RU2005129648A - Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер - Google Patents

Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер Download PDF

Info

Publication number
RU2005129648A
RU2005129648A RU2005129648/28A RU2005129648A RU2005129648A RU 2005129648 A RU2005129648 A RU 2005129648A RU 2005129648/28 A RU2005129648/28 A RU 2005129648/28A RU 2005129648 A RU2005129648 A RU 2005129648A RU 2005129648 A RU2005129648 A RU 2005129648A
Authority
RU
Russia
Prior art keywords
fiber
core
oxygen
radiation
glass
Prior art date
Application number
RU2005129648/28A
Other languages
English (en)
Other versions
RU2302066C1 (ru
Inventor
Евгений Михайлович Дианов (RU)
Евгений Михайлович Дианов
Владислав Владимирович Двойрин (RU)
Владислав Владимирович Двойрин
Валерий Михайлович Машинский (RU)
Валерий Михайлович Машинский
нов Алексей Николаевич Гурь (RU)
Алексей Николаевич Гурьянов
Андрей Александрович Умников (RU)
Андрей Александрович Умников
Original Assignee
Научный центр волоконной оптики при Институте общей физики им. А.М. Прохорова Российской академии наук (RU)
Научный центр волоконной оптики при Институте общей физики им. А.М. Прохорова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научный центр волоконной оптики при Институте общей физики им. А.М. Прохорова Российской академии наук (RU), Научный центр волоконной оптики при Институте общей физики им. А.М. Прохорова Российской академии наук filed Critical Научный центр волоконной оптики при Институте общей физики им. А.М. Прохорова Российской академии наук (RU)
Priority to RU2005129648/28A priority Critical patent/RU2302066C1/ru
Priority to PCT/RU2006/000475 priority patent/WO2007035131A2/en
Priority to CA002622983A priority patent/CA2622983A1/en
Priority to EP06799672.8A priority patent/EP1927167B1/en
Priority to US12/067,698 priority patent/US8509588B2/en
Priority to CN2006800350615A priority patent/CN101351934B/zh
Priority to JP2008532183A priority patent/JP2009509354A/ja
Publication of RU2005129648A publication Critical patent/RU2005129648A/ru
Application granted granted Critical
Publication of RU2302066C1 publication Critical patent/RU2302066C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/048Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/60Silica-free oxide glasses
    • C03B2201/78Silica-free oxide glasses containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Claims (20)

1. Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, содержащий сердцевину из оксидного стекла, содержащую оксиды элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, и обеспечивающую оптическое усиление, и по меньшей мере одну оболочку из оксидного стекла, отличающийся тем, что сердцевина содержит оксиды элементов, выбранных из группы, состоящей из кремния, германия, фосфора, висмута, алюминия, галлия, при этом концентрация оксида висмута составляет 10-4-5 мол.%, концентрация оксидов кремния и германия, взятых вместе или по отдельности, составляет 70-99,8999 мол.%, концентрация оксидов алюминия и галлия, взятых вместе или по отдельности, составляет 0,1-20 мол.%, концентрация оксида фосфора составляет от 0 до 10 мол.%, и обеспечивает максимальный коэффициент оптического усиления по меньшей мере в 10 раз превышающий коэффициент нерезонансных потерь в волоконном световоде, внешняя оболочка из оксидного стекла состоит из кварцевого стекла, при этом сердцевина волоконного световода обеспечивает люминесценцию в области 1000-1700 нм при возбуждении излучением с длинами волн в пределах 750-1200 нм с шириной полосы люминесценции на половине высоты более 120 нм, границы полосы люминесценции определяются как точки, в которых интенсивность люминесценции падает в два раза по отношению к интенсивности в максимуме полосы люминесценции, и находятся внутри спектрального диапазона 1000-1700 нм, причем сердцевина имеет полосу поглощения в области 1000 нм, накачка в которую обеспечивает повышение энергетического преобразования излучения накачки в излучение люминесценции в указанном диапазоне 1000-1700 нм по сравнению с накачкой в другие полосы поглощения.
2. Волоконный световод по п.1, отличающийся тем, что содержит внешнюю защитную полимерную оболочку.
3. Волоконный световод по п.1, отличающийся тем, что относительная концентрация оксида кремния и оксида германия изменяется в пределах от 0 до 100%.
4. Волоконный световод по п.1, отличающийся тем, что относительная концентрация оксида алюминия и оксида галлия изменяется в пределах от 0 до 100%.
5. Волоконный световод по п.1, отличающийся тем, что положение полосы оптического усиления волоконного световода определяется соотношением концентраций оксидов кремния и германия в составе стекла сердцевины, так что увеличение концентрации оксида германия приводит к сдвигу полосы оптического усиления в длинноволновую область.
6. Волоконный световод по п.2, отличающийся тем, что показатель преломления внешней защитной полимерной оболочки меньше, чем показатель преломления внешней оболочки из кварцевого стекла, для обеспечения распространения излучения накачки по сердцевине и оболочке волоконного световода.
7. Волоконный световод по п.2, отличающийся тем, что показатель преломления внешней защитной полимерной оболочки больше, чем показатель преломления внешней оболочки из кварцевого стекла, для обеспечения распространения излучения только по сердцевине волоконного световода.
8. Способ изготовления волоконного световода для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, заключающийся в том, что изготавливают заготовку волоконного световода методом химического осаждения из газовой фазы оксидов, формирующих сердцевину и образующихся при взаимодействии кислорода с парами хлоридов элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, на внутреннюю поверхность трубы из кварцевого стекла, служащую оболочкой, для чего пропускают через трубу из кварцевого стекла кислород и пары хлоридов указанных элементов при температуре 1700-2000оС и подвергают трубу последующему сжатию под действием сил поверхностного натяжения при температуре 2000-2100оС для получения заготовки световода в виде сплошного стержня, из которого затем вытягивают световод, отличающийся тем, что дополнительно одновременно с указанными хлоридами пропускают через трубу из кварцевого стекла пары хлорида висмута при парциальном давлении 10-35 мм рт.ст., для чего твердый хлорид висмута нагревают до температуры 70-200°С и образующиеся пары вводят в основной поток хлоридов указанных элементов, в котором при взаимодействии кислорода с парами хлорида висмута образуется оксид висмута, чем достигают легирования стекла сердцевины оксидом висмута.
9. Способ по п.8, отличающийся тем, что способ химического осаждения из газовой фазы выбран из группы, состоящей из модифицированного метода химического осаждения из газовой фазы MCVD), плазменного метода осаждения из газовой фазы (PCVD) и его модификации (SPCVD).
10. Способ изготовления волоконного световода для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, заключающийся в том, что изготавливают заготовку волоконного световода модифицированным методом химического осаждения из газовой фазы оксидов, формирующих сердцевину и образующихся при взаимодействии кислорода с парами хлоридов элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, на внутреннюю поверхность трубы из кварцевого стекла, служащую оболочкой, для чего пропускают через трубу из кварцевого стекла кислород и пары хлоридов указанных элементов при температуре 1700-2000°С и получают на внутренней поверхности трубы пористый слой стекла, формирующего сердцевину, отличающийся тем, что заливают внутрь трубы раствор нитрата висмута в концентрированной азотной кислоте (50-90% HNO3) при концентрации нитрата висмута в растворе 0,01-0,5 моль/л и выдерживают в течение 1-3 ч, после чего растворитель - азотную кислоту и воду - высушивают при комнатной температуре в потоке кислорода и азота, затем трубу нагревают в потоке кислорода, азота и хлорсодержащих реагентов до температуры 1700-2000°С для преобразования пористого слоя стекла в сплошной слой,
подвергают трубу последующему сжатию под действием сил поверхностного натяжения при температуре 2000-2100°С для получения заготовки световода в виде сплошного стержня, из которого затем вытягивают световод.
11. Способ изготовления волоконного световода для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, заключающийся в том, что изготавливают заготовку волоконного световода методом внешнего химического осаждения из газовой фазы, для чего формируют сердцевину заготовки осаждением из газовой фазы оксидов, образующихся при взаимодействии кислорода с парами хлоридов элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, на поверхность керамического стержня при температуре 1300-1500оС в виде мелкодисперсных частиц, образующих пористое стекло, затем формируют слои оболочки, для чего уменьшают концентрацию подаваемых хлоридов указанных элементов, при этом сохраняют концентрацию хлорида кремния, охлаждают заготовку волоконного световода до комнатной температуры и снимают ее с керамического стержня, затем заготовку нагревают в атмосфере кислорода, гелия и хлорсодержащих реагентов до температуры 1400-1600°С для преобразования пористого стекла в сплошное стекло, и затем вытягивают световод, отличающийся тем, что при формировании сердцевины легируют сердцевину волоконного световода оксидом висмута, для чего твердый хлорид висмута нагревают до температуры 70-200°С и образующиеся пары хлорида висмута при парциальном давлении 10-35 мм рт.ст. вводят в основной поток хлоридов указанных элементов, в котором при взаимодействии кислорода с парами хлорида висмута образуется оксид висмута, осаждающийся вместе с оксидами указанных элементов.
12. Способ изготовления волоконного световода для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, заключающийся в том, что изготавливают заготовку волоконного световода методом внешнего химического осаждения из газовой фазы, для чего формируют сердцевину заготовки осаждением из газовой фазы оксидов, образующихся при взаимодействии кислорода с парами хлоридов элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, на поверхность керамического стержня при температуре 1300-1500°С в виде мелкодисперсных частиц, образующих пористое стекло, затем формируют слои оболочки, для чего уменьшают концентрацию подаваемых хлоридов указанных элементов, при этом сохраняют концентрацию хлорида кремния, охлаждают заготовку волоконного световода до комнатной температуры и снимают ее с керамического стержня, затем заготовку нагревают в атмосфере кислорода, гелия и хлорсодержащих реагентов до температуры 1400-1600°С для преобразования пористого стекла в сплошное стекло, и затем вытягивают световод, отличающийся тем, что после формирования сердцевины стержень совместно с сердцевиной в виде пористого стекла охлаждают до комнатной температуры и погружают в раствор нитрата висмута в концентрированной азотной кислоте (50-90% HNO3) при концентрации нитрата висмута в растворе 0,01-0,5 моль/л и выдерживают в течение 1-3 ч, после чего растворитель - азотную кислоту и воду - высушивают при комнатной температуре в потоке кислорода и азота, а затем переходят на стадию формирования оболочки.
13. Способ изготовления волоконного световода для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, заключающийся в том, что изготавливают заготовку волоконного световода методом аксиального химического осаждения из газовой фазы, для чего формируют сердцевину и оболочку в виде стержня осаждением из газовой фазы оксидов, образующихся в пламени коаксиальной горелки при взаимодействии кислорода с парами хлоридов элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, на торцевую поверхность растущей заготовки при температуре 1300-1500°С в виде мелкодисперсных частиц, образующих пористое стекло, при этом профиль показателя преломления задают регулированием пространственного распределения концентрации указанных хлоридов, подаваемых в пламя коаксиальной горелки, затем стержень из пористого стекла нагревают в атмосфере кислорода, гелия и хлорсодержащих реагентов до температуры 1400-1600°С для преобразования пористого стекла в сплошное стекло с получением заготовки, из которой затем вытягивают световод, отличающийся тем, что при формировании заготовки легируют сердцевину оксидом висмута, для чего твердый хлорид висмута нагревают до температуры 70-200°С и образующиеся пары хлорида висмута при парциальном давлении 10-35 мм рт.ст. вводят в основной поток хлоридов указанных элементов в центральную часть коаксиальной горелки, при этом в основном потоке при взаимодействии кислорода с парами хлорида висмута образуется оксид висмута, осаждающийся вместе с оксидами указанных элементов.
14. Способ изготовления волоконного световода для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, заключающийся в том, что изготавливают заготовку волоконного световода методом аксиального химического осаждения из газовой фазы, для чего формируют сердцевину в виде стержня осаждением из газовой фазы оксидов, образующихся в пламени коаксиальной горелки при взаимодействии кислорода с парами хлоридов элементов, выбранных из группы, состоящей из кремния, германия, фосфора, алюминия, галлия, на торцевую поверхность растущей заготовки при температуре 1300-1500°С в виде мелкодисперсных частиц, образующих пористое стекло, отличающийся тем, что после формирования сердцевины в виде пористого стекла ее охлаждают до комнатной температуры и погружают в раствор нитрата висмута в концентрированной азотной кислоте (50-90% HNO3) при концентрации нитрата висмута в растворе 0,01-0,5 моль/л и выдерживают в течение 1-3 ч, после чего растворитель - азотную кислоту и воду - высушивают при комнатной температуре в потоке кислорода и азота, затем сердцевину из пористого стекла нагревают в атмосфере кислорода, гелия и хлорсодержащих реагентов до температуры 1400-1600оС для преобразования стержня из пористого стекла в стержень из сплошного стекла, затем формируют оболочку и получают заготовку, из которой затем вытягивают световод.
15. Способ по п.14, отличающийся тем, что формируют оболочку методом внешнего химического осаждения из газовой фазы, для чего осаждают из газовой фазы оксид кремния, образующийся при взаимодействии кислорода с парами хлорида кремния на поверхность стержня сердцевины при температуре 1300-1500оС в виде мелкодисперсных частиц, образующих пористое стекло, которое затем нагревают в атмосфере кислорода, гелия и хлорсодержащих реагентов до температуры 1400-1600оС для преобразования пористого стекла в сплошное стекло.
16. Способ по п.14, отличающийся тем, что формируют оболочку путем введения стержня сердцевины в полость кварцевой трубы и подвергают трубу последующему сжатию под действием сил поверхностного натяжения при температуре 2000-2100оС для получения заготовки световода в виде сплошного стержня.
17. Волоконный лазер для генерирования оптического излучения с длиной волны, находящейся в диапазоне длин волн в пределах от 1000 до 1700 нм, содержащий по меньшей мере один волоконный световод для усиления оптического излучения лазера, источник оптической накачки, устройство для ввода излучения накачки в указанный волоконный световод, резонатор оптического излучения, обеспечивающий многократное прохождение генерируемого лазером излучения по указанному световоду, устройство вывода генерируемого излучения из резонатора, отличающийся тем, что в качестве волоконного световода для усиления оптического излучения лазера использован волоконный световод, выполненный по любому из пп.1-7.
18. Волоконный лазер по п.17, отличающийся тем, что длины волн излучения накачки находятся в диапазоне 750-1200 нм.
19. Волоконный лазер по п.17, отличающийся тем, что длины волн излучения накачки, обеспечивающие наиболее высокую эффективность генерации, находятся в диапазоне 850-1100 нм.
20. Волоконный лазер по п.17, отличающийся тем, что содержит по меньшей мере одну брэгговскую решетку, записанную на сердцевине волоконного световода по любому из пп.1-7.
RU2005129648/28A 2005-09-22 2005-09-22 Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер RU2302066C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2005129648/28A RU2302066C1 (ru) 2005-09-22 2005-09-22 Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер
PCT/RU2006/000475 WO2007035131A2 (en) 2005-09-22 2006-09-08 Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
CA002622983A CA2622983A1 (en) 2005-09-22 2006-09-08 Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
EP06799672.8A EP1927167B1 (en) 2005-09-22 2006-09-08 Method of fabrication an amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm
US12/067,698 US8509588B2 (en) 2005-09-22 2006-09-08 Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
CN2006800350615A CN101351934B (zh) 2005-09-22 2006-09-08 在1000-1700nm的波长范围工作的放大光纤,其制备方法和纤维激光器
JP2008532183A JP2009509354A (ja) 2005-09-22 2006-09-08 1000〜1700nmの範囲の波長で動作する増幅光ファイバ、同製造方法、およびファイバレーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005129648/28A RU2302066C1 (ru) 2005-09-22 2005-09-22 Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер

Publications (2)

Publication Number Publication Date
RU2005129648A true RU2005129648A (ru) 2007-03-27
RU2302066C1 RU2302066C1 (ru) 2007-06-27

Family

ID=37622025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005129648/28A RU2302066C1 (ru) 2005-09-22 2005-09-22 Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер

Country Status (7)

Country Link
US (1) US8509588B2 (ru)
EP (1) EP1927167B1 (ru)
JP (1) JP2009509354A (ru)
CN (1) CN101351934B (ru)
CA (1) CA2622983A1 (ru)
RU (1) RU2302066C1 (ru)
WO (1) WO2007035131A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036592A2 (ru) * 2010-09-15 2012-03-22 Общество С Ограниченной Ответственностью "Димонта" Оптическое стекло, обладающее способностью к люминесценции в диапазоне 1000-1700 нм, способы получения такого стекла (варианты) и волоконный световод

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032391B3 (de) 2007-07-12 2009-01-22 Belchem Fiber Materials Gmbh Hochtemperaturbeständige anorganische Faser auf Kieselsäurebasis sowie Verfahren zur Herstellung und Verwendung derselben
JP2010199563A (ja) * 2009-01-27 2010-09-09 Fujikura Ltd 光増幅器及び共振器
US8019190B2 (en) * 2009-03-30 2011-09-13 General Electric Company Optical sensors, systems, and methods of making
JP6085788B2 (ja) * 2012-11-27 2017-03-01 フォトニックサイエンステクノロジ株式会社 遮光ファイバ、バンドルファイバ、遮光ファイバ製造方法、及びバンドルファイバ製造方法
CN103601364B (zh) * 2013-11-16 2016-01-13 华中科技大学 成分和价态可控的掺铋石英光纤制备方法及掺铋石英光纤
RU2542019C1 (ru) * 2013-11-26 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарёва" Способ получения стекла
WO2016044539A1 (en) * 2014-09-18 2016-03-24 Ortho-Clinical Diagnostics, Inc. Fluorescent standard device and method of use
CN104609722B (zh) * 2015-01-19 2017-02-22 华南理工大学 一种管‑熔体共拉铋掺杂光纤的制备方法
RU2605711C2 (ru) * 2015-05-12 2016-12-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ изготовления люминесцентного висмутсодержащего кварцоидного материала на основе высококремнеземного пористого стекла
CN105068178B (zh) * 2015-07-17 2018-02-27 华南理工大学 一种近红外发光铋掺杂多组分光纤及制备方法
CN105837025B (zh) * 2016-04-21 2018-12-11 烽火通信科技股份有限公司 高效制备掺杂光纤预制棒的方法及掺杂光纤预制棒
EP3463881A4 (en) * 2016-06-06 2020-01-15 Lawrence Livermore National Security, LLC GLASS COMPONENTS WITH CUSTOMIZED COMPOSITION PROFILES AND METHOD FOR THE PRODUCTION THEREOF
EP3479444B1 (en) * 2016-07-01 2022-12-28 IPG Photonics Corporation Fiber laser system with mechanism for inducing parasitic light losses
US9905989B1 (en) * 2016-07-25 2018-02-27 Bae Systems Information And Electronic Systems Integration Inc. Method for high-rate fiber laser manufacturing
RU2627547C1 (ru) * 2016-08-16 2017-08-08 Федеральное государственное бюджетное учреждение науки Научный центр волоконной оптики Российской академии наук (НЦВО РАН) ВОЛОКОННЫЙ СВЕТОВОД ДЛЯ УСИЛЕНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ В СПЕКТРАЛЬНОЙ ОБЛАСТИ 1500-1800 нм, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ШИРОКОПОЛОСНЫЙ ВОЛОКОННЫЙ УСИЛИТЕЛЬ
CN109052972B (zh) * 2018-08-31 2021-07-30 北京涑水科技有限公司 掺铋石英光纤预制棒及其制备方法
CN109143459B (zh) * 2018-09-04 2019-12-27 同济大学 一种稀土离子掺杂的低温石榴石晶棒的包层方法
EP3850714A4 (en) * 2018-09-13 2022-06-29 Ofs Fitel Llc Bismuth doped fiber amplifier
WO2024030178A1 (en) * 2022-08-02 2024-02-08 Ofs Fitel, Llc Fiber laser pumping of bismuth-doped fiber amplifier
US20240132363A1 (en) * 2022-10-20 2024-04-25 Huawei Technologies Canada Co., Ltd. Bismuth-doped germanosilicate fiber for e and s band amplification
CN116354598A (zh) * 2023-03-01 2023-06-30 华南理工大学 一种用作增益介质的铋镓共掺增益光纤及其制备方法
CN116375349A (zh) * 2023-03-21 2023-07-04 华南理工大学 一种具有l+u波段高效宽带发射的铋掺杂锗硅酸盐玻璃光纤及其制备方法和应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120539A (en) * 1980-02-22 1981-09-21 Nippon Telegr & Teleph Corp <Ntt> Optical transmission glass fiber and its manufacture
JPS61266318A (ja) * 1985-05-20 1986-11-26 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法
DE3521119A1 (de) 1985-06-13 1986-12-18 Heraeus Quarzschmelze Gmbh, 6450 Hanau Verfahren zur herstellung einer vorform fuer optische fasern und verwendung eines rohres aus quarzglas bzw. dotiertem quarzglas zur herstellung einer solchen vorform
JPH03132726A (ja) * 1989-10-19 1991-06-06 Fujikura Ltd 希土類元素添加光ファイバ
US5059230A (en) 1990-01-22 1991-10-22 At&T Bell Laboratories Fabrication of doped filament optical fibers
US5647038A (en) * 1995-08-30 1997-07-08 Hughes Aircraft Company Narrow bandwidth Bragg grating reflector for use in an optical waveguide
JP4044200B2 (ja) 1997-03-06 2008-02-06 三菱電線工業株式会社 ビスマスドープ石英ガラス、その製造方法、そのガラスを用いた光ファイバ、および光増幅器
JP4740431B2 (ja) * 1998-10-28 2011-08-03 スリーエム カンパニー 光ファイバ及びその製造方法
JP2000143273A (ja) * 1998-10-30 2000-05-23 Fujikura Ltd 光ファイバ母材の製造方法
CA2293132C (en) * 1999-12-24 2007-03-06 Jocelyn Lauzon Triple-clad rare-earth doped optical fiber and applications
US20020041750A1 (en) * 2000-06-20 2002-04-11 Chacon Lisa C. Rare earth element-doped, Bi-Sb-Al-Si glass and its use in optical amplifiers
US7515802B2 (en) * 2001-09-10 2009-04-07 Schott Ag Glass fibre with at least two glass layers
AR040241A1 (es) * 2002-06-10 2005-03-23 Merck & Co Inc Inhibidores de la 11-beta-hidroxiesteroide deshidrogrenasa 1 para el tratamiento de la diabetes obesidad y dislipidemia
JP4114410B2 (ja) 2002-06-18 2008-07-09 日本板硝子株式会社 光増幅ガラスファイバ
JP2004196649A (ja) * 2002-12-06 2004-07-15 Sumitomo Electric Ind Ltd 蛍光性ガラス、光増幅用導波路および光増幅モジュール
US6792187B2 (en) * 2002-12-17 2004-09-14 Corning Incorporated Ca-Al-Si oxide glasses and optical components containing the same
EP1590304A1 (en) * 2002-12-31 2005-11-02 Corning Incorporated GLASS CERAMICS BASED ON ZnO
US6985662B2 (en) * 2003-10-30 2006-01-10 Corning Incorporated Dispersion compensating fiber for moderate dispersion NZDSF and transmission system utilizing same
US7298768B1 (en) * 2004-11-16 2007-11-20 Np Photonics, Inc Thulium-doped heavy metal oxide glasses for 2UM lasers
JP4875301B2 (ja) * 2005-01-21 2012-02-15 古河電気工業株式会社 希土類添加光ファイバ母材の製造方法
JP2007063095A (ja) * 2005-09-01 2007-03-15 Sumitomo Electric Ind Ltd ガラス体製造方法及び光ファイバ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036592A2 (ru) * 2010-09-15 2012-03-22 Общество С Ограниченной Ответственностью "Димонта" Оптическое стекло, обладающее способностью к люминесценции в диапазоне 1000-1700 нм, способы получения такого стекла (варианты) и волоконный световод
WO2012036592A3 (ru) * 2010-09-15 2012-05-10 Общество С Ограниченной Ответственностью "Димонта" Оптическое стекло, способы получения (варианты) и волоконный световод

Also Published As

Publication number Publication date
CA2622983A1 (en) 2007-03-29
US8509588B2 (en) 2013-08-13
WO2007035131A2 (en) 2007-03-29
CN101351934B (zh) 2011-05-25
JP2009509354A (ja) 2009-03-05
CN101351934A (zh) 2009-01-21
WO2007035131A3 (en) 2007-10-04
RU2302066C1 (ru) 2007-06-27
EP1927167A2 (en) 2008-06-04
US20090116809A1 (en) 2009-05-07
EP1927167B1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
RU2005129648A (ru) Волоконный световод для оптического усиления излучения на длине волны в диапазоне 1000-1700 нм, способы его изготовления и волоконный лазер
JP5746247B2 (ja) 希土類がドープされた光ファイバ
CN110247291B (zh) 一种放大OAM光束的PbS环形芯光纤及其制备方法
Langner et al. A new material for high-power laser fibers
DK3001834T3 (en) PROCEDURE FOR MANUFACTURING SURFACE DOTED OPTICAL FIBER
JP5612654B2 (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
RU2009125938A (ru) Способ изготовления заготовки, заготовка, оптическое волокно и усилитель
Saha et al. Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications
US8494013B2 (en) Photodarkening resistant optical fibers and fiber lasers incorporating the same
US20090218706A1 (en) Method of manufacturing photonic bandgap fibre
US20020186942A1 (en) Low-loss highly phosphorus-doped fibers for Raman amplification
US9025922B2 (en) Optical fiber and method for manufacturing silica glass
Kirchhof et al. Materials and technologies for microstructured high power laser fibers
US20090180174A1 (en) Rare-earth-doped optical fiber, optical fiber amplifier, and method of manufacturing a preform for such fiber
CN115893830A (zh) 一种高掺磷的光纤预制棒及其制备方法
Saha et al. Large core Yb-doped optical fiber through vapor phase doping technique
JP4875301B2 (ja) 希土類添加光ファイバ母材の製造方法
Wang et al. Bismuth-doped silica fiber fabricated by atomic layer deposition doping technique
JP2013230961A (ja) 光ファイバプリフォームの製造方法
JP5400851B2 (ja) 希土類添加光ファイバ
JP7496100B2 (ja) 希土類元素添加光ファイバ
RU92659U1 (ru) Заготовка волоконного световода на основе кварцевого стекла с высокой апертурой, лучевой, радиационной и механической стойкостью
CN115480339A (zh) 一种掺镱高功率激光光纤、预制棒及其制备方法
JP4951587B2 (ja) 希土類添加光ファイバの製造方法
JP4846175B2 (ja) エルビウム添加光ファイバ

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20201127