MX2021008476A - Fabricacion de un dispositivo cuantico. - Google Patents

Fabricacion de un dispositivo cuantico.

Info

Publication number
MX2021008476A
MX2021008476A MX2021008476A MX2021008476A MX2021008476A MX 2021008476 A MX2021008476 A MX 2021008476A MX 2021008476 A MX2021008476 A MX 2021008476A MX 2021008476 A MX2021008476 A MX 2021008476A MX 2021008476 A MX2021008476 A MX 2021008476A
Authority
MX
Mexico
Prior art keywords
underlying layer
trenches
segment
nanowires
networks
Prior art date
Application number
MX2021008476A
Other languages
English (en)
Inventor
Pavel Aseev
Philippe CAROFF-GAONAC''H
Original Assignee
Microsoft Technology Licensing Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing Llc filed Critical Microsoft Technology Licensing Llc
Publication of MX2021008476A publication Critical patent/MX2021008476A/es

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

En una fase de enmascaramiento, se forma un primer segmento de una máscara amorfa sobre una capa subyacente de un sustrato. El primer segmento comprende un primer conjunto de cavidades que expone la capa subyacente. En la fase de enmascaramiento, se forma un segundo segmento de la máscara amorfa sobre la capa subyacente. El segundo segmento comprende un segundo conjunto de cavidades que expone la capa subyacente. Los segmentos no se superponen. Un extremo abierto de uno del primer conjunto de cavidades se orienta hacia un extremo abierto de uno del segundo conjunto de cavidades, pero los extremos están separados por una porción de la máscara amorfa. En una fase de crecimiento de semiconductores, se hace crecer material semiconductor, por crecimiento de área selectiva, en el primer y segundo conjunto de cavidades para formar una primera y segunda subredes de nanohilos en la capa subyacente. La primera y segunda subred de nanohilos se unen para formar una sola red de nanohilos.
MX2021008476A 2019-01-18 2020-01-04 Fabricacion de un dispositivo cuantico. MX2021008476A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/252,230 US10777728B2 (en) 2019-01-18 2019-01-18 Fabrication of a quantum device
PCT/US2020/012286 WO2020150021A1 (en) 2019-01-18 2020-01-04 Fabrication of a quantum device

Publications (1)

Publication Number Publication Date
MX2021008476A true MX2021008476A (es) 2021-08-16

Family

ID=69400658

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2021008476A MX2021008476A (es) 2019-01-18 2020-01-04 Fabricacion de un dispositivo cuantico.

Country Status (13)

Country Link
US (2) US10777728B2 (es)
EP (1) EP3912193A1 (es)
JP (1) JP2022517277A (es)
KR (1) KR20210116455A (es)
CN (1) CN113330572A (es)
AU (1) AU2020209451A1 (es)
BR (1) BR112021010375A2 (es)
CA (1) CA3123904A1 (es)
IL (1) IL284724A (es)
MX (1) MX2021008476A (es)
SG (1) SG11202107352VA (es)
WO (1) WO2020150021A1 (es)
ZA (1) ZA202103822B (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978632B2 (en) 2019-01-18 2021-04-13 Microsoft Technology Licensing, Llc Fabrication of a device
US11011375B1 (en) * 2019-11-14 2021-05-18 International Business Machines Corporation Hybrid template area selective epitaxy (HTASE)
US11798988B2 (en) 2020-01-08 2023-10-24 Microsoft Technology Licensing, Llc Graded planar buffer for nanowires
US11929253B2 (en) 2020-05-29 2024-03-12 Microsoft Technology Licensing, Llc SAG nanowire growth with a planarization process
CN114256407B (zh) * 2020-09-25 2023-08-08 本源量子计算科技(合肥)股份有限公司 相互并联的两个约瑟夫森结及量子比特装置的制备方法
CN114481308B (zh) * 2021-12-29 2023-12-26 长春理工大学 一种用mbe横向生长纳米线的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033813A2 (en) 2008-09-19 2010-03-25 Amberwave System Corporation Formation of devices by epitaxial layer overgrowth
US8361853B2 (en) * 2010-10-12 2013-01-29 International Business Machines Corporation Graphene nanoribbons, method of fabrication and their use in electronic devices
WO2013111631A1 (ja) * 2012-01-23 2013-08-01 旭硝子株式会社 ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法
US9653286B2 (en) 2012-02-14 2017-05-16 Hexagem Ab Gallium nitride nanowire based electronics
KR101544772B1 (ko) * 2013-10-31 2015-08-17 삼성전자주식회사 나노구조 반도체 발광소자 및 제조방법
US9099573B2 (en) * 2013-10-31 2015-08-04 Samsung Electronics Co., Ltd. Nano-structure semiconductor light emitting device
WO2016000836A1 (en) 2014-07-02 2016-01-07 University Of Copenhagen A semiconductor josephson junction and a transmon qubit related thereto
GB201507665D0 (en) * 2015-05-05 2015-06-17 Seren Photonics Ltd Semiconductor templates and fabrication methods
CN107849727B (zh) * 2015-06-26 2021-07-13 哥本哈根大学 生长在衬底上的纳米结构的网络
JP7066610B2 (ja) 2015-07-13 2022-05-13 クラヨナノ エーエス 発光ダイオードデバイス、光検出デバイス、およびグラファイト基板上のナノワイヤ又はナノピラミッドを含む組成物
US10333048B2 (en) 2015-09-20 2019-06-25 Microsoft Technology Licensing, Llc Universal topological quantum computers based on majorana nanowire networks
DE102016010764A1 (de) * 2016-09-08 2018-03-08 Forschungszentrum Jülich GmbH Vorrichtung zur Messung kleiner Potentiale einer Probe, Verfahren zur Herstellung der Vorrichtung und Verwendung der Vorrichtung
GB201701829D0 (en) * 2017-02-03 2017-03-22 Norwegian Univ Of Science And Tech (Ntnu) Device
US10658494B2 (en) * 2017-02-15 2020-05-19 Globalfoundries Inc. Transistors and methods of forming transistors using vertical nanowires
DE102017002616A1 (de) 2017-03-20 2018-09-20 Forschungszentrum Jülich GmbH Verfahren zur in-situ Herstellung von "Majorana-Materialien - Supraleiter" Hybridnetzwerken, sowie eine durch das Verfahren hergestellte Hybridstruktur
GB201718897D0 (en) * 2017-11-15 2017-12-27 Microsoft Technology Licensing Llc Superconductor-semiconductor fabrication
US10978632B2 (en) 2019-01-18 2021-04-13 Microsoft Technology Licensing, Llc Fabrication of a device

Also Published As

Publication number Publication date
CA3123904A1 (en) 2020-07-23
US20200411744A1 (en) 2020-12-31
US11404624B2 (en) 2022-08-02
IL284724A (en) 2021-08-31
BR112021010375A2 (pt) 2021-08-24
ZA202103822B (en) 2022-08-31
AU2020209451A1 (en) 2021-06-24
EP3912193A1 (en) 2021-11-24
US20200235276A1 (en) 2020-07-23
US10777728B2 (en) 2020-09-15
KR20210116455A (ko) 2021-09-27
CN113330572A (zh) 2021-08-31
WO2020150021A1 (en) 2020-07-23
JP2022517277A (ja) 2022-03-07
SG11202107352VA (en) 2021-08-30

Similar Documents

Publication Publication Date Title
MX2021008476A (es) Fabricacion de un dispositivo cuantico.
TWI648858B (zh) Ga-face III族/氮化物磊晶結構及其主動元件與其製作方法
CN104465657B (zh) 互补tfet 及其制造方法
US20150364572A1 (en) Vertical iii-v nanowire field-effect transistor using nanosphere lithography
EA201890168A1 (ru) Нанопроволока или нанопирамидки, выращенные на графитовой подложке
WO2003083928A3 (en) A method for making nanoscale wires and gaps for switches and transistors
ATE361536T1 (de) Nanokristalline schichten und verbesserte mram- tunnelsperrschichten
US10553711B2 (en) Tunable barrier transistors for high power electronics
SA520411272B1 (ar) مواد مائعة بحجم النانو بقناة كالسيت
JP2015122488A5 (es)
CN109860022A (zh) 半导体器件和制备半导体器件的方法
Majidi Effect of doping on the electronic properties of graphyne
Brouzet et al. Fabrication and electrical characterization of homo-and hetero-structure Si/SiGe nanowire tunnel field effect transistor grown by vapor–liquid–solid mechanism
CN105336614B (zh) 半导体器件及其制造方法
CN106952952A (zh) 一种iii‑v cmos型赝配异质结场效应晶体管
Im et al. Current collapse-free and self-heating performances in normally off GaN nanowire GAA-MOSFETs
CN106684145A (zh) 具有漂移区的高压无结场效应器件及其形成方法
JP2007194337A5 (es)
JP6708866B1 (ja) 分極超接合GaN系電界効果トランジスタおよび電気機器
JPWO2020150021A5 (es)
Lepsa et al. InAs/GaSb Core-Shell Nanowires: Growth and Characterization
KR101395026B1 (ko) 질화물 반도체 소자 및 그 소자의 제조 방법
JP2017152542A5 (es)
EP3528279A3 (en) Methods for etch mask and fin structure formation
CN106653607A (zh) 半导体制作工艺