CN111337126B - 一种光源模式测量仪 - Google Patents

一种光源模式测量仪 Download PDF

Info

Publication number
CN111337126B
CN111337126B CN202010155748.4A CN202010155748A CN111337126B CN 111337126 B CN111337126 B CN 111337126B CN 202010155748 A CN202010155748 A CN 202010155748A CN 111337126 B CN111337126 B CN 111337126B
Authority
CN
China
Prior art keywords
light source
light
mode
photoelectric detector
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010155748.4A
Other languages
English (en)
Other versions
CN111337126A (zh
Inventor
鲍文霞
阮于华
尹正茂
王年
唐俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202010155748.4A priority Critical patent/CN111337126B/zh
Publication of CN111337126A publication Critical patent/CN111337126A/zh
Application granted granted Critical
Publication of CN111337126B publication Critical patent/CN111337126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • G01J2001/4252Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources for testing LED's

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种光源模式测量仪,所述光源模式测量仪包括光源适配器(601)、扩束凹透镜(5)、内镜筒(603)、环形模式选择镜(21)、导轨(605)、光电探测器PD(3)、透射平板玻璃(607)、全反射镜(4)、外镜筒(609)、电池仓及电路组件(610)、角度标尺(611)。环形模式选择镜、光电探测器(PD)(3)会向同一方向移动,在移动的过程中,多模光源发射出的多种模式的光,不同模式对应的出射角度不同,最终会被依次反射到光电探测器(PD)(3)。即多模光源所有传播模式下的功率均会被光电探测器(PD)(3)依次采集并记录下来,通过与外镜筒上的角度标尺所示的出射角度对应,即可测量出该光源所有的光传播模式。本发明结构简单、测量准确、成本低廉。

Description

一种光源模式测量仪
技术领域
本发明涉及一种光源模式测量仪。其可以用于光纤光源出光模式的测量,也可以用于LD、LED光源的发光模式或光辐出特性测量。
背景技术
目前,一般测量或者评价光源的模式的方法从原理上大致可以分为模态功率分布测试(MPD)、耦合效率比测试(CPR)、环型通量测量(EF)等几种。MPD方法由于过于粗糙已经很少采用,采用CPR的测试方法(有IEC61300-3-31标准规范)虽然简单易行,但测试结果仍然误差大,受影响因素多,只能通过采用对连接耦合损耗进行等级划分的方式进行粗略衡量而粗分为几个等级进行评价,并不能衡量各种模式造成的光功率或者光辐出特性的分布状况。而对于EF的测试方法(有IEC61280-4-1标准规范),则需使用CCD成像(借助光束质量分析仪)及一系列的数据分析处理,方法过于复杂且设备系统成本高昂。另外,对于实际的多模光源,尤其是多模光纤光源,通常均为多种模式光束同时叠加传输,即使用CCD成像时实际上也无法将各种模式分离考察,最终也只能沿光斑径向方向进行强度评估,以此衡量模式特性或光辐出特性。
发明内容
本发明的目的在于克服现有的多种光源模式测量方法的缺点,发明一种结构简单、测量准确、成本低廉、应用灵活的光源模式测量仪。该测量仪对光源模式分布的评价能力远优于CPR测试方式,接近或等价于EF测试方式,但其测量方式较EF测试相比要显著简化易行,而且成本低廉,数据反映直接、直观,不需要昂贵的光束质量分析仪设备及繁琐的数据处理和分析过程。
本发明采用的技术方案为:一种光源模式测量仪,包括光源1或者光源适配器601,用于反射各发光模式光线的柱面镜2,光电探测器(PD)3;光源1发出的某一适当角度的光线,对应于某种发光的横模模式,经过柱面镜2反射后,被汇聚反射进光电探测器(PD)3,沿着柱面镜2轴线方向移动光电探测器(PD)3,即可依次记录光电探测器(PD)3的光电信号值,便可依次得到光源不同角度的光强模式分布。
进一步的,在光源发光模式丰富的情况下,选择LED光源时,为消除多径效应的影响,光线经过2次反射后与经过1次反射后光线同时被光电探测器(PD)3检测而造成的测试结果错误,将柱面镜2替换为可以随光电探测器移动的小长度尺寸的环形模式选择镜21。
进一步的,在光源1模式不是特别丰富且光源光功率较强的情况下,选择LD光源、光纤端面输出光源时,为了增强光电探测器(PD)3的适应能力和器件的通用互换性,将光电探测器(PD)3的感光面反向而采取背向放置,并增加全反射镜4,将由环形模式选择镜21反射选择的不同模式的光线从背离光源的方向反向入射至光电探测器(PD)3的感光面,以避免光源的强光小角度直射光电探测器(PD)3造成光电探测器(PD)3容易达到光功率检测饱和上限,同时减小0级模式光线(即光源1不经环形模式选择镜2反射而直接直射进入光电探测器(PD)3的光线)对其他模式光线的测试准确度影响,或者,在增加全反射镜4的同时,将光电探测器(PD)3直接改用双面光电探测器(PD)可以同时用背面检测经环形模式选择镜21反射的各种模式的光线和用光电探测器(PD)正面检测光源1直射至光电探测器(PD)的0级模式光线光功率。
进一步的,在光源1出射角比较小即模式不是非常丰富的情况下,为了减少光路长度即实际表现为减少模式测量仪的长度尺寸,同时增加测试灵敏度,可以增加扩束凹透镜5用以增加各模式的发散角度。
进一步的,光源1与光源适配器601适配,该光源适配器601可进行更换适用于FC、SC、ST、LC多种常见的跳线头类型,也可直接使用裸纤插芯或LD、LED光源。
本发明与现有技术相比的优点在于:
(1)本发明的光源模式测量仪可以完全标准化并进行校准,相比于采用IEC61300-3-31规范的CPR方式测量的一致性更好,CPR方式测量时受连接器的一致性,测试用光纤指标的离散性和操作人员插拔连接器的随机影响明显。本发明对光源的评价能力更科学,测试结果说服力更强。
(2)本发明的光源模式测量仪相对于采用IEC61280-4-1标准规范测试的EF测试设备仪表而言,其测试性能可以等效或者等价,但设备成本可以下降到EF测试设备仪表的1/10~1/100的水平。
(3)本发明对光源的适用范围广,可以用于对光纤输出光源模式测量,也可以用于对工业生产的LED产业或生产线的光源辐出特性测量。
(4)本发明除了成本低廉之外,可以做到体积小,重量轻,数据读取记录简单,有利于与其他设备一起配套整合集成,建立全自动化的设备或生产检测线。
附图说明
图1为模式选择光学原理图。
图2为本发明光源模式测量仪基础技术方案。图中部件为:1为光源,2为柱面镜,3为光电探测器(PD)。
图3为本发明光源模式测量仪改进1方案。其中,图3(a)为在柱面反射镜较长或者发光出射角较大的情况下示意图,图3(b)为具有光模式选择功能的环形模式选择镜的示意图。图中部件为:在图3(a)中1为光源,2为柱面镜,3为光电探测器(PD);在图3(b)中1为光源,21为环形模式选择镜,3为光电探测器(PD)。
图4为本发明光源模式测量仪改进2方案。图中部件为:1为光源,21为环形模式选择镜,3为光电探测器(PD),4为全反射镜。
图5为本发明光源模式测量仪改进3方案。图中部件为:1为光源,21为环形模式选择镜,3为光电探测器(PD),4为全反射镜,5为扩束凹透镜。
图6为光源模式测量仪实例结构图,其中部件为:601为光源适配器,5为扩束凹透镜,603为内镜筒,21为环形模式选择镜,605为导轨,3为光电探测器(PD),607为透射平板玻璃,4为全反射镜,609为外镜筒,610为电池仓及电路组件,611为角度标尺。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
本发明的方案是利用创新设计将光源向空间辐射的不同发光模式转换成使各模式沿直线分布的状态。利用光电探测器在该直线上移动检测不同模式光强的方式进行对光源模式或辐出特性的测量。其基本光学原理如图1所示。光源从位于柱面镜轴线上原点O处发出不同模式(横模)的光,除了沿OX方向直射的模式0的光纤之外,其他模式的光线均经柱面反射镜反射后,将依次汇聚在柱面镜的轴线OX上,如图中的光模式1,模式2,模式3,……模式n分别成系列依次汇聚于OX上。虽然各模式仍然呈空间分布,各种模式会存在部分叠加的情况,但实际的应用测量中,并不需要也无法将各个模式严格分开,只关注光强随光纤发散角(数值孔径)或者光源出射角变化而产生的变化形成的分布状况。
因此,本发明的基本方案为:
1.基础方案如图2所示
光源1位于柱面反射镜轴线上,正对轴线方向发光。不同模式的光线(如图中模式1,模式2,模式3等)经过柱面镜2被反射汇聚于柱面镜的轴线上,光电探测器(PD)3沿轴线移动依次接收不同模式光线,用于检测光源模式或光辐出特性。
2.本发明的改进1方案如图3所示
图3(a)中,在柱面反射镜2较长或者光源1发光出射角较大(光源模式非常丰富,如LED光源)的情况下,可能会出现部分模式的光线经柱面镜2多次反射后(多径效应)进入光电探测器(PD)3而造成模式测量错误的情况,例如图3(a)中模式4的光线经两次反射后与模式2的光线同时被光电探测器(PD)3检测,从而造成对模式2光线的强度测试错误。为有效避免这种情况,将柱面镜2长度缩短,同时为了能够测量各种光模式,需要使柱面镜2在光电探测器(PD)3移动的过程中跟随移动,但根据光的反射原理,柱面镜2的移动速度是光电探测器(PD)3移动速度的一半。此时,柱面镜成为了具有光模式选择功能的环形模式选择镜21,如图3(b)所示。另外将柱面镜2尺寸缩短,也避免了需要采用大尺寸高精度柱面镜的需求,降低了柱面镜加工要求和加工成本。
3.本发明的改进2方案如图4所示
由于光源1和光电探测器(PD)3均处于柱面镜(以下称环形模式选择镜21)的轴线上,且光源1面向光电探测器(PD)3发光,在光源1强度较强或出射角较小(光源模式不是非常丰富)的情况下,光源1的大部分光线将可能不经过环形模式选择镜21直接照射到光电探测器(PD)3而造成光电探测器(PD)3感光饱和,或者需要使用动态响应范围很宽的光电探测器(PD)3才能满足测试使用要求。另外如果光电探测器(PD)3感光面尺寸过大(虽然目前已经有直径10um以下的光电探测器(PD),但这种特殊限定会降低原材料的通用互换性),光电探测器(PD)3在沿轴线移动的过程中,光电探测器(PD)3的感光面积相对于光源的张角会变化明显,也会带来显著的光强度测量误差,这种误差虽然可以通过校准补偿消除,但这仍然为固有的设计缺陷之一。为了改进这些不足,可以将光电探测器(PD)3背向放置采用如图4中的方式,使光源1发出的不同模式的光经全反射镜4反射后再进入光电探测器(PD)3,另外也可采用双面光电探测器(PD),则可以用正面检测直射光,用背面检测经环形模式选择镜21选择反射的不同模式的光线。
4.本发明的改进3方案如下图5所示
对于部分光源1出射角较小(光源模式不是非常丰富)的光源,如多模光纤光源,其发散角通常不超过15°。可以采用扩束凹透镜5进行扩束,这样既可以提高模式测量分辨率也可以减小测量仪的长度尺寸。
实施例
具体实施实物结构图如图6所示,包括:光源适配器601,扩束凹透镜5,内镜筒603,环形模式选择镜21,导轨605,光电探测器(PD)3,透射平板玻璃607,全反射镜4,外镜筒609,电池仓及电路组件610,角度标尺611。在内镜筒603的顶部的光源适配器601为一个光束耦合的适配器接口,该接口将光源发出的光束耦合进测量仪,该接口的适配器可进行更换,适用于FC、SC、ST、LC等多种常见的跳线头类型,也可直接使用裸纤插芯或者不采用接口直接测试LED芯片等发光源。对于光通讯用多模光纤,其发散角一般不超过15°,所以在内镜筒603靠近顶端处可以选装一个扩束凹透镜5安装在内镜筒603的内壁,通过光纤的光在扩束凹透镜5的扩大角度发散下,照到内镜筒5内壁上,由于扩束凹透镜5的发散,可以减小测量仪的长度尺寸;对于LED芯片等发散角较大的光源,可无需采用凹透镜扩束。
内镜筒603内壁为黑色吸光材料,照射到内镜筒603上的光都会被吸收。
在内镜筒603的内壁上有一个环形模式选择镜21,环形模式选择镜21通过导轨605与包含光电探测器(PD)3,外镜筒609,透射平板玻璃607,全反射镜4的底座连接,作为环形模式选择镜21和PD底座的外镜筒609同时又分别与内镜筒603通过螺纹啮合,而且外镜筒609与内镜筒603啮合的螺纹导程是环形模式选择镜21与内镜筒603啮合的螺纹导程的2倍。当外镜筒609转动时,外镜筒609沿内镜筒603上下移动的同时会带动环形模式选择镜21沿着导轨605在内镜筒603内壁上下移动,而且外镜筒609(同时也包含光电探测器(PD)3,透射平板玻璃607,全反射镜4等)的位移始终是环形模式选择镜移动位移的2倍。光电探测器(PD)3,其检测环形模式选择镜4反射的不同模式光线的感光面朝下以避免光源直射的光线影响测量值,如采用双面光电探测器则另一面感光面专用于检测光源正面直射的光线(0级模式光线),光源发出的特定模式的光经过环形模式选择镜21反射后穿过透射平板玻璃607,再经光电探测器(PD)3下方的全反射镜4反射后进入光电探测器(PD)3感光面被PD探测。
以多模光纤光源为例,当多模光纤在光源适配器601处发出多个方向的信号光经过扩束凹透镜5散射,再经过镜筒内壁的环形模式选择镜21的反射,再穿过透射平板玻璃607,经过全反射镜4的反射,被光电探测器(PD)3接收,经过光电转换,运算放大,数据处理,显示或存储该位置下的光功率。当PD底座(包含光电探测器(PD)3,外镜筒603,透射平板玻璃607,全反射镜4等)转动时,环形模式选择镜21、透射平板玻璃607、全反射镜4、光电探测器(PD)3随之移动,多模光纤发射出来的信号光会在移动中经过透射与两次反射被光电探测器(PD)3接收转化成光功率信号,但环形模式选择镜在任意某一位置时,只有满足相应光路传播条件的光模式才能进入光电探测器(PD)3,才能被显示并记录下来,不满足相应光路传播条件的光模式将在镜筒内被吸光材料吸收。最终,多模光纤所有传播模式下的功率可以在PD底座转动的过程中,按照模式发散角的变化均会被依次显示并记录下来,经过数据处理,角度换算,即可测量出该光纤所有的传播模式。具体的,在仪器调试之时,在镜筒外壁标记好对应的角度标尺611,在实际测量时,只需同时记录PD探测的功率值和镜筒外壁角度标尺611指示的角度,将其对应即为光源的相应的模式功率值。

Claims (5)

1.一种光源模式测量仪,其特征在于:包括光源(1)或者光源适配器(601),用于反射各发光模式光线的柱面镜(2),光电探测器(PD)(3);光源(1)发出的某一适当角度的光线,对应于某种发光的横模模式,经过柱面镜(2)反射后,被汇聚反射进光电探测器(PD)(3),沿着柱面镜(2)轴线方向移动光电探测器(PD)(3),即可依次记录光电探测器(PD)(3)的光电信号值,便可依次得到光源不同角度的光强模式分布;其中,光源(1)位于柱面反射镜轴线上,正对轴线方向发光,不同模式的光线经过柱面镜(2)被反射汇聚于柱面镜的轴线上,光电探测器(PD)(3)沿轴线移动依次接收不同模式光线,用于检测光源模式或光辐出特性。
2.根据权利要求1所述的一种光源模式测量仪,其特征在于:在光源发光模式丰富的情况下,选择LED光源时,为消除多径效应的影响,光线经过2次反射后与经过1次反射后光线同时被光电探测器(PD)(3)检测而造成的测试结果错误,将柱面镜(2)替换为可以随光电探测器移动的小长度尺寸的环形模式选择镜(21)。
3.根据权利要求1所述的一种光源模式测量仪,其特征在于:在光源(1)模式不是特别丰富且光源光功率较强的情况下,选择LD光源、光纤端面输出光源时,为了增强光电探测器(PD)(3)的适应能力和器件的通用互换性,将光电探测器(PD)(3)的感光面反向而采取背向放置,并增加全反射镜(4),将由环形模式选择镜(21)反射选择的不同模式的光线从背离光源的方向反向入射至光电探测器(PD)(3)的感光面,以避免光源的强光小角度直射光电探测器(PD)(3)造成光电探测器(PD)(3)容易达到光功率检测饱和上限,同时减小0级模式光线(即光源(1)不经环形模式选择镜2反射而直接直射进入光电探测器(PD)(3)的光线)对其他模式光线的测试准确度影响,或者,在增加全反射镜(4)的同时,将光电探测器(PD)(3)直接改用双面光电探测器(PD)可以同时用背面检测经环形模式选择镜(21)反射的各种模式的光线和用光电探测器(PD)正面检测光源(1)直射至光电探测器(PD)的0级模式光线光功率。
4.根据权利要求1所述的一种光源模式测量仪,其特征在于:在光源(1)出射角比较小即模式不是非常丰富的情况下,为了减少光路长度即实际表现为减少模式测量仪的长度尺寸,同时增加测试灵敏度,可以增加扩束凹透镜(5)用以增加各模式的发散角度。
5.根据权利要求1所述的一种光源模式测量仪,其特征在于:光源(1)与光源适配器(601)适配,该光源适配器(601)可进行更换适用于FC、SC、ST、LC多种常见的跳线头类型,也可直接使用裸纤插芯或LD、LED光源。
CN202010155748.4A 2020-03-09 2020-03-09 一种光源模式测量仪 Active CN111337126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010155748.4A CN111337126B (zh) 2020-03-09 2020-03-09 一种光源模式测量仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010155748.4A CN111337126B (zh) 2020-03-09 2020-03-09 一种光源模式测量仪

Publications (2)

Publication Number Publication Date
CN111337126A CN111337126A (zh) 2020-06-26
CN111337126B true CN111337126B (zh) 2023-01-31

Family

ID=71182325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010155748.4A Active CN111337126B (zh) 2020-03-09 2020-03-09 一种光源模式测量仪

Country Status (1)

Country Link
CN (1) CN111337126B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221710B (zh) * 2021-12-06 2023-11-10 中国电子科技集团公司第十三研究所 基于光电异构集成的微波光子收发电路及微波光子收发器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121346A (ja) * 2001-10-17 2003-04-23 Japan Science & Technology Corp 光波コヒーレンス断層画像化方法及びその装置
JP2007163358A (ja) * 2005-12-15 2007-06-28 Iwasaki Electric Co Ltd 光量モニタとそれを用いた光源装置
CN102301207A (zh) * 2009-01-30 2011-12-28 克劳迪奥·奥利维拉·埃加隆 侧向照射式多点、多参数光纤传感器
TW201602526A (zh) * 2014-04-03 2016-01-16 松下知識產權經營股份有限公司 輻射通量分布測定方法及輻射通量分布測定裝置
WO2020017118A1 (ja) * 2018-07-19 2020-01-23 コニカミノルタ株式会社 測光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336495B1 (en) * 2016-12-16 2024-02-14 F. Hoffmann-La Roche AG Characterizing the emission properties of samples

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121346A (ja) * 2001-10-17 2003-04-23 Japan Science & Technology Corp 光波コヒーレンス断層画像化方法及びその装置
JP2007163358A (ja) * 2005-12-15 2007-06-28 Iwasaki Electric Co Ltd 光量モニタとそれを用いた光源装置
CN102301207A (zh) * 2009-01-30 2011-12-28 克劳迪奥·奥利维拉·埃加隆 侧向照射式多点、多参数光纤传感器
TW201602526A (zh) * 2014-04-03 2016-01-16 松下知識產權經營股份有限公司 輻射通量分布測定方法及輻射通量分布測定裝置
WO2020017118A1 (ja) * 2018-07-19 2020-01-23 コニカミノルタ株式会社 測光装置

Also Published As

Publication number Publication date
CN111337126A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN103048046B (zh) 双光束光谱仪
CN101210806B (zh) 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法
CN100370306C (zh) 高精度光束同轴度调整方法
CN106033054B (zh) 一种激光温湿度测量装置及方法
US5070237A (en) Optical measurement and detection system
CN101210805B (zh) 基于焦平面成像法的发射模块间同轴度测量方法
CN106767545A (zh) 一种高精度高空间分辨角度测量仪及角度测量方法
CN101609250A (zh) 相机摆镜摆角扫描特性测试装置
JP2899651B2 (ja) 光透過型分光計
CN111337126B (zh) 一种光源模式测量仪
CN110632008B (zh) 一种多点反射式光电气体传感器探头及光电气体检测装置
CN113376857B (zh) 一种高精度的光学光路调试装置及其调试方法
CN110836642A (zh) 一种基于三角测量法的彩色三角位移传感器及其测量方法
JP4104427B2 (ja) 光学特性計測装置
CN101592598A (zh) 一种基于近场光学行波吸收的痕量物质分析装置
CN112834462A (zh) 反射镜反射率的测量方法
CN110779874B (zh) 一种光学参数与形貌同时测量的装置
AU623322B2 (en) Measuring a gap between a tube and a float
CN100370223C (zh) 双孔式激光束散角测试装置
JPS5925594B2 (ja) タバコ先端部の充填度の検査装置
CN106404695B (zh) 分光光度计
CN112857752A (zh) 一种光学元件角分辨散射的绝对测量系统及方法
CN208420636U (zh) 一种led光源颗粒物计数传感器
CN208621291U (zh) 一种高分辨率光纤缺陷检测设备
CN110726919A (zh) 阵列apd光电参数测试系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant