical waveguide
US20030025072A1 (en) * 2001-08-06 2003-02-06 Hrl Laboratories, Llc Distributed fiberoptic sensors
US7218810B2 (en) * 2001-09-27 2007-05-15 Bio-Rad Laboratories, Inc. Biochemical assay detection in a liquid receptacle using a fiber optic exciter
WO2003030409A1 (en) 2001-09-28 2003-04-10 Protodel International Limited Monitor for an optical fibre and multi-guide optical fibre circuits and methods of making them
KR100817638B1 (ko) 2001-11-15 2008-03-27 피코메트릭스 인코포레이티드 초점을 모으는 광섬유
US6640028B1 (en) 2001-11-30 2003-10-28 General Dynamics Advanced Technology Systems, Inc. Bend-type fiber optic light injector
US7318909B2 (en) 2001-12-12 2008-01-15 Trustees Of Princeton University Method and apparatus for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic detection and measurement of trace species
CA2372637A1 (en) 2002-02-20 2003-08-20 Institut National D'optique Packaged optical sensors on the side of optical fibres
JP3626149B2 (ja) * 2002-04-16 2005-03-02 独立行政法人科学技術振興機構 光波断層画像測定用高空間分解能合成光源
US7196788B2 (en) 2002-07-22 2007-03-27 Ikonisys, Inc. Device and method for detecting and localizing cells by means of photosensitive waveguides
WO2004040241A1 (ja) 2002-11-01 2004-05-13 Kinzo Kishida 分布型光ファイバセンサシステム
US7154081B1 (en) 2002-11-26 2006-12-26 Luna Innovations Incorporated Composite structures, such as coated wiring assemblies, having integral fiber optic-based condition detectors and systems which employ the same
US7024060B2 (en) * 2002-12-02 2006-04-04 University Of South Florida Method and apparatus for continuous measurement of the refractive index of fluid
JP2004264339A (ja) 2003-01-30 2004-09-24 Sony Corp 光導波路および光送受信モジュール
US7046432B2 (en) 2003-02-11 2006-05-16 Coherent, Inc. Optical fiber coupling arrangement
WO2004078044A1 (en) 2003-03-05 2004-09-16 Infraredx, Inc. Catheter probe arrangement for tissue analysis by radiant energy delivery and radiant energy collection
US6965709B1 (en) 2003-05-14 2005-11-15 Sandia Corporation Fluorescent optical position sensor
JP3999701B2 (ja) 2003-05-30 2007-10-31 オリンパス株式会社 分光分析装置
US6829073B1 (en) * 2003-10-20 2004-12-07 Corning Incorporated Optical reading system and method for spectral multiplexing of resonant waveguide gratings
KR100625807B1 (ko) 2004-02-25 2006-09-20 한국과학기술원 브릴루앙 광섬유 센서를 이용하는 물리량 측정방법
JP4423421B2 (ja) 2004-12-01 2010-03-03 国立大学法人浜松医科大学 エバネッセントカテーテルシステム
US7369730B2 (en) 2004-12-23 2008-05-06 Baker Hughes Incorporated Random refractive index modulated optical fibers
US7473906B2 (en) * 2005-04-28 2009-01-06 Claudio Oliveira Egalon Reversible, low cost, distributed optical fiber sensor with high spatial resolution
WO2006126468A1 (ja) * 2005-05-26 2006-11-30 Mitsubishi Electric Corporation 光ファイバセンサ
US7329857B1 (en) 2006-03-01 2008-02-12 Sandia Corporation Side-emitting fiber optic position sensor
US7539363B2 (en) * 2006-04-03 2009-05-26 Universite Du Quebec En Outaouais Fiber optic probe for detecting the presence or absence of one or more substances within a medium
WO2008136870A2 (en) * 2006-12-18 2008-11-13 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Fiber optic gas sensor
US7668412B2 (en) 2007-10-22 2010-02-23 Sensor Tran, Inc Systems and methods for detecting electric discharge
TW200918880A (en) * 2007-10-22 2009-05-01 Forward Electronics Co Ltd Cascade-type surface plasmon resonance fiber sensor and the apparatus comprising thereof
TWI399532B (zh) * 2009-01-20 2013-06-21 Nat Chung Cheng University Inv Optical fiber type localized plasma resonance sensing device and its system
US8463083B2 (en) * 2009-01-30 2013-06-11 Claudio Oliveira Egalon Side illuminated multi point multi parameter optical fiber sensor
TWI434673B (zh) * 2009-11-16 2014-04-21 Ind Tech Res Inst 生理訊號感測模組
US8476007B2 (en) * 2010-02-19 2013-07-02 Indian Institute Of Technology Bombay Optical fiber probe

Also Published As

Publication number Publication date
CN102301207A (zh) 2011-12-28
SG172822A1 (en) 2011-08-29
AU2010207995B2 (en) 2015-08-27
EP2391871A4 (en) 2017-03-08
JP2014197003A (ja) 2014-10-16
US8909004B2 (en) 2014-12-09
US8463083B2 (en) 2013-06-11
EP2391871A2 (en) 2011-12-07
US20130248697A1 (en) 2013-09-26
DK2391871T3 (da) 2020-07-13
PL2391871T3 (pl) 2020-11-02
BRPI1007091A2 (pt) 2016-03-01
CN105300421A (zh) 2016-02-03
US10876960B2 (en) 2020-12-29
MX2011007835A (es) 2011-09-06
US20100202726A1 (en) 2010-08-12
JP2012517019A (ja) 2012-07-26
US10088410B2 (en) 2018-10-02
BRPI1007091B1 (pt) 2020-04-07
NZ619094A (en) 2016-07-29
EP2391871B1 (en) 2020-04-08
PH12015500907A1 (en) 2015-11-16
PT2391871T (pt) 2020-07-10
RU2555175C2 (ru) 2015-07-10
AU2010207995A1 (en) 2011-07-28
US20190033205A1 (en) 2019-01-31
ES2804761T3 (es) 2021-02-09
NZ593860A (en) 2014-01-31
SG10201407920SA (en) 2015-01-29
CN102301207B (zh) 2015-11-25
US20150055133A1 (en) 2015-02-26
CA2750515A1 (en) 2010-08-05
HUE050691T2 (hu) 2020-12-28
CA2750515C (en) 2020-06-16
JP2017134089A (ja) 2017-08-03
WO2010088591A2 (en) 2010-08-05
WO2010088591A9 (en) 2011-09-01
PH12015500907B1 (en) 2015-11-16
US20200319091A9 (en) 2020-10-08
JP6215126B2 (ja) 2017-10-18
IL214120A0 (en) 2011-11-30
WO2010088591A4 (en) 2011-01-20
IL214120B (en) 2018-02-28
WO2010088591A3 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
RU2011135621A (ru) Многоточечный многопараметрический волоконно-оптический датчик бокового освещения
JP5173797B2 (ja) 改良された可逆的な、低コストの、空間分解能の高い分布型光ファイバー・センサー
JP2008539447A5 (ru)
JP2017134089A5 (ja) センシング・システム
AU2015255212A1 (en) Side illuminated multi point multi parameter optical fiber sensor
WO2012010961A1 (en) Apparatus for determining optical density of liquid sample and optical waveguide thereof
Chen Profile optimization of tapered waveguide sensors by fluorescence imaging