MD174Y - Semiconducting material - Google Patents
Semiconducting material Download PDFInfo
- Publication number
- MD174Y MD174Y MDS20090092A MDS20090092A MD174Y MD 174 Y MD174 Y MD 174Y MD S20090092 A MDS20090092 A MD S20090092A MD S20090092 A MDS20090092 A MD S20090092A MD 174 Y MD174 Y MD 174Y
- Authority
- MD
- Moldova
- Prior art keywords
- tellurium
- gallium
- doped
- semiconductor
- semiconductor material
- Prior art date
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Inventia se refera la materiale semiconductoare, care poseda proprietati de supraconductori, in particular la un material semiconductor din telurura de staniu dopata. Materialul, conform inventiei, este obtinut pe baza de telurura de staniu, telur si este dopat suplimentar cu galiu, iar componentele sunt luate in urmatorul raport, % mas:telurura de staniu 94,5…98,3,galiu 1,1…3,5,telur 0,6…2,1.The invention relates to semiconductor materials, which possess superconductor properties, in particular to a doped tin telluride semiconductor material. The material, according to the invention, is obtained on the basis of tin tellurium, tellurium and is doped additionally with gallium, and the components are taken in the following ratio,% mas: tin tellurium 94.5… 98.3, gallium 1.1… 3 5, tellurium 0.6 ... 2.1.
Description
Invenţia se referă la materiale semiconductoare, care posedă proprietăţi de supraconductori, în particular la un material semiconductor din telurură de staniu dopată. The invention relates to semiconductor materials, which possess superconducting properties, in particular to a doped tin telluride semiconductor material.
Este cunoscut un materialul semiconductor, obţinut pe bază de telurură de staniu, care are temperatura critică (Tc) de trecere în starea supraconductoare de ordinul 0,1K şi care este mai mică în comparaţie cu temperatura critică (Tc) caracteristică pentru majoritatea materialelor semiconductoare [1]. A semiconductor material, obtained based on tin telluride, is known, which has a critical temperature (Tc) of transition to the superconducting state of the order of 0.1K and which is lower compared to the critical temperature (Tc) characteristic of most semiconductor materials [1].
Dezavantajul acestui material constă în faptul că acesta nu posedă proprietăţi semiconductoare sporite. The disadvantage of this material is that it does not possess enhanced semiconductor properties.
Este cunoscut de asemenea un procedeu de obţinere a unui material semiconductor pe bază de telurură de plumb dopat cu telur şi taliu, la un raport al componentelor, % mas: telurură de plumb 97,8…99,0, telur 0,4…0,9 şi taliu 0,6…1,4 [2]. A process for obtaining a semiconductor material based on lead telluride doped with tellurium and thallium is also known, at a ratio of components, % mass: lead telluride 97.8…99.0, tellurium 0.4…0.9 and thallium 0.6…1.4 [2].
Dezavantajul acestui material semiconductor pe baza de telurură de plumb, dopată cu taliu şi telur constă în aceea că temperatura lui critică (Tc) este relativ mică, iar taliul folosit în calitate de dopant este un material toxic. The disadvantage of this semiconductor material based on lead telluride, doped with thallium and tellurium, is that its critical temperature (Tc) is relatively low, and the thallium used as a dopant is a toxic material.
Cea mai apropiată soluţie este un procedeu de dopare a materialelor semiconductoare în bază de telurură de staniu şi telurură de plumb cu surplus de telur, care are concentraţia purtătorilor de sarcină comparabilă cu concentraţia în Ga0.5Al0.5As dopat cu Ga, Al sau GaAs la nivel de 1x1018 cm-3 . The closest solution is a process for doping semiconductor materials based on tin telluride and lead telluride with a surplus of tellurium, which has a charge carrier concentration comparable to the concentration in Ga0.5Al0.5As doped with Ga, Al or GaAs at the level of 1x1018 cm-3.
Dezavantajul acestui procedeu constă în faptul că semiconductorul de tip n obţinut din telurură de plumb şi dopat cu telur posedă proprietăţi semiconductoare mai slab pronunţate în comparaţie cu materialul semiconductor revendicat. The disadvantage of this process is that the n-type semiconductor obtained from lead telluride and doped with tellurium possesses weaker semiconductor properties compared to the claimed semiconductor material.
Problema pe care o rezolvă invenţia constă în faptul că materialul semiconductor în bază de telurură de staniu şi telur este dopat suplimentar cu galiu, îmbunătăţindu-se astfel proprietăţile lui semiconductoare. The problem solved by the invention consists in the fact that the semiconductor material based on tin telluride and tellurium is additionally doped with gallium, thus improving its semiconductor properties.
Materialul, conform invenţiei, este obţinut pe bază de telurură de staniu, telur şi este dopat suplimentar cu galiu, iar componentele sunt luate în următorul raport, % mas: The material, according to the invention, is obtained based on tin telluride, tellurium and is additionally doped with gallium, and the components are taken in the following ratio, % mass:
telurură de staniu 94,5…98,3 galiu 1,1…3,5 telur 0,6…2,1tin telluride 94.5…98.3 gallium 1.1…3.5 tellurium 0.6…2.1
Rezultatul invenţiei constă în obţinerea unui material în bază de telurură de staniu, dopat cu taliu şi galiu cu proprietăţi semiconductoare sporite. The result of the invention consists in obtaining a material based on tin telluride, doped with thallium and gallium with enhanced semiconductor properties.
Procedeul de obţinere a materialului include următoarele etape tehnologice: The process of obtaining the material includes the following technological stages:
1. Depunerea materialului semiconductor pe un substrat, executat pe bază de fluorură de bariu, cu orientarea cristalină prestabilită, de exemplu, (111), (100) sau (110), într-o cameră de creştere a instalaţiei de epitaxie moleculară cu fascicul, într-un vid profund de ordinul 10-11 mm a coloanei de mercur; 1. Deposition of the semiconductor material on a substrate, made of barium fluoride, with a predetermined crystal orientation, for example, (111), (100) or (110), in a growth chamber of the molecular beam epitaxy installation, in a deep vacuum of the order of 10-11 mm of mercury column;
2. Materialul semiconductor se depune prin evaporare din trei celule de tip Knudsen, încărcate cu SnTe, Ga şi Te; 2. The semiconductor material is deposited by evaporation from three Knudsen-type cells, loaded with SnTe, Ga and Te;
3. Monitorizarea compoziţiei şi a grosimii stratului depus cu ajutorul aparatelor, cu care este dotată instalaţia; 3. Monitoring the composition and thickness of the deposited layer using the devices with which the installation is equipped;
4. Studiul proprietăţilor electrofizice ale probelor de material semiconductor revendicat la temperaturi joase în intervalul 0,4…4,2 K. 4. Study of the electrophysical properties of samples of claimed semiconductor material at low temperatures in the range of 0.4…4.2 K.
Rezultatele măsurării temperaturii critice (Tc) pentru probele de material semiconductor ce conţine diferite cantităţi de galiu sunt prezentate în tabel. The results of the critical temperature (Tc) measurement for samples of semiconductor material containing different amounts of gallium are presented in the table.
Tabel. Table.
Compoziţia probei, % mas. Temperatură critică, (Tc), K 98,25SnTe + 1,07Ga + 0,68Te 0,9 97,75SnTe + 1,38Ga + 0,87Te 1,1 97,50SnTe + 1,52Ga + 0,98Te 1,7 96,70SnTe + 2,05Ga + 1,25Te 2,5 96,25SnTe + 2,30Ga + 1,45Te 3,0 95,75SnTe + 2,60Ga + 1,65Te 3,3 94,50SnTe + 3,47Ga + 2,03Te 3,5Sample composition, wt. % Critical temperature, (Tc), K 98.25SnTe + 1.07Ga + 0.68Te 0.9 97.75SnTe + 1.38Ga + 0.87Te 1.1 97.50SnTe + 1.52Ga + 0.98Te 1.7 96.70SnTe + 2.05Ga + 1.25Te 2.5 96.25SnTe + 2.30Ga + 1.45Te 3.0 95.75SnTe + 2.60Ga + 1.65Te 3.3 94.50SnTe + 3.47Ga + 2.03Te 3.5
Materialul semiconductor a fost obţinut, folosind instalaţia de epitaxie moleculară cu fascicul de tipul ЭП-1203. După tratarea chimică, substratul pe baza fluorurii de bariu, cu orientarea cristalină prestabilită, de exemplu, (111), (100) sau (110) în camera de creştere a instalaţiei de epitaxie moleculară cu fascicul (vid la nivelul de 10-11 mm a coloanei de mercur). După recoacerea la temperatura de 973K timp de 30 de minute, pe substrat se depune prin evaporare materialul semiconductor, din trei celule de tipul Knudsen încărcate, respectiv, cu SnTe, Ga şi Te. Controlul vitezei de creştere se execută cu ajutorul unui rezonator de cuarţ. Temperatura substratului în procesul de creştere constituie 350…400°C, viteza de depunere a fost de 0,4…0,5 nm/s şi grosimea stratului în limitele de (3…5)·10-11 mm. Controlul compoziţiei a fost efectuat după densitatea fluxului din celule. The semiconductor material was obtained using the ЭП-1203 molecular beam epitaxy installation. After chemical treatment, the barium fluoride-based substrate with a predetermined crystal orientation, for example, (111), (100) or (110) was placed in the growth chamber of the molecular beam epitaxy installation (vacuum at the level of 10-11 mm of the mercury column). After annealing at a temperature of 973K for 30 minutes, the semiconductor material was deposited on the substrate by evaporation from three Knudsen cells loaded, respectively, with SnTe, Ga and Te. The growth rate was controlled using a quartz resonator. The substrate temperature during the growth process was 350…400°C, the deposition rate was 0.4…0.5 nm/s and the layer thickness was within the limits of (3…5)·10-11 mm. Composition control was performed by cell flux density.
Probele obţinute în aşa mod au fost monocristaline, fapt demonstrat cu ajutorul unui dispozitiv de difracţie a electronilor rapizi, care permite de a efectua controlul structurii şi a morfologiei suprafeţei. The samples obtained in this way were monocrystalline, a fact demonstrated using a fast electron diffraction device, which allows for control of the structure and surface morphology.
Proprietăţile electrofizice au fost examinate în intervalul de temperaturi 0,4…4,2K. Invenţia se explică prin desenele din figura 1 şi 2. Fig. 1 reprezintă dependenţa caracteristică a rezistenţei (R) probelor de temperatură (T) la un conţinut al galiului de 2,6%. Aşa formă a dependenţei rezistenţei (R) de temperatură (T) arată clar că probele de semiconductor la temperaturi joase manifestă proprietăţi semiconductoare sporite, fapt demonstrat suplimentar de figura 2, din care reiese Frecvenţa stărilor la nivelul Fermi, obţinută din dHc2/dT, atinge valori de 1022 eV-1cm-1, iar concentraţia purtătorilor de sarcină este comparabilă cu ~102° cm-3. The electrophysical properties were examined in the temperature range 0.4…4.2K. The invention is explained by the drawings in Figure 1 and 2. Fig. 1 represents the characteristic dependence of the resistance (R) of the samples on the temperature (T) at a gallium content of 2.6%. Such a form of the dependence of the resistance (R) on the temperature (T) clearly shows that the semiconductor samples at low temperatures exhibit enhanced semiconductor properties, which is further demonstrated by Figure 2, from which it follows that the frequency of states at the Fermi level, obtained from dHc2/dT, reaches values of 1022 eV-1cm-1, and the concentration of charge carriers is comparable to ~102° cm-3.
Apariţia stării semiconductoare sporite în materialul SnTe<Ga> a fost condiţionată de unele fenomene, cum ar fi doparea telururii de staniu cu galiu, care conduce la formarea benzii cvasilocale cu densitatea mare a stărilor în zona de valenţă îndepărtată de vârf la 0,1eV cu lăţimea de 5…10 meV pe fondul spectrului admisibil. Anume existenţa benzii cvasilocale cu o frecvenţă mare a stărilor în zona de valenţă explică toată gama, inclusiv şi starea semiconductoare sporită în telurura de staniu dopată cu galiu. The emergence of the enhanced semiconducting state in the SnTe<Ga> material was conditioned by some phenomena, such as the doping of tin telluride with gallium, which leads to the formation of a quasilocal band with a high density of states in the valence band distant from the peak at 0.1eV with a width of 5…10 meV against the background of the admissible spectrum. Namely, the existence of a quasilocal band with a high frequency of states in the valence band explains the entire range, including the enhanced semiconducting state in gallium-doped tin telluride.
Materialul semiconductor SnTe<Ga> se deosebeşte de materialele supraconductoare semiconductoare existente prin aceea că are parametri critici mai buni (de exemplu, temperatura critică TC, care atinge valoarea de 3,5K). Aceasta poate fi folosit în fabricarea senzorilor de radiaţie infraroşie peliculari, de exemplu, a bolometrelor cu deplasare în câmpul magnetic. The semiconductor material SnTe<Ga> differs from existing superconducting semiconductor materials in that it has better critical parameters (for example, the critical temperature TC, which reaches a value of 3.5 K). It can be used in the manufacture of film infrared radiation sensors, for example, magnetic field displacement bolometers.
1. Коэн М., Глэдстоун Г., Йенсен М., Шриффер Дж. Сверхпроводимость полупроводников и переходных металлов. гл. 3, Москва, Мир, 1972. 1. Cohen M., Gladstone G., Jensen M., Shriffer Dzh. Superconductivity of semiconductors and transition metals. ch. 3, Moscow, Mir, 1972.
2. SU 961512 A1 1983.01.23 2. SU 961512 A1 1983.01.23
3. JP 58191427 A 1983.11.08 3. JP 58191427 A 1983.11.08
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20090092A MD174Z (en) | 2009-05-19 | 2009-05-19 | Semiconducting material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20090092A MD174Z (en) | 2009-05-19 | 2009-05-19 | Semiconducting material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD174Y true MD174Y (en) | 2010-03-31 |
| MD174Z MD174Z (en) | 2010-10-31 |
Family
ID=43568946
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20090092A MD174Z (en) | 2009-05-19 | 2009-05-19 | Semiconducting material |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD174Z (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD323Z (en) * | 2009-12-29 | 2011-08-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Thermoelectric microwire in glass insulation |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1360100A (en) * | 1970-12-31 | 1974-07-17 | Ibm | Superconductive tunnelling device |
| JPS5349963A (en) * | 1976-10-18 | 1978-05-06 | Nippon Telegr & Teleph Corp <Ntt> | Super-current tunneling element |
| JPS5390882A (en) * | 1977-01-21 | 1978-08-10 | Nippon Telegr & Teleph Corp <Ntt> | Supercurrent tunneling element |
| JPS5613784A (en) * | 1979-07-13 | 1981-02-10 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of semiconductor barrier josephson junction element |
| JPS5846197B2 (en) * | 1980-12-20 | 1983-10-14 | 理化学研究所 | Josephson junction device and its manufacturing method |
| SU961512A1 (en) * | 1980-12-26 | 1983-01-23 | Ленинградский Ордена Ленина Политехнический Институт Им.М.И.Калинина | Superconductor semiconductor material |
| JPS57176780A (en) * | 1981-04-22 | 1982-10-30 | Toshiba Corp | P-n junction superconductive element |
| JPS58110084A (en) * | 1981-12-24 | 1983-06-30 | Mitsubishi Electric Corp | Josephson element |
| JPS58125881A (en) * | 1982-01-22 | 1983-07-27 | Hitachi Ltd | Constitution of vertical type resistance circuit |
| JPS58191427A (en) * | 1982-04-30 | 1983-11-08 | Sharp Corp | Impurity addition method |
| US4470190A (en) * | 1982-11-29 | 1984-09-11 | At&T Bell Laboratories | Josephson device fabrication method |
| JPS6167282A (en) * | 1984-09-08 | 1986-04-07 | Nippon Telegr & Teleph Corp <Ntt> | Resistance element for superconductor integrated circuit and manufacture thereof |
| JPS61181178A (en) * | 1985-02-06 | 1986-08-13 | Rikagaku Kenkyusho | Josephson junction element and manufacture thereof |
| JPS6218776A (en) * | 1985-07-17 | 1987-01-27 | Fujitsu Ltd | Superconductive device |
| JPS6298769A (en) * | 1985-10-25 | 1987-05-08 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor element |
| JPS63160273A (en) * | 1986-12-23 | 1988-07-04 | Fujitsu Ltd | High-speed semiconductor device |
| JPS6430110A (en) * | 1987-07-23 | 1989-02-01 | Matsushita Electric Industrial Co Ltd | Superconductor |
| JPS6452325A (en) * | 1987-08-21 | 1989-02-28 | Matsushita Electric Industrial Co Ltd | Superconductor |
| JPH07106896B2 (en) * | 1987-08-21 | 1995-11-15 | 松下電器産業株式会社 | Superconductor |
| JPS6452319A (en) * | 1987-08-21 | 1989-02-28 | Matsushita Electric Industrial Co Ltd | Superconductor and integrated superconductive device |
| JPS6452322A (en) * | 1987-08-21 | 1989-02-28 | Matsushita Electric Industrial Co Ltd | Superconductor |
| JPH0199269A (en) * | 1987-10-13 | 1989-04-18 | Nippon Telegr & Teleph Corp <Ntt> | Oxide superconductor tunnel junction and forming method thereof |
| JPH02277275A (en) * | 1989-04-19 | 1990-11-13 | Hitachi Ltd | Electron carrier infinite layered oxide superconductor and Josephson junction |
| BG48908A1 (en) * | 1989-08-07 | 1991-06-14 | Vissh Khim T I | Superconducting ceramic material |
| JP3374216B2 (en) * | 1991-10-26 | 2003-02-04 | ローム株式会社 | Semiconductor device having ferroelectric layer |
| JP2963614B2 (en) * | 1994-04-01 | 1999-10-18 | 財団法人国際超電導産業技術研究センター | Method for manufacturing oxide superconductor junction element |
| JPH08316535A (en) * | 1995-05-19 | 1996-11-29 | Fujitsu Ltd | Josephson device and manufacturing method thereof |
| JPH0918063A (en) * | 1995-06-28 | 1997-01-17 | Matsushita Electric Ind Co Ltd | Oxide superconductor quantum interference device |
| RU2111579C1 (en) * | 1996-09-03 | 1998-05-20 | Адиль Маликович Яфясов | Process of manufacture of quantum interference element |
| MD2436G2 (en) * | 2003-03-18 | 2004-10-31 | Государственный Университет Молд0 | Composition for obtaining thin films of stannic oxide with high sensibility to carbonic oxide |
| MD2805G2 (en) * | 2004-03-26 | 2006-02-28 | Государственный Университет Молд0 | Composition for obtaining thin stannic oxide films |
| MD3662C2 (en) * | 2005-09-02 | 2009-02-28 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Semiconductor thermoelectric alloy (variants) |
| MD3688C2 (en) * | 2007-03-14 | 2009-03-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Semiconductor strain-sensing resistor |
-
2009
- 2009-05-19 MD MDS20090092A patent/MD174Z/en not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| MD174Z (en) | 2010-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mohamed et al. | Growth and fundamentals of bulk β-Ga2O3 single crystals | |
| Pearton et al. | A review of Ga2O3 materials, processing, and devices | |
| Lee et al. | Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering | |
| Brebrick et al. | Composition limits of stability of PbTe | |
| Romeo et al. | Low substrate temperature CdTe solar cells: A review | |
| Yoon et al. | Electrical and photocurrent properties of a polycrystalline Sn-doped β-Ga2O3 thin film | |
| Pizzini et al. | Thermodynamic and transport properties of stoichiometric and nonstoichiometric nickel oxide | |
| JP2020189781A (en) | Manufacturing procedure of p-type gallium oxide thin film by defect doping and its use | |
| Ingebrigtsen et al. | Bulk β-Ga2O3 with (010) and (201) surface orientation: Schottky contacts and point defects | |
| Liu et al. | Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure | |
| Montgomery et al. | Hall‐Effect Measurements of n‐Type Gallium Phosphide | |
| McDaniel et al. | Incorporation of La in epitaxial SrTiO3 thin films grown by atomic layer deposition on SrTiO3-buffered Si (001) substrates | |
| Shi et al. | Enhanced electrical conductivity and reduced work function of β-Ga2O3 thin films by hydrogen plasma treatment | |
| Capers et al. | The electrical properties of vacuum deposited tellurium films | |
| Masse et al. | Luminescence and lattice defects in Cu In S2 | |
| Lei et al. | Influence of CuxS back contact on CdTe thin film solar cells | |
| Barnes et al. | Relationship between deposition conditions and physical properties of sputtered ZnO | |
| Schön et al. | Characterization of intrinsic defect levels in CuInS2 | |
| Masse et al. | Study of CuGa (Se, Te) 2 bulk materials and thin films | |
| MD174Y (en) | Semiconducting material | |
| Zhu et al. | Phase evolution, bandgap engineering and p-type conduction in undoped/N-doped BexZn1− xO alloy epitaxial films | |
| Song et al. | Radio frequency magnetron sputtered highly textured Cu2ZnSnS4 thin films on sapphire (0 0 0 1) substrates | |
| Chen et al. | The effects of pulse repetition rate on the structural, optical, and electrical properties of CIGS films grown by pulsed laser deposition | |
| Wei et al. | Effect of unintentional nitrogen incorporation on n-type doping of β-Ga 2 O 3 grown by molecular beam epitaxy | |
| El Akkad | Lithium and phosphorus impurities in ZnTe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |