JP7205123B2 - 温度測定装置、温度測定システム、及び温度測定方法 - Google Patents

温度測定装置、温度測定システム、及び温度測定方法 Download PDF

Info

Publication number
JP7205123B2
JP7205123B2 JP2018172421A JP2018172421A JP7205123B2 JP 7205123 B2 JP7205123 B2 JP 7205123B2 JP 2018172421 A JP2018172421 A JP 2018172421A JP 2018172421 A JP2018172421 A JP 2018172421A JP 7205123 B2 JP7205123 B2 JP 7205123B2
Authority
JP
Japan
Prior art keywords
substance
temperature
reaction system
chemical reaction
probe light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018172421A
Other languages
English (en)
Other versions
JP2020046199A (ja
Inventor
潤一 小川
俊一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2018172421A priority Critical patent/JP7205123B2/ja
Priority to PCT/JP2019/035778 priority patent/WO2020054785A1/ja
Priority to EP19859342.8A priority patent/EP3851819B1/en
Priority to US17/274,949 priority patent/US20220034723A1/en
Priority to CN201980059870.7A priority patent/CN112714863B/zh
Publication of JP2020046199A publication Critical patent/JP2020046199A/ja
Application granted granted Critical
Publication of JP7205123B2 publication Critical patent/JP7205123B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/58Radiation pyrometry, e.g. infrared or optical thermometry using absorption; using extinction effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/18Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of materials which change translucency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Optical Measuring Cells (AREA)

Description

本開示は、温度測定装置、温度測定システム、及び温度測定方法に関する。
流体等を含む被測定対象物の温度を光学的手法により非接触で測定する技術が従来から知られている。
例えば、特許文献1には、微小通路内を流れる流体内に含まれる蛍光物質をレーザ光により励起させて、発生した蛍光の検出強度の減衰特性を測定することで流体の温度を算出する温度測定装置が開示されている。例えば、特許文献2には、被測定流体にレーザ光を照射し、レーザ光で誘起された蛍光を利用して、被測定流体の温度を測定する温度測定装置が開示されている。
特開2006-258537号公報 特開平08-110270号公報
しかしながら、一般的に、蛍光の強度は非常に弱く、蛍光の検出は容易でない。例えば、系中の温度がわずかに変化することで異性化及び副反応等が促進されるような化学反応系の場合、より高精度に温度を測定する必要がある。蛍光を用いた従来技術では、このような化学反応系に含まれる物質の温度測定に要求される精度が満たされない恐れもある。
本開示は、化学反応系に含まれる物質の温度を非接触かつ高精度に測定できる温度測定装置、温度測定システム、及び温度測定方法を提供することを目的とする。
幾つかの実施形態に係る温度測定装置は、化学反応系に含まれる物質にパルス状の励起光を照射する第1照射部と、前記物質にプローブ光を照射する第2照射部と、前記第2照射部によって前記物質に照射された前記プローブ光を検出する検出部と、前記検出部によって検出された前記プローブ光の検出強度に関する情報に基づいて前記化学反応系に含まれる前記物質の温度を算出する制御部と、を備える。これにより、化学反応系に含まれる物質の温度を非接触かつ高精度に測定できる。より具体的には、励起光及びプローブ光に基づく光学的手法を用いることで、化学反応系中の物質の流れへの影響が抑制された状態で、化学反応系に含まれる物質の温度が測定可能である。また、蛍光の検出強度と比較してプローブ光の検出強度は十分に大きいので、検出部によって検出されるプローブ光の検出強度に関する検出信号のS/N比が増大する。したがって、プローブ光の検出強度に関する情報に基づく、化学反応系に含まれる物質の温度の算出が精度良く実行される。
一実施形態において、前記プローブ光の検出強度に関する情報は、パルス状の前記励起光によって生じる前記物質の吸光度の時間変化に伴う前記プローブ光の検出強度の時間変化を含んでもよい。
一実施形態において、前記物質の吸光度の時間変化の時定数に対応する前記物質の励起状態の寿命と前記物質の温度との対応関係を記憶する記憶部をさらに備え、前記制御部は、前記プローブ光の検出強度の時間変化から前記励起状態の寿命を算出し、前記記憶部から取得した前記対応関係によって前記物質の温度を算出してもよい。一般的に、物質の励起状態の寿命Tは、数ミリ秒から数秒の範囲の値を有する。したがって、物質の励起状態の寿命に基づいて物質の温度が算出されることで、数ミリ秒から数秒の範囲の時間分解能で温度測定が可能である。これにより、リアルタイムに温度測定が可能である。
一実施形態において、前記第1照射部によって照射される前記励起光の照射位置を調整する光路調整部をさらに備えてもよい。これにより、温度測定装置は、任意の位置ごとに分解して物質の温度を測定可能である。したがって、温度測定装置は、化学反応による温度変化を空間的に分解して測定することができる。
幾つかの実施形態に係る温度測定システムは、上記のいずれかの温度測定装置と、前記物質が流路の内部を流れるフロー式の前記化学反応系の一部を構成する流通型セルと、を備える。これにより、化学反応系に含まれる物質の温度を非接触かつ高精度に測定できる。より具体的には、励起光及びプローブ光に基づく光学的手法を用いることで、化学反応系中、例えば流通型セル中の物質の流れへの影響が抑制された状態で、流通型セルに含まれる物質の温度が測定可能である。また、蛍光の検出強度と比較してプローブ光の検出強度は十分に大きいので、検出部によって検出されるプローブ光の検出強度に関する検出信号のS/N比が増大する。したがって、プローブ光の検出強度に関する情報に基づく、流通型セルに含まれる物質の温度の算出が精度良く実行される。
一実施形態において、フロー式の前記化学反応系は、第1原料と第2原料とを合成して生成物を得る合成反応系を含み、前記第1原料と前記第2原料とは、前記流通型セルにおいて合成されてもよい。
一実施形態において、前記第1原料及び前記第2原料それぞれは、アミノ酸を含み、前記生成物は、ペプチド結合により形成された化合物を含んでもよい。これにより、複数のアミノ酸によって構成されるペプチドを対象とした測定が可能となる。
幾つかの実施形態に係る温度測定方法は、化学反応系に含まれる物質にパルス状の励起光を照射する第1照射ステップと、前記物質にプローブ光を照射する第2照射ステップと、前記第2照射ステップにおいて前記物質に照射された前記プローブ光を検出する検出ステップと、前記検出ステップにおいて検出された前記プローブ光の検出強度に関する情報に基づいて前記化学反応系に含まれる前記物質の温度を算出する算出ステップと、を含む。これにより、化学反応系に含まれる物質の温度を非接触かつ高精度に測定できる。より具体的には、励起光及びプローブ光に基づく光学的手法を用いることで、化学反応系中の物質の流れへの影響が抑制された状態で、化学反応系に含まれる物質の温度が測定可能である。また、蛍光の検出強度と比較してプローブ光の検出強度は十分に大きいので、検出ステップにおいて検出されるプローブ光の検出強度に関する検出信号のS/N比が増大する。したがって、プローブ光の検出強度に関する情報に基づく、化学反応系に含まれる物質の温度の算出が精度良く実行される。
一実施形態において、前記プローブ光の検出強度に関する情報は、パルス状の前記励起光によって生じる前記物質の吸光度の時間変化に伴う前記プローブ光の検出強度の時間変化を含んでもよい。
一実施形態において、前記物質の吸光度の時間変化の時定数に対応する前記物質の励起状態の寿命と前記物質の温度との対応関係を記憶する記憶ステップをさらに含み、前記算出ステップにおいて、前記プローブ光の検出強度の時間変化から前記励起状態の寿命が算出され、前記記憶ステップにおいて記憶された前記対応関係によって前記物質の温度が算出されてもよい。一般的に、物質の励起状態の寿命Tは、数ミリ秒から数秒の範囲の値を有する。したがって、物質の励起状態の寿命に基づいて物質の温度が算出されることで、数ミリ秒から数秒の範囲の時間分解能で温度測定が可能である。これにより、リアルタイムに温度測定が可能である。
一実施形態において、前記第1照射ステップにおいて照射される前記励起光の照射位置を調整する光路調整ステップをさらに含んでもよい。これにより、任意の位置ごとに分解された状態で物質の温度が測定可能である。したがって、空間的に分解された状態で化学反応による温度変化が測定可能である。
本開示によれば、化学反応系に含まれる物質の温度を非接触かつ高精度に測定できる温度測定装置、温度測定システム、及び温度測定方法を提供可能である。
一実施形態に係る温度測定システムの構成の一例を示す模式図である。 図1の温度測定システムと化学反応系とを含むブロック図である。 励起光及びプローブ光の照射タイミングの一例を示すタイムシーケンス図である。 流通型セルの流路を流れる物質のエネルギー準位を簡略的に示した模式図である。 物質の励起状態の寿命と物質の温度との対応関係を示す模式図である。 図1の温度測定装置の動作の一例を示すフローチャートである。 図1の化学反応系の流通型セルの変形例を示す模式図である。 フロー合成法を用いた合成反応系の一例を示す模式図である。 図8の合成反応系の内部の様子をマイクロミキサーの位置で拡大した模式図である。
従来技術の背景及び問題点についてより詳細に説明する。
例えば、フロー法を用いた化学反応系では、バッチ法と異なり、カラムの一端から原料が連続的に投入され、カラムの他端から生成物が連続的に得られる。フロー法において第1原料と第2原料とを合成して生成物を得る場合、フロー合成法と呼ばれる。フロー合成法を用いた合成反応系では、各物質が微小流路を流れながら化学合成が進む。また、化学合成において、例えば複雑な構造を有する化合物を合成し精密な制御を必要とするフロー精密合成法も知られている。
図8は、フロー合成法を用いた合成反応系の一例を示す模式図である。図9は、図8の合成反応系の内部の様子をマイクロミキサーの位置で拡大した模式図である。図8及び図9を参照すると、フロー合成法を用いた合成反応系では、例えばマイクロミキサーと、テフロン(登録商標)性チューブ等を含む任意のチューブとが用いられる。フロー合成法では、例えば、ポンプによりあらかじめ定められた流量で送液される2つの第1原料A及び第2原料Bがマイクロミキサー内で高速に衝突することで混合が起き、生成物Cが生成される。限られた空間の中で流量が大きくなると拡散長が短くなり、高速混合が実現可能となる。
従来のバッチ法では、混合速度は回転羽の速度によって制限されていた。したがって、容器の体積が大きい場合、秒単位で進む化学反応に対して混合速度が化学反応速度より遅くなる恐れもあった。このように混合が完了する前に化学反応が完了してしまうことで高速な化学反応を制御できないという課題があった。一方で、フロー合成法ではマイクロミキサーの径、チューブの径、及び流量等を調整することで混合速度が化学反速度よりも十分に速くなるように調整可能である。したがって、フロー合成法では、高速な化学反応が制御可能となる。また、マイクロミキサーは表面積と体積との比が大きいため、熱放散性に優れる。したがって、熱伝導率が高い材料を用いれば放熱が早く進む。これにより、発熱を伴う化学反応においても、マイクロミキサー及びチューブ内での熱の蓄積が抑制される。
このような特徴をもつフロー合成法では、化学反応にもよるが、最終生成物の収率が温度に大きく依存することが多い。したがって、マイクロミキサー内、及びチューブ内の温度が常に一定に保たれるように、マイクロミキサー内、及びチューブ内の温度を測定して制御する必要がある。
ペプチド合成においてフロー合成法を利用する事例が従来知られている。その理由の一つは、ペプチド合成がアミノ酸の逐次多段合成であるからである。ペプチド合成は、2つのアミノ酸のカップリング反応を基本とする。全てのアミノ酸は、多くの官能基を有する。アミド結合は、一方のアミノ酸のカルボキシル基と他方のアミノ酸のアミド基とが反応して脱水縮合を起こすことで形成される。したがって、一方のアミノ酸のカルボキシル基以外の官能基を全て保護し、かつ他方のアミノ酸のアミド基以外の官能基を全て保護する必要がある。
一方のアミノ酸のアミド結合に関与しないアミド基を保護する基、及び他方のアミノ酸のアミド結合に関与しないカルボキシル基を保護する基それぞれは末端保護基と呼ばれる。ペプチド合成では、アミノ酸に末端保護基を付与した状態でカップリング反応が逐次進む。ペプチド合成においても化学反応系中の温度管理は必要である。例えば、化学反応系中の温度がわずかに変化することで異性化及び副反応等が促進されて最終生成物の収率が変化する場合も考えられる。1℃異なるだけで異性化及び副反応等が加速して、最終生成物の収率が大きく影響するような場合、厳しい温度管理が必要になる。例えば、温度測定において、0.1℃の精度が要求される。
以上のような背景により2つのアミノ酸が混合され、アミド結合反応が起きているマイクロミキサー内、及びチューブ内の物質の温度を高い精度で直接測定することが望まれる。例えば、従来の白金測温抵抗体及びサーミスタは高い精度を有する場合もあるが、これらの温度センサを用いて物質の温度を正確に測定するためには、温度接点をチューブ内部の動径方向の中心に固定させる必要があった。フロー合成法で高速混合を実現するためには、マイクロミキサーの内径及びチューブの内径は数10μmから数mmの範囲であることが一般的である。したがって、そもそも温度接点が数10μmから数mmの範囲に収まるような微小の温度センサが存在しなかったり、仮に収まったとしても動径方向の中心で固定することにより物質の流れに影響が及んでいた。これにより、化学反応に影響が及び、最終生成物の収率に影響が及ぶという課題があった。
このような課題を回避するために、微小白金測温抵抗体及び微小サーミスタといった高精度な微小温度センサを化学反応系中の物質の流れに影響を与えないチューブ表面の所定の部位に設置固定して、間接的に物質の温度を予測する方法も考えられていた。しかしながら、物質の温度を直接測定していないので、得られる温度データの信頼性が低かった。例えば、センサが設置固定されたチューブ表面の所定の部位とは異なる部位からの、チューブ内への熱の流入及びチューブ外への熱の流出により、真値に対して誤差が生じる場合も考えられた。
また、流路中の物質の温度を測定するために、特許文献1に記載のように、蛍光物質を流体中に導入し、蛍光物質からの蛍光強度を測定することで温度測定する方法も考えられていた。しかしながら、蛍光物質が導入されることで化学反応系において異物となり、副生成物が発生する、及び導入量によってはマイクロミキサー内又はチューブ内で閉塞が起きる等の課題があった。
本開示は、以上のような課題を解決して、化学反応系に含まれる物質の温度を非接触かつ高精度に測定できる温度測定装置10、温度測定システム1、及び温度測定方法を提供することを目的とする。以下では、添付図面を参照しながら本開示の一実施形態について主に説明する。
図1及び図2を参照しながら、一実施形態に係る温度測定装置10及び温度測定システム1の構成及び機能について主に説明する。
図1は、一実施形態に係る温度測定システム1の構成の一例を示す模式図である。図1を参照すると、温度測定システム1は、温度測定装置10と、化学反応系20の一部を構成する流通型セル22と、を有する。温度測定装置10は、化学反応系20に対して設置され、励起光L1及びプローブ光L2に基づいて、化学反応系20に含まれる物質の温度を測定する。
測定対象となる「物質」とは、例えば溶液を構成する任意の分子を含む。溶液に含まれる溶質は、例えば励起光L1を吸収し基底状態から電子が遷移して励起状態となる分子を含む。溶液に含まれる溶質は、例えばπ電子共役を有する分子であり、アミノ酸及びペプチド等を構成する分子を含む。溶液に含まれる溶媒は、基底状態及び励起状態における吸収波長領域に、励起光L1及びプローブ光L2に対する強い吸収を有さない任意の分子を含む。
化学反応系20は、任意の化学反応系を含む。化学反応系20は、例えば、物質が流路の内部を流れるフロー式の化学反応系を含む。より具体的には、化学反応系20は、第1原料Aと第2原料Bとを合成して生成物Cを得る合成反応系を含む。
化学反応系20における第1原料A及び第2原料Bそれぞれは、任意の化合物を含む。第1原料A及び第2原料Bそれぞれは、例えばアミノ酸を含む。同様に、化学反応系20における生成物Cは、ポリマー又はオリゴマー等の任意の化合物を含む。生成物Cは、例えばアミド結合により形成された化合物を含んでもよいし、複数のアミノ酸に基づくペプチド結合により形成された化合物を含んでもよい。
化学反応系20は、第1原料Aをあらかじめ定められた流量で送液する第1ポンプ21aと、第2原料Bをあらかじめ定められた流量で送液する第2ポンプ21bとを有する。化学反応系20は、第1ポンプ21a及び第2ポンプ21bによってそれぞれ送液された第1原料A及び第2原料Bを合成する流通型セル22を有する。図1では、流通型セル22の流路は、Y字状に形成されている。第1ポンプ21a及び第2ポンプ21bによってそれぞれ送液された第1原料A及び第2原料Bは、独立した流路内を流れた後、流通型セル22内のY字状の流路によって合成され、1つの流路によって排出される。化学反応系20を構成する各流路の管径は、例えば、数10μmから数mmの範囲の値を有する。
図2は、図1の温度測定システム1と化学反応系20とを含むブロック図である。図2を参照すると、温度測定装置10は、第1照射部11aと、第2照射部11bと、検出部12と、光路調整部13と、記憶部14と、制御部15と、を有する。
第1照射部11aは、例えば半導体レーザ等の任意の光源を含む。第1照射部11aは、温度測定装置10に含まれている任意の光学系を介して、化学反応系20に含まれる物質にパルス状の励起光L1を照射する。より具体的には、第1照射部11aは、化学反応系20の流通型セル22の流路を流れる物質にパルス状の励起光L1を照射する。第1照射部11aによって照射される励起光L1の波長は、第1波長領域に含まれる。第1波長領域は、例えば、紫外領域及び可視領域等を含む。
第2照射部11bは、例えば半導体レーザ等の任意の光源を含む。第2照射部11bは、温度測定装置10に含まれている任意の光学系を介して、化学反応系20に含まれる物質にプローブ光L2を照射する。より具体的には、第2照射部11bは、化学反応系20の流通型セル22の流路を流れる物質にプローブ光L2を照射する。第2照射部11bは、連続光としてプローブ光L2を照射してもよいし、パルス光としてプローブ光L2を照射してもよい。第2照射部11bによって照射されるプローブ光L2の波長は、第2波長領域に含まれる。第2波長領域は、例えば、可視領域及び赤外領域等の任意の波長領域を含む。
検出部12は、例えばフォトダイオード等の任意の光検出器を含む。検出部12は、第2照射部11bによって照射され、化学反応系20を流れる物質を透過したプローブ光L2を検出する。より具体的には、検出部12は、化学反応系20の流通型セル22の流路を流れる物質を透過したプローブ光L2を検出する。
光路調整部13は、例えばミラー等の任意の光学素子を含む。光路調整部13は、第1照射部11aによって照射される励起光L1の化学反応系20における照射位置を任意に調整する。より具体的には、光路調整部13は、化学反応系20の流通型セル22の流路における照射位置を任意に調整する。光路調整部13は、例えば、ミラーに取り付けられた圧電素子等の任意の受動素子が制御部15からの制御信号に基づいて制御されることで、ミラーの角度等を変えて励起光L1の照射位置を任意に調整する。
記憶部14は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、ROM(Read-Only Memory)、及びRAM(Random Access Memory)等の任意の記憶装置を含み、温度測定装置10の動作を実現するために必要な情報を記憶する。記憶部14は、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。記憶部14は、温度測定装置10に内蔵されているものに限定されず、USB等のデジタル入出力ポート等によって接続されている外付け型の記憶装置であってもよい。記憶部14は、後述する、物質の吸光度の時間変化の時定数に対応する物質の励起状態の寿命Tと物質の温度との対応関係を記憶する。
制御部15は、1つ以上のプロセッサを含む。例えば、制御部15は、温度測定装置10に関する処理を可能にするプロセッサを含む。制御部15は、温度測定装置10を構成する各構成部に接続され、各構成部をはじめとして温度測定装置10全体を制御及び管理する。制御部15は、検出部12によって検出されたプローブ光L2の検出強度に関する情報に基づいて化学反応系20に含まれる物質の温度を算出する。「プローブ光L2の検出強度に関する情報」とは、パルス状の励起光L1によって生じる物質の吸光度の時間変化に伴うプローブ光L2の検出強度の時間変化を含む。制御部15は、プローブ光L2の検出強度の時間変化から物質の励起状態の寿命Tを算出し、記憶部14から取得した、物質の励起状態の寿命Tと物質の温度との対応関係によって物質の温度を算出する。
制御部15は、例えば、算出した温度の時間変化量が所定の閾値を超えたか否かを判定してもよい。制御部15は、算出した温度の時間変化量が所定の閾値を超えたと判定すると、任意の方法によりユーザに報知してもよい。例えば、制御部15は、算出した温度の時間変化量が所定の閾値を超えたことをユーザに報知可能な任意の出力インタフェースを用いてユーザに報知してもよい。このような出力インタフェースは、例えば、任意の表示画面を構成する出力インタフェースを含んでもよいし、スピーカ等の音声出力インタフェースを含んでもよい。制御部15は、例えば、画像、文字、色彩の表示若しくは発光等による視覚的な方法、アラーム音若しくは音声ガイドによる音声等の聴覚的な方法、又はそれらの組み合わせにより報知してもよい。制御部15が行う報知は、視覚的又は聴覚的な方法に限定されず、ユーザが認識できる任意の方法を含んでもよい。例えば、制御部15は、振動パターン等によりユーザに対して報知してもよい。
図1を再度参照しながら、温度測定システム1を構成する光学系の構成及び機能について主に説明する。
第1照射部11aから照射された励起光L1は、レンズ等の任意の光学素子によって構成される第1光束調整部16aにより、流通型セル22の流路の位置において、プローブ光L2の光束径よりも励起光L1の光束径が小さくなるように調整される。第1光束調整部16aを通過した励起光L1は、光路調整部13によって光路が調整される。これにより、励起光L1は、ユーザが温度測定を所望する流通型セル22の流路上の任意の位置に入射する。したがって、化学反応系20内の温度測定において、空間的分解能が設定される。流通型セル22の流路を透過した励起光L1は、レーザダンプ17によって吸収される。これにより、励起光L1の不必要な散乱及び反射が抑制される。
第2照射部11bから照射されたプローブ光L2は、レンズ等の任意の光学素子によって構成される第2光束調整部16bにより、流通型セル22の流路全体に入射するように調整される。流通型セル22の流路全体に入射し、かつ透過したプローブ光L2は、集光レンズ18によって検出部12に集光される。
図3は、励起光L1及びプローブ光L2の照射タイミングの一例を示すタイムシーケンス図である。図3の縦軸は、励起光L1及びプローブ光L2それぞれの光強度を示す。図3の横軸は、時間を示す。図3を参照しながら、制御部15によって実行される励起光L1及びプローブ光L2の照射タイミングの制御の一例について主に説明する。
制御部15は、例えば、所定の周期を有するパルス光として励起光L1を照射するように第1照射部11aを制御する。一方で、制御部15は、例えば、連続光としてプローブ光L2を照射するように第2照射部11bを制御する。
流通型セル22の流路を流れる物質の吸光度は、パルス状の励起光L1が照射されることで変化する。例えば、流通型セル22の流路を流れる物質の吸光度は、パルス状の励起光L1によって増大する。このとき、プローブ光L2の検出強度は、減少する。パルス状の励起光L1の照射が停止すると、流通型セル22の流路を流れる物質の吸光度は、例えば、励起光L1によって励起された物質の励起状態の寿命Tを時定数とする指数関数に従って減少し、励起光L1が照射される前の値に回復する。このとき、プローブ光L2の検出強度は、励起状態の寿命Tを時定数とする指数関数に基づいて増大し、励起光L1が照射される前の値に回復する。
制御部15は、検出部12によって検出された、図3に示すようなプローブ光L2の検出強度の時間変化に関する検出信号に対して任意の処理を実行してもよい。例えば、制御部15は、図3に示すような検出信号に対して、周期ごとに平均処理を行ってもよい。これにより、検出信号のS/N比が向上する。
図4は、流通型セル22の流路を流れる物質のエネルギー準位を簡略的に示した模式図である。一般的に、流通型セル22の流路を流れる物質のエネルギー準位構造は、電子準位、振動準位、及び回転準位を含む複雑な構造を有する。しかしながら、図4では、説明の簡便のために、代表的な3つの準位のみが示されている。図4を参照しながら、励起光L1に基づいて、図3に示すようなプローブ光L2の検出強度の変化が得られる原理について主に説明する。
プローブ光L2の波長は、例えば、図4における第1状態と第2状態との間のエネルギー遷移の吸収波長に略一致するように調整される。励起光L1の波長は、例えば、図4における第2状態と励起状態との間のエネルギー遷移の吸収波長に略一致するように調整される。励起光L1が吸収されると、第2状態にあったポピュレーションの一部が励起状態に遷移する。これにより、第2状態にあるポピュレーションと第1状態にあるポピュレーションとの差が大きくなり、第1状態と第2状態との間のエネルギー遷移における物質の吸光度が増大する。したがって、プローブ光L2の検出強度は、減少する。
励起状態にあるポピュレーションは、エネルギー的に不安定であるために基底状態へと戻ろうとする性質を有する。このような状態で励起光L1の照射が停止すると、励起状態にあるポピュレーションは、寿命Tで第2状態に緩和する。励起状態にあるポピュレーションが寿命Tで第2状態に緩和するにつれて、励起光L1が照射される前の値に第2状態のポピュレーションが回復する。これにより、第2状態にあるポピュレーションと第1状態にあるポピュレーションとの差が寿命Tに従って小さくなる。したがって、第1状態と第2状態との間のエネルギー遷移における物質の吸光度が寿命Tに従って減少する。結果として、プローブ光L2の検出強度は、寿命Tに従って増大し、励起光L1が照射される前の値に回復する。
図5は、物質の励起状態の寿命Tと物質の温度との対応関係を示す模式図である。図5のグラフは、図3のグラフに示すプローブ光L2の検出強度の時間変化に基づいて導出されたプローブ光L2の吸光度の時間変化を示す。
制御部15は、図3のようなプローブ光L2の検出強度の時間変化から物質の励起状態の寿命Tを算出する。励起状態の寿命Tは、励起状態にある物質の温度に依存する。したがって、例えば図5に示すように、物質の温度が異なる場合、一の温度では励起状態の寿命Tの値はT1となる一方で、他の温度では励起状態の寿命Tの値はT2となる。例えば、ユーザ等は、物質の励起状態の寿命Tと物質の温度との対応関係をあらかじめ実験的に取得し、記憶部14に記憶させる。これにより、制御部15は、新たに測定されたプローブ光L2の検出強度の時間変化から算出された励起状態の寿命Tと上記の対応関係とを比較することで、物質の温度を算出可能である。
図6は、図1の温度測定装置10の動作の一例を示すフローチャートである。図6を参照しながら、温度測定装置10を用いた温度測定方法の主なフローについて説明する。
ステップS101では、制御部15は、物質の励起状態の寿命Tと物質の温度との対応関係を記憶部14に記憶させる。
ステップS102では、制御部15は、第1照射部11aによって照射される励起光L1の照射位置を、光路調整部13に調整させる。
ステップS103では、制御部15は、化学反応系20に含まれる物質にパルス状の励起光L1を照射するように第1照射部11aを制御する。
ステップS104では、制御部15は、化学反応系20に含まれる物質にプローブ光L2を照射するように第2照射部11bを制御する。
ステップS105では、制御部15は、ステップS104において照射されたプローブ光L2を検出部12に検出させる。
ステップS106では、制御部15は、ステップS105において検出されたプローブ光L2の検出強度に関する情報に基づいて化学反応系20に含まれる物質の温度を算出する。
以上のような一実施形態に係る温度測定装置10、温度測定システム1、及び温度測定方法によれば、化学反応系20に含まれる物質の温度を非接触かつ高精度に測定できる。より具体的には、励起光L1及びプローブ光L2に基づく光学的手法を用いることで、化学反応系20中の物質の流れへの影響が抑制された状態で、化学反応系20に含まれる物質の温度が測定可能である。また、蛍光の検出強度と比較してプローブ光L2の検出強度は十分に大きいので、検出部12によって検出されるプローブ光L2の検出強度に関する検出信号のS/N比が増大する。したがって、プローブ光L2の検出強度に関する情報に基づく、化学反応系20に含まれる物質の温度の算出が精度良く実行される。
一般的に、物質の励起状態の寿命Tは、数ミリ秒から数秒の範囲の値を有する。したがって、数ミリ秒から数秒の範囲の時間分解能で温度測定が可能である。これにより、リアルタイムに温度測定が可能となり、測定効率が向上する。結果として、化学反応系20の温度変化をリアルタイムに検知可能であり、ユーザへの報知が可能である。このような報知に従って、化学反応系20に関する任意のパラメータをユーザ等が調整することで、異性化及び副反応等を抑制して、最終生成物の収率の変化が抑制される。
一実施形態に係る温度測定装置10、温度測定システム1、及び温度測定方法によれば、蛍光を用いた従来の方法よりも測定対象とできる化学反応系20の種類が増大する。一般的に、励起状態にある物質は、蛍光を放出することで基底状態に緩和するが、このような蛍光を放出せずに、例えば分子の構造を変動させながら基底状態に緩和する物質も存在する。このような物質を含む化学反応系20であっても、プローブ光L2の検出強度の時間変化を測定することで、励起状態からの緩和過程に依存せずに、物質の温度が算出可能である。
流通型セル22の流路の位置において、プローブ光L2の光束径よりも励起光L1の光束径が小さくなるように調整され、かつ光路調整部13によって励起光L1の照射位置が任意に調整されることで、流通型セル22の流路の任意の位置ごとに分解して物質の温度が測定可能である。例えば、温度測定装置10は、流通型セル22の位置において、互いに直交する2つの軸に沿った任意の座標で物質の温度を測定することもできる。加えて、励起光L1がパルス光として照射されることで、任意の時間ごとに分解して物質の温度が測定可能である。したがって、温度測定装置10は、化学反応による温度変化を時間的及び空間的に分解して測定することができる。
化学反応系20が合成反応系を含むことで、流通型セル22内での第1原料A及び第2原料Bの混合による化学反応に起因する反応熱、並びに第1原料A及び第2原料B同士の混合による混合熱等の測定も可能である。
本開示は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。したがって、先の記述は例示的であり、これに限定されない。開示の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含されるとする。
例えば、上述した各構成部の形状、配置、向き、及び個数等は、上記の説明及び図面における図示の内容に限定されない。各構成部の形状、配置、向き、及び個数等は、その機能を実現できるのであれば、任意に構成されてもよい。
例えば、上述した温度測定方法の各ステップに含まれる機能等は、論理的に矛盾しないように再配置可能であり、複数のステップを1つに組み合わせたり、又は分割したりすることが可能である。
上記では、温度測定装置10、温度測定システム1、及び温度測定方法について主に説明したが、本開示は、制御部15が有するプロセッサにより実行されるプログラム又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲には、これらも包含されると理解されたい。
上記では、励起光L1及びプローブ光L2は、化学反応系20が有する流通型セル22の流路上に照射されるとして説明したが、照射位置はこれに限定されない。励起光L1及びプローブ光L2は、化学反応系20に含まれる物質に対して入射可能な、化学反応系20における任意の位置に照射されてもよい。例えば、励起光L1及びプローブ光L2は、各ポンプと流通型セル22との間に配置されている独立した2つの流路の少なくとも一方に照射されてもよいし、流通型セル22の排出側に接続されている1つの流路に照射されてもよい。
上記では、図3に示すように、制御部15は、プローブ光L2を連続光として照射するように第2照射部11bを制御するとして説明したが、制御方法はこれに限定されない。制御部15は、パルス状の励起光L1に続く、所定の幅及び周期を有するパルス光としてプローブ光L2を照射するように第2照射部11bを制御してもよい。これにより、温度測定装置10による消費電力が低減する。
上記では、図3及び図5に示すように、励起光L1によって物質の吸光度が増加し、プローブ光L2の検出強度が低減するとして説明したが、物質の吸光度の時間変化及びプローブ光L2の検出強度の時間変化は、これらに限定されない。例えば、図4において、第2状態と励起状態との間ではなく、第1状態と励起状態との間のエネルギー遷移間の吸収波長に略一致するように励起光L1の波長が調整された場合、励起光L1が吸収されると、第1状態にあったポピュレーションの一部が励起状態に遷移する。これにより、第1状態にあるポピュレーションが減少し、プローブ光L2に対する物質の吸光度が減少する。したがって、プローブ光L2の検出強度は、増大する。このように、励起光L1によって物質の吸光度が減少し、プローブ光L2の検出強度が増大してもよい。
図7は、図1の化学反応系20の流通型セル22の変形例を示す模式図である。上記では、図1に示すように、流通型セル22の流路はY字状に形成され、化学反応系20はフロー式の合成反応系であるとして説明したが、これに限定されない。図7の左側に示すように、流通型セル22の流路は、Y字状の他にも、1つの流路が複数回直角に折れ曲がったような形状に形成されていてもよい。この場合、化学反応系20は、合成反応系ではない、他のフロー式の化学反応系であってもよい。さらに、図7の右側に示すように、流通型セル22の流路は、2つの流路それぞれが直角に折れ曲がった後1つの流路に統合されるような形状に形成されていてもよい。この場合、化学反応系20は、フロー式の合成反応系であってもよい。
流通型セル22の流路は、図7に示すような形状以外の任意の形状に形成されていてもよい。例えば、流通型セル22の流路は、3つ以上の独立した流路が1つに統合されるような形状に形成されていてもよい。
上記では、化学反応系20は、フロー式の化学反応系を含むとして説明したが、これに限定されない。化学反応系20は、バッチ式の化学反応系を含んでもよい。
上記では、化学反応系20を構成する各流路の管径は、例えば、数10μmから数mmの範囲の値を有するとして説明したが、これに限定されない。化学反応系20を構成する各流路の管径は、例えば、数cm等のより大きな値を有してもよい。
1 温度測定システム
10 温度測定装置
11a 第1照射部
11b 第2照射部
12 検出部
13 光路調整部
14 記憶部
15 制御部
16a 第1光束調整部
16b 第2光束調整部
17 レーザダンプ
18 集光レンズ
20 化学反応系
21a 第1ポンプ
21b 第2ポンプ
22 流通型セル
A 第1原料
B 第2原料
C 生成物
L1 励起光
L2 プローブ光
T 寿命

Claims (9)

  1. 化学反応系に含まれる物質にパルス状の励起光を照射する第1照射部と、
    前記物質にプローブ光を照射する第2照射部と、
    前記第2照射部によって前記物質に照射された前記プローブ光を検出する検出部と、
    前記検出部によって検出された前記プローブ光の検出強度に関する情報に基づいて前記化学反応系に含まれる前記物質の温度を算出する制御部と、
    を備え
    前記プローブ光の検出強度に関する情報は、パルス状の前記励起光によって生じる前記物質の吸光度の時間変化に伴う前記プローブ光の検出強度の時間変化を含む
    温度測定装置。
  2. 前記物質の吸光度の時間変化の時定数に対応する前記物質の励起状態の寿命と前記物質の温度との対応関係を記憶する記憶部をさらに備え、
    前記制御部は、前記プローブ光の検出強度の時間変化から前記励起状態の寿命を算出し、前記記憶部から取得した前記対応関係によって前記物質の温度を算出する、
    請求項に記載の温度測定装置。
  3. 前記第1照射部によって照射される前記励起光の照射位置を調整する光路調整部をさらに備える、
    請求項1又は2に記載の温度測定装置。
  4. 請求項1乃至のいずれか1項に記載の温度測定装置と、
    前記物質が流路の内部を流れるフロー式の前記化学反応系の一部を構成する流通型セルと、
    を備える、
    温度測定システム。
  5. フロー式の前記化学反応系は、第1原料と第2原料とを合成して生成物を得る合成反応
    系を含み、
    前記第1原料と前記第2原料とは、前記流通型セルにおいて合成される、
    請求項に記載の温度測定システム。
  6. 前記第1原料及び前記第2原料それぞれは、アミノ酸を含み、
    前記生成物は、ペプチド結合により形成された化合物を含む、
    請求項に記載の温度測定システム。
  7. 温度測定装置と、物質が流路の内部を流れるフロー式の化学反応系の一部を構成する流通型セルとを備える温度測定システムであって、
    前記温度測定装置は、
    前記化学反応系に含まれる前記物質にパルス状の励起光を照射する第1照射部と、
    前記物質にプローブ光を照射する第2照射部と、
    前記第2照射部によって前記物質に照射された前記プローブ光を検出する検出部と、
    前記検出部によって検出された前記プローブ光の検出強度に関する情報に基づいて前記化学反応系に含まれる前記物質の温度を算出する制御部と、
    を備え、
    フロー式の前記化学反応系は、第1原料と第2原料とを合成して生成物を得る合成反応系を含み、
    前記第1原料と前記第2原料とは、前記流通型セルにおいて合成され、
    前記第1原料及び前記第2原料それぞれは、アミノ酸を含み、
    前記生成物は、ペプチド結合により形成された化合物を含む、
    温度測定システム。
  8. 化学反応系に含まれる物質にパルス状の励起光を照射する第1照射ステップと、
    前記物質にプローブ光を照射する第2照射ステップと、
    前記第2照射ステップにおいて前記物質に照射された前記プローブ光を検出する検出ステップと、
    前記検出ステップにおいて検出された前記プローブ光の検出強度に関する情報に基づいて前記化学反応系に含まれる前記物質の温度を算出する算出ステップと、
    を含み、
    前記プローブ光の検出強度に関する情報は、パルス状の前記励起光によって生じる前記物質の吸光度の時間変化に伴う前記プローブ光の検出強度の時間変化を含む、
    温度測定方法。
  9. 前記物質の吸光度の時間変化の時定数に対応する前記物質の励起状態の寿命と前記物質の温度との対応関係を記憶する記憶ステップをさらに含み、
    前記算出ステップにおいて、前記プローブ光の検出強度の時間変化から前記励起状態の寿命が算出され、前記記憶ステップにおいて記憶された前記対応関係によって前記物質の温度が算出される、
    請求項に記載の温度測定方法。
JP2018172421A 2018-09-14 2018-09-14 温度測定装置、温度測定システム、及び温度測定方法 Active JP7205123B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018172421A JP7205123B2 (ja) 2018-09-14 2018-09-14 温度測定装置、温度測定システム、及び温度測定方法
PCT/JP2019/035778 WO2020054785A1 (ja) 2018-09-14 2019-09-11 温度測定装置、温度測定システム、及び温度測定方法
EP19859342.8A EP3851819B1 (en) 2018-09-14 2019-09-11 Temperature measurement device, temperature measurement system, and temperature measurement method
US17/274,949 US20220034723A1 (en) 2018-09-14 2019-09-11 Temperature measurement apparatus, temperature measurement system, and temperature measurement method
CN201980059870.7A CN112714863B (zh) 2018-09-14 2019-09-11 温度测定装置、温度测定系统和温度测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172421A JP7205123B2 (ja) 2018-09-14 2018-09-14 温度測定装置、温度測定システム、及び温度測定方法

Publications (2)

Publication Number Publication Date
JP2020046199A JP2020046199A (ja) 2020-03-26
JP7205123B2 true JP7205123B2 (ja) 2023-01-17

Family

ID=69777867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172421A Active JP7205123B2 (ja) 2018-09-14 2018-09-14 温度測定装置、温度測定システム、及び温度測定方法

Country Status (5)

Country Link
US (1) US20220034723A1 (ja)
EP (1) EP3851819B1 (ja)
JP (1) JP7205123B2 (ja)
CN (1) CN112714863B (ja)
WO (1) WO2020054785A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420173B2 (en) 2020-03-31 2022-08-23 Yokogawa Electric Corporation Reaction analysis device, reaction analysis system, and reaction analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002677A (ja) 1998-06-15 2000-01-07 Asahi Chem Ind Co Ltd 分析装置
JP2003322628A (ja) 2002-04-30 2003-11-14 National Institute Of Advanced Industrial & Technology 高速パルス高速時間応答測定方法並びに装置
JP2009109321A (ja) 2007-10-30 2009-05-21 Sony Corp 流体温度の測定方法及び測定装置
JP2011106990A (ja) 2009-11-18 2011-06-02 Yokogawa Electric Corp 誘導ラマン分光ガス分析装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110270A (ja) 1994-10-13 1996-04-30 Toshiba Corp 蛍光を利用した流体温度測定装置
JPH10176962A (ja) * 1996-12-18 1998-06-30 Osaka Gas Co Ltd 縮退四波混合法を用いたレーザー温度計測方法
JP2006258537A (ja) 2005-03-16 2006-09-28 Gunma Prefecture 温度測定装置
JP2009128024A (ja) * 2007-11-20 2009-06-11 Sony Corp 流路内を通流する液体の温度制御方法
US8463083B2 (en) * 2009-01-30 2013-06-11 Claudio Oliveira Egalon Side illuminated multi point multi parameter optical fiber sensor
US9594023B2 (en) * 2011-12-05 2017-03-14 Sony Corporation Measurement apparatus and measurement method
JP2014025774A (ja) * 2012-07-26 2014-02-06 Sony Corp 光線力学診断装置、光線力学診断方法及びデバイス
US9927350B2 (en) * 2013-10-17 2018-03-27 Trustees Of Boston University Thermal property microscopy with frequency domain thermoreflectance and uses thereof
CN103868595B (zh) * 2014-03-06 2016-03-02 湖南大学 一种空间分离的泵浦-探测瞬态吸收光谱仪及实现方法
JP6631867B2 (ja) * 2015-02-06 2020-01-15 パナソニックIpマネジメント株式会社 マイクロ流路中の液体の温度測定方法
CN105954213B (zh) * 2016-04-22 2018-11-23 中国科学院理化技术研究所 一种检测时间分辨瞬态吸收光谱的装置及方法
CN107907517B (zh) * 2017-12-11 2020-04-10 武汉大学 基于荧光寿命的薄膜材料热物性测量系统及方法
CN108507986A (zh) * 2018-03-17 2018-09-07 杨佳苗 差动共焦分立荧光光谱及荧光寿命探测方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002677A (ja) 1998-06-15 2000-01-07 Asahi Chem Ind Co Ltd 分析装置
JP2003322628A (ja) 2002-04-30 2003-11-14 National Institute Of Advanced Industrial & Technology 高速パルス高速時間応答測定方法並びに装置
JP2009109321A (ja) 2007-10-30 2009-05-21 Sony Corp 流体温度の測定方法及び測定装置
JP2011106990A (ja) 2009-11-18 2011-06-02 Yokogawa Electric Corp 誘導ラマン分光ガス分析装置

Also Published As

Publication number Publication date
CN112714863B (zh) 2023-08-29
EP3851819B1 (en) 2024-03-20
CN112714863A (zh) 2021-04-27
US20220034723A1 (en) 2022-02-03
EP3851819A4 (en) 2021-11-17
JP2020046199A (ja) 2020-03-26
WO2020054785A1 (ja) 2020-03-19
EP3851819A1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US5316983A (en) Apparatus for analysis of particulate material, analytical method for same, apparatus for production of ultrapure water, apparatus for manufacturing of semiconductor, and apparatus for production of pure gas
JP5870497B2 (ja) 測定装置及び測定方法
JP4392850B1 (ja) 赤外線吸収検査装置および赤外線吸収検査方法
JPH04259847A (ja) 光学分析装置及びその校正方法
JP2000097841A (ja) 粒子サイズの分布を測定するための装置及び方法
JP4605839B2 (ja) 粒子サイズの分布を測定するための装置及び方法
JP2009281930A (ja) 粒子濃度測定装置
US9335308B2 (en) Chromatography system, signal processing apparatus, chromatography data processing apparatus, and program
JP7205123B2 (ja) 温度測定装置、温度測定システム、及び温度測定方法
JP2019174338A (ja) 分析システム、分析用バイパス及び分析方法
WO2005038436A2 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JP2010160043A (ja) 表面増強ラマン分光測定方法及び本方法を用いた表面増強ラマン分光装置
JP2010175251A (ja) 表面増強ラマン分光測定方法及び本方法を用いた表面増強ラマン分光装置
CN111829971A (zh) 一种减小宽光谱透过率测量误差的方法
JP7050776B2 (ja) 検体検出装置及び検体検出方法
JP2002243623A (ja) 粒径分布測定装置
JP7298746B1 (ja) 光学測定装置、光学測定システム、及び光学測定方法
US10539497B2 (en) Automated alignment of optics within a flow cytometer
JP2004117096A (ja) 粒径分布測定方法および装置
US7852472B1 (en) Systems and methods for spectroscopy using opposing laser beams
JP6248460B2 (ja) 励起光照射装置
JP2006258537A (ja) 温度測定装置
JP2012150076A (ja) 分子間相互作用の測定システム、分子間相互作用の測定プログラム、及び、分子間相互作用の測定方法
JP2004251766A (ja) 温度測定方法およびそれに用いる測定装置
JP2007163378A (ja) 流量測定装置及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150