RU2010136817A - Эффективная фильтрация банком комплексно-модулированных фильтров - Google Patents

Эффективная фильтрация банком комплексно-модулированных фильтров Download PDF

Info

Publication number
RU2010136817A
RU2010136817A RU2010136817/08A RU2010136817A RU2010136817A RU 2010136817 A RU2010136817 A RU 2010136817A RU 2010136817/08 A RU2010136817/08 A RU 2010136817/08A RU 2010136817 A RU2010136817 A RU 2010136817A RU 2010136817 A RU2010136817 A RU 2010136817A
Authority
RU
Russia
Prior art keywords
filter
complex
filters
signal
bank
Prior art date
Application number
RU2010136817/08A
Other languages
English (en)
Other versions
RU2453986C2 (ru
Inventor
Ларс ВИЛЛЕМОЕС (SE)
Ларс ВИЛЛЕМОЕС
Original Assignee
Коудинг Текнолоджиз Аб (Se)
Коудинг Текнолоджиз Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Коудинг Текнолоджиз Аб (Se), Коудинг Текнолоджиз Аб filed Critical Коудинг Текнолоджиз Аб (Se)
Publication of RU2010136817A publication Critical patent/RU2010136817A/ru
Application granted granted Critical
Publication of RU2453986C2 publication Critical patent/RU2453986C2/ru

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0266Filter banks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0294Variable filters; Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2218/00Indexing scheme relating to details of digital filters
    • H03H2218/04In-phase and quadrature [I/Q] signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Liquid Crystal Substances (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Materials For Photolithography (AREA)
  • Filters And Equalizers (AREA)
  • Dc Digital Transmission (AREA)
  • Prostheses (AREA)
  • Networks Using Active Elements (AREA)
  • Peptides Or Proteins (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Detergent Compositions (AREA)
  • Eye Examination Apparatus (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Lubricants (AREA)
  • Error Detection And Correction (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

1. Устройство фильтра для фильтрации входного сигнала временной области для получения выходного сигнала временной области, который представляет собой представление входного сигнала временной области, отфильтрованного с использованием характеристики фильтра, имеющей неравномерную амплитудно-частотную характеристику, содержащее: ! банк (101) фильтров комплексного анализа для генерирования множества комплексных субполосных сигналов из входных сигналов временной области; ! множество промежуточных фильтров (190), причем по меньшей мере один из промежуточных фильтров (190) множества промежуточных фильтров (190) имеет неравномерную амплитудно-частотную характеристику, множество промежуточных фильтров (190) имеют более короткую импульсную характеристику по сравнению с импульсной характеристикой фильтра, имеющего характеристику фильтра, и неравномерные амплитудно-частотные характеристики множества промежуточных фильтров вместе представляют неравномерную характеристику фильтра; и ! банк (103) фильтров комплексного синтеза для синтезирования выходных данных промежуточных фильтров (190) для получения выходного сигнала временной области. ! 2. Устройство фильтра по п.1, в котором по меньшей мере один из промежуточных фильтров (190) имеет характеристику фильтра нижних частот, характеристику фильтра верхних частот, характеристику полосового фильтра, характеристику режекторного фильтра или характеристику узкополосного режекторного фильтра. ! 3. Устройство фильтра по п.1, в котором промежуточные фильтры (190) из множества промежуточных фильтров (190) представляют собой фильтры с конечной импульсной характеристикой. ! 4. Уст

Claims (25)

1. Устройство фильтра для фильтрации входного сигнала временной области для получения выходного сигнала временной области, который представляет собой представление входного сигнала временной области, отфильтрованного с использованием характеристики фильтра, имеющей неравномерную амплитудно-частотную характеристику, содержащее:
банк (101) фильтров комплексного анализа для генерирования множества комплексных субполосных сигналов из входных сигналов временной области;
множество промежуточных фильтров (190), причем по меньшей мере один из промежуточных фильтров (190) множества промежуточных фильтров (190) имеет неравномерную амплитудно-частотную характеристику, множество промежуточных фильтров (190) имеют более короткую импульсную характеристику по сравнению с импульсной характеристикой фильтра, имеющего характеристику фильтра, и неравномерные амплитудно-частотные характеристики множества промежуточных фильтров вместе представляют неравномерную характеристику фильтра; и
банк (103) фильтров комплексного синтеза для синтезирования выходных данных промежуточных фильтров (190) для получения выходного сигнала временной области.
2. Устройство фильтра по п.1, в котором по меньшей мере один из промежуточных фильтров (190) имеет характеристику фильтра нижних частот, характеристику фильтра верхних частот, характеристику полосового фильтра, характеристику режекторного фильтра или характеристику узкополосного режекторного фильтра.
3. Устройство фильтра по п.1, в котором промежуточные фильтры (190) из множества промежуточных фильтров (190) представляют собой фильтры с конечной импульсной характеристикой.
4. Устройство фильтра по п.1, в котором каждый промежуточный фильтр (190) выполнен с возможностью иметь импульсную характеристику, зависящую от сигнала определения промежуточного фильтра.
5. Устройство фильтра по п.4, в котором множество промежуточных фильтров (190) выполнено с возможностью приема сигнала определения промежуточного фильтра из базы (500) данных или от процессора (510).
6. Устройство фильтра по п.4, в котором множество промежуточных фильтров выполнено с возможностью приема сигнала определения промежуточного фильтра от генератора (104) фильтров, содержащего банк (301) комплексно-модулированных фильтров для фильтрации сигнала импульсной характеристики, указывающего амплитудно-частотную характеристику фильтра во временной области для получения множества комплекснозначных субполосных сигналов в качестве сигнала определения промежуточного фильтра, причем каждый комплекснозначный субполосный сигнал банка комплексно-модулированных фильтров соответствует импульсной характеристике для одного промежуточного фильтра (190), по меньшей мере один из комплекснозначных субполосных сигналов содержит по меньшей мере два различных ненулевых значения, и каждый комплекснозначный субполосный сигнал короче, чем сигнал импульсной характеристики.
7. Устройство фильтра по п.1, в котором банк (101) фильтров комплексного анализа выполнен с возможностью вывода L комплексных субполосных сигналов, множество промежуточных фильтров (190) содержит L промежуточных фильтров (190), банк (103) фильтров комплексного синтеза выполнен с возможностью синтезирования выходных данных L промежуточных фильтров (190), и L представляет собой положительное целое число большее, чем 1.
8. Устройство фильтра по п.7, в котором банк (101) фильтров комплексного анализа, множество промежуточных фильтров (190) и банк (103) фильтров комплексного синтеза выполнены с возможностью иметь L=64.
9. Устройство фильтра по п.7, в котором множество промежуточных фильтров (190) выполнено с возможностью фильтрации комплексных субполосных сигналов на основании уравнения
Figure 00000001
в котором n представляет собой целое число в диапазоне от 0 до (L-1), указывающее индекс субполосных сигналов, L и k представляют собой целые числа, dn(k) представляет собой выходные данные промежуточного фильтра (190) субполосного сигнала с индексом n, Cn(k) представляет собой субполосный сигнал с индексом n, и gn(l) представляет собой импульсную характеристику промежуточного фильтра (190) для субполосного сигнала с индексом n.
10. Устройство фильтра по п.7, в котором промежуточный фильтр (190) с индексом n имеет импульсную характеристику gn(k), которая основана на уравнении
Figure 00000002
в котором n представляет собой целое число в диапазоне от 0 до (L-1), указывающее индекс субполосного сигнала, k и v представляют собой целые числа, h(ν) представляет собой импульсную характеристику фильтра, имеющего характеристику фильтра, π=3,1415926… представляет собой круговое число,
Figure 00000003
представляет собой комплексную единицу, и q(ν) представляют собой отводы фильтра действительнозначного фильтра-прототипа.
11. Устройство фильтра по п.7, в котором по меньшей мере один из промежуточных фильтров (190) с индексом n имеет импульсную характеристику gn(k), которая основана на уравнении
Figure 00000004
в котором
Figure 00000005
в котором Nh представляет собой длину импульсной характеристики h(ν) фильтра, имеющего характеристику фильтра, π=3,1415926… представляет собой круговое число,
Figure 00000006
представляет собой комплексную единицу, и q(ν) представляют собой отводы фильтра действительнозначного фильтра-прототипа.
12. Устройство фильтра по п.10, в котором промежуточные фильтры (190) выполнены так, что отводы q(ν) фильтра-прототипа для целых чисел ν от 0 до 191 удовлетворяют соотношениям:
-0.204≤q[0]≤-0.202
-0.199≤q[1]≤-0.197
-0.194≤q[2]≤-0.192
-0.189≤q[3]≤-0.187
-0.183≤q[4l≤-0.181
-0.178≤q[5]≤-0.176
-0.172≤q[6]≤-0.170
-0.166≤q[7]≤-0.164
-0.160≤q[8]≤-0.158
-0.154≤q[9]≤-0.152
-0.148≤q[10]≤-0.146
-0.142≤q[11]≤-0.140
-0.135<q[12]≤-0.133
-0.129≤q[13]≤-0.127
-0.122≤q[14]≤-0.120
-0.116≤q[15]≤-0.114
-0.109≤q[16]≤-0.107
-0.102≤q[17]≤-0.100
-0.096≤q[18]≤-0.094
-0.089≤q[19]≤-0.087
-0.082≤q[20]≤-0.080
-0.075≤q[21]≤-0.073
-0.068≤q[22]≤-0.066
-0.061≤q[23]≤-0.059
-0.054≤q[24]≤-0.052
-0.046≤q[25]≤-0.044
-0.039≤q[26]≤-0.037
-0.032≤q[27]≤-0.030
-0.024≤q[28]≤-0.022
-0.017≤q[29]≤-0.015
-0.009≤q[30]≤-0.007
-0.002≤q[31]≤0.000
0.006≤q[32]≤0.008
0.014≤q[33]≤0.016
0.021≤q[34]≤0.023
0.029≤q[35]≤0.031
0.037≤q[36]≤0.039
0.045≤q[37]≤0.047
0.054≤q[38]≤0.056
0.062≤q[39]≤0.064
0.070≤q[40]≤0.072
0.079≤q[41]≤0.081
0.087≤q[42]≤0.089
0.096≤q[43]≤0.098
0.105≤q[44]≤0.107
0.113≤q[45]≤0.115
0.122≤q[46]≤0.124
0.132≤q[47]≤0.134
0.141≤q[48]≤0.143
0.150≤q[49]≤0.152
0.160≤q[50]≤0.162
0.170≤q[51]≤0.172
0.180≤q[52]≤0.182
0.190≤q[53]≤0.192
0.200≤q[54]≤0.202
0.210≤q[55]≤0.212
0.221≤q[56]≤0.223
0.232≤q[57]≤0.234
0.243≤q[58]≤0.245
0.254≤q[59]≤0.256
0.266≤q[60]≤0.268
0.278≤q[61]≤0.280
0.290≤q[62]≤0.292
0.303≤q[63]≤0.305
0.902≤q[64]≤0.904
0.909≤q[65]≤0.911
0.917≤q[66]≤0.919
0.924≤q[67]≤0.926
0.930≤q[68]≤0.932
0.936≤q[69]≤0.938
0.942≤q[70]≤0.944
0.947≤q[71]≤0.949
0.952≤q[72]≤0.954
0.957≤q[73]≤0.959
0.961≤q[74]≤0.963
0.965≤q[75]≤0.967
0.969≤q[76]≤0.971
0.972≤q[77]≤0.974
0.975≤q[78]≤0.977
0.978≤q[79]≤0.980
0.981≤q[80]≤0.983
0-984≤q[81]≤0.986
0-986≤q[82]≤0.988
0.988≤q[83]≤0.990
0.990≤q[84]≤0.992
0.992≤q[85]≤0.994
0.993≤q[86]≤0.995
0.995≤q[87]≤0.997
0.996≤q[88]≤0.998
0.997≤q[89]≤0.999
0.998≤q[90]≤1.000
0.999≤q[91]≤1.001
0.999≤q[92]≤1.001
1.000≤q[93]≤1.002
1.000≤q[94]≤1.002
1.000≤q[95]≤1.002
1.000≤q[96]≤1.002
1.000≤q[97]≤1.002
0.999≤q[98]≤1.001
0.999≤q[99]≤1.001
0.998≤q[100]≤1.000
0.997≤q[101]≤0.999
0.996≤q[102l≤0.998
0.995≤q[103]≤0.997
0.993≤q[104]≤0.995
0.992≤q[105]≤0.994
0.990≤q[106]≤0.992
0.988≤q[107]≤0.990
0.986≤q[108]≤0.988
0.984≤q[109]≤0.986
0.981≤q[110]≤0.983
0.978≤q[111]≤0.980
0.975≤q[112]≤0.977
0.972≤q[113]≤0.974
0.969≤q[114]≤0.971
0.965≤q[115]≤0.967
0.961≤q[116]≤0.963
0.957≤q[117]≤0.959
0.952≤q[118]≤0.954
0.947≤q[119]≤0.949
0.942≤q[120]≤0.944
0.936≤q[121]≤0.938
0.930≤q[122]≤0.932
0.924≤q[123]≤0.926
0.917≤q[124]≤0.919
0.909≤q[125]≤0.911
0.902≤q[126]≤0.904
0.893≤q[127]≤0.895
0.290≤q[128]≤0.292
0.278≤q[129]≤0.280
0.266≤q[130]≤0.268
0.254≤q[131]≤0.256
0.243≤q[132]≤0.245
0.232≤q[133]≤0.234
0.221≤q[134]≤0.223
0.210≤q[135]≤0.212
0.200≤q[136]≤0.202
0.190≤q[137]≤0.192
0.180≤q[138]≤0.182
0.170≤q[139]≤0.172
0.160≤q[140]≤0.162
0.150≤q[141]≤0.152
0.141≤q[142]≤0.143
0.132≤q[143]≤0.134
0.122≤q[144]≤0.124
0.113≤q[145]≤0.115
0.105≤q[146]≤0.107
0.096≤q[147}≤0.098
0.087≤q[148]≤0.089
0.079≤q[149]≤0.081
0.070≤q[150]≤0.072
0.062≤q[151]≤0.064
0.054≤q[152]≤0.056
0.045≤q[153]≤0.047
0.037≤q[154]≤0.039
0.029≤q[155]≤0.031
0.021≤q[156]≤0.023
0.014≤q[157]≤0.016
0.006≤q[l58]≤0.008
-0.002≤q[159]≤0.000
-0.009≤q[160]≤-0.007
-0.017≤q[161]≤-0.015
-0.024≤q[162]≤-0.022
-0.032≤q[163]≤-0.030
-0.039≤q[164]≤-0.037
-0.046≤q[165]≤-0.044
-0.054≤q[166]≤-0.052
-0.061≤q[167]≤-0.059
-0.068≤q[168]≤-0.066
-0.075≤q[169]≤-0.073
-0.082≤q[170]≤-0.080
-0.089≤q[171]≤-0.087
-0.096≤q[172]≤-0.094
-0.102≤q[173]≤-0.100
-0.109≤q[174]≤-0.107
-0.116≤q[175]≤-0.114
-0.122≤q[176]≤-0.120
-0.129≤q[177]≤-0.127
-0.135≤q[178]≤-0.133
-0.142≤q[179]≤-0.140
-0.148≤q[180]≤-0.146
-0.154≤q[181]≤-0.152
-0.160≤q[182]≤-0.158
-0.166≤q[183]≤-0.164
-0.172≤q[184]≤-0.170
-0.178≤q[185]≤-0.176
-0.183≤q[186]≤-0.181
-0.189≤q[187]≤-0.187
-0.194≤q[188]≤-0.192
-0.199≤q[189]≤-0.197
-0.204≤q[190]≤-0.202
-0.209≤q[191]≤-0.207.
13. Устройство фильтра по п.10, в котором промежуточные фильтры (190) выполнены так, что отводы g(ν) фильтра-прототипа для целых чисел ν от 0 до 191 удовлетворяют соотношениям:
-0.20294≤q[0]≤-0.20292
-0.19804≤q[1]≤-0.19802
-0.19295≤q[2]≤-0.19293
-0.18768≤q[3]≤-0.18766
-0.18226≤q[4]≤-0.18224
-0.17668≤q[5]≤-0.17666
-0.17097≤q[6]≤-0.17095
-0.16514≤q[7]≤-0.16512
-0.15919≤q[8]≤-0.15917
-0.15313≤q[9]≤-0.15311
-0.14697≤q[10]≤-0.14695
-0.14071≤q[11]≤-0.14069
-0.13437≤q[12]≤-0.13435
-0.12794≤q[13]≤-0.12792
-0.12144≤q[14]≤-0.12142
-0.11486≤q[15]≤-0.11484
-0.10821≤q[16]≤-0.10819
-0.10149≤q[17]≤-0.10147
-0.09471≤q[18l≤-0.09469
-0.08786≤q[19]≤-0.08784
-0.08095≤q[20]≤-0.08093
-0.07397≤q[2l]≤-0.07395
-0.06694≤q[22]≤-0.06692
-0.05984≤q[23]≤-0.05982
-0.05269≤q[24]≤-0.05267
-0.04547≤g[25]≤-0.04545
-0.03819≤q[26]≤-0.03817
-0.03085≤q[27]≤-0.03083
-0.02345≤q[28]≤-0.02343
-0.01598≤q[29]≤-0.01596
-0.00845≤q[30]≤-0.00843
-0.00084≤q[31]≤-0.00082
0.00683≤q[32]≤0.00685
0.01458≤q[33]≤0.01460
0.02240≤q[34]≤0.02242
0.03030≤q[35]≤0.03032
0.03828≤q[36]≤0.03830
0.04635≤q[37]≤0.04637
0.05451≤q[38]≤0.05453
0.06275≤q[39]≤0.06277
0.07110≤q[40]≤0.07112
0.07954≤q[41]≤0.07956
0.08809≤q[42]≤0.08811
0.09675≤q[43]≤0.09677
0.10552≤q[44]≤0.10554
0.11442≤q[45]≤0.11444
0.12344≤q[46]≤0.12346
0.13259≤q[47]≤0.13261
0.14189≤q[48]≤0.14191
0.15132≤q[49]≤0.15134
0.16091≤q[50]≤0.16093
0.17066≤q[51]≤0.17068
0.18058≤q[52]≤0.18060
0.19067≤q[53]≤0.19069
0.20095≤q[54]≤0.20097
0.21143≤q[55]≤0.21145
0.22211≤q[56]≤0.22213
0.23300≤q[57]≤0.23302
0.24412≤q[583≤0.24414
0.25549≤q[59]≤0-25551
0.26711≤q[60]≤0.26713
0.27899≤q[61]≤0.27901
0.29117≤q[62]≤0.29119
0.30364≤q[63]≤0.30366
0.90252≤q[64]≤0.90254
0.91035≤q[65]≤0.91037
0.91769≤q[66]≤0.91771
0.92457≤q[67]≤0.92459
0.93101≤q[68]≤0.93103
0.93705≤q[69]≤0.93707
0.94270≤q[70]≤0.94272
0.94800≤q[71]≤0.94802
0.95295≤q[72]≤0.95297
0.95758≤q[73]≤0.95760
0.96190≤q[74]≤0.96192
0.96593≤q[75]≤0.96595
0.96968≤q[76]≤0.96970
0.97317≤q[77]≤0.97319
0.97641≤q[78]≤0.97643
0.97940≤q[79]≤0.97942
0.98217≤q[80]≤0.98219
0.98472≤q[81]≤0.98474
0.98706≤q[82]≤0.98708
0.98919≤q[83]≤0.98921
0.99113≤q[84]≤0.99115
0.99288≤q[85]≤0.99290
0.99444≤q[86]≤0.99446
0.99583≤q[87]≤0.99585
0.99704≤q[88]≤0.99706
0.99809≤q[89]≤0.99811
0.99896≤q[90]≤0.99898
0.99967≤q[91]≤0.99969
1.00023≤q[92]≤1.00025
1.00062≤q[93l≤1.00064
1.00086≤q[94]≤1.00088
1.00093≤q[95]≤1.00095
1.00086≤q[96]≤1.00088
1.00062≤q[97]≤1.00064
1.00023≤q[98]≤1.00025
0.99967≤q[99]≤0.99969
0.99896≤q[100]≤0.99898
0.99809≤q[101]≤0.99811
0.99704≤q[102]≤0.99706
0.99583≤q[103]≤0.99585
0.99444≤q[104]≤0.99446
0.99288≤q[105]≤0.99290
0.99113≤q[106]≤0.99115
0.98919≤q[107]≤0.98921
0.98706≤q[108]≤0.98708
0.98472≤q[109]≤0.98474
0.98217≤q[110]≤0.98219
0.97940≤q[111]≤0.97942
0.97641≤q[112]≤0.97643
0.97317≤q[113]≤0.97319
0.96968≤q[114]≤0.96970
0.96593≤q[115]≤0.96595
0.96190≤q[116]≤0.96192
0.95758≤q[117]≤0.95760
0.95295≤q[118]≤0.95297
0.94800≤q[119]≤0.94802
0.94270≤q[120]≤0.94272
0.93705≤q[121]≤, 0.93707
0.93101≤q[122]≤0.93103
0.92457≤q[123]≤0.92459
0.91769≤q[124]≤0.91771
0.91035≤q[125]≤0.91037
0.90252≤q[126]≤0.90254
0.89416≤q[127]≤0.89418
0.29117≤q[128]≤0.29119
0.27899≤q[129]≤0.27901
0.26711≤q[130]≤0.26713
0.25549≤q[131]≤0.25551
0.24412≤q[132]≤0.24414
0.23300≤q[133]≤0.23302
0.22211≤q[134]≤0.22213
0.21143≤q[135]≤0.21145
0.20095≤q[136]≤0.20097
0.19067≤q[137]≤0.19069
0.18058≤q[138]≤0.18060
0.17066≤q[139]≤0.17068
0.16091≤q[140]≤0.16093
0.15132≤q[141]≤0.15134
0.14189≤q[142]≤0.14191
0.13259≤q[143]≤0.13261
0.12344≤q[144]≤0.12346
0.11442≤q[145]≤0.11444
0.10552≤q[146]≤0.10554
0.09675≤q[147]≤0.09677
0.08809≤q[148]≤0.08811
0.07954≤q[149]≤0.07956
0.07110≤q[150]≤0.07112
0.06275≤q[151]≤0.06277
0.05451≤q[152]≤0.05453
0.04635≤q[153]≤0.04637
0.03828≤q[154]≤0.03830
0.03030≤q[155]≤0.03032
0.02240≤q[156]≤0.02242
0.01458≤q[157]≤0.01460
0.00683≤q[158]≤0.00685
-0.00084≤q[159]≤-0.00082
-0.00845≤q[160]≤-0.00843
-0.01598≤q[161]≤-0.01596
-0.02345≤q[162]≤-0.02343
-0.03085≤q[163l≤-0.03083
-0.03819≤q[164]≤-0.03817
-0.04547≤q[165]≤-0.04545
-0.05269≤q[166]≤-0.05267
-0.05984≤q[167]≤-0.05982
-0.06694≤q[168]≤-0.06692
-0.07397≤q[169]≤-0.07395
-0.08095≤q[170]≤-0.08093
-0.08786≤q[171]≤-0.08784
-0.09471≤q[172]≤-0.09469
-0.10149≤q[173]≤-0.10147
-0.10821≤q[174]≤-0.10819
-0.11486≤q[175]≤-0.11484
-0.12144≤q[176]≤-0.12142
-0.12794≤q[177]≤-0.12792
-0.13437≤q[178]≤-0.13435
-0.14071≤q[179]≤-0.14069
-0.14697≤q[180]≤-0.14695
-0.15313≤q[181]≤-0.15311
-0.15919≤q[182]≤-0.15917
-0.16514≤q[183]≤-0.16512
-0.17097≤q[184]≤-0.17095
-0.17668≤q[185]≤-0.17666
-0.18226≤q[186]≤-0.18224
-0.18768≤q[187]≤-0.18766
-0.19295≤q[188]≤-0.19293
-0.19804≤q[189]≤-0.19802
-0.20294≤q[190]≤-0.20292
-0.20764≤q[191]≤-0.20762
14. Устройство фильтра по п.10, в котором промежуточные фильтры (190) выполнены так, что действительнозначные коэффициенты q(ν) фильтра-прототипа для целых чисел ν в диапазоне от 0 до 191 определяются следующим образом:
q[0]=-0.2029343380
q[1]=-0.1980331588
q[2]=-0.1929411519
q[3]=-0.1876744222
q[4]=-0.1822474011
q[5]=-0.1766730202
q[6]=-0.1709628636
q[7]=-0.1651273005
q[8]=-0.1591756024
q[9]=-0.1531160455
q[10]=-0.1469560005
q[11]=-0.1407020132
q[12]=-0.1343598738
q[13]=-0.1279346790
q[14]=-0.1214308876
q[15]=-0.1148523686
q[16]=-0.1082024454
q[17]=-0.1014839341
q[18]=-0.0946991783
q[19]=-0.0878500799
q[20]=-0.0809381268
q[21]=-0.0739644174
q[22]=-0.0669296831
q[23]=-0.0598343081
q[24]=-0.0526783466
q[25]=-0.0454615388
q[26]=-0.0381833249
q[27]=-0.0308428572
q[28]=-0.0234390115
q[29]=-0.0159703957
q[30]=-0.0084353584
q[31]=-0.0008319956
q[32]=0.0068418435
q[33]=0.0145885527
q[34]=0.0224107648
q[35]=0.0303113495
q[36]=0.0382934126
q[37]=0.0463602959
q[38]=0.0545155789
q[39]=0.0627630810
q[40]=0.0711068657
q[41]=0.0795512453
q[42]=0.0881007879
q[43l=0.0967603259
q[44]=0.1055349658
q[45]=0.1144301000
q[46]=0.1234514222
q[47]=0.1326049434
q[48]=0.1418970123
q[49]=0.1513343370
q[50]=0.1609240126
q[51]=0.1706735517
q[52]=0.1805909194
q[53]=0.1906845753
q[54]=0.2009635191
q[55]=0.21143734Б8
q[56]=0.2221163080
q[57]=0.2330113868
q[58]=0.2441343742
q[59]=0.2554979664
q[60]=0.2671158700
q[61]=0.2790029236
q[62]=0.2911752349
q[63]=0.3036503350
q[64]=0.9025275713
q[65]=0.9103585196
q[66]=0.9176977825
q[67]=0.9245760683
q[68]=0.9310214581
q[69]=0.9370596739
q[70]=0.9427143143
q[71]=0.9480070606
q[72]=0.9529578566
q[73]=0.9575850672
q[74]=0.9619056158
q[75]=0.9659351065
q[76]=0.9696879297
q[77]=0.9731773547
q[78]=0.9764156119
q[79l=0.9794139640
q[80]=0.9821827692
q[81]=0.9847315377
q[82]=0.9870689790
q[83]=0.9892030462
q[84]=0.9911409728
q[85]=0.9928893067
q[86]=0.9944539395
q[87]=0.9958401318
q[88]=0.9970525352
q[89]=0.9980952118
q[90]=0.9989716504
q[91]=0.9996847806
q[92]=1.0002369837
q[93]=1.0006301028
q[94]=1.0008654482
q[95]=1.0009438063
q[96]=1.0008654482
q[97]=1.0006301028
q[98]=1.0002369837
q[99]=0.9996847806
q[100]=0.9989716504
q[101]=0.9980952118
q[102]=0.9970525352
q[103]=0.9958401318
q[104]=0.9944539395
q[105]=0.9928893067
q[106]=0.9911409728
q[107]=0.9892030462
q[108]=0.9870689790
g[109]=0.9847315377
q[110]=0.9821827692
q[111]=0.9794139640
q[112]=0.9764156119
q[113]=0.9731773547
q[114]=0.9696879297
q[115]=0.9659351065
q[116]=0.9619056158
q[117]=0.9575850672
q[118]=0.9529578566
q[119]=0.9480070606
q[120]=0.9427143143
q[121]=0.9370596739
q[122]=0.9310214581
q[123]=0.9245760683
q[124]=0.9176977825
q[125]=0.9103585196
q[126]=0.9025275713
q[127]=0.8941712974
q[128]=0.2911752349
q[129]=0.2790029236
q[130]=0.2671158700
q[131]=0,2554979664
q[132]=0.2441343742
q[133]=0.2330113868
q[134]=0.2221163080
q[135]=0.2114373458
q[136]=0.2009635191
q[137]=0.1906845753
q[138]=0.1805909194
q[139]=0.1706735517
q[140]=0.1609240126
q[141]=0.1513343370
q[142]=0.1418970123
q[143]=0.1326049434
q[144]=0.1234514222
q[145]=0.1144301000
q[146]=0.1055349658
q[147]=0.0967603259
q[148]=0.0881007879
q[149]=0.0795512453
q[150]=0.0711068657
q[151]=0.0627630810
q[152]=0.0545155789
q[153]=0.0463602959
q[154]=0.0382934126
q[155]=0.0303113495
q[156]=0.0224107648
q[157]=0.0145885527
q[158]=0.0068418435
q[159]=-0.0008319956
q[160]=-0.0084353584
q[161]=-0.0159703957
q[162]=-0.0234390115
q[163]=-0.0308428572
q[164]=-0.0381833249
q[165]=-0.0454615388
q[166]=-0.0526783466
q[167]=-0.0598343081
q[168]=-0.0669296831
q[169]=-0.0739644174
q[170]=-0.0809381268
q[171]=-0.0878500799
q[172]=-0.0946991783
q[173]=-0.1014839341
q[174]=-0.1082024454
q[175]=-0.1148523686
q[176]=-0.1214308876
q[177]=-0.1279346790
q[178]=-0.1343598738
q[179]=-0.1407020132
q[180]=-0.1469560005
q[181]=-0.1531160455
q[182]=-0.1591756024
q[183]=-0.1651273005
q[184]=-0.1709628636
q[185]=-0.1766730202
q[186]=-0.1822474011
q[187]=-0.1876744222
q[188]=-0.1929411519
q[189]=-0.1980331588
q[190]=-0.2029343380
q[191]=-0.2076267137
15. Устройство фильтра по п.1, в котором характеристика фильтра основана на характеристике фильтра HRTF.
16. Устройство фильтра по п.1, в котором банк (101) фильтров комплексного анализа содержит субдискретизатор (140) для каждого субполосного сигнала, выводимого банком (101) фильтров комплексного анализа.
17. Устройство фильтра по п.16, в котором банк (101) фильтров комплексного анализа выполнен с возможностью вывода L комплексных субполосных сигналов, причем L представляет собой положительное целое число большее, чем 1, и каждый из субдискретизаторов (140) выполнен с возможностью субдискретизации субполосных сигналов с коэффициентом L.
18. Устройство фильтра по п.1, в котором банк (101) фильтров комплексного анализа содержит комплексно-модулированный фильтр для каждого комплексного субполосного сигнала, основанный на фильтре-прототипе.
19. Устройство фильтра по п.1, в котором банк (103) фильтров комплексного синтеза содержит передискретизатор (160) для каждого субполосного сигнала.
20. Устройство фильтра по п.19, в котором банк (103) фильтров комплексного синтеза выполнен с возможностью синтезирования L сигналов промежуточных фильтров для получения выходного сигнала временной области, причем L представляет собой положительное целое число большее, чем 1, банк (103) фильтров комплексного синтеза содержит L передискретизаторов (160), и каждый из передискретизаторов (160) выполнен с возможностью выполнения передискретизации выходных данных промежуточных фильтров (190) с коэффициентом L.
21. Устройство фильтра по п.1, в котором банк (103) фильтров комплексного синтеза содержит для каждого субполосного сигнала промежуточный фильтр синтеза, причем банк (103) фильтров комплексного синтеза содержит экстрактор (180) действительной части для каждого сигнала, выводимого промежуточными фильтрами (150) синтеза, и банк (103) фильтров комплексного синтеза дополнительно содержит сумматор (170) для добавления выходного сигнала каждого экстрактора (180) действительной части для получения выходного сигнала временной области.
22. Устройство фильтра по п.1, в котором банк (103) фильтров комплексного синтеза содержит промежуточный фильтр (150) синтеза для каждого субполосного сигнала, выводимого промежуточными фильтрами (190), причем банк (103) фильтров комплексного синтеза дополнительно содержит сумматор (170) для суммирования выходных сигналов каждого промежуточного фильтра (150) синтеза, и банк (103) фильтров комплексного синтеза дополнительно содержит экстрактор (180) действительной части для извлечения действительнозначного сигнала в качестве выходного сигнала временной области из выходного сигнала сумматора (170).
23. Устройство фильтра по п.1, причем устройство фильтра дополнительно содержит регулятор усиления для по меньшей мере одного субполосного сигнала или для по меньшей мере одного сигнала, выводимого промежуточным фильтром (190), для регулировки усиления.
24. Устройство фильтра по п.1, причем устройство фильтра дополнительно содержит дополнительный промежуточный фильтр для фильтрации по меньшей мере одного из комплекснозначных субполосных сигналов или для фильтрации по меньшей мере одного из сигналов, выводимых одним из промежуточных фильтров (190).
25. Способ фильтрации входного сигнала временной области для получения выходного сигнала временной области, который представляет собой представление входного сигнала временной области, отфильтрованного с использованием характеристики фильтра, имеющей неравномерную амплитудно-частотную характеристику,
содержащий этапы, на которых:
генерируют множество комплексных субполосных сигналов, основанных на комплексной фильтрации входного сигнала временной области;
осуществляют фильтрацию каждого комплексного субполосного сигнала, причем по меньшей мере один из комплексных субполосных сигналов фильтруют с использованием неравномерной амплитудно-частотной характеристики, каждый субполосный сигнал фильтруют на основании импульсной характеристики, которая короче, чем импульсная характеристика фильтра, имеющего характеристику фильтра, и неравномерная амплитудно-частотная характеристика импульсных характеристик, используемых для фильтрации множества субполосных сигналов, вместе представляют неравномерную характеристику фильтра; и синтезируют из выходных данных фильтрации комплексных субполосных сигналов выходной сигнал временной области.
RU2010136817/08A 2006-01-27 2006-09-01 Эффективная фильтрация банком комплексно-модулированных фильтров RU2453986C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76259206P 2006-01-27 2006-01-27
US60/762,592 2006-01-27
US74455906P 2006-04-10 2006-04-10
US60/744,559 2006-04-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2008134898/09A Division RU2402872C2 (ru) 2006-01-27 2006-09-01 Эффективная фильтрация банком комплексно-модулированных фильтров

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2011154389/08A Division RU2507678C2 (ru) 2006-01-27 2011-12-29 Эффективная фильтрация банком комплексно-модулированных фильтров

Publications (2)

Publication Number Publication Date
RU2010136817A true RU2010136817A (ru) 2012-03-10
RU2453986C2 RU2453986C2 (ru) 2012-06-20

Family

ID=37336292

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2010136817/08A RU2453986C2 (ru) 2006-01-27 2006-09-01 Эффективная фильтрация банком комплексно-модулированных фильтров
RU2008134898/09A RU2402872C2 (ru) 2006-01-27 2006-09-01 Эффективная фильтрация банком комплексно-модулированных фильтров
RU2011154389/08A RU2507678C2 (ru) 2006-01-27 2011-12-29 Эффективная фильтрация банком комплексно-модулированных фильтров

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2008134898/09A RU2402872C2 (ru) 2006-01-27 2006-09-01 Эффективная фильтрация банком комплексно-модулированных фильтров
RU2011154389/08A RU2507678C2 (ru) 2006-01-27 2011-12-29 Эффективная фильтрация банком комплексно-модулированных фильтров

Country Status (19)

Country Link
US (2) US7711552B2 (ru)
EP (9) EP4372743A2 (ru)
JP (3) JP5452936B2 (ru)
KR (1) KR100959971B1 (ru)
CN (3) CN101882441B (ru)
AT (1) ATE503300T1 (ru)
AU (2) AU2006336954B2 (ru)
BR (2) BRPI0621207B1 (ru)
CA (1) CA2640431C (ru)
DE (1) DE602006020930D1 (ru)
ES (5) ES2906088T3 (ru)
HK (4) HK1120938A1 (ru)
HU (5) HUE051853T2 (ru)
MY (3) MY171034A (ru)
NO (5) NO339847B1 (ru)
RU (3) RU2453986C2 (ru)
TR (1) TR201808453T4 (ru)
TW (1) TWI325685B (ru)
WO (1) WO2007085275A1 (ru)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803212B1 (ko) * 2006-01-11 2008-02-14 삼성전자주식회사 스케일러블 채널 복호화 방법 및 장치
KR100773560B1 (ko) * 2006-03-06 2007-11-05 삼성전자주식회사 스테레오 신호 생성 방법 및 장치
KR100773562B1 (ko) 2006-03-06 2007-11-07 삼성전자주식회사 스테레오 신호 생성 방법 및 장치
US7676374B2 (en) * 2006-03-28 2010-03-09 Nokia Corporation Low complexity subband-domain filtering in the case of cascaded filter banks
KR100763920B1 (ko) * 2006-08-09 2007-10-05 삼성전자주식회사 멀티채널 신호를 모노 또는 스테레오 신호로 압축한 입력신호를 2채널의 바이노럴 신호로 복호화하는 방법 및 장치
US9092408B2 (en) * 2007-08-03 2015-07-28 Sap Se Data listeners for type dependency processing
US8831936B2 (en) * 2008-05-29 2014-09-09 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for speech signal processing using spectral contrast enhancement
US8538749B2 (en) * 2008-07-18 2013-09-17 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for enhanced intelligibility
TWI621332B (zh) 2009-02-18 2018-04-11 杜比國際公司 用於高頻重建或參數立體聲之複指數調變濾波器組
US9202456B2 (en) * 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
GB2470059A (en) * 2009-05-08 2010-11-10 Nokia Corp Multi-channel audio processing using an inter-channel prediction model to form an inter-channel parameter
EP2513898B1 (en) 2009-12-16 2014-08-13 Nokia Corporation Multi-channel audio processing
US9053697B2 (en) 2010-06-01 2015-06-09 Qualcomm Incorporated Systems, methods, devices, apparatus, and computer program products for audio equalization
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter
IL298230B2 (en) 2010-09-16 2023-11-01 Dolby Int Ab A method and system for harmonic, lumped, sub-channel transposition, and enhanced by a rhetorical multiplier
EP2730026B1 (en) * 2011-05-05 2020-09-30 Cerence Operating Company Low-delay filtering
US20130162901A1 (en) 2011-12-22 2013-06-27 Silicon Image, Inc. Ringing suppression in video scalers
CN105393456B (zh) * 2013-03-26 2018-06-22 拉克伦·保罗·巴拉特 虚拟采样率增加的音频滤波
EP2984650B1 (en) * 2013-04-10 2017-05-03 Dolby Laboratories Licensing Corporation Audio data dereverberation
EP2830056A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
EP4246513A3 (en) * 2013-12-23 2023-12-13 Wilus Institute of Standards and Technology Inc. Audio signal processing method and parameterization device for same
TWI559781B (zh) * 2014-08-21 2016-11-21 國立交通大學 壓電揚聲器驅動系統和其驅動方法
CN106297813A (zh) 2015-05-28 2017-01-04 杜比实验室特许公司 分离的音频分析和处理
RU2630161C1 (ru) * 2016-02-18 2017-09-05 Закрытое акционерное общество "Современные беспроводные технологии" Устройство подавления боковых лепестков при импульсном сжатии многофазных кодов Р3 и Р4 (варианты)
EP3501149B1 (en) 2016-08-31 2020-05-13 Huawei Technologies Duesseldorf GmbH Filtered multi-carrier communications
US10757501B2 (en) 2018-05-01 2020-08-25 Facebook Technologies, Llc Hybrid audio system for eyewear devices
US10658995B1 (en) * 2019-01-15 2020-05-19 Facebook Technologies, Llc Calibration of bone conduction transducer assembly
WO2021046136A1 (en) * 2019-09-03 2021-03-11 Dolby Laboratories Licensing Corporation Audio filterbank with decorrelating components
KR102301538B1 (ko) * 2020-02-12 2021-09-13 국방과학연구소 신호 필터링 장치 및 방법
US11678103B2 (en) 2021-09-14 2023-06-13 Meta Platforms Technologies, Llc Audio system with tissue transducer driven by air conduction transducer
US11889280B2 (en) * 2021-10-05 2024-01-30 Cirrus Logic Inc. Filters and filter chains
CA3240986A1 (en) 2021-12-20 2023-06-29 Dolby International Ab Ivas spar filter bank in qmf domain
CN117275446B (zh) * 2023-11-21 2024-01-23 电子科技大学 一种基于声音事件检测的交互式有源噪声控制系统及方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2065666C1 (ru) * 1991-05-20 1996-08-20 Московский институт радиотехники, электроники и автоматики Устройство для разделения двух частотно-модулированных сигналов с перекрывающимися спектрами
FR2680924B1 (fr) * 1991-09-03 1997-06-06 France Telecom Procede de filtrage adapte d'un signal transforme en sous-bandes, et dispositif de filtrage correspondant.
US5995539A (en) * 1993-03-17 1999-11-30 Miller; William J. Method and apparatus for signal transmission and reception
KR970009469B1 (ko) * 1993-06-05 1997-06-13 삼성전자 주식회사 더블스무딩(Double Smoothing) 기능을 갖는 비월/순차주사변환장치 및 그 방법
RU94041091A (ru) * 1994-11-09 1996-09-27 Военная академия противовоздушной обороны имени маршала Советского Союза Жукова Г.К. Приемник линейно-частотно-модулированных сигналов
WO1997010586A1 (en) * 1995-09-14 1997-03-20 Ericsson Inc. System for adaptively filtering audio signals to enhance speech intelligibility in noisy environmental conditions
KR0147758B1 (ko) * 1995-09-25 1998-12-01 이준 Mpeg-2 오디오 복호화기의 합성 필터
US5848108A (en) * 1996-11-29 1998-12-08 Northern Telecom Limited Selective filtering for co-channel interference reduction
US6236731B1 (en) * 1997-04-16 2001-05-22 Dspfactory Ltd. Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids
US6466918B1 (en) * 1999-11-18 2002-10-15 Amazon. Com, Inc. System and method for exposing popular nodes within a browse tree
US6704729B1 (en) * 2000-05-19 2004-03-09 Microsoft Corporation Retrieval of relevant information categories
SE0001926D0 (sv) 2000-05-23 2000-05-23 Lars Liljeryd Improved spectral translation/folding in the subband domain
US7230910B2 (en) * 2001-01-30 2007-06-12 Lucent Technologies Inc. Optimal channel sounding system
SE0101175D0 (sv) * 2001-04-02 2001-04-02 Coding Technologies Sweden Ab Aliasing reduction using complex-exponential-modulated filterbanks
TW538328B (en) * 2001-04-27 2003-06-21 Mykrolis Corp System and method for filtering output in mass flow controllers and mass flow meters
SE0202159D0 (sv) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
CA2354808A1 (en) * 2001-08-07 2003-02-07 King Tam Sub-band adaptive signal processing in an oversampled filterbank
CN2507187Y (zh) * 2001-09-19 2002-08-21 李清权 中压变频调速装置
US7693570B2 (en) 2002-04-25 2010-04-06 Fonar Corporation Magnetic resonance imaging with adjustable fixture apparatus
BRPI0311601B8 (pt) * 2002-07-19 2018-02-14 Matsushita Electric Ind Co Ltd "aparelho e método decodificador de áudio"
US7454209B2 (en) * 2002-09-05 2008-11-18 Qualcomm Incorporated Adapting operation of a communication filter based on mobile unit velocity
SE0301273D0 (sv) * 2003-04-30 2003-04-30 Coding Technologies Sweden Ab Advanced processing based on a complex-exponential-modulated filterbank and adaptive time signalling methods
JP4396233B2 (ja) * 2003-11-13 2010-01-13 パナソニック株式会社 複素指数変調フィルタバンクの信号分析方法、信号合成方法、そのプログラム及びその記録媒体
DE10361037A1 (de) * 2003-12-23 2005-07-28 Infineon Technologies Ag Verfahren und Vorrichtung zur Demodulation eines phasenmodulierten Signals
US6980933B2 (en) * 2004-01-27 2005-12-27 Dolby Laboratories Licensing Corporation Coding techniques using estimated spectral magnitude and phase derived from MDCT coefficients
US7366746B2 (en) * 2004-02-12 2008-04-29 Xerox Corporation Finite impulse response filter method and apparatus

Also Published As

Publication number Publication date
NO339847B1 (no) 2017-02-06
EP4178110B1 (en) 2024-04-24
CN101401305A (zh) 2009-04-01
EP2337223A2 (en) 2011-06-22
EP3334043B1 (en) 2019-07-31
ES2940283T3 (es) 2023-05-05
JP2009524956A (ja) 2009-07-02
CN101401305B (zh) 2012-05-23
WO2007085275A1 (en) 2007-08-02
EP3754846A1 (en) 2020-12-23
BR122018017208B1 (pt) 2019-06-11
HK1256315B (zh) 2020-07-17
AU2010257205B2 (en) 2014-04-03
CN101882441A (zh) 2010-11-10
NO344514B1 (no) 2020-01-20
ES2821413T3 (es) 2021-04-26
EP4372743A2 (en) 2024-05-22
CA2640431C (en) 2012-11-06
NO20161716A1 (no) 2008-08-26
JP5453222B2 (ja) 2014-03-26
HK1150687A1 (en) 2012-01-06
NO20083675L (no) 2008-08-26
AU2006336954A1 (en) 2007-08-02
EP3454471A1 (en) 2019-03-13
JP2011103663A (ja) 2011-05-26
RU2008134898A (ru) 2010-03-10
MY171034A (en) 2019-09-23
EP1977510B1 (en) 2011-03-23
HK1149646A1 (en) 2011-10-07
AU2010257205A1 (en) 2011-01-13
HUE061488T2 (hu) 2023-07-28
JP5452936B2 (ja) 2014-03-26
EP4178110A1 (en) 2023-05-10
CN102158198A (zh) 2011-08-17
NO342467B1 (no) 2018-05-28
ES2906088T3 (es) 2022-04-13
TR201808453T4 (tr) 2018-07-23
ATE503300T1 (de) 2011-04-15
EP2337223B1 (en) 2014-12-24
US7711552B2 (en) 2010-05-04
EP3334043A1 (en) 2018-06-13
US20100174767A1 (en) 2010-07-08
US20070179781A1 (en) 2007-08-02
MY144430A (en) 2011-09-15
TW200729708A (en) 2007-08-01
NO343578B1 (no) 2019-04-08
NO20180533A1 (no) 2008-08-26
RU2011154389A (ru) 2013-07-10
TWI325685B (en) 2010-06-01
KR20080095867A (ko) 2008-10-29
HUE051853T2 (hu) 2021-03-29
MY154144A (en) 2015-05-15
CA2640431A1 (en) 2007-08-02
DE602006020930D1 (de) 2011-05-05
HK1120938A1 (en) 2009-04-09
KR100959971B1 (ko) 2010-05-27
EP1977510A1 (en) 2008-10-08
BRPI0621207B1 (pt) 2020-03-03
BRPI0621207A2 (pt) 2013-10-29
ES2750304T3 (es) 2020-03-25
NO20180322A1 (no) 2008-08-26
RU2507678C2 (ru) 2014-02-20
US8315859B2 (en) 2012-11-20
NO20161718A1 (no) 2008-08-26
RU2453986C2 (ru) 2012-06-20
EP2306644A1 (en) 2011-04-06
RU2402872C2 (ru) 2010-10-27
EP3979497B1 (en) 2023-01-04
ES2672811T3 (es) 2018-06-18
EP3454471B1 (en) 2020-08-26
EP3754846B1 (en) 2021-12-15
HUE039217T2 (hu) 2018-12-28
HUE045751T2 (hu) 2020-01-28
NO342163B1 (no) 2018-04-09
EP2337223A3 (en) 2012-01-25
JP2011103662A (ja) 2011-05-26
CN102158198B (zh) 2015-04-01
CN101882441B (zh) 2013-02-27
HUE057622T2 (hu) 2022-05-28
EP3979497A1 (en) 2022-04-06
AU2006336954B2 (en) 2011-02-03
EP2306644B1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
RU2010136817A (ru) Эффективная фильтрация банком комплексно-модулированных фильтров
Selesnick On the dual-tree complex wavelet packet and $ M $-band transforms
Vonesch et al. Generalized Daubechies wavelet families
DE602006000399T2 (de) Teilweise komplexmodulierte filterbank
US5262958A (en) Spline-wavelet signal analyzers and methods for processing signals
Pan Gibbs phenomenon removal and digital filtering directly through the fast Fourier transform
CN101014997B (zh) 用于生成用于自动语音识别器的训练数据的方法和系统
RU2011134419A (ru) Блок модулированных фильтров с малым запаздыванием
RU2002134479A (ru) Усовершенствованное преобразование спектра/свертка в области поддиапазонов
RU2009107093A (ru) Устройство и способ для обработки действительного сигнала поддиапазона для ослабления эффектов наложения спектров
CN106575508A (zh) 音频信号的数字封装
CN100358239C (zh) 数字滤波器及其设计方法
Kuenzle et al. 3-D IIR filtering using decimated DFT-polyphase filter bank structures
Lin et al. Auditory filter bank design using masking curves.
Marsh Digital filtering of auditory evoked potentials
Evangelista et al. The discrete-time frequency warped wavelet transforms
Chakrabarti et al. An IFIR approach for designing M-band NPR Cosine Modulated Filter Bank with CSD
Polotti et al. Analysis and Synthesis of Pseudo-Periodic-Like Noise by Means of Wavelets with Applications to Digital Audio
DE102007040207A1 (de) Verfahren zur Fourier-Analyse
Bregović Optimal design of perfect-reconstruction and nearly perfect-reconstruction multirate filter banks
Yiyan Equalization Filter Algorithm of Music Signal Based on Time-Frequency Domain Analysis
CN101807902B (zh) 复系数线性相位无限脉冲响应数字滤波器
Agerkvist Time-frequency analysis with temporal and spectral resolution as the human auditory system
Vollmer et al. A novel approach to an IIR digital filter bank with approximately linear phase
DE102006053508A1 (de) Verfahren zur digitalen Signalverarbeitung