NO20171318A1 - Anvendelse av DHA - Google Patents
Anvendelse av DHA Download PDFInfo
- Publication number
- NO20171318A1 NO20171318A1 NO20171318A NO20171318A NO20171318A1 NO 20171318 A1 NO20171318 A1 NO 20171318A1 NO 20171318 A NO20171318 A NO 20171318A NO 20171318 A NO20171318 A NO 20171318A NO 20171318 A1 NO20171318 A1 NO 20171318A1
- Authority
- NO
- Norway
- Prior art keywords
- dha
- cells
- cellular
- docosahexaenoic acid
- fatty acids
- Prior art date
Links
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 claims abstract description 589
- 235000020669 docosahexaenoic acid Nutrition 0.000 claims abstract description 307
- 229940090949 docosahexaenoic acid Drugs 0.000 claims abstract description 294
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 claims abstract description 13
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 claims abstract description 13
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 claims abstract description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 54
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 37
- 229930195729 fatty acid Natural products 0.000 claims description 37
- 239000000194 fatty acid Substances 0.000 claims description 37
- 150000004665 fatty acids Chemical class 0.000 claims description 37
- 238000002360 preparation method Methods 0.000 claims description 17
- 230000037078 sports performance Effects 0.000 claims description 17
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 13
- 239000008103 glucose Substances 0.000 claims description 13
- 210000004369 blood Anatomy 0.000 claims description 10
- 239000008280 blood Substances 0.000 claims description 10
- 230000002270 ergogenic effect Effects 0.000 claims description 7
- 230000005764 inhibitory process Effects 0.000 claims description 7
- 230000032677 cell aging Effects 0.000 claims description 6
- 235000015872 dietary supplement Nutrition 0.000 claims description 6
- 206010063493 Premature ageing Diseases 0.000 claims description 5
- 208000032038 Premature aging Diseases 0.000 claims description 5
- 239000002775 capsule Substances 0.000 claims description 5
- 239000002537 cosmetic Substances 0.000 claims description 5
- 235000013365 dairy product Nutrition 0.000 claims description 5
- 239000002088 nanocapsule Substances 0.000 claims description 3
- 239000006187 pill Substances 0.000 claims description 3
- 230000037384 skin absorption Effects 0.000 claims description 3
- 231100000274 skin absorption Toxicity 0.000 claims description 3
- 239000003826 tablet Substances 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- 235000021055 solid food Nutrition 0.000 claims 1
- 230000004792 oxidative damage Effects 0.000 abstract description 48
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 abstract description 47
- 235000020673 eicosapentaenoic acid Nutrition 0.000 abstract description 47
- 229960005135 eicosapentaenoic acid Drugs 0.000 abstract description 47
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 abstract description 47
- 238000000034 method Methods 0.000 abstract description 38
- 230000007170 pathology Effects 0.000 abstract description 26
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 239000002253 acid Substances 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 13
- 230000000302 ischemic effect Effects 0.000 abstract description 8
- 230000000626 neurodegenerative effect Effects 0.000 abstract description 8
- 201000001320 Atherosclerosis Diseases 0.000 abstract description 5
- 230000002757 inflammatory effect Effects 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 155
- 230000000694 effects Effects 0.000 description 86
- 230000001413 cellular effect Effects 0.000 description 72
- 230000003078 antioxidant effect Effects 0.000 description 68
- 239000003963 antioxidant agent Substances 0.000 description 46
- 230000036542 oxidative stress Effects 0.000 description 45
- 102000019197 Superoxide Dismutase Human genes 0.000 description 44
- 108010012715 Superoxide dismutase Proteins 0.000 description 44
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 43
- 108091035539 telomere Proteins 0.000 description 42
- 210000003411 telomere Anatomy 0.000 description 41
- 102000055501 telomere Human genes 0.000 description 41
- 235000006708 antioxidants Nutrition 0.000 description 35
- 239000003642 reactive oxygen metabolite Substances 0.000 description 35
- LXEKPEMOWBOYRF-QDBORUFSSA-N AAPH Chemical compound Cl.Cl.NC(=N)C(C)(C)\N=N\C(C)(C)C(N)=N LXEKPEMOWBOYRF-QDBORUFSSA-N 0.000 description 34
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 34
- 238000002474 experimental method Methods 0.000 description 32
- 210000003953 foreskin Anatomy 0.000 description 31
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 29
- 102000006587 Glutathione peroxidase Human genes 0.000 description 26
- 108700016172 Glutathione peroxidases Proteins 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 26
- 230000003834 intracellular effect Effects 0.000 description 25
- 230000001590 oxidative effect Effects 0.000 description 25
- 230000001965 increasing effect Effects 0.000 description 22
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 22
- 230000006698 induction Effects 0.000 description 21
- 102000004190 Enzymes Human genes 0.000 description 20
- 108090000790 Enzymes Proteins 0.000 description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 20
- 229960003180 glutathione Drugs 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 20
- 210000002950 fibroblast Anatomy 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 238000004904 shortening Methods 0.000 description 19
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 18
- -1 diglyceride Chemical compound 0.000 description 18
- 230000009467 reduction Effects 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 239000003921 oil Substances 0.000 description 17
- 235000019198 oils Nutrition 0.000 description 17
- 230000002860 competitive effect Effects 0.000 description 16
- 235000013305 food Nutrition 0.000 description 15
- 235000011187 glycerol Nutrition 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 150000003254 radicals Chemical class 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 230000004044 response Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 150000002632 lipids Chemical class 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 210000004379 membrane Anatomy 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 108010024636 Glutathione Proteins 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 230000006950 reactive oxygen species formation Effects 0.000 description 12
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 11
- 230000006851 antioxidant defense Effects 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 230000036963 noncompetitive effect Effects 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 10
- 239000008194 pharmaceutical composition Substances 0.000 description 10
- 229940075420 xanthine Drugs 0.000 description 10
- 230000032683 aging Effects 0.000 description 9
- 230000006378 damage Effects 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- FNEZBBILNYNQGC-UHFFFAOYSA-N methyl 2-(3,6-diamino-9h-xanthen-9-yl)benzoate Chemical compound COC(=O)C1=CC=CC=C1C1C2=CC=C(N)C=C2OC2=CC(N)=CC=C21 FNEZBBILNYNQGC-UHFFFAOYSA-N 0.000 description 9
- 210000003205 muscle Anatomy 0.000 description 9
- 229940012843 omega-3 fatty acid Drugs 0.000 description 9
- 238000005502 peroxidation Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 102100033220 Xanthine oxidase Human genes 0.000 description 8
- 108010093894 Xanthine oxidase Proteins 0.000 description 8
- 230000006399 behavior Effects 0.000 description 8
- 230000003833 cell viability Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000002255 enzymatic effect Effects 0.000 description 8
- 235000021588 free fatty acids Nutrition 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 125000005456 glyceride group Chemical group 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000006014 omega-3 oil Substances 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 8
- 150000002978 peroxides Chemical class 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 102000016938 Catalase Human genes 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000006143 cell culture medium Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 150000002432 hydroperoxides Chemical class 0.000 description 7
- 238000010348 incorporation Methods 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 238000011835 investigation Methods 0.000 description 7
- 230000008397 ocular pathology Effects 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000003244 pro-oxidative effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 150000003626 triacylglycerols Chemical class 0.000 description 7
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 6
- 102000014156 AMP-Activated Protein Kinases Human genes 0.000 description 6
- 108010011376 AMP-Activated Protein Kinases Proteins 0.000 description 6
- 108010053835 Catalase Proteins 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 206010022489 Insulin Resistance Diseases 0.000 description 6
- KJQFBVYMGADDTQ-CVSPRKDYSA-N L-buthionine-(S,R)-sulfoximine Chemical compound CCCCS(=N)(=O)CC[C@H](N)C(O)=O KJQFBVYMGADDTQ-CVSPRKDYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 235000014633 carbohydrates Nutrition 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 235000005911 diet Nutrition 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 208000002780 macular degeneration Diseases 0.000 description 6
- 150000004667 medium chain fatty acids Chemical class 0.000 description 6
- 235000016709 nutrition Nutrition 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 108091008695 photoreceptors Proteins 0.000 description 6
- 210000001525 retina Anatomy 0.000 description 6
- 210000000844 retinal pigment epithelial cell Anatomy 0.000 description 6
- 150000004666 short chain fatty acids Chemical class 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 5
- 208000013016 Hypoglycemia Diseases 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000007323 disproportionation reaction Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 5
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 208000024827 Alzheimer disease Diseases 0.000 description 4
- 208000002177 Cataract Diseases 0.000 description 4
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 4
- 206010018364 Glomerulonephritis Diseases 0.000 description 4
- 108010053070 Glutathione Disulfide Proteins 0.000 description 4
- 108010063907 Glutathione Reductase Proteins 0.000 description 4
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 4
- 208000018737 Parkinson disease Diseases 0.000 description 4
- 206010047115 Vasculitis Diseases 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 206010003246 arthritis Diseases 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000005779 cell damage Effects 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 206010008118 cerebral infarction Diseases 0.000 description 4
- 208000026106 cerebrovascular disease Diseases 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000000099 in vitro assay Methods 0.000 description 4
- 239000000411 inducer Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 206010025135 lupus erythematosus Diseases 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 201000006417 multiple sclerosis Diseases 0.000 description 4
- 201000006938 muscular dystrophy Diseases 0.000 description 4
- 208000010125 myocardial infarction Diseases 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000003223 protective agent Substances 0.000 description 4
- PXEZTIWVRVSYOK-UHFFFAOYSA-N 2-(3,6-diacetyloxy-2,7-dichloro-9h-xanthen-9-yl)benzoic acid Chemical compound C1=2C=C(Cl)C(OC(=O)C)=CC=2OC2=CC(OC(C)=O)=C(Cl)C=C2C1C1=CC=CC=C1C(O)=O PXEZTIWVRVSYOK-UHFFFAOYSA-N 0.000 description 3
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 3
- AJIVVDSJIOOZOJ-UHFFFAOYSA-N 3',6'-diacetyloxy-2',7'-dichloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-carboxylic acid Chemical compound O1C(=O)C2=CC(C(O)=O)=CC=C2C21C1=CC(Cl)=C(OC(C)=O)C=C1OC1=C2C=C(Cl)C(OC(=O)C)=C1 AJIVVDSJIOOZOJ-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 208000037051 Chromosomal Instability Diseases 0.000 description 3
- 102000058061 Glucose Transporter Type 4 Human genes 0.000 description 3
- 229920002527 Glycogen Polymers 0.000 description 3
- 102000003820 Lipoxygenases Human genes 0.000 description 3
- 108090000128 Lipoxygenases Proteins 0.000 description 3
- 241001421711 Mithras Species 0.000 description 3
- RSPISYXLHRIGJD-UHFFFAOYSA-N OOOO Chemical class OOOO RSPISYXLHRIGJD-UHFFFAOYSA-N 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108091006300 SLC2A4 Proteins 0.000 description 3
- 108010017842 Telomerase Proteins 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 230000007123 defense Effects 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 230000000378 dietary effect Effects 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- 125000004494 ethyl ester group Chemical group 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 229940096919 glycogen Drugs 0.000 description 3
- 230000002218 hypoglycaemic effect Effects 0.000 description 3
- 150000004668 long chain fatty acids Chemical class 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical class N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 230000003519 ventilatory effect Effects 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 2
- VFNKZQNIXUFLBC-UHFFFAOYSA-N 2',7'-dichlorofluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=C(Cl)C(O)=C1 VFNKZQNIXUFLBC-UHFFFAOYSA-N 0.000 description 2
- 102000000452 Acetyl-CoA carboxylase Human genes 0.000 description 2
- 108010016219 Acetyl-CoA carboxylase Proteins 0.000 description 2
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 2
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 2
- 108010018763 Biotin carboxylase Proteins 0.000 description 2
- 206010006482 Bronchospasm Diseases 0.000 description 2
- XXAXVMUWHZHZMJ-UHFFFAOYSA-N Chymopapain Chemical compound OC1=CC(S(O)(=O)=O)=CC(S(O)(=O)=O)=C1O XXAXVMUWHZHZMJ-UHFFFAOYSA-N 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 108010018650 MEF2 Transcription Factors Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 102000003923 Protein Kinase C Human genes 0.000 description 2
- 108090000315 Protein Kinase C Proteins 0.000 description 2
- 201000007737 Retinal degeneration Diseases 0.000 description 2
- 206010044688 Trisomy 21 Diseases 0.000 description 2
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 230000007885 bronchoconstriction Effects 0.000 description 2
- 229960004203 carnitine Drugs 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 210000003986 cell retinal photoreceptor Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012916 chromogenic reagent Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000002641 glycemic effect Effects 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 238000010874 in vitro model Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 230000008811 mitochondrial respiratory chain Effects 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 229960002446 octanoic acid Drugs 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000004258 retinal degeneration Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 231100000167 toxic agent Toxicity 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- 235000013618 yogurt Nutrition 0.000 description 2
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- SFWZZSXCWQTORH-UHFFFAOYSA-N 1-methyl-2-phenylindole Chemical compound C=1C2=CC=CC=C2N(C)C=1C1=CC=CC=C1 SFWZZSXCWQTORH-UHFFFAOYSA-N 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 1
- 102000002281 Adenylate kinase Human genes 0.000 description 1
- 108020000543 Adenylate kinase Proteins 0.000 description 1
- 101000836247 Aquifex pyrophilus Superoxide dismutase [Fe] Proteins 0.000 description 1
- 102000051485 Bcl-2 family Human genes 0.000 description 1
- 108700038897 Bcl-2 family Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- 102000019025 Calcium-Calmodulin-Dependent Protein Kinases Human genes 0.000 description 1
- 108010026870 Calcium-Calmodulin-Dependent Protein Kinases Proteins 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 108030002440 Catalase peroxidases Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 206010013142 Disinhibition Diseases 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- 102000000476 Fatty Acid Transport Proteins Human genes 0.000 description 1
- 108010055870 Fatty Acid Transport Proteins Proteins 0.000 description 1
- 102000003638 Glucose-6-Phosphatase Human genes 0.000 description 1
- 108010086800 Glucose-6-Phosphatase Proteins 0.000 description 1
- 108010081687 Glutamate-cysteine ligase Proteins 0.000 description 1
- 102100039696 Glutamate-cysteine ligase catalytic subunit Human genes 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000003746 Insulin Receptor Human genes 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 206010025421 Macule Diseases 0.000 description 1
- LTYOQGRJFJAKNA-KKIMTKSISA-N Malonyl CoA Natural products S(C(=O)CC(=O)O)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@](=O)(O[P@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C LTYOQGRJFJAKNA-KKIMTKSISA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 1
- 102100039212 Myocyte-specific enhancer factor 2D Human genes 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 102000023984 PPAR alpha Human genes 0.000 description 1
- 108010028924 PPAR alpha Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 208000027073 Stargardt disease Diseases 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000009692 acute damage Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 230000004103 aerobic respiration Effects 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008436 biogenesis Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000002554 cardiac rehabilitation Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000008809 cell oxidative stress Effects 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000006192 cellular response to oxidative stress Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000009693 chronic damage Effects 0.000 description 1
- 238000007697 cis-trans-isomerization reaction Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000001842 enterocyte Anatomy 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ITNKVODZACVXDS-YATCGRJWSA-N ethyl (4e,7e,10e,13e,16e,19e)-docosa-4,7,10,13,16,19-hexaenoate Chemical compound CCOC(=O)CC\C=C\C\C=C\C\C=C\C\C=C\C\C=C\C\C=C\CC ITNKVODZACVXDS-YATCGRJWSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000030136 gastric emptying Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 230000006377 glucose transport Effects 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 230000004116 glycogenolysis Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000009097 homeostatic mechanism Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000031891 intestinal absorption Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 235000020978 long-chain polyunsaturated fatty acids Nutrition 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- LTYOQGRJFJAKNA-DVVLENMVSA-N malonyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LTYOQGRJFJAKNA-DVVLENMVSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 238000000199 molecular distillation Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000021048 nutrient requirements Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 125000005473 octanoic acid group Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- YPZRWBKMTBYPTK-UHFFFAOYSA-N oxidized gamma-L-glutamyl-L-cysteinylglycine Natural products OC(=O)C(N)CCC(=O)NC(C(=O)NCC(O)=O)CSSCC(C(=O)NCC(O)=O)NC(=O)CCC(N)C(O)=O YPZRWBKMTBYPTK-UHFFFAOYSA-N 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 229940097156 peroxyl Drugs 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000000608 photoreceptor cell Anatomy 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000036314 physical performance Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000006318 protein oxidation Effects 0.000 description 1
- 230000007398 protein translocation Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000004283 retinal dysfunction Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- MYFATKRONKHHQL-UHFFFAOYSA-N rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C21 MYFATKRONKHHQL-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000036325 urinary excretion Effects 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/202—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/36—Carboxylic acids; Salts or anhydrides thereof
- A61K8/361—Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/152—Milk preparations; Milk powder or milk powder preparations containing additives
- A23C9/1528—Fatty acids; Mono- or diglycerides; Petroleum jelly; Paraffine; Phospholipids; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/23—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
- A61K8/375—Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/02—Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Neurology (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Diabetes (AREA)
- Heart & Thoracic Surgery (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mycology (AREA)
- Ophthalmology & Optometry (AREA)
- Obesity (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Birds (AREA)
- Pain & Pain Management (AREA)
- Hospice & Palliative Care (AREA)
- Endocrinology (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
Abstract
Den foreliggende oppfinnelse angår anvendelse av en syre anriket på dokosaheksaensyre (DHA) eller eikosapentaensyre (EPA) eller DHA-avledet EPA for fremstilling av et medikament for behandling av prosesser som involverer assosiert oksidativ skade. Særlig er dette for behandling av prosesser assosiert med nevrodegenerative, okulare, iskemiske og inflammatoriske patologier, aterosklerose, med oksidativ skade på DNA og med fysisk trening.
Description
Oppfinnelsens område
Den foreliggende oppfinnelse angår kosmetisk anvendelse av en syre anriket med dokosaheksaensyre (DHA) eller eikosapentaensyre (EPA) eller DHA-avledet EPA til behandling av prosesser som involverer assosiert oksidativ skade. Oppfinnelsen er definert i patentkravene.
Bakgrunn for oppfinnelsen
Omga-3 fettsyrene er nødvendig for å opprettholde cellulær funksjonell integritet, og er nødvendig generelt for den menneskelige helse. Dokosaheksaensyre (22:6 n -3, DHA), en viktig omega-3-komponent i fiskeolje og i marine alger, er konsentrert i hjernen, i fotoreseptorene og i synapsene i retina. DHA-anrikede dietter blir initielt metabolisert av leveren og deretter fordelt via lipoproteiner i blodet for å møte behovet hos de forskjellige organer. Administrering av DHA fører til en økning av dens konsentrasjon på vevsnivå, og induserer i tillegg en økning i konsentrasjonen av omega-3 eikosapentaensyre (CPA) som er koblet metabolsk, mens administrering av EPA bare øker dens konsentrasjon og reduserer konsentrasjonen til DHA på cellenivå.
Generelt blir DHA inkorporert i fosfolipidene i cellemembranen som har virkninger på dens sammensetning og funksjonalitet, på produksjon av reaktive oksygenelementer (ROS), på membranlipidoksidering, på transkripsjonsregulering, på biosyntese av eikosanoider og på intracellulær signaltransduksjon. Videre er DHA involvert i sentralnervesystemet i utvikling av læringskapasitet relatert til hukommelse, i de eksiterbare funksjonene til membranen, i biogenesen til fotoreseptorceller og ved å transdusere signaler avhengig av kinaseprotein. En potensiell dietterapi ville bli basert på å korrigere de optimale nivåer av omega-3 fettsyrer for å forhindre visse patologier fra å oppstå eller utvikle seg, så som inflammatoriske patologier, tumorprosesser, kardiovaskulære sykdommer, depresjon og nevrologiske lidelser.
I sentralnervesystemet viser både hjernen og retina en uvanlig kapasitet for å tilbakeholde DHA, til og med i situasjoner med meget langvarig diettsvikt av omega-3 fettsyrer. Flere undersøkelser har beskrevet den beskyttende virkningen til DHA på nevroner, i hvilke den er tilstede i meget høye nivåer. For eksempel er den involvert i beskyttelsen av nevronal cellene fra død ved apoptose. Nylig er det blitt vist at DHA, funnet i reduserte mengder i hippocampus hos rotter i fremskreden alder, er i stand til å beskytte primære kulturer av nevnte celler mot cytotoksisitet indusert av glutamat.
I fotoreseptorene i retina har DHA også blitt vist å modulere nivåene til pro- og anti-apoptotiske proteiner i BCL-2-familien. De ytre segmenter av den retinale fotoreseptor inneholder rodopsin, så vel som et høyere DHA-innhold enn andre typer av celler. DHA konsentreres i fosfolipidene i fotoreseptorens skivesegments ytre membraner. Retinale dysfunksjoner er blitt observert under betingelser med reduksjon av optimal DHA-konsentrasjon. Pigmentepitelcellene i retina (RPE) spiller en meget aktiv rolle ved DHA-opptak, konservering og transport. Det høye DHA-innhold i fotoreseptorene og i RPE-cellene er hovedsakelig koblet til domener i membranen med fysikalske egenskaper som bidrar til modulering av reseptorer, ionekanaler, bærere, etc., mens det også synes å regulere konsentrasjonen av fosfatidylserin.
Det er opptil nå ukjent om disse virkningene i sin helhet er mediert av DHA i seg selv eller ved noen andre metabolske derivater. Visse derivater av DHA er blitt identifisert i retina. Skjønt enzymene involvert i syntese av nevnte derivater ikke er blitt identifisert presist, foreslår noen nylige resultater deltagelse av en A2fosfolipase (PLA2) etterfulgt av en lipoksygenase (LOX). PLA2frigjør DHA fra membranfosfolipidene og LOX konverterer den til dens metabolske aktive derivater.
De reaktive oksygenelementer (ROS) blir produsert under normale cellulære funksjoner. ROS inkluderer superoksidanion, hydrogenperoksid og oksydrylradikalet. Deres høye kjemiske reaktivitet fører til oksidering av proteiner, av DNA eller av lipider. Superoksiddismutase (SOD), katalase (CAT) og glutationperoksidase (GPx) er de primære antioksidantenzymer som beskytter mot molekylær og cellulær skade forårsaket av nærvær av ROS. Det oksidative stress aktiverer mange metabolske kanaler; noen er cytobeskyttende, mens andre fører til celledød. Nylige undersøkelser angir at en ubalanse mellom ROS-produksjon og nedbrytning er en signifikant risikofaktor i patogenesen av mange sykdommer, i noen tilfeller relatert til en nedbrytning av antioksidantsystemet.
DHA er tilstede som et mål for ROS som produserer skade på cellen i fotoreseptoren og RPE. Den retinale degenerering indusert av lys promoterer tap av DHA i fotoreseptorene. For eksempel når RPE-celler blir skadet eller dør nedbrytes fotoreseptorfunksjonen fordi RPE-celler er essensielle for dens overlevelse. Således fører død av RPE-celler under virkning av oksidativ stress til en nedbrytning av synet, særlig når cellene i makula er påvirket, siden den er ansvarlig for synsskarphet. Patofysiologien til mange retinale nedbrytningstyper (f.eks. makulær degenerering relatert til alder og til Stargardt sykdom) involverer oksidativt stress som fører til RPE-celleapoptose. RPE-celleapoptose synes virkelig å være den dominerende faktor i makuladegenereringen observert med økende alder. Slike undersøkelser foreslår at nevnte celler har utviklet meget effektive antioksidantmekanismer for å beskytte seg selv fra deres høye DHA-innhold og viser bemerkelsesverdig tilpasningskapasitet.
Videre er sammenhengen mellom frie radikaler og aldring meget godt akseptert, basert på den kunnskap at frie radikaler produsert under aerob respirasjon forårsaker oksidativ skade som akkumuleres og fører til et gradvis tap av de homeostatiske mekanismer, interfererer med genekspresjonsmønster og tap av cellens funksjonelle kapasitet, noe som fører til aldring og død. En forbindelse eksisterer mellom dannelsen av oksidanter, antioksidantbeskyttelse og reparasjon av oksidativ skade. Mange undersøkelser er blitt utført for å bestemme om antioksidantforsvaret reduseres med alder. Disse har inkludert analyse av hovedkomponentene derav; aktivitet eller ekspresjon av SOD-, CAT-, GPx-enzymer, glutationreduktase, glutation-S-transferase og konsentrasjonen av forbindelser med lav molekylvekt med antioksidantegenskaper. For eksempel øker en overekspresjon av SOD og CAT i Drosophila melanogaster forventet livslengde med 30 % og reduserer skade ved proteinoksidering. I denne sammenheng danner in vitro og in vivo eksponering av hudvev til UV-stråler frie radikaler og andre reaktive oksygenelementer, noe som fører til cellulært oksidativt stress, dokumentert som å bidra betydelig til aldring. Overskuddseksponering av huden til ultrafiolett stråling kan gi opphav til akutt eller kronisk skade. Under akutte betingelser kan erytem og forbrenninger produseres, mens kronisk overeksponering øker risikoen for hudkreft og aldring. Videre er det kjent at hudcellene kan respondere på akutt eller kronisk oksidativ stress ved å øke ekspresjon av et utvalg av proteiner, så som enzymene involvert i opprettholdelse av celleintegritet og motstand mot oksidativ skade.
I fagområdet er det velkjent at telomerer er ikke-kodende DNA-regioner lokalisert på endene av eukaryote kromosomer. Disse utgjøres av meget konserverte DNA-sekvenser, repetert i tandem (TTAGG)nog assosierte proteiner, og har en spesiell struktur som hindrer ligering av endene til andre kromosomer, og forhindrer den telomeriske fusjon. De har en essensiell rolle i preservering av kromosomintegriteten, beskytter det kodende DNA fra den enzymatiske virkning og dens degradasjon, bidrar til opprettholdelse av kromosomstabiliteten.
I motsetning til de kodende sekvenser som har en halvkonservativ replikasjon gjennomgår telomerene et progressivt tap av sine repetitive sekvenser under påfølgende celledeling. Nå for tiden er det ment at en minimal telomerisk lengde er nødvendig for å opprettholde telomerfunksjonen og når disse når en kritisk størrelse har de vanskeligheter ved deling i mitose, genererende telomerisk assosiasjon (TAS) og kromosomisk instabilitet. Nevnte kromosominstabilitet ville være assosiert med en økning i muligheten til å produsere feil som er i stand til å danne signifikante genetiske forandringer.
På grunn av mangfoldigheten av dobbeltbindinger er omega-3 fettsyrer vurdert å være molekylære mål for dannelse og utbredelse av frie radikaler under de oksidative stressprosessene relatert til dannelse av lipidiske peroksider.
Motstridende resultater er imidlertid blitt oppnådd i forskjellige undersøkelser av sårbarheten for oksidativt stress på grunn av diettsuplementer av omega-3 fettsyrer. Noen undersøkelser hos mennesker har vist øket oksidasjon av LDL, mens andre ikke har funnet en slik effekt. I undersøkelser med dyr har behandling med omega-3 fettsyrer blitt funnet å føre til øket eller redusert sårbarhet for oksidasjon av LDL. På den annen side har en overekspresjon av genene involvert i antioksidantforsvarssystemet blitt funnet i lever til mus fôret på en fiskeoljeanriket diett i tre måneder.
Videre har forskjellige in vitro undersøkelser med en cellelinje av glyal opprinnelse vist at membraner som er rike på omega-3 fettsyrer er mer utsatt for oksidativ skade. Langtids supplering av disse cellene med høye konsentrasjoner av DHA resulterte i økede nivåer av lipidiske peroksider i kulturmediet, og en høyere prosentandel av celledød på grunn av apoptose indusert ved eksponering til hydrogenperoksid. Det er imidlertid også blitt vist at intraamniotisk administrering av etyldokosaheksaenoat reduserer lipidisk peroksidering i føtale hjerner hos rotter. Det er blitt foreslått at denne responsen skyldes en fri radikal chelatdannelse effekt via aktivering av antioksidantenzymer. En økning i antioksidantkapasiteten i hjernen er viktig for det primære endogene forsvar mot oksidativt stress, fordi hjernen er relativt rik på flerumettede fettsyrer og relativt fattig på antioksidantenzymer.
Disse motstridende resultatene antyder at hypotesen basert på det grunnlag at oksidasjon av en fettsyre øker med antall dobbeltbindinger ikke har noe in vivo anvendbarhet, siden andre potensielle mekanismer kan virke for å redusere oksidativ skade, så som en tredimensjonal struktur av omega-3 fettsyrer i lipidene og lipoproteinene i membranen som gjør dobbeltbindingene mindre utsatt for et angrep av ROS, en inhibisjon av pro-oksidantenzymet så som PLA2eller en større ekspresjon av antioksidantenzymer.
På den annen side kommer ideen med å assosiere fysisk trening med produksjon av frie radikaler fra tidlig 80-årene som skyldes observasjon av skaden i membranlipider under ischemireperfusjonshendelser i hypoksisk vev (se Lovlin et al., Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56 (3) 313-6). På samme tid ble en økning i GSSH/GSH-forholdet observert i rottemuskelceller (se Lew H. et al., FEBS Lett, 1985, 185(2): 262-6, Sen CK et al., J. Appl. Physiol. 1994, 77 (5): 2177-87) så vel som i humant blod (se MacPhail Db et al., Free Radic Res Commun 1993, 18 (3): 177-81, Gohil K. et al. J. Appl. Physiol. 1988 Jan; 64 (1): 115-9). Frie radikaler påvirker også DNA og akutt fysisk trening øker skaden i DNA, som vis t ved økningen av 8-OksodG. Utmattende fysisk trening (maratonløp) forårsaker skade i DNA som er evident i noen dager etter utføringen og forårsaker også skade i immunokompetente celler (som kan assosieres med immunreduksjon vist hos sportsmenn etter en slik fysisk anvendelse).
Andre forfattere observerte imidlertid ingen virkninger (med unntagelse av liten skade) etter svømming i 90 min., løping i 60 min. eller å utøve en utmattende anstrengelse ved å ro. På samme tid kan forskning på trenede og ikke-trenede sportsmenn ikke noen forskjell i urinekskresjon av 8-okso-dG, selv i de hvor de fant en slik skade ble dette vurdert å være sekundært til påfølgende reaksjoner på anstrengelsen og ikke til virkningen av treningen på DNA på en akutt måte.
Tilfellet at intens fysisk trening produserer oksidativt stress er meget velkjent på området, mens dets opprinnelse ennå ikke godt bestemt.
Undersøkelser utført med n-3 fettsyrer relatert til sportsprestasjon var fokusert på den antiinflammatoriske virkning og de første assayene forsøkte virkelig å finne den mulig virkning av disse næringsmidlene på forbedret alveolær-kapillær absorpsjon ved å redusere bronkokonstriksjon indusert av den intensive fysiske treningen. I denne forbindelse viste Mickleborough at etter administrering av 3,2 g EPA og 2,2 g DHA ble proinflammatoriske cytokiner svekket ved å redusere nærvær av TNF- α og IL-1 β hos eliteidrettsfolk, sammen med en reduksjon i bronkokonstriksjon.
Walser relaterte de vaskulære virkninger av n-3 fettsyrer til positive virkninger hos folk som viste intoleranse til fysisk trening. I denne forbindelse undersøkte van Houten et al. at et høyt inntak av n-3 fettsyrer var assosiert med bedre restitusjon hos pasienter som utførte en hjerterehabilitering etter et koronarsyndrom.
Fravær av positive resultater i fysisk yteevne i de analyserte undersøkelsene skyldes evalueringen av pasienter, ikke friske mennesker, og at det er blitt undersøkt bare vaskulære og inflammatoriske virkninger.
På samme tid er forskning blitt utført basert på følgende teoretiske konsept: Ved økning av frie fettsyrer i plasma over 1 mmol/l (noe som skjer når glykogen blir brukt opp), evnen til tryptofan transport gjør at dette må økes med påfølgende serotoninøkning, en nevrotransmitter relatert til den såkalte ”sentrale utmattethet” i sportsgrener av lang varighet. I denne forbindelse er det kjent at n-3 fettsyrer reduserer mengden av frie fettsyrer i plasma sannsynligvis ved å oppregulere fettsyreoksidasjonen ved å aktivere transkripsjonskjernefaktor PPAR α. Disse assayer var imidlertid ikke vellykket siden Huffman (2004) ved å bruke et doseregime på 4 g av n-3 fettsyrer (500 g kapsler som inneholder 300 mg EPA og 200 mg DHA) utført i en undersøkelse hos løpere av begge kjønn uten å finne noen reduksjon i fri TRP ei heller en mindre følelse av anstrengelse, i tillegg til noen statistisk signifikant økning i yteevnen, skjønt det var en statistisk tendens til å forbedre yteevnen hos individer til hvem n-3 fettsyrer ble administrert. Dette åpner for den muligheten for forfatterne at årsaken til reduksjon av den statistiske kraften i undersøkelsen var det lave antall av individer som ble undersøkt (5 menn og 5 kvinner).
En annen påfølgende forskning hvori effektiviteten til n-3 fettsyrer relatert til yteevne ble evaluert fant ikke noen signifikante forskjeller ved å bruke maisolje som placebo. Raastad administrerte 1,60 g EPA og 1,04 g DHA pr. dag over flere uker men fant ingen forbedring hos fotballspillere (se Raastad et al., Scand J. Med Sci Sports 1997; 7(1): 25-31).
På den annen side er det kjent at fri fettsyrer interfererer med anvendelse av glukose i muskelen, siden dets analoger på intracellulært nivå, acyl-CoA, i mitokondria inhiberer pyruvat dehydrogenase (inhibering ved produkt), og videre stimulerer glykogenolyse og glykoneogenese, og forårsaker en glatt hyperglykemi under fasting. Den kontinuerlige administrering av flerumettede fettsyrer under faste hjelper virkelig til å opprettholde glykemi, men kan kanskje aktivere glukose-6-fosfatase på levernivå. Det er også kjent at en sammensetning av fettsyrer i muskelen forandrer insulinsensitivitet og viser at et høyt innhold av flerumettede fettsyrer i plasmamembran forbedrer insulinsensitiviteten og et høyt innhold av mettede fettsyrer produserer den motsatte virkning.
Trening øker glukoseopptaket, kapillærperfusjon, glykogensyntesehastighet og insulinsensitivitet. Under muskelkontraksjon blir det produsert forandringer i temperatur, intracellulær pH, ATP/ADP-forhold, så vel som Ca<++>intracellulær konsentrasjon og andre metabolitter som kunne virke som budbringere i regulering av den cellulære funksjon under muskelarbeid. I denne forbindelse regulerer Ca<++>en stor mengde av intracellulære proteiner, inkludert calmodulinkinase, proteinkinase C (PKC) og calcineurin som er viktige mellomprodukter i signalene for intracellulære transduksjon. Under aerobt muskelarbeid blir acetyl -CoA-karboksylase deaktivert av AMP-kinase (AMPK) som fører til et fall i malonyl-CoA-nivåer, deinhibering av carnitinpalmitoltransferase med en resulterende økning i fettsyretransport i mitokondriene (for således å fremme fettsyreoksidasjon).
AMPK-aktiveringsvirkninger inkluderer sannsynligvis stimulering av GLUT4 og heksokinaseekspresjon, så vel som mitokondrieenzymer. Overraskende er imidlert id ikke AMPK-aktivering den eneste måten (uavhengig av insulin) hvori muskelarbeid øker responsen til glukose i skjelettmuskel. Se Mora og Pessin, J. Biol. Chem. 2000; 275 (21): 16323-16328, virkelig viste at en økning i glukoseresponsen i muskelen, er det flere transkripsjonsfaktorer så som MEF2A og MEF2D som aktiverer GLUT4 og de faktorene er aktivert under muskelarbeid.
En økning i intramuskulære lipider er vanlig under fedmetilstander og fysisk trening, men resultatet er at for fete mennesker blir det assosiert med insulinresistens, mens hos sportsfolk gjør den store aktiviteten til carnitinpalmitoltransferase at fettsyrer gjennomgår betaoksidasjon. Det er sterke indisier på at en diett som er rik på n-3 fettsyrer, selv med en økning av glykemi og insulinaemi (signaler på insulinresistens), virker på insulinreseptornivå og opprettholder nivået av GLUT-4-proteintranslokasjon, som er spesifikt blitt vist med DHA (se Jaescchke H. Proc. Soc Exp Biol. Med 1995; 209: 104-11).
Beskrivelse av oppfinnelsen
Den foreliggende oppfinnelse angår den uventede oppdagelse at administrering av dokosaheksaensyre (heri også referert til som DHA) eller eikosapentaensyre (EPA) eller DHA-avledet EPA, enten i fri form eller inkorporert i et triglyserid, blant annet virker som en cellulær antioksidant.
På denne måten og ved å ta med i vurderingen det metabolske slektskap mellom DHA og EPA (retrokonvertering av DHA til EPA), må alle virkningene som tidligere er beskrevet observert for administrering av DHA være anvendbare til blandede systemer DHA/EPA eller til og med til monokomponentsystemer av EPA, selv om EPA ikke er navngitt spesifikt.
En hensikt med foreliggende oppfinnelse er derfor anvendelse av dokosaheksaensyre for fremstilling av en farmasøytisk sammensetning til behandling av cellulær oksidativ skade.
En annen hensikt med foreliggende oppfinnelse er anvendelse av dokosaheksaensyre (DHA) i en spesifikk posisjon i glyserolryggraden, hvor de to gjenværende posisjoner i glyseridet også er spesifisert i sin sammensetning for behandling av cellulær oksidativ skade.
En ytterligere hensikt med foreliggende oppfinnelse er anvendelse av dokosaheksaensyre (DHA) til fremstilling av en sammensetning for behandling av den cellulære oksidative skade på DNA-nivå. Særlig har anvendelse av dokosaheksaensyre applikasjonen som et beskyttende middel i den naturlige prosess for telomerforkorting og som et inhibitorisk middel av prematur aldring i behandling av cellulær oksidativ skade.
Det er også en hensikt med foreliggende oppfinnelse å anvende dokosaheksaensyre til fremstilling av en sammensetning for behandling av cellulær aldring og arvelige patologier assosiert med lidelser i den mitokondrielle respiratoriske kjede, så vel som en sammensetning for behandling av Downs syndrom.
En ytterligere hensikt med foreliggende oppfinnelse er anvendelse av dokosaheksaensyre (DHA) til fremstilling av en sammensetning for behandling av cellulær oksidativ skade assosiert med fysisk trening. Særlig har anvendelse av dokosaheksaensyre applikasjonen som et forsterkingsmiddel i sportsprestasjon og som et regulerende middel for blodglukosenivået under fysiske anstrengelser.
Det er også en hensikt med foreliggende oppfinnelse å anvende dokosaheksaensyre til fremstilling av en sammensetning for å forsterke sportsprestasjon, så vel som en sammensetning for å opprettholde blodglukosenivåer etter fysisk trening ved hjelp av hovedsakelig administrering av en matvare, et meieriprodukt eller enhver egnet administreringsform som typisk blir anvendt av folk når de utøver fysisk trening.
I den foreliggende oppfinnelse betyr uttrykket ”cellulær oksidativ skade” enhver prosess som involverer en ubalanse mellom generering og degradasjon av cellulære oksidantelementer av endogen eller eksogen opprinnelse.
Overraskende har oppfinnerne av foreliggende oppfinnelse funnet at DHA er i stand til å inhibere produksjon av reaktive oksygenelementer (ROS), enten de er relatert til en avhengig induksjon av peroksider eller superoksider. Mer spesifikt reduserer den produksjonen av superoksidanion og derved av alle de avledede elementer produsert i den oksidative kaskaden, så som f.eks. en meget signifikant reduksjon av lipidisk peroksidering. Videre ble det funnet en økning i antioksidantenzymaktivitet som antyder en adaptasjon av cellen ved å indusere ekspresjon av antioksidantmidler, egentlig enzymer, og ved å undertrykke ekspresjon av prooksidantmidler så som A2-fosfolipase.
I én utforming av foreliggende oppfinnelse blir nevnte dokosaheksaensyre inkorporert i et monoglyserid, diglyserid, triglyserid, fosfolipid, etylester eller fri fettsyre. Fortrinnsvis blir nevnte dokosaheksaensyre inkorporert i et triglyserid.
I den foreliggende oppfinnelse skal ”dokosaheksaensyre inkorporert i et glyserid” bety et monoglyserid, diglyserid, triglyserid, fosfolipid, med minst én av de tre posisjonene esterifisert med en dokosaheksaensyre og, eventuelt minst én av de gjenværende esterifiserte posisjoner ytterligere med en syre valgt fra en kort -, middels- eller langkjedet fettsyre og en fosforsyre. Fortrinnsvis er nevnte glyserol et triglyserid.
Valget av triglyserid som kjemisk struktur for DHA er basert på data hentet fra en undersøkelse som sammenlignet biotilgjengeligheten til fire omega-3-syrekonsentrater i form av etylestere, fosfolipider, fri fettsyrer og triglyserider etter oral administrering, som viste at de reesterifiserte triglyseridene presenterte en høyere biotilgjengelighet enn de andre preparatene.
I en foretrukket utforming av foreliggende oppfinnelse er nevnte dokosaheksaensyre funnet i en prosentandel regnet på vekt mellom 20 og 100 % i relasjon til de totale fettsyrer, fortrinnsvis mellom 40 og 100 % i relasjon til de totale fettsyrer, og mer fortrinnsvis er nevnte dokosaheksaensyre tilstede i en prosentandel regnet på vekt mellom 66 og 100 % i relasjon til total fettsyre.
I en annen foretrukket utforming er nevnte dokosaheksaensyre inkorporert i minst én spesifikk posisjon i et glyserol via en esterbinding, et strukturert lipid, til fremstilling av en farmasøytisk sammensetning for behandling av cellulær oksidativ skade.
Et slikt glyserol kan ytterligere omfatte minst én fettsyre og/eller én fosforsyre slik at nevnte dokosaheksaensyre er inkorporert i en posisjon valgt fra sn-1, sn-2 og sn-3, kan også ytterligere omfatte eventuelt minst én syre valgt fra en kort- og/eller middels-kjede fettsyre og en fosforsyre, og når den er inkorporert i sn-2-posisjonen kan den ytterligere omfatte eventuelt minst én syre valgt fra fettsyre og en fosforsyre.
I denne forbindelse når det refereres til betegnelsen eventuelt skal det nevnte dokosaheksaensyre inkorporert i en posisjon valgt fra sn-1, sn-2 og sn-3 kan eller kan ikke ytterligere omfatte minst én syre valgt fra en kort- og/eller middels-kjede fettsyre og en fosforsyre, eller på annen måte at nevnte dokosaheksaensyre inkorporert i sn-2-posisjonen kan eller kan ikke ytterligere omfatte minst én syre valgt fra en langkjedet fettsyre og en fosforsyre.
Overraskende har oppfinnerne av foreliggende oppfinnelse funnet at anvendelse av strukturerte glyseroler hvori posisjonen til dokosaheksaensyre er blitt selektert og sammensetningen av resten av forbindelsen bundet til glyserol fører til en uventet økning, minst to eller til og med tre ganger, av den terapeutiske effektiviteten til anvendelse av dokosaheksaensyre til fremstilling av en farmasøytisk sammensetning for behandling av cellulær oksidativ skade.
Den vanlige definisjonen angår fett som inneholder fettsyre lokalisert i spesifikke posisjoner i glyserolryggraden. Ved likhet med in vivo fettsyrebiofordeling, er de langkjedede flerumettede fettsyrer (PUFA’er) lokalisert fortrinnsvis i sn -2-posisjonen i glyserol og ved å ta inn i vurderingen den intestinale absorpsjonsprosess, blir triglyseridene hydrolysert ved lipaser til frie fettsyrer, di -og monoglyserider, fra hvilke de frie fettsyrer og sn-2-monoglyserider blir absorbert direkte av intestinale epitelceller, kalt enterocytter.
Ved å bruke dokosaheksaensyre inkorporert i en spesifikk posisjon i glyserolryggraden via en esterbinding tilveiebringes en øket bioaktivitet, en øket antioksidantbeskyttelse av den samme molare prosentandelen med hensyn på hele mengden av fettsyrer tilstede og en redusert avhengighet av administreringsdoseringen med hensyn på antioksidantvirkningen av dokosaheksaensyre i glyseridet.
Fordelaktig har oppfinnerne av foreliggende oppfinnelse funnet at anvendelse av dokosaheksaensyre inkorporert i en posisjon i glyserolet valgt fra sn-1, sn-2 og sn-3, og at eventuelt nevnte glyserol ytterligere omfatter minst én syre valgt fra en kort- og/eller middels-kjede fettsyre og en fosforsyre, tilveiebringe en øket bioaktivitet, en øket antioksidantbeskyttelse med den samme molare prosentandel med hensyn på den totale mengde av fettsyrer tilstede og en redusert avhengighet av administrasjonsdosering med hensyn på antioksidantvirkningen av dokosaheksaensyre i glyserol.
I tillegg har oppfinnerne av foreliggende oppfinnelse fordelaktig funnet at anvendelse av dokosaheksaensyre inkorporert i en sn-2-posisjon i et glyserol og eventuelt at nevnte glyserol ytterligere omfatter minst én syre valgt fra en langkjedet fettsyre og en fosforsyre, tilveiebringer i tillegg en øket bioaktivitet, en øket antioksidantbeskyttelse på samme molare prosentandel med hensyn på hele mengden av fettsyrer tilstede og en redusert avhengighet av administreringsdoseringen med hensyn på antioksidantvirkningen av dokosaheksaensyre i glyserol.
Fortrinnsvis vil syrer som også er tilstede i et glyserol med dokosaheksaensyren være kortkjedede fettsyrer (C1-C8) eller middelskjedede fettsyrer (C9-C14) eller en fosforsyre, siden disse ikke har noen funksjonell aktivitet, men bare energiaktivitet og vil derfor ikke konkurrere med dokosaheksaensyren.
Derfor angår enda mer fordelaktig den foreliggende oppfinnelse anvendelse av dokosaheksaensyre inkorporert i et glyserol hvori én av posisjonene sn-1 og sn-3 er fri eller okkupert av en middels kjede fettsyre (C9-C14) eller kortkjedet fettsyre (C1-C8) eller en fosforsyre og hvori sn-2-posisjonen som er okkupert av funksjonelt DHA. Således oppnås en enda høyere økning av DHA siden den blir mer effektivt absorbert i de intestinale celler.
Derfor viser syntese av strukturerte glyserider hvori dokosaheksaensyre er blitt inkorporert i enhver posisjon i glyserolet hvor den ikke konkurrer med de andre fettsyrer, og hvori DHA er blitt inkorporert i sn-2-posisjonen i glyseridet når den konkurrerer med minst én fettsyre, forbedringer relatert til dens antioksidantvirkning og derfor er det en foretrukket måte til å fremstille en sammensetning for behandling av oksidativ cellulær skade.
Oppfinnerne av foreliggende oppfinnelse har funnet at en celle anriket med en sammensetning med DHA, i henhold til oppfinnelsen, er bedre preparert til å møte en ny situasjon med oksidativt stress og således til å minimalisere de negative virkninger som kan avledes derfra. Det vil si at nærvær av DHA i biomembranene induserer en cellulær adaptiv respons til det oksidative stress. Adaptiv respons er et cellulært fenomen med hvilke eksponering til et toksisk middel (i suble tale konsentrasjoner) provoserer frem en cellulær respons som deretter vil beskytte cellen mot de ødeleggende virkninger av det samme toksiske middel i letale konsentrasjoner, eller sett på en annen måte, det er en gunstig effekt som blir utløst på et lavt nivå av eksponering til et middel som er skadelig i høyere nivåer.
Administrasjon av DHA har følgende hovedfordeler:
a) øket cellulær antioksidantaktivitet;
b) fravær av cellulær cytotoksisitet i dosene administrert;
c) fravær av signifikante forandringer i cellulær oksidantstatus ved de administrerte doser;
d) adaptiv cellulær antioksidantaktivitet.
På grunn av alt overnevnte angår den foreliggende oppfinnelse i en foretrukket utforming anvendelse av dokosaheksaensyre til å fremstille en farmasøytisk sammensetning for å behandle en patologi assosiert med cellulær oksidativ skade hvor nevnte patologi er en nevrodegenerativ patologi, fortrinnsvis valgt fra gruppen som omfatter multippel sklerose, Alzheimers sykdom, Parkinsons sykdom, amyotrofisk lateral sklerose og muskulær dystrofi blant andre.
I en annen utforming av foreliggende oppfinnelse er patologien assosiert med den oksidative skade en okular patologi, fortrinnsvis én valgt fra gruppen som omfatter retinitis pigmentosa, makulær degenerering og katarakter blant andre.
I enda en annen utforming er patologien assosiert med den oksidative skade en iskemisk patologi, særlig et myokardialt infarkt, cerebralt infarkt, etc.
I enda en annen utforming av foreliggende oppfinnelse er patologien assosiert med den oksidative skade en inflammatorisk prosess, fortrinnsvis valgt fra gruppen som omfatter artritt, vaskulitt, glomerulonefritt og erythematosus lupus blant andre.
I en annen foretrukket utforming er patologien assosiert med den oksidative skade aterosklerose.
En annen side av foreliggende oppfinnelse er anvendelse av DHA som et beskyttende middel i den naturlige prosess for telomerforkortning og som et inhibitorisk middel av prematur aldring.
Mekanismene som fremstiller telomerassosiasjoner (TAS) er fremdeles ukjent men forfatterne av foreliggende oppfinnelse foreslår at dette kunne assosieres med en svikt i aktiviteten til enzymet telomerase som syntetiserer de repetitive sekvenser av DNA som kjennetegner telomerene, for derved å stabilisere deres lengde.
Telomerasen er meget aktiv i føtale celler men har ikke mye aktivitet i voksende vevsceller. TAS er sjelden funnet i normale celler men de er blitt observert i celler infisert av virus eller tumorceller.
Det er blitt observert at det er en progressiv reduksjon i antallet av in vitro telomere repetisjoner, så vel som i funksjon av cellulær aldring, in vivo, som er assosiert med en inhibisjon av telomeraseaktivitet i alderdommen. Likeledes har forfatterne av foreliggende oppfinnelse studert telomerlengde i fibroblaster og lymfocytter fra friske personer på 100 år, og har funnet en telomerforkortning under in vitro utvikling av fibroblastene, så vel som en revers korrelasjon mellom telomerlengdene og giverens alder.
Skjønt telomerforkortning skjer naturlig med cellulær replikasjon, har en prematur aldring og nedbrytning av telomerer ved induksjon av oksidativ skade i DNA blitt observert. Telomerene er mer sensitive for oksidativ skade og deres nedbrytning blir mindre effektivt reparert enn andre deler av genomet. Dette fører til en akkumulering av telomerskade som produserer en hurtigere forkortning under DNA-replikasjonen som reduserer cellens replikative levetidsforventning. De reaktive oksygenelementene (ROS), særlig superoksidanioner, hydrogenperoksid og oksidrilradikaler kan akselerere tapene av telomerene under replikasjon av noen celletyper, selv om de også induserer prematur alderdom uavhengig av telomerforkortning.
Overraskende har forfatterne av foreliggende oppfinnelse funnet at anvendelse av dokosaheksaensyre for behandling av den cellulære oksidative skade på DNA-nivået tillater en reduksjon av forkortningshastigheten av telomerene og derfor inhiberer cellulær aldring.
De foreliggende oppfinnere har funn en revers korrelasjon mellom forkortningshastighetene av telomerene og den cellulære antioksidantkapasiteten i mer enn 20 humane fibroblaststammer. De fleste av de cellulære parametere til disse prematurt aldrende fibroblaster er de samme som ved normal aldring av disse celler (morfologi, akkumulering av lipofuscin og forandringer i genekspresjonen). Fibroblaster med et lavere antioksidantforsvar forkorter sine telomerer hurtigere og vice versa. Forkortningshastigheten til telomerer er høyere i celler med et lavere antioksidantforsvar. Videre reduserer fri radikal ionebyttere (scavengers) forkortningshastigheten til telomerene.
Disse data er i overensstemmelse med de som viser en viktig rolle av antioksidantenzymer, glutationperoksidase og superoksiddismutase, i forkortningshastigheten til telomerene i humane fibroblaster. Disse data viser at lengden av telomerene blir hovedsakelig bestemt ved relasjonen mellom det oksidative stress og den cellulære antioksidant forsvarskapasitet. Således er lengden av aldersavhengige telomerer et akkumulativt mål for historien til den oksidative skade som cellen har gjennomgått i sitt liv.
En korrelasjon mellom oksidativt stress og forkortingshastighet av telomerer er blitt vist for arvelige patologier assosiert med lidelser i den mitokondrielle respiratoriske kjede og for Downs syndrom.
Derfor tillater den eksisterende sammenheng mellom oksidativ cellulær skade i DNA og telomerforkortning og dens virkning ved cellulær aldring anvendelse av dokosaheksaensyre som et kraftig beskyttende middel i den naturlige prosessen til telomerforkortning og som et inhibitorisk middel av prematur aldring.
På den annen side har anvendelse av enzymer til fremstilling av omega-3 fettsyreanrikede oljer flere fordeler med hensyn på andre metoder basert på kjemisk syntese og påfølgende renseprosesser (kromatografiske separasjoner, molekylær destillasjon, etc.). Det siste krever ekstreme betingelser med hensyn på pH og høye temperaturer som delvis kunne ødelegge alle dobbelbindinger, alle cis av omega-3 PUFA’er ved oksidasjon, ved cis-trans-isomerisering eller migrering av dobbeltbindinger. Milde betingelser brukt ved enzymatisk syntese (temperatur lavere enn 50<o>C, pH 6-8 og mindre kjemiske reagenser) tilveiebringer et syntetisk alternativ som konserverer den opprinnelige strukturen til omega-3 PUFA’er med en økning i den strukturelle selektiviteten til acylglyserider, er vurdert å være den gunstigste kjemiske strukturen fra et ernæringssynspunkt.
Den farmasøytiske sammensetningen som omfatter DHA kan finnes i form av en olje eller en emulsjon, som kan administreres ved orale, sublingvale, intravenøse, intramuskulære, topiske, subkutane eller rektale ruter, eller til og med bare ved å bringe den aktive ingrediens i mikroemulsjonen i henhold til oppfinnelsen i flytende eller dampform i kontakt med lukteorganene lokalisert ved inngangen til den respiratoriske trakt. Således kan administrering utføres ved spraying, forstøving eller atomisering av mikroemulsjoner eller ved inhalasjon.
Eventuelt omfatter nevnte farmasøytiske sammensetning ytterligere en andre aktiv ingrediens.
På samme måte kan den farmasøytiske sammensetning som omfatter DHA anvendes i ernæringsindustrien med den hensikt å anrike matprodukter (f.eks. melkeprodukter så som yoghurt, melk, etc.) med et naturlig antioksidantmiddel så som DHA.
Derfor, i en annen utforming av foreliggende oppfinnelse blir nevnte farmasøytiske sammensetning administrert til en pasient som allerede mottar en behandling mot en patologi assosiert med oksidativ skade.
En annen hensikt med foreliggende oppfinnelse er anvendelse av DHA som et forsterkingsmiddel for sportsprestasjon og som et regulerende middel for blodglukosenivåer under fysisk anstrengelse.
På denne måte har forfatterne av foreliggende oppfinnelse overraskende funnet at anvendelse av nevnte dokosaheksaensyre under fysisk trening fører til en økning i sportsprestasjonn under opprettholdelse av blodglukosenivåer (glykemi) etter slik fysisk anstrengelse (uten administrering av karbohydrater).
I denne sammenheng i den foreliggende oppfinnelse skal ”amatør” eller ”ikkekonkurrerende sportsfolk” bety enhver person foretar fysisk trening på en sporadisk måte og ikke profesjonelt. I tillegg betyr ”konkurrerende sportsfolk” eller ”trenede sportsfolk” enhver person som utøver fysisk trening på en regelmess ig måte og/eller på et profesjonelt nivå. Likeledes blir betegnelsene ”fysisk trening” og ”fysisk anstrengelse” brukt på en ekvivalent og utbyttbar måte så vel som at betegnelsen ”sportsfolk” blir brukt for menn og kvinner.
Sportsprestasjon
For å evaluere sportsprestasjon er det flere parametere som tillater at det gis en valorisering av forbedringen av slik sportsprestasjon.
For sportsfolk som utøver aerobisksport er en økning i yteevnen vurdert når det er en økning av maksimalt oksygenopptak prosent VO2maxi UV 2 (anaerobisk terskel), siden VO2maxneppe øker under en konkurransesesong hos meget godt trente sportsfolk. Få forandringer i prosentandelen av VO2maxi terskelen er data direkte relatert til en økning i yteevnen.
De foreliggende oppfinnere har funnet at en statistisk signifikant økning av oksygenopptaket (VO2), både absolutte (p<0,019) og relative (p<0,036) verdier til vekten i den ventilatoriske terskel 2 sammenlignet med basale triangelanstrengelsesforsøk ble de utført etter fire måneders behandling med DHA. Etter økning av denne parameter er vist både for konkurransesyklister (p<0,047) og ikke-konkurransesyklister, hvor forskjellen i den siste er ikke statistisk signifikant (fig. 24).
En annen parameter relatert til en økning i sportsprestasjon er økningen i hjertefrekvens hvori UV2 i anstrengelsesforsøket blir satt, siden når hjertefrekvensen øker i den anaerobe terskelen, er sportsfolkene vurdert å være i stand til i noen grad å øke sin evne til å holde aerob metabolisme på høyere intensiteter. De foreliggende oppfinnere har observert en økning i hjertefrekvens i UV2 for p = 0,082 sammenlignet med nevnte parameter oppnådd i det basale forsøket med den oppnådd i triangelforsøket etter fire måneders inntak av DHA. Disse dataene er vist (p < 0,017) i undergruppen til syklister på et høyt konkurransenivå (fig. 25).
I denne forbindelse er det økning i tiden som er nødvendig for å nå den statistisk signifikante UV2 (fig. 26).
Til slutt er hjertefrekvensen for samme anstrengelsesnivå lavere hvis sportsfolk er aerobisk trenet. De foreliggende oppfinnere har sett at hos syklister som blir administrer med DHA reduseres hjertefrekvensen på en statistisk signifikant måte (p<0,043) når disse data sammenlignes med både forsøk på det punkt når sportsfolk bruker 2000 ml O2/min. (fig. 27).
Det kan fra disse undersøkelser konkluderes at hos sportsfolk som tar DHA i fire måneder er det blitt observert en økning i oksygenopptak, absolutt og relativt, i UV2 (henholdsvis p < 0,008 og p < 0,015), en økning i ladningen som tilsvarer UV2 (p < 0,063) og en reduksjon i hjertefrekvens når sportsfolk presenterer et oksygenopptak på 2000 ml/min. (p < 0,062). Alle disse er parametere som angir en økning i sportsprestasjon etter å ha inntatt 2,1 g DHA/24 timer (6 kapsler på 500 mg på 70 vekt%), fordelt på tre daglige doser i fire måneder. Nevnte mengder blir uttrykt ved hjelp av eksempel og skal ikke være begrensende for den foreliggende oppfinnelse.
Flere biokjemiske variabler relatert til oksidativ skade ble også analysert etter anstrengelsesforsøk.
1.- Plasma total antioksidantkapasitet (PTAC). Det er en generell og signifikant statistisk økning av PTAC (p < 0,05) mens det utføres rektangulære forsøk. Disse økningene er høyere hos sportsfolk etter at de er blitt administrert DHA i tre uker, både vurdert som et hele og som konkurransesyklister, uten å vise noe forskjell mellom basale forsøk og forsøk utført etter inntak av DHA i tre uker hos amatørsportsfolk (fig. 28).
2.- Malonyldialdehyd (MDA). MDA er det mest oppnådde produkt etter reaksjon av lipidiske peroksider produsert ved oksidativt stress med tiobarbitursyre. Det er vist at en signifikant økning av oksidativ skade på plasmalipider mens det utføres alle anstrengelsesforsøk (p < 0,035). Etter DHA-inntak i tre uker er oksidativ skade på lipider mens det utføres anstrengelsesforsøk lavere enn i begynnelsen (p < 0,05). Denne forskjellen er mye mer viktig for trenede sportsfolk enn for amatørsportsfolk (fig. 29).
3.- 8-okso-7,8-dihydro-2-’-deoksyguanosin (8-oksodG). 8-oksodG er en oksidativstress biomarkør. Det er en økning av oksidativ skade på DNA mens det utføres rektangulære anstrengelsesforsøk (p < 0,011). Denne oksidative skaden reduseres etter administrering av DHA i tre uker (p < 0,035). Denne reduksjon i oksidativt stress er mer viktig hos ikke-konkurrerende syklister enn hos konkurrerende syklister, hvor forskjellen ikke er statistisk signifikant (fig. 30).
Glykemiundersøkelser
For å undersøke blodglykosenivåer ble et rektangulært anstrengelsesforsøk utført på en sykkelmølle med en maksimal belastning opprettholdt som er ekvivalent til en hastighet som tilsvarer 75 % av VO2maxberegnet over den maksimale triangulære anstrengelsesforsøk, under opprettholdelse av konstant stigning på en verdi på 2 %. Tiden for forsøket er 90 min. og opptaket av vann over samme tid blir utført ad libitum.
Siden drikkevarer med karbohydrater ikke ble inntatt var hypoglykemi forventet. Denne hypoglykemien ved andre prøvetaking (20 min. etter avslutning av forsøket med hensyn på startprøven oppnådd 20 min. før starten), er vist i det første anstrengelsesforsøket, som var forventet. Dataene oppnådd etter DHA-administrering i fire måneder viser imidlertid en statistisk signifikant opprettholdelse av glykemi, som ikke var observert tidligere og dette representerer et overraskende funn i den utførte forskning.
Generelt er det observert en statistisk signifikant reduksjon (p < 0,0009) av serumglukosenivåer gjennom rektangulære anstrengelsesforsøk. Atferden er imidlertid forskjellig avhengig av type sportsfolk som analyseres (p < 0,003): i tilfelle av vanlige konkurransesyklister var det ingen signifikant variasjon i reduksjon av glykemi under forsøkene, men i tilfelle av amatørsyklister er reduksjonen av glykemi under det basale forsøk høyere enn hos vanlig konkurrerende syklister og etter å ha tatt DHA i tre uker eller fire måneder forsvinner tydeligvis nevnte reduksjon (fig. 31, 32 og 33).
Eksistensen av normoglykemi under anstrengelsesforsøket på 75 % av VO2maxi 90 min. uten å drikke leskedrikker med karbohydrater representerer et funn som kobler sammen atferden av DHA under en fysisk anstrengelse med den observert og overnevnte i relasjon til økning av insulinsensitivitet. I denne forbindelse konkluderte Goodyear og Kahn (1998) at de molekylære mekanismer som ligger under responsen til glukose i skjelettmuskel til insulin eller muskelarbeid er forskjellig etter publikasjonen i 1997 (Winder og Hardie) om det faktum at AMPK (AMP-aktivert proteinkinase) var høy i fibre Iia under muskelarbeid, og tyder på at AMPK har en pleiotropisk virkning til å inhibere acetyl-CoA karboksylase og fremme glukosetransport blant andre virkninger. Kanskje dette kan forklare det funn at en glykemisk respons er forskjellig hos sportsmenn fra den forventet i henhold til undersøkelser utført hos sedate folk.
Fra disse studier om virkningen av DHA om sportsprestasjon og glykemi kan følgende konkluderes:
1) Det er blitt bevist at kontinuerlig inntak av DHA over mer enn tre uker frembringer en økning i plasma total antioksidantkapasitet (PTAC) generelt og statistisk signifikant (p < 0,05) i både konkurranse- og amatørsyklister. I tillegg er den oksidative skaden på lipider lavere (p < 0,05) (forskjell som er mer viktig for trenede sportsfolk enn for amatørsyklister). Endelig er det blitt vist at skade på DNA målt ved urinmarkøren (8-oksodG) reduseres etter inntak av DHA i tre uker (p < 0,035).
2) Det er blitt vist at etter fire måneder kontinuerlig inntak av DHA er sportsprestasjonen høyere (økning av belastning og hjertefrekvens så vel som prosentandel av VO2maxi UV2. I tillegg er det blitt observert en statistisk signifikant normoglykemi i anstrengelsesforsøk over 90 min. ved 75 % VO2maxutført fire måneder etter inntak av DHA.
Av begge virkninger (en økning i sportsprestasjon og normoglykemi over langtidsarbeid) er et resultat som ikke var forventet eller kjent på området.
Videre kunne det konkluderes at denne sammensetningen av virkninger er ønskelig og således ikke er kjent.
En annen hensikt med foreliggende oppfinnelse er anvendelse av dokosaheksaensyre til fremstilling av en sammensetning for å styrke sportsprestasjon og å opprettholde blodglukosenivåer etter fysisk anstrengelse administrert ved ethvert egnet middel.
Det bør vurderes at ”European Union Scientific Committee on Food” (EU’s vitenskapelig komité for næringsmidler) anbefaler følgende komponenter for en sammensetning av leskedrikk som skal ta under en fysisk anstrengelse (se http://ec.europa.eu/food/fs/sc/scf/out64_en.pdf).
I denne forbindelse er inklusjon av karbohydrater rettet mot å opprettholde glykemi for å unngå det hurtige forbruk av muskulær og leverglykogen. Det skal bemerkes at problemer med mavetømming ble redusert på grunn av økning av osmolariteten dannet i nærvær av konsentrasjoner av karbohydrater, assosiert med størrelsen av full mave som er uønsket for en del sportsfolk. Følgelig kunne fremstilling av en drikk med en lavere konsentrasjon av karbohydrater ved tilsetting av DHA være en ergogen fordel som uten tvil er av interesse for sportsprestasjon.
Følgelig angår en annen side av foreliggende oppfinnelse en farmasøytisk sammensetning som omfatter DHA som kan brukes i næringsmiddelindustrien med den hensikt å anrike næringsmiddelprodukter (f.eks. meieriprodukter så som yoghurt, melk, etc.) med et naturlig antioksidantmiddel så som DHA, eller ytterligere inkorporert i en egnet administreringsform valgt fra gruppen som omfatter drikker med alle dets egenskaper for før, under og etter fysisk utfoldelse; energigivende biter; ergogene biter, faststoffer og preparater; dietetisk supplement og multivitaminpreparater (i form av f.eks. kapsler, tabletter, piller, lyofilisert form eller ethvert annet egnet administreringsmiddel); ergogene hjelpemidler; tekstiler med nanokapsler for hudabsorpsjon og ethvert annet egnet administrasjonsmiddel.
Nøkkel til figurene
Fig. 1. Virkningen av DHA-konsentrasjon i forhudscellekulturmedium på intracellulær dannelse av ROS. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til de totale fettsyrer over en periode på 3 dager før eksperimentet. (A) ROS-deteksjon ble utført med DHR 123 på celler behandlet med 40 eller 60 mM AAPH i 180 min. Dataene viser gjennomsnitt av tre uavhengige eksperimenter. (B) Deteksjon av ROS ble utført med CDCFDA på celler behandlet med xantin/xantinoksidasesystem i 180 min. For å sammenligne blir dataene oppnådd med 100 μm vitamin E (kontroll) inkorporert. Dataene representerer gjennomsnitt av tre uavhengige eksperimenter.
Fig. 2. Sammenlignende virkning av andel av DHA i et triglyserid i forhudscellekulturmedium på intracellulær dannelse av ROS. (A) Cellene ble dyrket i nærvær av hvert triglyserid i tre dager før eksperimentet. Konsentrasjonen på xaksen er ekvivalenten som ville oppnås med et triglyserid som har et DHA-innhold på 70 vekt%. Deteksjonen av ROS ble utført med DHR 123 på celler behandlet med 40 mM AAPH i 180 min. Dataene representerer gjennomsnitt av tre uavhengige eksperimenter. (B) Representasjon av antioksidantbeskyttelse i relasjon til DHA-konsentrasjonen i olje på 20, 50 og 70 %.
Fig. 3. Virkning av DHA-konsentrasjon på produksjon av TBARS i forhudsceller. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i relasjon til de totale fettsyrer over tre dager før eksperimentet med angitt konsentrasjon. Det oksidative stress ble indusert med 40 mM AAPH i 6 timer og 24 timers latenstid. Dataene representerer gjennomsnitt av tre uavhengige eksperimenter.
Fig. 4. Virkning av DHA-konsentrasjon i forhudscellekulturmedium på dannelse av superoksidanioner. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til totale fettsyrer i tre dager før eksperimentet. Deteksjon av superoksidanioner ble utført ved kjemiluminescens øyeblikkelig etter oksidativ induksjon av cellene med 40 mM AAPH og i noen eksperimenter i nærvær av 10 mM Tyron eller av 0,1875 UA/ μl av eksogen SOD. Dataene er representative for tre uavhengige eksperimenter.
Fig. 5A. Virkning av DHA-konsentrasjon i forhudscellekulturmedium på SOD-aktivitet. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til de totale fettsyrer over tre dager før eksperimentet med DHA-konsentrasjoner på 0,5 (A), 5 (B) og 50 μM (C). SOD-aktiviteten ble analysert indirekte ved å analysere reduksjon i kjemiluminescens dannet av luminol som en konsekvens av den endogene SOD-aktivitet. Oksidativ induksjon ble utført med 0,1 mM xantin/0,005 U/ml xantinoksidasesystem som øyeblikkelig danner superoksidanioner. Dataene er representative for tre uavhengige eksperimenter.
Fig. 5B. Virkning av DHA-konsentrasjon i forhudscellekulturmedium på SOD-aktivitet. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til de totale fettsyrer over tre dager før eksperimentet. SOD-aktivitet ble evaluert på det ikke-induserte cellesystem eller system indusert med 40 mM AAPH. Dataene er representative for tre uavhengige eksperimenter.
Fig. 6. Virkning av DHA-konsentrasjon på forhudscellekulturmedium på GPxaktivitet, cellene ble dyrket i nærvær av et triglyserid med 70 vekt% i henhold til de totale fettsyrer over tre dager før eksperimentet. GPx-aktivitet ble evaluert på det ikke-induserte cellulære system eller systemet indusert med 40 mM AAPH. Dataene er representative for tre uavhengige eksperimenter.
Fig. 7. Virkningen av DHA-konsentrasjonen i kulturmedium for ARPE-19-celler på den intracellulære dannelse av ROS. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til totale fettsyrer i tre dager før eksperimentet. (A) Deteksjon av ROS ble utført med DHR 123 (A) eller med CDCFDA (B) på celler behandlet med 40 eller 60 mM av AAPH i 180 min. Dataene representerer gjennomsnitt av tre uavhengige eksperimenter.
Fig. 8. Sammenlignende virkning av DHA-konsentrasjon til et triglyserid i et triglyserid i kulturmediet til ARPE-19-celler på intracellulær dannelse av ROS. Cellene ble dyrket i nærvær av hvert triglyserid i tre dager før eksperimentet.
Konsentrasjonen på x-aksen er den ekvivalenten som ville oppnås med triglyseridet som har en DHA-andel på 70 vekt%. Deteksjon av ROS ble utført med DHR 123 på celler behandlet med 40 mM AAPH i 180 min. Dataene representerer gjennomsnitt av tre uavhengige eksperimenter. (B) representasjon av antioksidantbeskyttelse i relasjon til DHA-konsentrasjon i olje på 20, 50 og 70 %.
Fig. 9. Virkning av DHA-konsentrasjon på produksjon av TBARS i ARPE-19-celler. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i relasjon til totale fettsyrer i tre dager før eksperimentet på den angitte konsentrasjon. Det oksidative stress ble indusert med 40 mM AAPH i 6 timer og 24 timers latenstid. Dataene representerer gjennomsnitt av tre uavhengige eksperimenter.
Fig. 10. Virkning av DHA-konsentrasjon i ARPE-19-cellekulturmedium på dannelse av superoksidanioner. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i relasjon til de totale fettsyrer i tre dager før eksperimentet. Deteksjon av superoksidanioner ble utført med kjemiluminescens øyeblikkelig etter oksidativ induksjon av cellene med AAPH 40 mM. Dataene er representative for tre uavhengige eksperimenter.
Fig. 11. Virkning av DHA-konsentrasjon i dyrkningsmediet for ARPE-19-celler på GPx-aktivitet. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til de totale fettsyrer i tre dager før eksperimentet. GPx-aktivitet ble evaluert på det ikke-induserte cellesystem eller cellesystem indusert med 40 mM AAPH. Dataene er representative for tre uavhengige eksperimenter.
Fig. 12. Virkning av DHA-konsentrasjon i dyrkingsmediet til ARPE-19-celler på SOD-aktivitet. Cellene ble dyrket i nærvær av et triglyserid med 70 vekt% DHA i forhold til de totale fettsyrer i tre dager før eksperimentet. SOD-aktivitet ble evaluert på det ikke-induserte cellesystem eller på cellesystem indusert med 40 mM AAPH. Dataene er representative for tre uavhengige eksperimenter.
Fig. 13. Virkning av DHA-konsentrasjon oppnådd ved kjemisk syntese (A og C) eller enzymatisk syntese (B og D) på prosentandel av cellulær beskyttelse versus oksidativt stress i ARPE-19-celler (A og B) eller forhudsceller (C og D).
Fig. 14. Innflytelse av rensegraden til olje oppnådd ved kjemisk syntese på prosentandelen av cellulær beskyttelse versus oksidativt stress indusert av DHA i ARPE-19-celler.
Fig. 15. Innflytelse av kjemisk struktur på prosentandel av cellulær beskyttelse versus oksidativt stress indusert av DHA i ARPE-19-celler.
Fig. 16. Virkning av DHA-konsentrasjon på ekstracellulær konsentrasjon av glutation i ARPE-19-celler. Innflytelse av nærvær av BSO.
Fig. 17. Innflytelse av glutation de novo syntese på prosentandelen av cellulær beskyttelse versus oksidativt stress indusert av DHA i ARPE-19-celler.
Fig. 18. Virkning av DHA-konsentrasjon på intracellulær konsentrasjon av glutation i forhudsceller. Innflytelse av nærvær av BSO.
Fig. 19. Innflytelse av rensingsgraden av olje oppnådd ved kjemisk syntese på prosentandelen av cellulær beskyttelse versus oksidativt stress indusert av EPA i ARPE-19-celler. Sammenlignende undersøkelse med DHA.
Fig. 20. Virkning av EPA-konsentrasjon på prosentandel av cellulær beskyttelse versus oksidativt stress i forhudsceller. Sammenlignende undersøkelse med DHA.
Fig. 21. Virkning av EPA-konsentrasjon på intracellulær konsentrasjon av glutation på forhudsceller. Innflytelse av nærvær av BSO.
Fig. 22 er et sammenlignende søylediagram som viser virkningen av DHA-prosentandelen i et strukturert og ikke-strukturert triglyserid ved forskjellige doser med hensyn på prosentandel av cellebeskyttelse.
Nevnte fig. 22 viser de overraskende resultater av hensikten med foreliggende tilsetning under sammenligning av den kjemiske strukturen til et ikke-strukturert glyserid (triglyserid) med den samme struktur hvori sn-1- og sn-3-posisjoner er blitt erstattet med kaprylsyre (strukturert), begge fra en enzymatisk kilde med to utgangsnivåer med hensyn på innhold av DHA på 20 og 70 %.
Fra figuren kan det ses at den samme konsentrasjon, viser prosentandelen av beskyttelse av dokosaheksaensyre inkorporert i sn-2-posisjonen i et glyserid (strukturert), særlig et triglyserid, en effektivitet som er ca. tre ganger høyere enn den til et glyserid som inneholder ikke-strukturert DHA.
I en slik figur 22 angir beskyttelsesprosentandelen sammenhengen mellom forskjellen i intracellulær konsentrasjon av reaktive oksygenelementer i kontrollceller og de behandlet med DHA med hensyn på kontrollceller, begge utsatt for samme oksidative stress uttrykt i prosentandel. Med andre ord angir eksistensen av en beskyttelsesprosentandel i behandlede celler en signifikant statistisk mindre intracellulær dannelse av reaktive oksygenelementer i forhold til kontrollen.
Fig. 23 er et sammenlignende grafisk bilde som viser gjennomsnittlig lengde av telomeren i humane fibroblaster dyrket under oksidativt stress med eller uten DHA inkorporert versus passasjeantall av cellulære populasjoner.
Nevnte fig. 23 viser de overraskende resultater av hensikten med foreliggende tilsetning ved å observere at i nærvær av DHA under oksidative st ressbetingelser er telomerforkortningsindeksen lavere i forhold til kontrollene eller uten DHA.
Fig. 24 er en grafisk representasjon av det absolutte oksygenopptak i den ”ventilatoriske terskel 2” (UV2) for konkurrerende, ikke-konkurrerende og alle syklister i basalnivå og etter fire måneders inntak av DHA.
Fig. 25 er en grafisk representasjon av hjertefrekvens i UV2 for konkurrerende, ikke-konkurrerende og alle syklister på basalt nivå og etter fire måneders inntak av DHA.
Fig. 26 er en grafisk representasjon av tiden som er nødvendig for å nå UV2 for konkurrerende, ikke-konkurrerende og alle syklister på basalt nivå og etter fire måneders inntak av DHA.
Fig. 27 er en grafisk representasjon av hjertefrekvensen under opptak av 2000 ml/min. O2i den ventilatoriske terskel for konkurrerende, ikke-konkurrerende og alle syklister på basalnivå etter fire måneders inntak av DHA.
Fig. 28 er en grafisk representasjon av total plasma antioksidantkapasitet for konkurrerende, ikke-konkurrerende og alle sportsmenn på basalt nivå etter tre ukers inntak av DHA. I hvert tilfelle er det vist antioksidantkapasiteten før (venstre stolpe) og antioksidantkapasiteten etter (høyre stolpe) anstrengelsesprøven.
Fig. 29 er en grafisk representasjon av den oksidative skade til plasmatiske lipider i henhold til MDA-konsentrasjonen for konkurrerende, ikke-konkurrerende og alle sportsmenn på basalnivå og etter tre ukers inntak av DHA. I hvert tilfelle er det vist den oksidative skade før (venstre stolpe) og den oksidative skade etter (høyre stolpe) anstrengelsesprøven.
Fig. 30 er en grafisk representasjon av den oksidative skade på DNA ved å bruke oksidativ stressbiomarkøren 8-oksodG for konkurrerende, ikke-konkurrerende og alle sportsmenn på basalnivå etter tre ukers inntak av DHA. I hvert tilfelle er det vist den oksidative skade før (venstre stolpe) og den oksidative skade etter (høyre stolpe) anstrengelsesprøven.
Fig. 31 er en grafisk representasjon av glykemi i konkurrerende sportsmenn under fysisk anstrengelse som ikke tok DHA eller gjorde det i tre uker eller fire måneder.
Fig. 32 er en grafisk representasjon av glykemi i ikke-konkurrerende sportsmenn under en fysisk anstrengelse som ikke tok DHA eller gjorde det i tre uker eller fire måneder.
Fig. 33 er en grafisk representasjon av glykemi i konkurrerende og ikkekonkurrerende sportsfolk under fysisk anstrengelse som ikke tok DHA eller som gjorde det i tre uker eller fire måneder.
Ytterligere mulige trekk og kombinasjoner av trekk ved det som er beskrevet fremgår av de etterfølgende nummererte aspekter, som ikke skal forveksles med patentkrav.
Aspekt 1: Matvare som omfatter dokosaheksaensyre (DHA), eikosapentaensyre (EPA), eller DHA-avledet EPA for ernæringsmessig anvendelse som en antioksidant.
Aspekt 2: Matvare i henhold til aspekt 1 der nevnte matvare blir administrert til et individ påvirket av cellulær oksidativ skade.
Aspekt 3: Matvare i henhold til aspekt 2 der den cellulære oksidative skade er assosiert med:
• en fysiologisk tilstand valgt fra aldring, fysisk trening, hypoglykemi under eller etter fysisk trening; eller
• en sykdom valgt fra en nevrodegenerativ patologi, en okular patologi, en iskemisk patologi, en inflammatorisk prosess, aterosklerose; hvori nevnte nevrodegenerative patologi kan være valgt fra multippel sklerose, Alzheimers sykdom, Parkinsons sykdom, amyotrofisk lateral sklerose, og muskulær dystrofi; hvori nevnte okulare patologi kan selekteres fra retinisis pigmentosa, makuladegenerering og katarakter; hvori nevnte iskemiske patologi kan selekteres fra myokardialt infarkt og cerebralt infarkt; og hvori nevnte inflammatoriske prosess kan selekteres fra artritt, vaskulitt, glomerulonefritt og erythematosus lupus.
Aspekt 4: Fremgangsmåte til dietthåndtering av cellulær oksidativ skade i et individ der fremgangsmåten omfatter administrering av en effektiv mengde av DHA, EPA eller DHA-avledet EPA til nevnte individ.
Aspekt 5: Fremgangsmåte som angitt i aspekt 4 der den cellulære oksidative skade er assosiert med:
• en fysiologisk tilstand valgt fra aldring, fysisk trening, hypoglykemi under eller etter fysisk trening; eller
• en sykdom valgt fra en nevrodegenerativ patologi, en okular patologi, en iskemisk patologi, en inflammatorisk prosess, aterosklerose; hvori nevnte nevrodegenerative patologi kan være valgt fra multippel sklerose, Alzheimers sykdom, Parkinsons sykdom, amyotrofisk lateral sklerose, og muskulær dystrofi; hvori nevnte okulare patologi kan selekteres fra retinisis pigmentosa, makuladegenerering og katarakter; hvori nevnte iskemiske patologi kan selekteres fra myokardialt infarkt og cerebralt infarkt; og hvori nevnte inflammatoriske prosess kan selekteres fra artritt, vaskulitt, glomerulonefritt og erythematosus lupus.
Aspekt 6: Ikke-terapeutisk anvendelse av dokosaheksaensyre (DHA), eikosapentaensyre (EPA), eller DHA-avledet EPA som en antioksidant.
Aspekt 7: Ikke-terapeutisk anvendelse av DHA, EPA eller DHA-avledet EPA som et anti-aldringsmiddel.
Aspekt 8: Ikke-terapeutisk anvendelse av DHA, EPA eller DHA-avledet EPA som en sportsprestasjonsforsterker hos individer utsatt for fysisk trening.
Aspekt 9: Ikke-terapeutisk anvendelse av DHA, EPA eller DHA-avledet EPA for å opprettholde blodglukosenivåer hos individer under fysisk trening.
Aspekt 10: Ikke-terapeutisk anvendelse i henhold til ethvert av aspektene 6-9, hvori anvendelsen blir utført i næringsmiddelindustrien.
Aspekt 11: Ikke-terapeutisk anvendelse som angitt i ethvert av aspektene 6-10, hvori nevnte anvendelse blir utført på meieriprodukter.
Aspekt 12: Ikke-terapeutisk anvendelse som angitt i ethvert av aspektene 8-9, hvori nevnte DHA, EPA eller DHA-avledet EPA blir administrert gjennom et egnet middel selektert fra gruppen som omfatter en drikk med alle dets egenskaper til å benyttes før, under og etter fysisk trening; energigivende plater; ergogene plater; faststoffer og preparater for proviantering; dietetisk supplement og multivitaminpreparater; ergogene hjelpemidler; tekstiler med nanokapsler for hudabsorpsjon; og ethvert annet egnet administrasjonsmiddel.
Aspekt 13: Ikke-terapeutisk anvendelse som angitt i aspekt 12, hvori nevnte dietetiske supplement og multivitaminpreparat er i form av kapsler, tabletter, piller, lyofilisert form eller ethvert egnet administrasjonsmiddel.
Aspekt 14: Ikke-terapeutisk anvendelse som angitt i ethvert av aspektene 6-9, hvori nevnte anvendelse blir utført i kosmetiske applikasjoner.
Aspekt 15: Anvendelse av DHA, EPA eller DHA-avledet EPA til fremstilling av en farmasøytisk sammensetning til å behandle cellulær oksidativ skade.
Aspekt 16: Anvendelse som angitt i aspekt 15, hvori den cellulære oksidative skade er assosiert med
• en fysiologisk tilstand valgt fra aldring, fysisk trening, hypoglykemi under eller etter fysisk trening; eller
• en sykdom valgt fra en nevrodegenerativ patologi, en okular patologi, en iskemisk patologi, en inflammatorisk prosess, aterosklerose; hvori nevnte nevrodegenerative patologi kan være valgt fra multippel sklerose, Alzheimers sykdom, Parkinsons sykdom, amyotrofisk lateral sklerose, og muskulær dystrofi; hvori nevnte okulare patologi kan selekteres fra retinisis pigmentosa, makuladegenerering og katarakter; hvori nevnte iskemiske patologi kan selekteres fra myokardialt infarkt og cerebralt infarkt; og hvori nevnte inflammatoriske prosess kan selekteres fra artritt, vaskulitt, glomerulonefritt og erythematosus lupus.
Aspekt 17: Matvare i henhold til ethvert av aspektene 2-3, fremgangsmåte i henhold til ethvert av aspektene 4-5, eller anvendelse som angitt i ethvert av aspektene 15-16, der den cellulære oksidative skade omfatter produksjon av reaktive oksygenarter (ROS).
Aspekt 18: Matvare i henhold til ethvert av aspektene 2-3, fremgangsmåten i henhold til ethvert av aspektene 4-5, eller anvendelse i henhold til ethvert av aspektene 15-16 der ROS er superoksidanionet.
Aspekt 19: Matvare i henhold til ethvert av aspektene 2-3, fremgangsmåte i henhold til ethvert av aspektene 4-5, eller anvendelse i henhold til ethvert av aspektene 15-16 der den cellulære oksidative skade omfatter forkortning av DNA-telomerer.
Aspekt 20: Matvare som angitt i ethvert av aspektene 2-3, fremgangsmåte som angitt i ethvert av aspektene 4-5, eller anvendelse som angitt i ethvert av aspektene 15-16, der den cellulære oksidative skade omfatter prematur cellulær aldring.
De følgende eksempler er inkludert for å illustrere og er ikke-begrensende eksempler på oppfinnelsen.
Eksempler
MATERIALER OG METODER FOR Å EVALUERE ANTIOKSIDANTAKTIVITET
Cellekulturer
De cellulære modellene brukt var forhudsceller (udifferensierte epidermale fibroblaster, CRL-2076) og ARPE-19-celler (retinale pigmentepitelceller CRL-2302) oppnådd fra American Type Culture Collection. Cellekulturene ble holdt under egnede vekstbetingelser med temperatur (37<o>C), Co2-konsentrasjon (5 %) og fuktighet (95 %) i en inkubator spesielt konstruert for denne hensikt. ARP-19-celler ble opprettholdt i vekst opptil konfluens på 0,3 x 10<4>celler/cm<2>i kulturflasker med DMEM-F12-medium (Biological Industries) supplementert med 10 % bovint føtalt serum, penicillin som antibiotika (100 U/ml), streptomycin (100 μg/ml) og glutamin (Biological Industries). CRL-2076-fibroblaster ble holdt voksende i kulturflasker i Iscoves modifisert Dulbeccos medium (Biological Industries) supplementert med 10 % bovint føtalt serum, penicillinantibiotika (100 U/ml), streptomycin (100 μg/ml) og glutamin (Biological Industries). Cellene ble overført for tilklebing til substratet 24 timer på 34<o>C fra 75 ml flasker til 6-, 12- eller 96-brønners plater for å være i stand til å utføre eksperimentet (10<6>celler/ml).
Integrering av DHA i cellene
DHA-TG ble tilsatt med forskjellige konsentrasjoner (0,5-50 μm) som startet med DHA-TG anriket med 20, 50 og 70 % (oljetetthet 0,92 g/ml), fremstilt ved å oppløse oljen i etanol for stamløsningen (1:100) og å fremstille arbeidsløsningene i et kulturmedium fremstilt med serum. Cellene ble dyrket med supplementert DHA-TG-medium i tre dager ved 37<o>C.
Induserende oksidativt stress
Forskjellige induksjonsceller ble brukt til å stresse cellene oksidativt:
a) xantin/xantinoksidasesystem 0,8 mM/10<-2>U/ml som katalyserer oksidering av hypoxantin og xantin til urinsyre, med reduksjon av O2til O�<-2>og H2O2.
b) 2,2’-azobis-(2-amidinopropan) dihydroklorid (AAPH) 1-100 mM i stor grad brukt som en hydrofil initiator av frie radikaler ved å indusere lipidisk og proteinperoksidering. AAPH oksiderer DNA, proteinene og lipidene gjennom virkning av de dannede peroksidradikaler. Den virker videre på det endogene forsvarssystem siden det deaktiverer nøkkelenzymet SOD for derved å tape den beskyttende kapasiteten til CAT og GPx.
Dannelse av reaktive oksygenelementer (ROS)
ROS-nivået ble målt i de primære kulturene til humane hud CRL-2076 fibroblaster og i ARPE-19 retinale epitelceller ved å anvende den fluorometriske teknikken ved å bruke dihydrodamin 123 (DHR 123, Molecular Probes) og 2,7-diklorfluoresceindiacetat (H2DCFDA, Molecular Probes) som fluorescerende prober i et kontinuerlig system som måler hvert 30. min. inntil 180 min. I begge tilfeller er dette en uspesifikk måling av ROS-dannelse. De fluorescerende probene ble tilsatt til cellene (1 x 10<6>celler/ml) med en endelig konsentrasjon på 10 μm.
Fluorescensen til de oksiderte prober (2,7-diklorfluorescein og rodamin 123 ble målt i en Mithras fluorescensleser på en eksitasjonsbølgelengde på 488 nm og en emisjonsbølgelengde på 525 nm som en funksjon av tid. Den oppnådde fluorescens blir modulert med den cellulære levedyktighetsbestemmelse ved MTT spektrofotometrisk teknikk skissert nedenfor.
Cellulær levedyktighet
Cellulær levedyktighetsundersøkelser ble utført for å evaluere den cytotoksiske virkning i forskjellige prøver. Denne metoden består av å tilsette MTT-reagensen (3-(4,5-dimetyltiazol-2-yl)-2,5-difenyltetrazoylbromid, Sigma), løselig i vandig medium, til inkubasjonsmediet. De levedyktige cellene metaboliserer denne forbindelse og den blir konvertert til formazansalt. Dette saltet er en kolorimetrisk forbindelse som er uløselig i vandig medium, løselig i DMSO og brukbar for å måle cellulær levedyktighet. Fremgangsmåten består av å tilsette 20 μl/brønn av en 7,5 mg/ml (i overskudd) MTT-løsning. Dette blir inkubert i 1 time ved 37<o>C slik at de levedyktige cellene metaboliserer forbindelsen og produserer formazansaltet, mens de ikke-levedyktige cellene ikke gjør dette. Etter inkubering i 1 time blir cellene utfelt og telt og 100 μl av DMSO tilsatt, som vil løse opp formazansaltet. Endelig blir absorbansen på 550 nm lest på en plateleser. levedyktighetsresultatene blir uttrykt som en optisk tetthets prosentandel i relasjon til kontrollene, hvor de siste blir satt til å ha 100 % levedyktighet. Cellulære levedyktighetskurver ble trukket opp på 96-brønners plater ved å så ut ca.20000 celler/brønn (etter analyse av det egnede antall celler som en funksjon av deres vekstforhold) med et egnet volum på 200 μl medium/brønn. Undersøkelsen av effektiviteten til produktet blir utført ved å eksponere cellene til produktet i 72 timer i et tilstrekkelig stort område av konsentrasjoner for å finne verdien til IC50. De eksperimentelle resultatene blir justert til Hill-ligningen ved å bruke Sigma Plot 8.0 for å bestemme IC50, definert som DHA-konsentrasjonen som er nødvendig for å redusere levedyktigheten til kulturen til 50 % i forhold til kontrollen.
Bestemmelse av proteiner
Denne bestemmelse er basert på kolorimetrisk deteksjon og total kvantifisering av proteiner med en optimalisert disinkoninsyreformulering som tillater proteiner å måles i fortynnede prøver i et konsentrasjonsområde på 0,5-20 μg/ml.
Fremgangsmåten benytter en detektor for Cu<+1>, som blir redusert av proteinene i alkalisk medium til Cu<+2>. Det purpurfargede reaksjonsprodukt blir dannet ved chelatering av to molekyler av BCA med kobberionet. Det vannløselige kompleks absorberer på 562 nm. Ved hjelp av en kalibreringskurve kan det oppnås en ligning, hvor resultatene er uttrykt i μg/ml proteiner. Det kommersielle sett brukt er MicroBCA fra Pierce (nr. 23235).
Direkte analyse av ROS-generering
Måling av dannelse av lipidiske hydroperoksider
Måling av malonildialdehyd (MDA) på cellelysater ble brukt som en markør på lipidisk peroksidering ved UV-Vis spektrofotometri. MDA og 4-hydroksyalkenaler (HAE) er produkter avledet fra peroksidering av flerumettede fettsyrer og relaterte estere. Direkte målinger av disse aldehydene utgjør en egnet indeks for lipidiks peroksidering. Et kromogent reagens (N-metyl-2-fenyl-indol i acetonitril) som reagerer med MDA ved 45<o>C ble anvendt, ved å bruke det kommersielle lipidiske peroksideringssett fra Calbiochem (nr. 437634). Kondenseringen av et molekyl av MDA med to molekyler av det kromogene reagens gir en stabil kromofor med maksimum absorbans på 586 nm, hvor deteksjonsgrensen er 0,1 μm. Induksjonen ble utført i 6 timer med 40 mM AAPH og 24 timers latenstid. Cellene (10<7>celler/ml) ble lysert ved hjelp av sykler av frysing og tining i flytende N2. Prøvene ble fraksjonert for å måle MDA og protein. Resultatene ble uttrykt i μm MDA/mg protein.
Måling av generering av superoksidanion
Direkte måling av superoksidanionet ble utført ved hjelp av kjemiluminescensteknikk på mikroplate målt ved luminol (Calbiochem, nr.
574590). Kjemiluminescens for deteksjon av superoksidanion er en teknikk brukt på grunn av dens potensial for å oppnå tilgang til alle de intracellulære setene for superoksiddannelse, på grunn av den høye spesifisiteten av reaksjonen med luminol, den minimale intracellulære toksisitet og den økte sensitivitet i forhold til andre kjemiske teknikker. Den er basert på det superoksidanionoksiderende luminol i en reaksjon som produserer lysfotoner som er hurtig målt ved et standard illuminometer. I våre tester brukte vi en kjemiluminescensleser på mikroplater fra ELISA, MITHRAS og i tillegg, gitt den korte halveringstiden til radikalet, ble det brukt en forsterker for å øke sensitiviteten til testen og forsterke responsen. Dette reagenset kan brukes på levende celler siden det ikke er toksisk og denaturerer ikke de subcellulære systemkomponenter. Kapasiteten for å inhibere produksjon av superoksidanion ble også undersøkt ved å bruke et spesifikk superoksidanion komplekssaltdanner, Tyron (4,5-dihydroksy-1,3-benzendisulfonsyre, Sigma) ofte brukt for in vitro blokkeringsassayer på ROS-produksjon, som er permeabelt i cellemembranen og superoksiddismutase (SOD, Sigma) ble brukt som en enzymblokker, som utgjør et førstelinjeenzym i det endogene antioksidantforsvar. Kjemiluminescensmålingen i cellene utsatt for AAPH oksidativt stress induserende behandling ble analysert hvert 60. sek. over et totalt tidsrom på 4100 sek., i en frekvens med 120 sek./syklus. Resultatet ble uttrykt i UA av kjemiluminescens/mg protein.
Bestemmelse av antioksidantenzymaktivitet
Måling av glutationperoksidase (GPx)-aktivitet
GPx katalyserer reduksjon av hydroksyperoksider til redusert glutation, hvor funksjonen er å beskytte cellen mot oksidativ skade. Den anvender glutation som siste elektrongiver for å regenerere den reduserte formen til selencystein. Den indirekte måling av GPx blir oppnådd ved koblet reaksjon med glutationreduktase. Det oksiderte glutation (GSSG) produsert ved reaksjonen med hydroperoksider ved virkning av GPx blir resirkulert til dens reduserte tilstand med glutationreduktase ved å bruke NADHP som koenzym. Oksidering fra NADPH til NADP<+>blir fulgt av reduksjon av dens absorbans på 340 nm. Graden av reduksjon av absorbans på 340 nm er direkte proporsjonal til GPx-aktiviteten i prøven. ELISA mikroplatespektrofotometrisk sett fra Cayman (nr. 703102) ble brukt for å detektere GPx i cellelysater av primære kulturer. Cellene ble dyrket ved klebing til substratet i 24 timer ved 37<o>C. Cellelysater ble oppnådd ved sonikering i Tris 50 mM, pH 7,5, EDTA 5 mM og DTT 1 mM. Aktiviteten til GPx blir oppnådd ved å bestemme forandringen av A340nm/min. ( ΔA340), uttrykt som nanomol NADHP/min./mg protein fra prøven.
Måling av superoksiddismutaseaktivitet (SOD)
Denne kjemoluminescensmetoden er basert på analyse av SOD-aktivitet i den cellulære supernatanten i forhold til en positiv kontroll av SOD (Calbiochem nr. 574590). Nærværet av SOD i xantinoksidase-xantinluminolsystemet fører til en reduksjon av kjemoluminescens fremstilt som en reduksjon av dismutering av superoksidanionet proporsjonalt med SOD-aktiviteten. Analysen blir utført på et MITHRAS illuminometer i intervaller på 50 msek. opptil en endelig reaksjonstid på 520 sek.
Superoksiddismutaseaktivitet (SOD) i cellulære lysater ved hjelp av reaksjonen som bruker tetrazoliumsalter for å detektere superoksidradikaler dannet av xantinoksidase/hypoxantinsystemet er også blitt bestemt. En spektrofotometrisk metode blir brukt på en mikroplate for å måle de tre typer av SOD (Cu-Zn-SOD; Mn-SOD og Fe-SOD), som er cytosolisk og mitokondriell). En enhet av SOD er definert som mengden av enzym som er nødvendig for å dismutere 50 % av det dannede superoksidanion. For å detektere SOD i cellulære lysater fra primære kulturer ble et Cayman kit (nr. 706002) brukt ved å følge protokollen optimalisert av produsenten. Det dynamiske området for assayet er 0,025-0,25 SOD enheter/ml.
Bestemmelse av intracellulær endogen antioksidantkonsentrasjon
Måling av den reduserte glutation intracellulære konsentrasjon (GSH) Direkte kinetisk assay for å måle redusert glutation (GSH) i cellulære lysater.
Glutation kan finnes på innsiden av cellen hovedsakelig i redusert form (90-95 % av totalt glutation), og er den viktigste antioksidanten i vevene. Dens rolle er detoksifyserende xenobiotika og å fjerne hydroperoksider for å opprettholde den cellulære redokstilstand. Den anvendte teknikken måler den totale glutation (GSSG GSH) i en biologisk prøve (cellulært lysat) tidligere deproteinisert med sulfosalisylsyre (Sigma-Aldrich CS0260-sett). GSH forårsaker en kontinuerlig reduksjon fra 5,5’-ditiobis (2-nitrobenzo) syre (DTNB) til 5-tio(2-nitrobenzosyre (TNB) og GSSG dannet blir resirkulert ved glutationreduktase og NADPH. TNB blir spektrofotometrisk målt ved 412 nm. Butioninsulfoksimin (BSO) som spesifikt inhiberer gammaglutamylcysteinsyntetase ble brukt som en synteseinhibitor.
EVALUERING AV ANTIOKSIDANTAKTIVITETEN TIL DHA I EN HUMAN HUDMODELL
I dette in vitro assay ble forhudsceller (udifferensierte epidermale fibroblaster, ATCC CRL-2076) brukt som cellulær modell, idet de er en egnet cellulær type på grunn av deres gode in vitro respons til forskjellige oksidantinduserende midler, i tillegg til å være en primær kultur med normale ernæringskrav og kulturbetingelser, og utgjør således en god in vitro modell som kan ekstrapoleres til in vivo respons for en potensiell kosmetisk anvendelse av DHA.
Resultater
Betingelsene ble lagt ned initielt for å oppnå en aktiv cellulær modell under alle undersøkelsesbetingelser. Dette betyr at de oppnådde resultatene refererer seg til metabolsk aktive celler. Tidligere undersøkelser har allerede vist at i forhudsceller påvirker ikke konsentrasjoner av mindre enn 1000 μM DHA cellulær levedyktighet i undersøkelser over tre dager. Heller ikke ble cellulær levedyktighet påvirket ved undersøkelser av oksidativt stress med xantin/xantinoksidasesystemet eller med AAPH. Det er også blitt vist at inkorporering av DHA opptil en konsentrasjon på 50 μM i en kultur av forhudsceller over tre dager ikke signifikant øker det cellulære oksidative nivå målt som cellulær fluorescens assosiert med to prober, dihydrorodamin (DHR 123) og 2,7-diklordifluorescein (H2DCFDA), mer spesifikt henholdsvis for superoksidanion og for deteksjon av hydroperoksider. Når disse betingelser er blitt etablert ble den generelle antioksidantkapasiteten til DHA inkorporert i membranene i forhudscellene evaluert mot oksidativt stress indusert av xantin/xantinoksidase eller av AAPH.
Ved å indusere et moderat oksidativt stress med 40 mM AAPH og å benytte DHR123 som ROS-detektor viser DHA en inhiberende virkning på dannelse av reaktive oksygenelementer, både ved konsentrasjon på 0,5 μM (59 % beskyttelse) og 5 μM (33 % beskyttelse) og viser en lavere virkning ved 10 μM (26 % beskyttelse) eller ingen virkning ved 50 μM DHA (fig. 1A). Når cellene ble utsatt for alvorlig induksjon med 60 mM AAPH, viser DHA en beskyttende virkning mot dannelse av ROS både ved 0,5 μM konsentrasjon (40 % beskyttelse) og 5 μM (29 % beskyttelse), men mister den ved høyere konsentrasjoner av DHA (fig. 1A).
Vi kan også bemerke den beskyttelsen som 0,5 μM DHA utøver mot det oksidative stress indusert av xantin/xantinoksidase (fig. 1B), som viser en chelatdannelseseffekt på oksygenreaktive elementer, både superoksidanion og hydroperoksider dannet i den oksidative prosess. Ved å sammenligne antioksidantkapasiteten i relasjon til en lipofil antioksidant så som vitamin E (fig.
1B), observerer vi at de utøver lik beskyttelseskinetikk (med DHA som inhiberer cellulær oksidasjon ved 33,46 % og vitamin E ved 30 %).
Beskyttelseskinetikkresponsen til DHA presenterer alltid en maksimal antioksidantvirkning mellom 60-120 min. etter å ha utført induksjonen, og angir således en metning i hydroksyperoksider og superoksidanionsekvestreringskapasistet av DHA. Antioksidantatferden er kritisk doseavhengig siden å øke konsentrasjonen fører til et tap av ROS-chelatdannelseskapasitet, hvor 0,5 μM konsentrasjon har den mest effektive antioksidantkapasitet. I denne forbindelse er en annen kritisk parameter i form av optimalisering av effektiviteten til systemet andelen av DHA i relasjon til totale fettsyrer. Som vist i fig. 2 ved identiske konsentrasjoner av triglyserider, reduserer en reduksjon av andelen av DHA til 50 eller 20 % drastisk den cel lulære antioksidantkapasitet og den reverseres til å bli prooksidant ved lave eller moderate konsentrasjoner. Disse resultatene synes å angi at den cellulære antioksidanteffektivitet til DHA ikke avhenger eksklusivt av konsentrasjonen derav, men at dens molekylære lokalisering også er en avgjørende faktor, i dette tilfellet dets fordeling i strukturen til triglyseridet.
Med hensyn på spesifikk inhibisjon av ROS-produksjon analyserte vi dannelse av lipidiske peroksider (TBARS) og superoksidanioner. De oppnådde resultatene viste at cellene behandlet med AAPH dannet en høyere konsentrasjon av substansene som var reaktive til tiobarbitursyre (TBARS) sammenlignet med ikke-induserte celler, uttrykt som μM av MDA/mg proteiner (fig. 3). Som forventet økte inkorporering av DHA i membranen til forhudscellene noe den basale cellulære lipidiske peroksidering i doseavhengig form (0,5, 5 og 50 μM) (fig. 3). I cellene utsatt for oksidativ induksjon med 40 mM AAPH, presenterer DHA en antioksidantaktivitet som beskytter fibroblastene fra å danne membranhydrolipidiske peroksider, hvor dets virkning er av den inverse konsentrasjonsavhengige type. Beskyttelse med DHA var 87 % for 0,5 μM DHA, 85 % for 5 μM og 48 % for 50 μM DHA-TG (fig.
3).
Dannelse av superoksidanionene ble deretter analysert. Forhudsceller utsatt for et oksidativt stress med 40 mM AAPH dannet en superoksid anionproduksjon som var 2,5 ganger større enn de ikke-induserte celler, som opprettholdt et konstant superoksidanionnivå (fig. 4). I fravær av oksidativ induksjon viser ikke cellene med integrert DHA et høyere nivå av intercellulær superoksidanion i relasjon til kontroll (fig. 4). Under oksidative stressbetingelser (fig. 4) inhiberer DHA dannelse av superoksidanion med 16,5 % ved en konsentrasjon på 0,5 μM, med 10 % ved en konsentrasjon på 5 μM og ved 9 % med en konsentrasjon på 50 μM. Spesifisiteten til metoden ble konfirmert ved tilsetting av Tyron (4,5-dihydroksy-1,3-benzendisulfonsyre, en forbindelse som er permeabel i cellemembranen som virker som et meget spesifikt chelateringsmiddel for intracellulær superoksidanion) eller av ekstracellulær SOD (første linje enzymblokker i det endogene antioksidantforsvar via dismutering av det intracellulære superoksidanion).
Produksjon av superoksidanion i celler stresset med AAPH, med eller uten DHA tidligere integrert, og i nærvær av eksogen SOD eller av Tyron, ble totalt inhibert og oppnådde basale verdier (fig. 4).
Endelig analyserte vi om DHA gjennomgikk sin antioksidantaktivering ved å modifisere aktiviteten til førstelinje cellulære antioksidantenzymer. Aktiviteten til SOD og til GPx i forhudsceller med eller uten integrert DHA ble analysert. I det første tilfellet ble xantin/xantinoksidasesystemet brukt som øyeblikkelige dannere av superoksidanioner (total måletid 520 sek., måling hvert 50. msek.). De oppnådde resultater viser god oksidativ induksjon med hurtig kinetikk, med direkte observasjon av dismutering og ikke-produksjon av superoksidanion. Den maksimale kjemoluminescens oppnådd etter 15 sek. fra oksidativ induksjon ble tolket som et indirekte og kvalitativt mål på SOD-aktivitet (fig. 5A). Uten DHA integrert ble verdier på 310 UA kjemiluminescens/10<6>celler oppnådd, som falt til 150 UA kjemiluminescens/10<6>celler i et system preinkubert med DHA 0,5 μM (52 % antioksidantbeskyttelse) (fig. 5A). Antioksidanteffektiviteten ble opprettholdt ved 52 % og 42 % beskyttelse i cellene behandlet med henholdsvis 5 og 50 % μM DHA (fig. 5A). Videre, under kjennskap til at AAPH oksiderer DNA, kan proteinene og lipidene ved diffusjon av de dannede peroksylradikaler, DHA som antioksidant forhindre deaktivering av SOD betrodd dismutering av superoksidanion, som opprettholder cellens endogene antioksidantforsvar av katalase og glutationperoksidase. Dette aspekt blir konfirmert i fig. 5B, hvori SOD-aktiviteten er vist ikke å økes i basaltilstand når DHA er tilstede (-10/-15 %), men tap av SOD-aktivitet innebygget i den oksidative stressprosess blir inhibert hvormed DHA tilstede som opprettholder eller til og med øker SOD-aktiviteten (10/20 %). Som for GPx-aktivitet (fig. 6), er dette funnet å være øket i cellulær basaltilstand ved moderate konsentrasjoner av DHA (opptil 17 % ved 5 μM), men faller av ved høye konsentrasjoner (- 20 % ved 50 μM). Denne atferd blir holdt intakt i en oksidativ stresstilstand (fig. 6). Disse resultatene antyder at DHA samarbeider med det endogene antioksidantforsvarssystem som relateres til dismutering av superoksidanionene ved å danne SOD over hele området av de testede konsentrasjoner, og er også i stand til å kontrollere dannelse av hydroksyperoksider ved moderate konsentrasjoner siden det øker GPx-aktiviteten.
EVALUERING AV ANTIOKSIDANTAKTIVITET AV DHA I EN RETINACELLEMODELL
I denne in vitro undersøkelsen ble den cellulære modell basert på ARPE-19-celler (pigmentære retinale epitelceller, ATCC CRL-2302), som er en egnet cellulær type på grunn av dens gode in vitro respons til forskjellige oksidantinduktorer, så vel som å være en primær kultur med normale næringskrav og kulturbetingelser. Den utgjør også en god okular modell siden den beholder de biologiske og funksjonelle egenskaper til de retinale pigmentepitelceller.
Resultater
Assayet utført med denne cellelinje er lik den beskrevet for forhudsceller i foregående avsnitt. De basale krav var de samme med hensyn på å opprettholde cellulær levedyktigheten under alle arbeidsbetingelser (virkning av DHA, av oksidativ stress). Ei heller involverte inkorporering av DHA i de analyserte doser noe signifikant forandring i den basale cellulære oksidative tilstand.
Ved å indusere et moderat oksidativt stress med 40 mM AAPH og ved å bruke DHR 123 som ROS-detektor viser DHA en inhiberende virkning på dannelse av de reaktive oksygenelementer, i konsentrasjoner på 0,5 μM (43 % beskyttelse) og 5 μM (32 % beskyttelse), men med en lavere virkning ved 50 μM (4 % beskyttelse) av DHA (fig. 7A). Når cellene blir utsatt for alvorlig induksjon med 60 mM AAPH viser DHA en beskyttende virkning mot ROS-dannelse, ved 0,5 μM konsentrasjon (13 % beskyttelse) og lavere ved høyere konsentrasjoner av DHA (fig. 7A). Disse resultatene er lik de oppnådd med forhudsceller skjønt én bemerkelsesverdig avvikende virkning er den lavere beskyttelsen observert mot en alvorlig oksidativ induksjon. Ved å benytte CDCFDA som er mer spesifikk til peroksider for ROS-deteksjon viste det også at den beskyttelsen DHA utøver mot det oksidative stress blir indusert av AAP (fig. 7B).
Beskyttelseskinetikkene til DHA presenterer også alltid en maksimal antioksidantvirkning 60-120 min. etter at induksjonen ble utført, og viser en metning i DHA’s hydroperoksider og superoksidanionchelatdannelseskapasitet. Kvantitativt er antioksidantkapasiteten kritisk doseavhengig siden DHA-konsentrasjonen økes når DHA-konsentrasjonen økes er det et tap av ROS-chelatdannelseskapasitet, hvor 0,05 μM konsentrasjon er den mest effektive for antioksidantkapasitet (fig. 7A og 7B). I denne forbindelse er en annen kritisk parameter i form av optimalisering av effektiviteten til systemet forholdet mellom DHA og totale fettsyrer. Ved å redusere andelen av DHA i forhold til totale fettsyrer fra 70 % til 50-20 % reduseres signifikant og ikke proporsjonalt dets cellulære antioksidantkapasitet ved optimale konsentrasjoner (0,5-5 μM), og gjør den lik den ved de høye konsentrasjoner (fig. 8A og 8B) mot ulik forhudsceller ved at ingen andel gjør at DHA blir prooksiderende. Disse resultatene konfirmerer at den cellulære antioksidantvirkningen til DHA ikke avhenger eksklusivt av dens konsentrasjon men også er en avgjørende faktor dens molekylære lokalisering, i dette tilfellet dens fordeling i strukturen til triglyseridet.
Med hensyn på spesifikk inhibisjon av ROS-produksjon ble dannelse av lipidiske peroksider (TBARS) (fig. 9) og superoksidanioner (fig. 10) analysert. De oppnådde resultater er meget like de oppnådd med forhudsceller. Cellene behandlet med AAPH danner en høyere konsentrasjon av stoffer som er reaktive til tiobarbitursyre (TBARS) og av superoksidanioner i forhold til de ikke-induserte celler.
Inkorporering av DHA i membranen til ARPE-19-celler øker noe og doseavhengig (0,5, 5 og 50 μM) den cellulære basale lipidiske peroksidering, skjønt i cellene utsatt for oksidativ induksjon presenterer DHA en cellulær antioksidantaktivitet som inhiberer dem fra å danne membranlipidiske hydroperoksider i et inverst forhold til deres konsentrasjon. Beskyttelse med DHA var 64 % for 0,5 μM DHA, 58 % for 5 μM og 42 % for 50 μM DHA (fig. 9). Dannelse av superoksidanionet ble deretter analysert. I fravær av oksidativ induksjon resulterer ikke cellene med integrert DHA et høyere nivå av intracellulær superoksidanion i forhold til kontrollen (fig. 10A). Et oksidativt stress med 40 mM AAPH danner en superoksid anionproduksjon som er delvis inhibert med DHA (20-16 % ved konsentrasjoner på 0,5-50 μM). Denne inhibisjonen er i overensstemmelse med SOD-aktiviteten med DHA tilstede (fig. 10B). SOD-aktivitet er ikke funnet å være øket i basaltilstanden med DHA tilstede (-10/15 %), men som i forhudsceller, blir tap av SOD-aktivitet innebygget til den oksidative stressprosess inhibert med DHA tilstede som opprettholder basal SOD-aktivitet.
Endelig ble det utført en analyse for å finne ut om DHA forandret aktiviteten til GPx-enzymet som førstelinje cellulær antioksidant (fig. 11). GPx-aktiviteten blir øket i cellulær basaltilstand ved alle konsentrasjoner av DHA testet (12-40 %), og denne atferd blir opprettholdt intakt i oksidativ induksjonstilstand, som også presenterer en 2,5 ganger høyere GPx-aktivitet (fig. 11). Som i tilfellet med forhudsceller antyder disse resultater at DHA utøver del av sin antioksidantvirkning ved å modulere aktiviteten til det endogene cellulære enzymsystem for antioksidantforsvar.
INNFLYTELSE AV SYNTETISK METODE PÅ ANTIOKSIDANTAKTIVITET AV DHA INKORPORERT I ET TRIGLYSERID
I det foreliggende in vitro assay ble ARPE-19-celler (retinale pigmentepitelceller, ATCC CRL-2302) og forhudsceller (udifferensierte epidermale fibroblaster, ATCC CRL-2076) brukt som en cellulær modell, idet de er egnede cellelinjer på grunn av sin gode in vitro respons på forskjellige oksidantinduktorer. Tunfiskoljetriglyserider (DHA 20 molar%-TG, 20 molar% i DHA) eller oljederivater anriket med 50 eller 70 molar% i DHA (DHA50 %-TG og DHA 70 %-TG) oppnådd ved kjemiske metoder (CHEM) eller enzymatiske metoder (ENZ) ble brukt som aktive ingredienser.
Resultater
Ved induksjon av et moderat oksidativt stress med 40 mM AAPH i ARPE-19-celler og ved å bruke DHR 123 eller H2DCFDA som ROS intracellulære detektorer viser naturlig DHA (DHA 20 %-TG) og den inkorporert i et kjemisk oppnådd triglyserid (DHA 50 %-TG-CHEM og DHA 70 %-TG-CHEM) en inhibitorisk virkning ved dannelse av reaktive oksygenelementer, både ved 0,5 μM og 5 μM konsentrasjon, noe som viser en lavere virkning av 50 μM (fig. 13A). Denne virkningen avhenger av innholdet av DHA, som er DHA 70 %-TG-CHEM større enn DHA 50 %-TH-CHEM større enn DHA 20 %-TG. Ved de samme konsentrasjoner (0,5, 5 og 50 μM), viser enzymatisk oppnådde oljer en høyere aktivitet ved alle DHA-innhold (DHA 70 %-TG-ENZ og DHA 50 %-TG-ENZ) (fig. 13B). I en lignende undersøkelse med forhudssceller var resultatene enda mer overraskende. Den prooksidative aktivitet vist med DHA 70 % TG-CHEM og DHA 50 %-TG-CHEM ved høye doser (fig. 13C) blir antioksidativ ved alle konsentrasjoner med oljer med enzymatisk opprinnelse (DHA 70 %-TG-ENZ og DHA 50 %-TG-ENZ) (fig. 13D). Fjerning av de inder polymerer av olje oppnådd kjemisk ved hjelp av kromatografiske metoder (DHA 70 %-TG-BPM) forårsaker en enda større reduksjon av antioksiderende aktivitet i ARPE-19-celler som blir prooksidative ved høye konsentrasjoner (5 og 50 μM) (fig. 14). Den antioksidative aktivitet til DHA inkorporert i et triglyserid oppnådd ved enzymatisk syntese blir også høyere (minst dobbelt) enn den vist av DHA inkorporert i andre kjemiske strukturer så som etylestere, fri fettsyrer eller fettsyre koblet til serumalbumin (fig. 15).
Den cellulære antioksidative aktivitet vist ved inkorporering av DHA er relatert til alle aspekter tidligere vurdert så som å opprettholde SOD og GPx enzymatiske aktiviteter, men i tillegg til en økning i glutation intracellulær konsentrasjon (GSH). I ARPE-19-celler (fig. 16) induserer DHA en økning i den intracellulære GSH-konsentrasjon som er direkte relatert til nysyntese av GSH siden tilsetting av BSO (spesifikk inhibitor for GSH-syntese) eliminerer den beskyttende virkning av DHA (fig. 17) i et direkte slektskap med en reduksjon i GSH intracellulær konsentrasjon (fig. 15). En liknende atferd er vist for forhudsceller (fig. 18).
Forbedringen oppnådd i antioksidativ aktivitet av DHA ved en enzymatisk syntese er også anvendbar til andre omega-3 fettsyrer, så som ekosapentaensyre (EPA). I en undersøkelse med ARPE-19-celler er EPA oppnådd enzymatisk (EPA 70 %-TG-ENZ) vist å ha en antioksidativ aktivitet, skjønt meget lavere enn den observer t med DHA (DHA 70 %-TG-ENZ), mens EPA oppnådd kjemisk og fri for polymerer (EPA-70 %-TG-BPM) er vist å være meget prooksidativ (fig. 19). Videre viser EPA (EPA 70 %-TG-ENZ) oppnådd enzymatisk i forhudsceller en bemerkelsesverdig antioksidativ aktivitet som er enda høyere enn den for DHA (DHA 70 %-TG-ENZ (fig. 20), som akkurat som for DHA er relatert til økningen av GSH intracellulær konsentrasjon (fig. 21).
EVALUERING AV ANTIOKSIDANTAKTIVITETEN TIL DHA INKORPORERT I ET STRUKTURERT TRIGLYSERID I EN RETINACELLEMODELL
I dette in vitro assayet ble ARPE-19-celler (retinale pigmentepitelceller, ATCC CRL-2302) brukt som cellemodell, idet de er en egnet celletype på grunn av deres gode in vitro respons til forskjellige oksidantinduktorer, i tillegg til å være en primær kultur med normale ernæringskrav og kulturbetingelser. Videre er det en god okular modell siden den opprettholder de biologiske funksjonelle egenskapene til retinale pigmentepitelceller. Som en aktiv ingrediens er det blitt brukt strukturerte triglyserider avledet fra tunfiskolje (DHA 20 %-TG, 20 molar% i DHA) eller olje anriket med 70 % DHA (DHA 70 %-TG, 70 molar% i DHA), hvori fettsyrene i sn-1- og sn-3-posisjoner gjennom enzymatiske metoder er blitt erstattet med oktansyre. I disse nye forbindelsene er det molare innhold av DHA 7 % i DHA 20 %-TG og 22 % i DHA 70 %-TG.
Resultater (se fig. 22)
Ved å indusere et moderat oksidativt stress med 40 mM AAPH og ved å bruke DHR123 som ROS-detektor viser DHA inkorporert i et normalt triglyserid (DHA 20 %-TG og DHA 70 %-TG) en inhibitorisk virkning på dannelse av reaktive oksygenelementer, både ved konsentrasjoner på 0,5 μM og 5 μM, noe som viser en lavere virkning av 50 μM (fig. 22). Denne virkningen avhenger av innholdet av DHA, som er DHA 70 %-TG > DHA 20 %-TG. Ved de samme konsentrasjoner viser de strukturerte oljer med en virkelig DHA-konsentrasjon som er 2-3 ganger lavere, den samme aktivitet (for 0,5 μM konsentrasjon), eller høyere (for 5 μM og 50 μM konsentrasjoner) i tilfelle av DHA 20 %-TG. I tilfelle av DHA 70 %-TG er effektiviteten til de strukturerte triglyseridene noe lavere enn optimale konsentrasjoner (0,5 μM og 5 μM), men atferden ved høye konsentrasjoner er invertert (50 μM) noe som viser generelt en mer stabil og mindre doseavhengig atferd.
EVALUERING AV DHA-AKTIVITETEN SOM ET BESKYTTENDE MIDDEL FOR LENGDEN AV EN TELOMER ASSOSIERT MED ALDER I EN HUMAN HUDMODELL
I dette in vitro assayet ble forhudsceller (udifferensierte epidermale fibroblaster, ATCC CRL-2076) brukt som cellemodell, idet de er en egnet celletype på grunn av sin gode in vitro respons til forskjellige oksidantinduktorer, i tillegg til å være en primær kultur med normale ernæringskrav og kulturbetingelser, og utgjør således en god in vitro modell som kan ekstrapoleres til in vivo respons, for en potensiell kosmetisk applikasjon av DHA.
Metoder
Cellekulturer
Cellemodellene brukt var forhudsceller (udifferensierte epidermale fibroblaster, CRL-2076) oppnådd fra the American Type Culture Collection. Cellekulturen ble holdt under egnede vekstbetingelser ved temperatur 37<o>C, CO2-konsentrasjon på 5 % og humiditet 95 % i en inkubator som er spesielt konstruert for denne hensikt. CRL-2076-fibroblastene ble holdt voksende i kulturflasker i Iscovs modifisert Dulbeccos medium (Biological Industries) supplementert med 10 % bovint føtalt serum, penicillinantibiotika (100 U/ml), streptomycin (100 μg/ml) og glutamin (Biological Industries).
Integrering av DHA i cellene
Enzymatisk syntetisert DHA-TG 70 % ble tilsatt i en konsentrasjon på 0,5 μM, fremstilt ved å oppløse oljen i etanol for stamløsning (1:100) og fremstilling av arbeidsløsningene i et kulturmedium fremstilt med serum. Cellene ble dyrket med supplementert DHA-TG-medium i tre dager ved 37<o>C.
Induksjon av oksidativt stress
2,2’-azobis-(2-amidinopropan)dihydroklorid (AAPH) ble brukt for å stresse cellen oksidativt ved en konsentrasjon på 40 mM, i utstrakt grad brukt som en hydrofil initiator av frie radikaler ved å indusere lipidisk og proteinperoksidering. AAPH oksiderer DNA, proteiner og lipidene gjennom virkningen av de dannede peroksidradikaler. Den virker videre på det endogene forsvarssystem siden det deaktiverer nøkkelenzymet, SOD, for derved å miste den beskyttende kapasiteten til CAT og GPx.
Måling av lengden av telomeren
De telomere regioner som utgjøres av meget repetitive DNA kan evalueres ved in situ hybridiseringsteknikker. In situ hybridiseringsmetoden med fluorescens (FISH) bruker komplementære prober til de telomere sekvenser tillatt for å detektere nærvær eller fravær av telomerer, så vel som å kvantifisere telomerene pr. celle eller pr. kromosomgruppe. Fremgangsmåten kalt strømnings FISH bruker strømningscytometri i kombinasjon med FISH-teknikk ved å bruke et pan-telomert PNA (peptidnukleinsyre) som en probe og tillater at det måles, ved å bruke fluoresecensintensiteter, de gjennomsnittlige telomerlengder i kromosomendene i individuelle celler. For vår hensikt ble det benyttet fluorescensintensitet av PAN merket med kromosomene i metafasen. Resultatene er uttrykt som telomer fluorescensenhet (TFU) hvor hver TFU tilsvarer 1 kb av repetitive telomerer.
Resultater
Forandringer i gjennomsnittlig lengde av telomerene i humane fibroblaster dyrket under oksidative stressforbindelser med eller uten inkorporert DHA ble analysert ved strømnings-FISH (fig. 23). En lineær regresjon ble brukt til å analysere sammenhengen mellom mengden av telomerer og passasjeantallet til cellulære populasjoner. For alle de analyserte kulturer kan skråningen i regresjonene forstås direkte som telomerforkortningsindeks. I humane fibroblaster akselererer behandling med AAPH, som induserer et overskudd av intracellulære frie radikaler, bemerkelsesverdig telomerforkortningsindeksen. På den annen side reduserer inkorporering av DHA i en konsentrasjon på 0,5 μM, som er blitt vist å øke celleantioksidantforsvaret, nevnte indeks med 50 % med hensyn på dens verdi uten DHA. Videre er inkorporering av DHA i stand til å redusere den telomere forkortningsindeksen, enda med hensyn på normal kontroll av fibroblaster.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200503202A ES2277557B1 (es) | 2005-12-21 | 2005-12-21 | Utilizacion de acido docosahexaenoico para el tratamiento del daño celular oxidativo. |
ES200602418A ES2315125B1 (es) | 2005-12-21 | 2006-09-25 | Mejoras en el objeto de la patente principal p 200503202, por "utilizacion de acido docosahexaenoico para el tratamiento del daño oxidativo celular". |
ES200602417A ES2315124B1 (es) | 2005-12-21 | 2006-09-25 | Mejoras en el objeto de la patente principal p 200503202, por "utilizacion de acido docosahexaenoico para el tratamiento del daño oxidativo celular". |
PCT/EP2006/070016 WO2007071733A2 (en) | 2005-12-21 | 2006-12-20 | Use of dha, epa or dha-derived epa for treating a pathology associated with cellular oxidative damage |
ES200603231A ES2316263B1 (es) | 2005-12-21 | 2006-12-20 | Mejoras en el objeto de la patente principal p 200503202, por "utilizacion de acido docosahexaenoico para el tratamiento del daño oxidativo celular". |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20171318A1 true NO20171318A1 (no) | 2008-09-19 |
NO343220B1 NO343220B1 (no) | 2018-12-10 |
Family
ID=38330572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20171318A NO343220B1 (no) | 2005-12-21 | 2017-08-08 | Anvendelse av dokosaheksaensyre som et kosmetisk anti-aldringsprodukt |
Country Status (13)
Country | Link |
---|---|
US (1) | US10493008B2 (no) |
JP (4) | JP2014028830A (no) |
CN (1) | CN103263406B (no) |
DK (1) | DK1962825T3 (no) |
ES (4) | ES2277557B1 (no) |
IL (1) | IL230165A (no) |
MX (1) | MX362194B (no) |
MY (1) | MY148603A (no) |
NO (1) | NO343220B1 (no) |
NZ (2) | NZ598529A (no) |
PT (1) | PT1962825E (no) |
UA (1) | UA93395C2 (no) |
ZA (1) | ZA200805868B (no) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2277557B1 (es) * | 2005-12-21 | 2008-07-01 | Proyecto Empresarial Brudy, S.L. | Utilizacion de acido docosahexaenoico para el tratamiento del daño celular oxidativo. |
WO2010118761A1 (en) | 2009-04-17 | 2010-10-21 | Eolas Science Limited | Compositions rich in omega-3 fatty acids with a low content in phytanic acid |
CN106377533A (zh) * | 2016-09-08 | 2017-02-08 | 中国海洋大学 | 一种海参磷脂及其在提高机体运动协调能力制品中的应用 |
JP2019064955A (ja) * | 2017-09-29 | 2019-04-25 | 金印株式会社 | アミロイドβ耐性増強剤 |
JP6949364B2 (ja) * | 2017-09-29 | 2021-10-13 | 金印株式会社 | 神経細胞伸長促進剤 |
JP6949363B2 (ja) * | 2017-09-29 | 2021-10-13 | 金印株式会社 | ドーパミン産生促進剤 |
US11065288B2 (en) | 2017-09-29 | 2021-07-20 | Kinjirushi Co., Ltd. | Neuron activator |
KR102491238B1 (ko) * | 2022-02-14 | 2023-01-26 | 줄리아 연구소 주식회사 | 혈관신생 조절 인자들을 포함하는 바이오마커를 이용한 혈관신생 연관 질환 진단용 조성물, 혈관신생 연관 질환 진단을 위한 정보제공방법 및 혈관신생 연관 질환 치료용 물질의 스크리닝 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2218984A (en) * | 1988-05-27 | 1989-11-29 | Renafield Limited | High-concentration mixtures of polyunsaturated fatty acids and their esters derived from animal &/or vegetable oils, & their prophylactic or therapeutic uses |
EP0615753A1 (en) * | 1993-03-19 | 1994-09-21 | Scotia Holdings Plc | Formulation for use in smokers |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8601915D0 (en) * | 1986-01-27 | 1986-03-05 | Efamol Ltd | Pharmaceutical compositions |
JP2524217B2 (ja) | 1988-04-18 | 1996-08-14 | マルハ株式会社 | 脳機能改善組成物、学習能力増強剤、記憶力増強剤、痴呆予防剤または痴呆治療剤 |
GB2223943A (en) | 1988-10-21 | 1990-04-25 | Tillotts Pharma Ag | Oral disage forms of omega-3 polyunsaturated acids |
SE9101642D0 (sv) | 1991-05-30 | 1991-05-30 | Kabi Pharmacia Ab | Phospholipids |
JPH0649479A (ja) * | 1992-07-28 | 1994-02-22 | Maruha Corp | ω−3不飽和脂肪酸系化合物の安定化法 |
EP2140863A1 (en) * | 1993-06-09 | 2010-01-06 | Martek Biosciences Corporation | Use of docosahexaenoic acid for the manufacture of a medicament for the treatment of neurological disorders |
US20050027004A1 (en) | 1993-06-09 | 2005-02-03 | Martek Biosciences Corporation | Methods of treating senile dementia and Alzheimer's diseases using docosahexaenoic acid and arachidonic acid compositions |
JPH07255417A (ja) * | 1994-03-25 | 1995-10-09 | Kanebo Ltd | 機能性健康食品 |
FR2731015B1 (fr) | 1995-02-24 | 1997-05-30 | Sci Sartone | Procede d'enrichissement enzymatique d'huiles d'origine marine et les triglycerides d'acides gras polyinsatures ainsi obtenus |
WO1996033263A1 (fr) | 1995-04-17 | 1996-10-24 | JAPAN, represented by DIRECTOR-GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY | Nouveaux micro-organismes capables de produire des acides gras hautement insatures et procede de production d'acides gras hautement insatures utilisant ces micro-organismes |
MY118354A (en) | 1995-05-01 | 2004-10-30 | Scarista Ltd | 1,3-propane diol derivatives as bioactive compounds |
JP3558423B2 (ja) * | 1995-09-11 | 2004-08-25 | 旭化成ケミカルズ株式会社 | ドコサヘキサエン酸を構成脂肪酸とするリン脂質の製造方法 |
JP3985035B2 (ja) * | 1995-09-14 | 2007-10-03 | 独立行政法人産業技術総合研究所 | (n−6)系ドコサペンタエン酸含有油脂ならびに該油脂の製造方法および用途 |
JPH0987176A (ja) * | 1995-09-26 | 1997-03-31 | Shiseido Co Ltd | 糸球体腎炎抑制剤 |
AU3120797A (en) * | 1996-05-08 | 1998-07-31 | Weider Nutrition Group, Inc. | Structured glycerols and structured phosphatides |
EP0935667B1 (en) * | 1996-07-23 | 2006-12-06 | Nagase Chemtex Corporation | Process for preparing docosahexaenoic acid and docosapentaenoic acid |
JPH11239465A (ja) * | 1997-06-16 | 1999-09-07 | Nippon Suisan Kaisha Ltd | 健常人が運動能力を高める食品 |
EP1004303B1 (en) * | 1997-06-16 | 2004-10-13 | Nippon Suisan Kaisha, Ltd. | Composition having capability of removing risk factor during exercise |
JPH11239464A (ja) * | 1997-06-16 | 1999-09-07 | Nippon Suisan Kaisha Ltd | 運動時の危険因子除去能を有する組成物 |
GB9901809D0 (en) | 1999-01-27 | 1999-03-17 | Scarista Limited | Highly purified ethgyl epa and other epa derivatives for psychiatric and neurological disorderes |
IT1308613B1 (it) * | 1999-02-17 | 2002-01-09 | Pharmacia & Upjohn Spa | Acidi grassi essenziali nella prevenzione di eventi cardiovascolari. |
JP2002040014A (ja) * | 2000-07-19 | 2002-02-06 | Nippon Steel Corp | 炭素含有耐火物の耐摩耗性、耐食性及び耐酸化性の評価方法 |
ITMI20012384A1 (it) * | 2001-11-12 | 2003-05-12 | Quatex Nv | Uso di acidi grassi poliinsaturi per la prevenzione primaria di eventi cardiovascolari maggiori |
ITMI20020269A1 (it) * | 2002-02-12 | 2003-08-12 | Victorix Assets Ltd | Uso di steri etilici di acidi poliinsaturi omega-3 in pazienti con insufficienza cardiaca |
US20050147698A1 (en) * | 2002-03-28 | 2005-07-07 | Alcon, Inc. | Co-beadlet of dha and rosemary and methods of use |
AR039170A1 (es) | 2002-03-28 | 2005-02-09 | Bio Dar Ltd | Co-granulos de dha y romero y metodos de uso |
US6649195B1 (en) * | 2002-07-11 | 2003-11-18 | Vitacost.Com, Inc. | Eyesight enhanced maintenance composition |
JP4268473B2 (ja) * | 2002-08-07 | 2009-05-27 | 花王株式会社 | 油脂組成物 |
DE10244907A1 (de) * | 2002-09-25 | 2004-04-15 | Volker Bartz | Leistungsförderer für Sportler zur oralen Einnahme bestehend aus einem Gemisch aus den Omega-3-Fettsäuren EPA/DHA und L-Carnitin als wirksame Substanzen, sowie gegebenenfalls zusätzlichen Stoffen wie antioxidative Vitamine, Aminosäuren und Spurenelemente |
DE20214827U1 (de) * | 2002-09-25 | 2003-02-20 | Bartz, Volker, 35440 Linden | Leistungsförderer für Sportler zur oralen Einnahme |
EP2283838A3 (en) * | 2002-09-27 | 2011-04-20 | Martek Biosciences Corporation | Docosahexaenoic acid for treating subclinical inflammation |
ES2209658B1 (es) * | 2002-12-05 | 2005-10-01 | Proyecto Empresarial Brudy, S.L. | Utilizacion del acido docosahexaenoico como principio activo para el tratamiento de la lipodistrofia. |
US20040209953A1 (en) | 2002-12-06 | 2004-10-21 | Wai Lee Theresa Siu-Ling | Glyceride compositions and methods of making and using same |
US7041840B2 (en) * | 2002-12-18 | 2006-05-09 | Alberta Research Council Inc. | Antioxidant triacylglycerols and lipid compositions |
EP1466597A1 (en) * | 2003-04-07 | 2004-10-13 | Clinigenetics | Use of dha esters to control or prevent cardiovascular diseases |
JP2005000033A (ja) * | 2003-06-10 | 2005-01-06 | Shinbijuumu:Kk | 食品 |
GB0314624D0 (en) * | 2003-06-23 | 2003-07-30 | Advanced Bionutrition Europ Lt | Inflammatory disease treatment |
WO2005013908A2 (en) * | 2003-08-05 | 2005-02-17 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Neuroprotection protects against cellular apoptosis, neural stroke damage, alzheimer’s disease and retinal degeneration |
JP2005068060A (ja) * | 2003-08-22 | 2005-03-17 | Nrl Pharma Inc | ラクトフェリンを含有する医薬組成物ならびに加工食品の製造法 |
US20050130937A1 (en) | 2003-10-22 | 2005-06-16 | Enzymotec Ltd. | Lipids containing omega-3 and omega-6 fatty acids |
US7267830B2 (en) | 2003-12-19 | 2007-09-11 | Alcon, Inc. | Composition and methods for inhibiting the progression macular degeneration and promoting healthy vision |
WO2006121421A2 (en) | 2004-01-14 | 2006-11-16 | Robert Ritch | Methods and formulations for treating glaucoma |
ITMI20040069A1 (it) | 2004-01-21 | 2004-04-21 | Tiberio Bruzzese | Uso di composizioni di acidi grassi n-3 ad elevata concentrazione per il trattamento di disturbi del sistema nervoso centrale |
JP5503846B2 (ja) | 2005-01-24 | 2014-05-28 | プロノヴァ・バイオファーマ・ノルゲ・アーエス | アミロイドーシス関連疾患の治療のための医療品又は食料品の製造における、dhaを含有する脂肪酸組成物の使用 |
FR2882894B1 (fr) | 2005-03-11 | 2009-04-03 | Larena Sa | Composition alimentaire suppletive |
ES2264886B1 (es) | 2005-05-12 | 2008-02-01 | Proyecto Empresarial Brudy, S.L. | Utilizacion de acido docosahexaenoico para el tratamiento de enfermedades tumorales. |
ES2277557B1 (es) * | 2005-12-21 | 2008-07-01 | Proyecto Empresarial Brudy, S.L. | Utilizacion de acido docosahexaenoico para el tratamiento del daño celular oxidativo. |
US9265745B2 (en) | 2005-12-21 | 2016-02-23 | Brudy Technology S.L. | Use of DHA, EPA or DHA-derived EPA for treating a pathology associated with cellular oxidative damage |
-
2005
- 2005-12-21 ES ES200503202A patent/ES2277557B1/es not_active Expired - Fee Related
-
2006
- 2006-09-25 ES ES200602417A patent/ES2315124B1/es not_active Expired - Fee Related
- 2006-09-25 ES ES200602418A patent/ES2315125B1/es not_active Expired - Fee Related
- 2006-12-20 NZ NZ598529A patent/NZ598529A/en not_active IP Right Cessation
- 2006-12-20 MY MYPI20082204A patent/MY148603A/en unknown
- 2006-12-20 ES ES200603231A patent/ES2316263B1/es not_active Expired - Fee Related
- 2006-12-20 MX MX2014006481A patent/MX362194B/es unknown
- 2006-12-20 NZ NZ598530A patent/NZ598530A/xx not_active IP Right Cessation
- 2006-12-20 ZA ZA200805868A patent/ZA200805868B/xx unknown
- 2006-12-20 CN CN201310081953.0A patent/CN103263406B/zh not_active Expired - Fee Related
- 2006-12-20 PT PT68415165T patent/PT1962825E/pt unknown
- 2006-12-20 DK DK06841516.5T patent/DK1962825T3/da active
- 2006-12-20 UA UAA200809485A patent/UA93395C2/ru unknown
-
2013
- 2013-09-17 JP JP2013192263A patent/JP2014028830A/ja active Pending
- 2013-12-25 IL IL230165A patent/IL230165A/en not_active IP Right Cessation
-
2015
- 2015-04-21 JP JP2015086980A patent/JP2015157838A/ja active Pending
-
2016
- 2016-02-05 JP JP2016021031A patent/JP6556640B2/ja active Active
- 2016-02-08 US US15/018,057 patent/US10493008B2/en active Active
-
2017
- 2017-01-13 JP JP2017004420A patent/JP2017095496A/ja active Pending
- 2017-08-08 NO NO20171318A patent/NO343220B1/no not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2218984A (en) * | 1988-05-27 | 1989-11-29 | Renafield Limited | High-concentration mixtures of polyunsaturated fatty acids and their esters derived from animal &/or vegetable oils, & their prophylactic or therapeutic uses |
EP0615753A1 (en) * | 1993-03-19 | 1994-09-21 | Scotia Holdings Plc | Formulation for use in smokers |
Also Published As
Publication number | Publication date |
---|---|
MX362194B (es) | 2019-01-08 |
MY148603A (en) | 2013-05-15 |
NO343220B1 (no) | 2018-12-10 |
PT1962825E (pt) | 2014-07-04 |
ES2315124A1 (es) | 2009-03-16 |
JP6556640B2 (ja) | 2019-08-07 |
ES2277557A1 (es) | 2007-07-01 |
ES2315124B1 (es) | 2009-12-30 |
NZ598529A (en) | 2013-12-20 |
NZ598530A (en) | 2013-03-28 |
ES2316263A1 (es) | 2009-04-01 |
JP2015157838A (ja) | 2015-09-03 |
CN103263406A (zh) | 2013-08-28 |
CN103263406B (zh) | 2015-03-25 |
ES2315125B1 (es) | 2009-12-30 |
UA93395C2 (ru) | 2011-02-10 |
DK1962825T3 (da) | 2014-06-30 |
US20160151320A1 (en) | 2016-06-02 |
ZA200805868B (en) | 2009-12-30 |
ES2277557B1 (es) | 2008-07-01 |
ES2315125A1 (es) | 2009-03-16 |
JP2016128494A (ja) | 2016-07-14 |
JP2017095496A (ja) | 2017-06-01 |
ES2316263B1 (es) | 2009-12-30 |
IL230165A (en) | 2016-11-30 |
JP2014028830A (ja) | 2014-02-13 |
US10493008B2 (en) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101256448B1 (ko) | 세포의 산화적 손상과 연관된 병리상태를 치료하기 위한dha, epa 또는 dha 유래의 epa의 용도 | |
NO20171318A1 (no) | Anvendelse av DHA | |
Capó et al. | Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells | |
Haram et al. | Adaptation of endothelium to exercise training: insights from experimental studies | |
de Oliveira et al. | Omega-3 polyunsaturated fatty acids and mitochondria, back to the future | |
Yen et al. | Effects of deep-frying oil on blood pressure and oxidative stress in spontaneously hypertensive and normotensive rats | |
Strokin et al. | Neuroprotection of rat hippocampal slices exposed to oxygen–glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2 | |
Cardoso et al. | Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids | |
Jordan et al. | Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations | |
Sharma et al. | The hippocampus of Ames dwarf mice exhibits enhanced antioxidative defenses following kainic acid-induced oxidative stress | |
KR102569055B1 (ko) | 아세트알데하이드 독성을 감소시키기 위한 베타-에스신을 포함하는 경구 조성물 | |
WO2013086327A1 (en) | Nutritional compositions comprising curcumin and phosphatidylserine-docosahexaenoic acid for improving cognition | |
Pathade et al. | Antioxidants Therapy in Cognitive Dysfunction Associated with Diabetes Mellitus: An Overview | |
Anand et al. | Brahmi herbal drink mitigates aluminium chloride induced cognitive impairments | |
Harris | Does the hexosamine biosynthetic pathway play a role in mediating the beneficial effects of oleic acid in the heart? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |