JPS6218776A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS6218776A
JPS6218776A JP60158653A JP15865385A JPS6218776A JP S6218776 A JPS6218776 A JP S6218776A JP 60158653 A JP60158653 A JP 60158653A JP 15865385 A JP15865385 A JP 15865385A JP S6218776 A JPS6218776 A JP S6218776A
Authority
JP
Japan
Prior art keywords
electrode layer
quasi
layer
electrode
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60158653A
Other languages
Japanese (ja)
Inventor
Naoki Harada
直樹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60158653A priority Critical patent/JPS6218776A/en
Publication of JPS6218776A publication Critical patent/JPS6218776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the Josephson element having variable I-V characteristic by depositing an insulating layer, an injection electrode layer, an insulating layer, and an upper electrode layer on a lower electrode layer spread on a substrate and cutting one end of those layers with inclination and spreading a thin weak combining body on that inclined plane, thereby combining the upper and lower electrode layers. CONSTITUTION:A lower electrode layer 22 consisting of Nb or Pb is spread on a substrate 21 and further on that, an SiO2 layer 23, an injection electrode layer 24 consisting of a normally-conductive metal or a superconductive metal such as Nb, an SiO2 layer 25, and an upper electrode layer 25 of superconductive metal are formed by lamination. One end of this lamination is cut obliquely in expansion toward the lower layers while keeping those layers placed on the electrode layer 22. Then, a weak combining body 27 consisting of Bi, Te, or Al several hundred Angstrom thick is spread from the end surface of the electrode layer 26 to the electrode layer 27. Thus, tunnel barriers are produced between the weak combining body 27 and the electrodes 22, 24, and 26, respectively and the wide-range control of I-V characteristic becomes possible. And, the quasi-plane type Josephson element of high speed and low electric consumption can be obtained.

Description

【発明の詳細な説明】 [概要] 本発明は、超伝導装置であって、従来の準平面型ジョセ
フソン素子は二端子構造のため、電圧−電流特性の制御
が不可能であったが、本発明では絶縁膜内に弱結合部と
接合する注入電極を設け、三端子構造の準平面型ジョセ
フソン素子とすることにより、注入雪掻から弱結合部に
準粒子を注入することにより、電圧−電流特性を制御可
変にし得る準平面型ジョセフソン素子の超伝導装置を提
供するものである。
[Detailed Description of the Invention] [Summary] The present invention is a superconducting device, and a conventional quasi-planar Josephson device has a two-terminal structure, making it impossible to control voltage-current characteristics. In the present invention, an injection electrode is provided in the insulating film to connect to the weak coupling part, and a quasi-planar Josephson element with a three-terminal structure is formed. - To provide a superconducting device using a quasi-planar Josephson element whose current characteristics can be controlled and varied.

[産業上の利用分野コ 本発明は、超伝導装置に係わり、特に三端子構造の準平
面型ジョセフソン素子に関するものである。
[Industrial Field of Application] The present invention relates to superconducting devices, and particularly to a quasi-planar Josephson device with a three-terminal structure.

超伝導特性を有するジョセフソン素子は高速、低消費電
力の特性を有し、超高速の電子計算機用の素子として注
目されている。
Josephson devices with superconducting properties have the characteristics of high speed and low power consumption, and are attracting attention as devices for ultra-high speed electronic computers.

超伝導装置として、準平面型ジョセフソン素子があり、
下部電極と上部電極が絶縁膜を介して形成され、その下
部電極と上部電極が弱結合部によって接合されている二
端子構造であるが、二端子素子のために、電圧−電流特
性を変化させることは不可能である。
There is a quasi-planar Josephson device as a superconducting device.
It has a two-terminal structure in which a lower electrode and an upper electrode are formed via an insulating film, and the lower electrode and upper electrode are connected by a weak bond, but because it is a two-terminal element, the voltage-current characteristics change. That is impossible.

一方、クイトロン(QU I TERON)に代表され
る準粒子注入超伝導三端子素子が提案されており、上部
電極と下部電極とがトンネル結合された構造の上部電極
の上に、注入電極を形成したもので、その注入電極から
注入する準粒子の注入量を加減して、電圧−電流特性を
可変にすることが出来るが、この構造では上部電極と注
入電極との適正な結合面積が必要であり、この面積が大
きいと利得が減少し、反対に小であると注入量が少なく
て制御が限定されるほか、素子の習作が困難であるとい
う不都合がある。
On the other hand, a quasi-particle injection superconducting three-terminal device represented by QUI TERON has been proposed, in which an injection electrode is formed on top of an upper electrode with a structure in which an upper electrode and a lower electrode are tunnel-coupled. The voltage-current characteristics can be varied by adjusting the amount of quasiparticles injected from the injection electrode, but this structure requires an appropriate coupling area between the upper electrode and the injection electrode. If the area is large, the gain decreases, and if it is small, the implantation amount is small, which limits control and makes it difficult to fabricate the device.

このような理由から、準平面型ジョセフソン素子で電圧
−電流特性を広範囲に変化し得る構造が要望されている
For these reasons, there is a demand for a structure in which the voltage-current characteristics can be varied over a wide range using a quasi-planar Josephson element.

[従来の技術] 第3図は、従来の準平面型ジョセフソン素子の模式要部
断面図である。
[Prior Art] FIG. 3 is a schematic cross-sectional view of a main part of a conventional quasi-planar Josephson element.

基板1上に形成された下部電極2と上部電極3は超伝導
材料であり、例えばニオビウム(Nb)または鉛(Pb
)などが使用される。
The lower electrode 2 and upper electrode 3 formed on the substrate 1 are made of superconducting material, such as niobium (Nb) or lead (Pb).
) etc. are used.

下部電極2と上部電極3の間隙には絶縁物4として、例
えば二酸化シリコン等の絶縁材料が使用され、また下部
電極2と上部電極3は弱結合体5で結合されるが、弱結
合部の材料は例えばビスマス(Bi)またはテルル(T
e)などが使用される。
An insulating material such as silicon dioxide is used as an insulator 4 in the gap between the lower electrode 2 and the upper electrode 3, and the lower electrode 2 and the upper electrode 3 are connected by a weak bonding body 5. The material is, for example, bismuth (Bi) or tellurium (T).
e) etc. are used.

この構造の準平面型ジョセフソン素子の下部電極と上部
電極との端子TI、T2に電圧を印加すると、超伝導材
料である下部電極と下部電極とは、弱結合体5との接合
部でトンネル効果により、超伝導の電圧−電流特性が得
られる。
When a voltage is applied to the terminals TI and T2 between the lower electrode and the upper electrode of the quasi-planar Josephson element with this structure, the lower electrode and the lower electrode, which are superconducting materials, tunnel at the junction with the weak coupler 5. The effect provides superconducting voltage-current characteristics.

この準平面型ジョセフソン素子は、二端子素子であるた
めに、構成材料と構造によって、素子の電圧−電流特性
は一義的に決定され、それらの特性を変化させることは
不可能である。
Since this quasi-planar Josephson element is a two-terminal element, the voltage-current characteristics of the element are uniquely determined by the constituent materials and structure, and it is impossible to change these characteristics.

このような、準平面型ジョセフソン素子の電圧−電流特
性に制御性を付与するために、近時クイトロンで代表さ
れる準粒子注入超伝導三端子素子が提案されている。
In order to provide controllability to the voltage-current characteristics of such a quasi-planar Josephson device, a quasiparticle-injected superconducting three-terminal device, represented by a quasitron, has recently been proposed.

第4図は、通常のクイトロンの模式要部断面図である。FIG. 4 is a schematic cross-sectional view of the main part of a normal Quitron.

基板11の表面に超伝導体の下部電極12があり、その
表面に形成された絶縁膜13に開口部14を設けて、そ
の表面に超伝導体の上部電極15を形成し、さらに上部
電極上に絶縁膜16を形成して、一部間口部17を形成
して、その開口部と接合する注入電極18を形成する。
A lower electrode 12 of a superconductor is provided on the surface of a substrate 11, an opening 14 is provided in an insulating film 13 formed on the surface, an upper electrode 15 of a superconductor is formed on the surface, and an upper electrode 15 of a superconductor is formed on the surface of the insulating film 13. An insulating film 16 is formed on the insulating film 16, a frontage part 17 is formed in a part, and an injection electrode 18 is formed to be connected to the opening part.

このような構造のクイトロンは、注入電極から超伝導体
の上部電極に過剰準粒子を注入することにより、ギャッ
プパラメータΔ(超伝導体にある超伝導電子の密度を表
す)を変化させて電圧−電流特性を変化させることがで
きる。
Quitrons with such a structure can be used to change the gap parameter Δ (representing the density of superconducting electrons in the superconductor) by injecting excess quasiparticles from the injection electrode into the upper electrode of the superconductor, thereby increasing the voltage - Current characteristics can be changed.

一般に、ギヤノブパラメータΔは、ΔTを平衡状態のギ
ャップパラメータとすると、 Δ/ΔT=1−2n      (1)(1)式で、 n = (Ngp −NgpT ) / 4 N(0)
  Δ11’Jgp  :準粒子密度 NgpT :平衡状態の準粒子密度 N(0)  :フェルミ準位での単一 スピン状態密度 Δ1  :絶対零度でのギャップ パラメータ で表すことができる。
In general, the gear knob parameter Δ is calculated as follows: Δ/ΔT=1-2n (1) (1), where ΔT is the gap parameter in the equilibrium state, n = (Ngp - NgpT) / 4 N(0)
Δ11'Jgp: Quasiparticle density NgpT: Quasiparticle density in equilibrium N(0): Single spin state density at Fermi level Δ1: Can be expressed as a gap parameter at absolute zero.

これから準粒子密度が多い程ギヤ、プパラメータが大き
く変化することがわかり、そのためには準粒子を注入す
る領域を小にすればよい。
It can be seen from this that the higher the quasi-particle density, the greater the change in the gear and pull parameters, and to achieve this, the area into which the quasi-particles are injected should be made smaller.

しかしながら、クイトロンは単なる二重トンネル接合で
あり、注入領域の面積は数μmx数μmと大きく、その
結果数百μへの電流を必要とするために、素子の利得を
低下させる欠点がある。
However, the Quitron is just a double tunnel junction, and the area of the implanted region is large, several micrometers by several micrometers, and as a result, a current of several hundred micrometers is required, which has the disadvantage of reducing the gain of the device.

[発明が解決しようとする問題点] 従来の準平面型ジョセフソン素子は、二端子素子である
ために、電圧−電流特性を制御することは不可能であり
、クイトロンは三端子素子であるが、注入電流が数百μ
への電流を必要とするために素子の利得が低下すること
が問題点である。
[Problems to be solved by the invention] Since the conventional quasi-planar Josephson device is a two-terminal device, it is impossible to control the voltage-current characteristics. , the injection current is several hundred μ
The problem is that the gain of the device decreases because current is required to flow into the device.

[問題点を解決するための手段] 本発明は、上記問題点を解決するための超伝導装置を提
供するものであり、その解決の手段は、基板上に形成さ
れた下部電極と、その表面に絶縁膜を介して形成された
上部電極を配置し、その上部毛極と下部電極が弱結合部
によって結合されている構造のジコセフソン素子のお結
合部に、準粒子を注入するために、絶縁膜内に注入電極
を設け、その注入電極の一端を弱結合部と接合させてお
いて、その注入電極から電流を注入することにより、可
変の電圧−電流特性を(りることのできる三端子の準平
面型ジョセフソン素子によって解決するものである。
[Means for Solving the Problems] The present invention provides a superconducting device for solving the above-mentioned problems. In order to inject quasiparticles into the coupling part of the dicocefson element, which has a structure in which an upper electrode formed through an insulating film is placed and the upper capillary electrode and the lower electrode are coupled by a weak coupling part, an insulating film is placed. An injection electrode is provided in the membrane, one end of the injection electrode is connected to a weak coupling part, and a current is injected from the injection electrode to create variable voltage-current characteristics (removable three-terminal The solution is to use a quasi-planar Josephson element.

[作用1 本発明は、従来の準平面型ジョセフソン素子が二端子素
子のため電圧−電流特性の制御性がないことと、クイト
ロンは三端子であるために電圧−電流特性の制御はでき
るが、注入電流が大きくて利得が低いことに鑑み、新し
い準平面型ジョセフソン素子として、上部電極と下部電
極と結合する弱結合部に接合するように、絶縁膜内に注
入電極を設けて三端子構造の準平面型ジョセフソン素子
を形成し、この注入素子から準粒子を注入して、電圧−
電流特性を制御するものであり、これによって使用する
装置に最も通した電圧−電流特性を自由に可変できる準
平面型ジョセフソン素子を提供するものである。
[Function 1] The present invention has the following advantages: the conventional quasi-planar Josephson element is a two-terminal element, so there is no controllability of the voltage-current characteristics, and the Quitron is three-terminal, so it is possible to control the voltage-current characteristics. In view of the fact that the injection current is large and the gain is low, a new quasi-planar Josephson device is developed with an injection electrode in the insulating film to connect to the weak coupling part between the upper and lower electrodes. A quasi-planar Josephson element with a structure is formed, and quasiparticles are injected from this injection element to increase the voltage -
The present invention provides a quasi-planar Josephson element that controls the current characteristics, thereby allowing the voltage-current characteristics most suitable for the device used to be freely varied.

「実施例」 第1図は本発明による三端子構造の準平面型ジョセフソ
ン素子の模式要部断面図である。
Embodiment FIG. 1 is a schematic cross-sectional view of the essential parts of a quasi-planar Josephson device with a three-terminal structure according to the present invention.

基板21の表面に、下部電極22として厚みが1000
人程度7、材料は例えばNbまたは(Pb)等が使用さ
れ、その表面に絶縁層23として例えば二酸化シリコン
等の絶縁物が厚みが1000人で形成される。
The lower electrode 22 has a thickness of 1000 mm on the surface of the substrate 21.
For example, a material such as Nb or (Pb) is used, and an insulating material such as silicon dioxide is formed on the surface as an insulating layer 23 to a thickness of 1000 mm.

さらに、その表面に注入電極24として厚みが約100
0人、材料は超伝導金属または常伝導金属の何れでもよ
いが、例えばニオビウム(Nb)等を使用することがで
きる。
Further, on the surface thereof, an injection electrode 24 with a thickness of about 100 mm is added.
The material may be either a superconducting metal or a normal conducting metal, and for example, niobium (Nb) can be used.

注入電極の上に、厚みが1000人で材料が二酸化シリ
コン等の絶縁層25、厚みが1000人で材料が超伝導
材料の上部電極26が順次形成されている。
On the injection electrode, an insulating layer 25 having a thickness of 1000 mm and made of a material such as silicon dioxide, and an upper electrode 26 having a thickness of 1000 mm and made of a superconducting material are successively formed.

下部電極22と上部電極26との結合は、弱結合体27
で接続され、弱結合体は幅が1μm、厚みが約数再入で
あって、材料は弱い超伝導体、常伝導金属、半金属また
は半導体等が使用され、例えばビスマス(Bi)、テル
ル などが利用される。
The bond between the lower electrode 22 and the upper electrode 26 is a weak bond 27
The weak bond has a width of 1 μm and a thickness of diagonal reentrant, and the material used is a weak superconductor, normal metal, semimetal, or semiconductor, such as bismuth (Bi), tellurium, etc. is used.

このような端子T3、T4、T5の三端子構造の準平面
型ジョセフソン素子では、弱結合体27は下部電極22
、注入電極24および上部電極26との接合部でトンネ
ル障壁を形成し、弱結合部の幅が1μmであるので、極
めて高密度の準粒子を注入することができ、また弱結合
部の材料の選択範囲が広いので、例えば平衡状態のギヤ
ツブパラメータの小なるもの、非平衡の緩和時間の小な
るもの等の好適の材料を選択することができる。
In such a quasi-planar Josephson element with a three-terminal structure of terminals T3, T4, and T5, the weak coupler 27 is connected to the lower electrode 22.
, a tunnel barrier is formed at the junction with the injection electrode 24 and the upper electrode 26, and the width of the weak coupling part is 1 μm, so it is possible to inject extremely high density quasiparticles, and the material of the weak coupling part is Since the selection range is wide, it is possible to select a suitable material, for example, a material with a small gear parameter in an equilibrium state, a material with a small non-equilibrium relaxation time, etc.

第2図は、本発明の三端子構造の準平面型ジョセフソン
素子の電圧−電流特性を示している。
FIG. 2 shows the voltage-current characteristics of the quasi-planar Josephson device having a three-terminal structure according to the present invention.

電圧−電流特性として、特性a,b,c,dがあるが、
従来の二端子構造の準平面型ジョセフソン素子では、単
一素子ではその構造により、−特性の電圧−電流特性の
み、例えばa特性のみが得られるが、本発明の三端子の
準平面型ジョセフソン素子の電圧−電流特性では、a,
b,c,dのすべての特性が連続的に得ることができる
There are characteristics a, b, c, and d as voltage-current characteristics.
In a conventional quasi-planar Josephson element with a two-terminal structure, in a single element, only the -characteristic voltage-current characteristic, for example, only the a-characteristic, can be obtained, but the three-terminal quasi-planar Josephson element of the present invention In the voltage-current characteristics of the Son element, a,
All characteristics b, c, and d can be obtained continuously.

[発明の効果] 以上、詳細に説明したように、本発明による三端子構造
の準平面型ジョセフソン素子は、電圧−電流特性を広範
囲に且つ適切に制御し得るという特性を有し、高速で低
消費電力の準平面型ジョセフソン素子を供しうるという
効果大なるものである。
[Effects of the Invention] As explained above in detail, the quasi-planar Josephson element with the three-terminal structure according to the present invention has the characteristic that the voltage-current characteristics can be appropriately controlled over a wide range, and can be used at high speed. This has the great effect of providing a quasi-planar Josephson element with low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の準平面型ジョセフソン素子の模式要
部断面図、 第2図は、本発明の準平面型ジョセフソン素子の電圧−
電流特性図、 第3図は、従来の準平面型ジョセフソン素子の模式要部
断面図、 第4図は、クイトロンの模式要部断面図図において、 21は基板、     22は下部電極、23は絶縁層
、    24は注入電極、25は絶縁層、    2
6は上部電極、27は弱結合体、 をそれぞれ示している。 +発θ月の11F面16ざ°ヨ乞フソン訃m1  図 7i、発θ珂の:!l乎面tk7ソ〉幸J−電工脣]υ
が・注@ 2 閃
FIG. 1 is a schematic cross-sectional view of essential parts of a quasi-planar Josephson element of the present invention, and FIG. 2 is a voltage-voltage diagram of a quasi-planar Josephson element of the present invention.
In the current characteristic diagram, FIG. 3 is a schematic cross-sectional view of the main part of a conventional quasi-planar Josephson element, and FIG. Insulating layer, 24 is an injection electrode, 25 is an insulating layer, 2
6 is an upper electrode, and 27 is a weak bond, respectively. +The 11th floor of the 11th floor of the 1st floor of the 1st floor of the 1st floor. l 乎面tk7So〉于J-电脣】υ
・Note @ 2 Flash

Claims (1)

【特許請求の範囲】[Claims] 基板(21)上に下部電極(22)が形成され、その表
面に絶縁膜(23)、注入電極(24)、絶縁膜(25
)および上部電極(26)が積層され、その積層された
絶縁膜(23)、注入電極(24)、絶縁膜(25)お
よび上部電極(26)のそれぞれの同一側端部が、弱結
合部(27)と接合し、その弱結合部(27)が下部電
極(22)に接合されることを特徴とする超伝導装置。
A lower electrode (22) is formed on the substrate (21), and an insulating film (23), an injection electrode (24), and an insulating film (25) are formed on the surface of the lower electrode (22).
) and an upper electrode (26) are laminated, and the ends of the laminated insulating film (23), injection electrode (24), insulating film (25), and upper electrode (26) on the same side form a weak coupling part. (27), and its weak coupling portion (27) is connected to a lower electrode (22).
JP60158653A 1985-07-17 1985-07-17 Superconductive device Pending JPS6218776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158653A JPS6218776A (en) 1985-07-17 1985-07-17 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158653A JPS6218776A (en) 1985-07-17 1985-07-17 Superconductive device

Publications (1)

Publication Number Publication Date
JPS6218776A true JPS6218776A (en) 1987-01-27

Family

ID=15676409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158653A Pending JPS6218776A (en) 1985-07-17 1985-07-17 Superconductive device

Country Status (1)

Country Link
JP (1) JPS6218776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145444A (en) * 1987-10-26 1989-06-07 Bendix Espana Sa Shock absorber
MD174Z (en) * 2009-05-19 2010-10-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Semiconducting material
MD323Z (en) * 2009-12-29 2011-08-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Thermoelectric microwire in glass insulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145444A (en) * 1987-10-26 1989-06-07 Bendix Espana Sa Shock absorber
MD174Z (en) * 2009-05-19 2010-10-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Semiconducting material
MD323Z (en) * 2009-12-29 2011-08-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Thermoelectric microwire in glass insulation

Similar Documents

Publication Publication Date Title
US3370210A (en) Magnetic field responsive superconducting tunneling devices
JPS60160675A (en) Quasi-particle injection type superconducting element
JPS6218776A (en) Superconductive device
JPH03228384A (en) Superconducting element
JP2583922B2 (en) Superconducting switching element
JPS63299281A (en) Superconducting device
JP2955407B2 (en) Superconducting element
JP2955415B2 (en) Superconducting element
JP2585269B2 (en) Superconducting transistor
JP2955641B2 (en) In situ Josephson junction structure
JP2583923B2 (en) Superconducting switching element
JP2649808B2 (en) Current injection cryotron
JP3232642B2 (en) Current modulator
JP2583924B2 (en) Superconducting switching element
JP2774713B2 (en) Superconducting element
JPH0484469A (en) Three-terminal device
JP2862706B2 (en) Superconducting element
JP2625803B2 (en) Superconductor device
JPS6124289A (en) Superconducting amplifying element
JP3212088B2 (en) Superconducting device
JPH09312424A (en) Superconducting transistor
JPS63308974A (en) Superconducting transistor
JPH0210881A (en) Josephson bridge element
JPH05175559A (en) Superconducting element
JPH0964429A (en) Tunnel josephson junction element and manufacture thereof