KR930004662B1 - 유체 압축기 - Google Patents

유체 압축기 Download PDF

Info

Publication number
KR930004662B1
KR930004662B1 KR1019890020295A KR890020295A KR930004662B1 KR 930004662 B1 KR930004662 B1 KR 930004662B1 KR 1019890020295 A KR1019890020295 A KR 1019890020295A KR 890020295 A KR890020295 A KR 890020295A KR 930004662 B1 KR930004662 B1 KR 930004662B1
Authority
KR
South Korea
Prior art keywords
cylinder
bearing
side end
pressure
rotating body
Prior art date
Application number
KR1019890020295A
Other languages
English (en)
Other versions
KR900010233A (ko
Inventor
도시까쯔 이이다
요시노리 소네
Original Assignee
가부시끼 가이샤 도시바
아오이 죠이찌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼 가이샤 도시바, 아오이 죠이찌 filed Critical 가부시끼 가이샤 도시바
Publication of KR900010233A publication Critical patent/KR900010233A/ko
Application granted granted Critical
Publication of KR930004662B1 publication Critical patent/KR930004662B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member
    • F04C18/107Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member with helical teeth

Abstract

내용 없음.

Description

유체 압축기
제1도는 전술한 압축기의 전체를 나타낸 단면도.
제2도는 회전체를 나타낸 측면도.
제3도는 블레이드의 측면도.
제4도는 전술한 압축기의 압축부의 일부파단 측면도.
제5도는 제2도의 선 Ⅴ-Ⅴ를 따른 단면도.
제6a도 내지 제6d도는 냉매가스의 압축과정을 각각 나타낸 도면.
제7a도 내지 제7d도는 전술한 압축행정에 있어서의 실린더와 회전체의 상대위치를 각각 나타낸 단면도.
제8도는 압축동작시에 각부에 작용하는 압력의 상태를 개략적으로 나타낸 단면도.
제9도는 전술한 유체 압축기의 일부를 나타낸 단면도.
제10도는 베어링 지지기구를 나타낸 분해 사시도이다.
* 도면의 주요부분에 대한 부호의 설명
10 : 밀폐케이스 12 : 전동기부
16 : 스테이터 18 : 로터
20 : 실린더 21,22 : 베어링
21a,21b : 베어링 구멍 23 : 제1의 밀폐공간
24a,24b : 미끄럼작동부 30 : 홈
32 : 블레이드 40 : 토출구멍
52 : 지지부재 56 : 오목부
본 발명은 유체압축기, 예를 들면 냉동사이클의 냉매가스 압축용의 유체 압축기에 관한 것이다.
이전부터 압축기로는 왕복방식, 로타리 방식등 여러종류가 알려져 있다.
그러나 이들 압축기에 있어서는 회전력을 압축기부에 전달하는 크랭크 샤프트 등의 구동부나, 압축부의 구조가 복잡하며 또 부품수도 많다.
그리고 종래의 압축기에서는 압축효율을 높이기 위해 압축기의 토출측에 역류 방지용의 첵크 밸브를 설치할 필요가 있었다.
그러나 이 첵크밸브의 양측의 압력차가 매우 커서 첵크 밸브에서 가스가 누출되기 쉽다.
따라서 압축효율이 낮다. 이와 같은 문제를 해결하기 위해서는 각 부품의 치수, 정밀도 및 조립정밀도 등을 높힐 필요가 있어 그 결과 제조 비용이 높아진다.
미합중국 특허 제2,401,189호 및 미합중국 특허 제2,527,536호에는 흡입측단부 및 토출측단부를 갖는 원주형상의 회전체를 갖춘 스크류 펌프가 기술되어져 있다.
회전체는 슬리브내에 설치되며 이 회전체의 바깥 둘레면에는 나선형의 홈이 형성되어 있다.
또 이 홈에는 나선형의 블레이드가 미끄럼작동이 자유롭게 끼워 맞추어져 있다. 그리고 회전체를 회전 구동함으로써 회전체의 바깥둘레면과 슬리브의 안둘레면과의 사이에서 블레이드의 인접하는 2개의 공간에 고인 유체가 슬리브의 한쪽단에서 다른쪽단으로 이송된다.
이같은 구성의 펌프에 의하면 동작중 회전체에는 지지력이 작용하며 이로써 회전체와 베어링과의 사이의 마찰이 켜져서 펌프의 효율이 떨어지는 문제가 있다.
이들 펌프중 미합중국 특허 제2,257,536호에 기술되어진 펌프에 의하면 2개의 로터를 대향해서 배치함으로써 회전체에 작용하는 지지력의 균형을 이루게 하고 있다.
그러나 이와 같은 구성에서도 부품수가 많고 구조가 복잡해 진다는 문제가 있다.
이처럼 종래의 구조에서는 회전체에 작용하는 지지력의 발생을 방지하기 위해 부품수의 증가, 구조의 복잡화 등을 초래하는 문제가 있다.
본 발명은 이상의 문제점들을 감안해 이루어진 것으로서 그 목적은 비교적 간단한 구성으로 회전체에 작용하는 지지력의 발생을 방지할 수 있으며 그리고 효율좋게 압축할 수 있는 유체 압축기를 제공하는데 있다.
전술한 목적을 달성하기 위해 본 발명의 압축기에 따르면 흡입측단과 토출측단을 갖는 실린더와 전술한 실린더의 흡입측단을 회전이 자유롭게 지지하고 있음과 동시에 흡입측단을 기밀로 폐쇄한 제1의 베어링과, 전술한 실린더의 토출측단을 회전이 자유롭게 지지하고 있음과 동시에 토출측단을 기밀로 폐쇄한 제2의 베어링과 일부가 실린더의 안둘레면에 접촉된 상태에서 전술한 실린더와 상대적으로 회전이 가능하게 실린더 내에 실린더의 축방향을 따라 그리고 편심되어 설치된 원주 형상의 회전체로 이 회전체는 전술한 제1의 베어링에 회전이 자유롭게 지지된 흡입측단부와 제2의 베어링에 회전이 자유롭게 지지된 토출측단부와, 이 바깥둘레면에 형성되어 나선형으로 뻗은 홈을 가지며 이 홈은 그 피치가 전술한 실린더의 흡입측단에서 토출측단으로 서서히 작아지게 형성되어 있으며 전술한 홈내에 전술한 실린더의 직경방향을 따라 미끄럼작동이 자유롭게 끼워져 있으며 그리고 전술한 실린더의 안둘레면에 밀착된 바깥둘레면을 가지며, 전술한 실린더의 안둘레면과 회전체의 바깥둘레면과의 사이의 공간을 여러개의 작동실로 구획한 나선형의 블레이드와, 전술한 실린더 및 회전체를 상대적으로 회전시켜 실린더의 전술한 흡입측단에서 작동실로 유입된 유체를 실린더의 토출측의 작동실로 차례로 이송하며 실린더의 토출측단에서 외부로 토출하는 구동장치와, 전술한 회전체의 흡입측단에 전술한 실린더의 흡입측단에서 도입되는 유체의 압력보다도 높은 압력을 주는 제1의 압력인가장치와, 전술한 회전체의 토출측단에 전술한 실린더의 토출측단에서 토출되는 유체의 압력보다는 낮은 압력을 주는 제2의 압력 인가장치를 갖추고 있다.
전술한 바와 같이 구성된 본 발명의 유체 압축기에 의하면 간단한 구성으로서 회전체에 작용하는 지지력을 저감할 수 있어 마찰력의 저감을 꾀할 수 있다.
이하 도면을 참조하면서 본 발명의 실시예에 대해 상세히 설명한다.
제1도는 본 발명을 냉동 사이클의 냉매를 압축하기 위한 밀폐형 압축기에 적용한 실시예를 나타내고 있다.
압축기는 밀폐 케이스(10)와 이 케이스 내에 설치된 전동기부(12) 및 압축기(14)를 구비하고 있다.
전동기부(12)는 케이스(10)내면에 고정된 대략 고리 모양의 스테이터(16)와 이 스테이터의 내측에 설치된 고리 모양의 로터(18)를 갖고 있다.
제1도 및 제4도에서 처럼 압축기(14)는 실린더(20)를 가지며 이 실린더의 바깥둘레면에 로터(18)가 동축상으로 고정되어 있다.
실린더(20)의 양단은 케이스(10)의 내면에 각각 고정된 베어링(21)(22)에 의해 회전이 자유롭게 지지되어 있으며 그리고 폐쇄되어 있다.
특히 실린더(20)의 우단부 즉 흡입측단부는 베어링(21)의 둘레면부(21a)에 회전이 자유롭게 끼워지며 실린더의 좌단부 즉 토출측단부는 베어링(22)의 둘레면부(22a)에 회전이 자유롭게 끼워져 있다.
따라서 실린더(20) 및 여기에 고정된 로터(18)는 베어링(21)(22)으로써 스테이터(16)와 동축상으로 지지되어 있다.
실린더(20)내에는 실린더의 내부 직경 보다도 작은 직경을 갖는 원주형상의 회전로드(24)가 실린더의 축방향을 따라 설치되어 있다.
로드(24)는 그 중심축(A)이 실린더(20)의 중심축(B)에 대해 거리 “e”만큼 편심되어 위치하고 있음과 동시에 그 바깥둘레면의 일부는 실린더의 내부 둘레면과 접촉하고 있다.
제2도에서 처럼 회전로드(24)는 그 흡입측단면 및 토출측단면에서 각각 돌출된 원주형상의 미끄럼작동부(24a)(24b)를 일체적으로 갖고 있다.
이들 미끄럼 작동부(24a)(24b)는 로드(24)에 비해 직경이 작으며 또 로드와 동축상으로 형성되어 있다.
그리고 미끄럼 작동부(24a)는 베어링(21)에 관통 형성된 베어링구멍(21b)내에, 또 미끄럼 작동부(24b)는 베어링(22)에 관통형성된 베어링구멍(22b)내에 각각 회전이 자유롭게 삽입되어 있다.
이들 베어링구멍(21a)(22b)은 서로 동축상으로 위치하며 그리고 실린더(20)의 중심축에 대해 거리 “e”만큼 편심되어 형성되어 있다.
따라서 로드(24)는 베어링(21)(22)에 의해 실린더(20)에 대해 소정의 위치로 회전이 자유롭게 지지되어 있다.
그리고 실린더(24)의 양단면은 각각 대응하는 베어링(21)(22)의 단면에서 소정간격으로 떨어져 있다.
베어링구멍(21a) 내에는 케이스(10)의 내면 및 로드(24)의 미끄럼 작동부(24a)의 단면에 의해 제1의 밀폐 공간(23)이 한정되어 있다.
마찬가지로 베어링구멍(22a)내에는 케이스(10)의 내면 및 미끄럼 작동부(24 b)의 단면에 의해 제2의 밀폐 공간(25)이 한정되어 있다.
그리고 제1의 밀폐공간(23)은 베어링(21)에 형성된 토출압력 도입구멍(19)을 통해 케이스(10)의 내부공간에 연통되어 있으며 이 도입구멍은 공간(23)과 함께 후술하는 제1의 압력 인가장치를 구성하고 있다.
제8도에서 처럼 미끄럼작동부(24a)(24b)의 단면적(As)(Ad)은 이들의 합이 실린더(20)의 내부구멍의 단면적(Ac)와 대략 같아지도록 설정되어 있다.
즉 실린더(20)의 단면적(Ac), 흡입측의 미끄럼작동부(24a)의 단면적(As), 그리고 토출측 미끄럼작동부(24b)의 단면도(Ad)간에는 Ac=As-Ad의 관계가 성립하고 있다.
제1도 및 제4도에서 처럼 회전로드(24)의 흡입측의 단부 바깥 둘레면에는 걸어맞춤홈(26)이 형성되며 이 걸어 맞춤홈 내에는 실린더(20)의 안둘레면에서 돌출된 구동핀(28)이 실린더의 직경방향을 따라 진퇴가 자유롭게 삽입되어 있다.
따라서 진동기부(12)에 통전되어 실린더(20)가 로터(18)와 일체적으로 회전하면 실린더의 회전력은 핀(28)을 통해 회전로드(24)에 전달된다.
그 결과 로드(24)는 그 일부가 실린더(20)의 안둘레면과 접촉된 상태로 실린더 내에서 회전된다.
제1도 및 제2도에서 처럼 회전로드(24)의 바깥둘레면에는 로드의 양단간을 뻗는 나선형의 홈(30)이 형성되어 있다.
그리고 및 제2도에서 알 수 있듯이 홈(30)은 그 피치가 실린더(20)의 우단에서 좌단으로 즉 실린더의 흡입측에서 토출측으로 서서히 작아지도록 형성되어 있다.
이 홈(30)에는 제3도에서 나타내는 나선형의 블레이드(32)가 끼워져 있다.
블레이드(32)의 두께(t)는 홈(30)의 폭과 대략 일치하고 있으며 블레이드의 각부는 홈(30)에 대해 회전로드(24)의 직경방향을 따라 진퇴가 자유롭게 되어있다.
또 블레이드(32)의 바깥둘레면은 실린더(20)의 안둘레면에 밀착된 상태로 실린더의 안둘레면상을 슬라이딩 한다.
이 블레이드(32)는 테플론(상표) 등의 탄성재료로 형성되어 있으며 그 탄성을 이용해서 홈(30)에 끼워져 홈내에 장착된다.
그리고 제1도 내지 제4도에서처럼 실린더(20)의 안둘레면과 로드(24)의 바깥둘레면과의 공간은 블레이드(32)에 의해 여러개의 작동실(34)로 나누어져 있다.
각 작동실(34)은 블레이드(32)의 인접하는 2개의 공간이 규정되어 있으며 제5도에서 나타내듯이 블레이드를 따라 로드(24)와 실린더(20)의 안둘레면과의 접촉부에서 다음의 접촉부까지 뻗은 대략 초승달 모양을 이루고 있다.
그리고 작동실(34)의 용적은 실린더(20)의 흡입측에서 토출측으로 감에 따라 서서히 작아지고 있다.
회전로드(24)내에는 로드의 중심축(A)을 따라 뻗는 흡입압력 도입통로(35)가 형성되어 있다.
흡입압력 도입통로(35)의 한단은 토출측의 미끄럼작동부(24b)의 양단으로 트여져 있어 제2의 밀폐공간(25)과 연통되며 다른쪽단은 로드의 흡입측단부의 바깥둘레면으로 트여져 있어 실린더의 가장 가까운 흡입단측에 위치한 작동실(34a)에 연통되어 있다.
도입통로(35)는 제2의 밀폐공간(25)과 함께 후술하는 제2의 압력인가 장치를 구성하고 있다.
실린더(20)의 흡입측 단부를 지지하는 베어링(21)에는 실린더(20)의 축방향으로 뻗는 흡입구멍(36)이 관통형성되어 있다.
이 흡입구멍(36)의 한단은 실린더(20)의 흡입측 단내에 개구되며 다른쪽단은 냉동 사이클의 흡입튜브(38)에 접속되어 있다.
또 실린더(20)의 토출측 단부를 지지하는 베어링(22)에는 실린더(20)의 축방향을 따라 뻗는 토출구멍(40)이 형성되어 있다.
토출구멍(40)의 한단은 실린더(20)의 토출측단내에 개구되며 다른쪽단은 케이스(10)내부에 개구되어 있다.
또 케이스(10)의 바닥에는 윤활유(41)가 고여있다. 그리고 토출구멍(40)은 실린더(20)에 형성되어 있어도 좋다.
제1도에서 “46”은 케이스(10) 내부에 연통된 토출 튜브를 나타내고 있다.
다음에 이상과 같이 형성된 압축기의 동작에 대해 설명한다. 우선 전동기부(12)에 통전이 되면 로터(18)가 회전하며 이와 일체로 실린더(20)도 회전한다.
동시에 회전로드(24)는 바깥둘레면의 일부가 실린더(20)의 안둘레면과 접촉된 상태로 회전 구동된다.
이 같은 로드(24)가 실린더(20)의 상대적인 회전운동을 핀(28)과 걸어맞추는 홈(26)으로 구성되는 제재장치로 확보된다.
그리고 블레이드(32)도 로드(24)와 일체적으로 회전한다. 블레이드(32)는 그 바깥둘레면이 실린더(20)의 안둘레면과 접촉된 상태로 회전하므로 블레이드(32)의 각부는 로드(24)의 바깥둘레면과 실린더(20)의 안둘레면과의 접촉면에 가까와짐에 따라 홈(30)내로 밀려 들어가며 접촉부에서 떨어짐에 따라 홈에서 뛰어나가는 방향으로 이동된다.
한편 압축부(14)가 작동되면 흡입튜브(38) 및 흡입 구멍(36)을 통해 실린더(20)에 냉매 가스가 흡입된다.
이 가스는 우선 실린더(20)의 흡입측에 가장 가까운 곳에 위치한 작동실(34a) 내에 고이게 된다.
그리고 제6a도 내지 제6d도에서처럼 회전로드(24)의 회전에 따라 전술한 가스는 블레이드(32)의 인접하는 2개의 공간에 갇힌 상태로 토출측의 작동실(34)에 차례로 이송된다.
그리고 작동실(34)의 용적은 실린더(20)의 흡입측에서 토출측으로 감에 따라 서서히 작아지므로 냉매가스는 토출측으로 이송되는 동안 서서히 압축된다.
그리고 압축된 냉매가스는 베어링(22)에 형성된 토출구멍(40)에서 케이스(10)내로 토출되며 다시 토출튜브(46)를 통해 냉동 사이클 내로 돌아온다.
그리고 전술한 압축동작 동안 실린더(20)와 회전 로드(24)와의 상대적인 위치는 제7a도 내지 제7d도에서 처럼 변화한다.
제4도 및 제8도에서 처럼 전술한 압축동작 동안 작동실(34a)에 흡입된 냉매가스의 일부는 흡입 압력도입통로(35)를 통해 토출측의 베어링(22)내에 규정된 제2의 밀폐공간(25)에 유입된다.
때문에 회전로드(24)의 미끄럼작동부(24b)의 단면에는 냉매가스의 흡입압력(Ps)이 작용하며, 이 흡입압력에 따라 회전로드에는 토출측에서 흡입측의 방향으로 지지력이 작용한다.
또 가압되어 실린더(20)에서 케이스(10)내로 토출된 냉매가스의 일부는 흡입측의 베어링(21)에 형성된 토출압력 도입통로(19)를 통해 제1의 밀폐공간(23)에 유입된다.
때문에 회전로드(24)의 미끄럼작동부(24a)의 단면에는 냉매가스의 토출압력(Pd)이 작용하며 이 토출압력에 따라 회전로드에는 그 흡입측에서 토출측의 방향으로 지지력이 작용한다.
회전로드(24)의 흡입측단면 및 블레이드(32)내 작동실(34a)과 면한 부분의 측면에는 작동실(34a)에 도입된 냉매가스의 흡입압력(Ps)이 작용한다.
따라서 흡입압력(Ps)에 따라 회전로드에는 그 흡입측에서 토출측의 방향으로 지지력이 작용한다. 그리고 블레이드(32)의 안, 실린더(20)의 토출측단의 가장 가까운 곳에 위치한 작동실(34b)과 면하고 있는 부분의 측면 및 회전로드(24)의 토출측단면에는 실린더(20)내에서 가압된 냉매가스의 토출압력(Pd)이 작용한다.
따라서 이 토출압력(Pd)에 기인해서 회전로드(24)에는 그 토출측에서 흡입측의 방향으로 지지력이 작용한다.
여기에서 압축부(14)의 각부의 치수는 회전로드(24)의 미끄럼작동부(24a)(24b)의 단면적(As)(Ad)의 합이 실린더(20)의 내부구멍의 단면적(Ac)과 같아지도록 설정되므로 회전로드에 대해 흡입측에서 작용하는 지지력과 토출측에서 작용하는 지지력과는 평형상태가 된다.
즉 흡입측에서 작용하는 지지력(Ss) 및 토출측에서 작용하는 지지력(Sd)은 각각 아래의 등식으로 나타낼 수 있다.
Ss=Ps.(Ac-As)+PdㆍAs………………………………(1)
Sd=Pd.(Ac-Ad)+PsㆍAd………………………………(2)
그리고 지지력(Ss)(Sd)의 차는 Ss-Sd=PsAc-PsAs+PdAs-PdAc+PdAd-PsAd가 되며 이것을 한데 모으면
Ss-Sd=(Pd-Ps)ㆍ(Ac-As-Ad)………………………(3)
가 되고, 여기에서 전술한 바와 같이 각부의 단면적은 Ac=As-Ad로 설정되어 있으므로 Ac-As-Ad=0이고 이것을 식(3)에 대입하면 Ss-Sd=0이 얻어진다.
이 같이 회전로드(24)에 작용하는 지지력(Ss)(Sd)는 서로 그 크기가 같다. 그리고 이들 지지력은 작용방향이 서로 역방향이므로 서로 제거해 버리면 그 결과 회전로드에 작용하는 지지력은 실질적으로 “0”이 된다.
이 같이 구성된 압축기에 의하면 회전로드(24)에 형성된 홈(30)은 실린더(20)의 흡입측에서 토출측으로 서서히 피치가 작아지도록 형성되어 있다.
즉 블레이드(32)에 의해 구획된 작동실(34)은 토출측을 향해 서서히 용적이 작아지도록 형성되어 있다.
따라서 작동실(34)을 통매 냉매가스를 실린더(20)의 흡입측에서 토출측으로 이송하는 동안에 냉매가스를 압축할 수 있다.
또 냉매가스는 작동실(34)내에 갇힌 상태로 이송 또는 압축되므로 압축기의 토출측에 토출밸브를 설치하지 않은 경우에도 가스를 효율좋게 압축할 수 있다.
압축밸브를 생략할 수 있으므로 압축기의 구성의 간략화 및 비품점수의 삭감을 꾀할 수 있다. 또 전동기부(12)의 로터(18)는 압축부(14)의 실린더(20)에 의해 지지되어 있으므로 로터를 지지하는 전용 회전축이나 베어링 등을 설치하는 것은 필요없다.
따라서 압축기의 구성을 한층 간략화하며 또 부품수도 삭감할 수 있다. 또 회전로드(24)의 미끄럼작동부(24a)(24b)의 단면적의 합이 실린더(20)의 내부구멍의 단면적과 같아지도록 각부의 치수가 설정되어 있으며 그리고 흡입압력 인가장치에 의해 토출측의 미끄럼작동부(24b)의 단면에 냉매가스의 흡입압력을 인가하며 동시에 토출압력 인가장치에 의해 흡입측의 미끄럼작동부(24a)의 단면에 냉매가스의 토출압력을 인가하고 있다.
따라서 냉매가스의 흡입압력 및 토출압력의 크기에 구애되지 않고 흡입측 및 토출측에서 회전로드(24)에 작용하는 지지력을 균형시킬 수 있다.
따라서 회전로드(24)와 베어링(21)(22) 사이의 마찰을 대폭 줄일 수 있어 그 결과 압축기의 운전효율을 향상시킬 수 있다.
그리고 압축부(14)내에 볼베어링등의 지지 베어링을 설치할 필요가 없어 부품점수의 절감 및 구조의 간략화를 꾀할 수 있다.
실린더(20)와 회전로드(24)는 서로 같은 방향으로 회전한 상태로 서로 접촉하고 있다. 때문에 이들 부재간의 마찰은 적고 각각 원활하개 회전할 수 있어 그 결과 진동이나 소음도 작다. 압축기의 이송용량은 블레이드(32)의 최초의 피치 측, 실린더(20)의 흡입단측에 위치한 작동실(34a)의 용량으로 결정된다.
본 실시예에 따르면 블레이드(32)의 피치는 실린더(20)의 흡입측에서 토출측으로 서서히 작아지고 있다.
때문에 본 실시예와 동일한 감김수를 가지며 또 회전로드의 전장에 걸쳐 등간격의 블레이드를 갖는 경우에 비해 본 실시예에 따르면 블레이드의 최초의 피치를 크게해서 그 결과 압축기의 이송용량을 크게할 수 있다.
바꾸어 말하면 효율 좋은 압축기를 실현할 수 있다. 그리고 이송용량은 저하되지만 블레이드(32)의 감김수를 증가하는 만큼, 이웃하는 작동실간의 압력차가 감소하며 작동실 상호간의 가스 누출량이 줄어들어 압축효율이 향상된다.
본 발명은 전술한 실시예에 한정되는 것이 아니고 본 발명의 범위내에서 각종의 변형이 가능하다.
예를 들면 각 부의 치수가 미끄럼작동부(24a)(24b)의 단면적(As)(Ad)과 실린더(20)의 내부구멍의 단면적(Ac)과의 사이에 Ac=As+Ad의 관계가 완전하게 성립되지 않도록 설정되어 있는 경우에도 지지력의 불균형을 줄일 수 있다.
또 회전로드의 미끄럼작동부(24b)의 단면에 인가하는 압력은 흡입압력(Ps)보다 커도 좋으며 미끄럼작동부(24a)의 단면에 인가하는 압력은 토출압(Pd)보다 작아도 좋다.
그리고 전술한 실시예에서 한쌍의 베어링은 모두 케이스의 내면에 고정되어 있지만 한쪽 베어링을 케이스에 대해 이동이 가능하게 설정해도 좋다.
제9도 내지 제11도에 나타낸 제2의 실시예에 따르면 토출측의 베어링(22)은 지지기구(48)에 의해 실린더(20)의 직경방향으로 이동이 가능하게 케이스(10)의 내면에 지지되어 있다.
지지기구(48)는 핀(50)에 의해 케이스(10)의 내면에 고정된 가늘고 긴 판자모양의 지지부재(52)와, 대략 직사각형 모양의 지지판(54)을 갖고 있다. 지지판(52)의 서로 대향하는 한쌍의 옆가장자리에는 소정의 폭(W)을 갖는 오목부(56)가 형성되어 있다. 이에 따라 지지판(54)은 대략 H형으로 되어 있다. 지지부재(52)는 오목부(56)의 폭과 대략 같은 폭을 갖고 있다.
또 지지부재(52)의 양단부는 케이스(10)의 안쪽으로 굴곡되어 굴곡부(52a)를 형성하고 있다. 그리고 지지판(54)은 굴곡부(52a)가 각각 오목부(56)에 삽입된 상태로 지지부재(52)에 장착되어 있다. 따라서 지지판(54)은 지지부재(52)의 길이방향을 따라 즉 제10도에서의 Y방향을 따라 이동이 가능하게 그리고 회전이 되지 않도록 지지되어 있다.
지지판(54)에는 한쌍의 긴구멍(58)이 형성되어 있다. 이들 긴구멍(58)은 지지판(54)의 이동방향과 직교하는 방향, 즉 제10도에서의 X방향으로 또 공통의 직선을 따라 뻗어있다.
베어링(22)의 단면에서 한쌍의 돌기(60)가 돌출하며 이들 돌기는 공통의 원주 특히 실린더(20)와 동축상의 원주상에 배치되어 있다. 그리고 이들 돌기(60)는 각각 긴구멍(54)에 긴구멍의 길이방향을 따라 이동이 자유롭게 삽입되어 있다.
따라서 베어링(22)은 지지판(54)에 의해 이 지지판에 대해 X방향으로 이동이 가능하게 지지되며 동시에 지지판에 대한 베어링의 회전이 돌기(60)에 의해 방지되고 있다.
그리고 지지판(54)은 케이스(10)에 대해 Y방향으로 이동이 가능하므로 베어링(22)은 케이스에 대해 X방향 및 Y방향으로 이동이 가능하게 되어 있다.
즉 베어링(22)은 지지기구(48)에 의해 실린더(20)의 직경방향으로 이동이 가능하게 지지되어 있다. 그리고 베어링(22)의 베어링 구멍(22b)은 케이스(10)의 내면측에 위치한 단이 폐쇄된, 밑바닥이 있는 구멍에 형성되어 있다.
전술과 같이 구성된 제2의 실시예에 의하면 베어링(22)이 이동 가능하게 지지되어 있으므로 전술한 제1의 실시예의 작용효과에 더하여 압축기의 조립시에 베어링(21)(22) 끼리의 중심맞춤을 용이하게 할 수 있는 이점이 있다.
그리고 본 발명의 유체 압축기는 냉동 사이클에 한하지 않고 다른 기기에도 적용할 수 있다.

Claims (9)

  1. 흡입측단과 토출측단을 갖는 실린더(20)와, 이 실린더의 각각의 단부를 회전이자유롭게 지지하는 제1, 제2의 베어링(21)(22)과, 실린더내에 배치되어 제1, 제2의 베어링에 지지되고 바깥둘레면에 나선형으로 형성된 홈(30)을 갖는 원주 형상의 회전체(24)와, 이 회전체의 홈에 끼워진 나선형의 블레이드(32)와 실린더의 흡입 측단에서 토출측단은 유체를 이송하기 위해 실린더 및 회전체를 상대적으로 회전시키는 전동기부(12)를 포함하고 있는 유체압축기에 있어서, 전술한 홈은 그 피치가 실린더의 흡입측단에서 토출측단으로 서서히 작아지도록 형성되며 전술한 나선형의 블레이드는 홈내에 실린더의 직경방향을 따라 미끄럼작동이 자유롭게 지지되어 실린더의 안쪽둘레면과 회전체의 바깥둘레면 사이의 공간을 여러개의 작동실로 구획하고 있으며 또 전술한 회전체의 흡입측단에 실린더의 흡입측단에서 도입되는 유체의 압력보다도 높은 압력을 주는 제1의 압력인가 장치와, 전술한 회전체의 토출측단에 실린더의 토출측단에서 토출되는 유체의 압력 보다도 낮은 압력을 주는 제2의 압력인가 장치를 포함한 것을 특징으로 하는 유체 압축기.
  2. 제1항에 있어서, 전술한 제1의 압력인가 장치는 전술한 제1의 베어링(21)내로 한정되어 있음과 동시에 전술한 회전체의 흡입측단에 접촉된 제1의 밀폐공간(23)과 전술한 실린더에서 토출된 유체를 제1의 밀폐공간으로 유도하는 제1의 도입장치를 갖고 있는 것을 특징으로 하는 유체 압축기.
  3. 제2항에 있어서, 전술한 제2의 압력인가 장치는 전술한 제2의 베어링내(22)로 한정되어 있으며 그리고 전술한 회전체의 토출측단에 접촉된 제2의 밀폐공간(25)과, 전술한 실린더에 도입된 유체를 제2의 밀폐공간으로 도입하는 제2의 도입장치를 갖고 있는 것을 특징으로 하는 유체 압축기.
  4. 제3항에 있어서, 전술한 제1, 제2의 베어링(21)(22)은 전술한 회전체의 축방향을 따라 뻗는 베어링구멍(21b)(22b)을 가지며 전술한 회전체는 그 흡입단부에 형성되어 있으며 그리고 제1의 베어링의 베어링구멍에 미끄럼작동이 자유롭게 삽입된 제1의 미끄럼작동부(24a)와, 그 토출단부에 형성되어 있으며 그리고 제2의 베어링의 베어링구멍에 미끄럼작동이 자유롭게 삽입된 제2의 미끄럼작동부(24b)를 가지며 그리고 전술한 제1의 밀폐공간(23)은 제1의 베어링의 베어링 구멍내로 한정되어 제1의 미끄럼작동부에 접촉되어 있으며 제2의 밀폐공간(25)은 제2의 베어링의 베어링구멍내로 한정되어 제2의 미끄럼작동부와 접촉하고 있는 것을 특징으로 하는 유체 압축기.
  5. 제4항에 있어서, 전술한 제1의 도입장치는 전술한 실린더 및 전동기부를 수용함과 동시에 전술한 실린더에서 토출된 유체를 모아두는 케이스(10)와 전술한 제1의 베어링에 형성되어 전술한 제1의 밀폐공간과 케이스내부를 연통한 제1의 도입통로(19)를 구비하고 있는 것을 특징으로 하는 유체 압축기.
  6. 제4항에 있어서, 전술한 제2의 도입장치는 전술한 회전체내에 형성된 제2의 도입통로(35)를 가지며, 이 제2의 도입통로는 전술한 실린더의 흡입단측에 위치한 작동실에 트여진 한쪽단부와, 전술한 제2의 밀폐공간에 트여진 다른쪽 단부를 갖고 있는 것을 특징으로 하는 유체 압축기.
  7. 제4항에 있어서, 전술한 제1의 미끄럼작동부는 전술한 제1의 밀폐 공간에 접촉된 제1의 압력수용면을 가지며 전술한 제2의 미끄럼작동부는 제2의 밀폐공간에 접촉된 제2의 압력수용면을 가지며, 제1의 압력수용면의 면적과 제2의 압력수용면의 면적의 합계가 전술한 실린더의 내부구멍의 단면적과 일치한 것을 특징으로 하는 유체 압축기.
  8. 제5항에 있어서, 전술한 제1 및 제2의 베어링이 전술한 케이스에 고정되어 있는 것을 특징으로 하는 유체 압축기.
  9. 제5항에 있어서, 전술한 제1 및 제2의 베어링의 한쪽은 전술한 케이스의 내면에 고정되며 다른쪽은 케이스에 대해 실린더의 직경 방향으로 이동이 가능하도록 케이스에 지지되어 있는 것을 특징으로 하는 유체 압축기.
KR1019890020295A 1988-12-28 1989-12-28 유체 압축기 KR930004662B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP88-333584 1988-12-28
JP?63-333584 1988-12-28
JP63333584A JP2825248B2 (ja) 1988-12-28 1988-12-28 流体圧縮機

Publications (2)

Publication Number Publication Date
KR900010233A KR900010233A (ko) 1990-07-06
KR930004662B1 true KR930004662B1 (ko) 1993-06-02

Family

ID=18267679

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890020295A KR930004662B1 (ko) 1988-12-28 1989-12-28 유체 압축기

Country Status (6)

Country Link
US (1) US5028222A (ko)
EP (1) EP0376049B1 (ko)
JP (1) JP2825248B2 (ko)
KR (1) KR930004662B1 (ko)
CN (1) CN1018374B (ko)
DE (1) DE68902913T2 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495602B1 (en) * 1991-01-14 1995-08-30 Kabushiki Kaisha Toshiba Axial flow fluid compressor
JP3142890B2 (ja) * 1991-05-09 2001-03-07 株式会社東芝 流体圧縮機
KR960009869B1 (ko) * 1992-02-10 1996-07-24 사토 후미오 유체압축기
JP3290224B2 (ja) * 1993-01-12 2002-06-10 東芝キヤリア株式会社 流体圧縮機
JPH07269478A (ja) * 1994-03-31 1995-10-17 Toshiba Corp 流体圧縮機
US6241486B1 (en) 1998-03-18 2001-06-05 Flowserve Management Company Compact sealless screw pump
CN1098336C (zh) * 2000-02-18 2003-01-08 中国石油化工集团公司 渣油加氢处理-延迟焦化的组合工艺方法
GB2482861B (en) 2010-07-30 2014-12-17 Hivis Pumps As Pump/motor assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1698802A (en) * 1924-04-07 1929-01-15 Montelius Carl Oscar Josef Device for transferring energy to or from alpha fluid
US2095167A (en) * 1935-02-26 1937-10-05 Burghauser Franz Screw pump
US2111883A (en) * 1936-04-17 1938-03-22 Burghauser Franz Pump
US2401189A (en) 1944-05-12 1946-05-28 Francisco A Quiroz Rotary pump construction
US2527536A (en) * 1945-05-15 1950-10-31 Ralph E Engberg Rotary screw pump
JPS57159993A (en) * 1981-02-23 1982-10-02 Ebara Corp Screw compressor
US4462769A (en) * 1981-12-02 1984-07-31 Sullair Technology Ab Method at an oil-injected screw-compressor
DE3878073T2 (de) * 1987-07-31 1993-06-03 Toshiba Kawasaki Kk Fluessigkeitsverdichter.
US4875842A (en) * 1987-09-10 1989-10-24 Kabushiki Kaisha Toshiba Axial flow fluid compressor

Also Published As

Publication number Publication date
EP0376049A2 (en) 1990-07-04
EP0376049A3 (en) 1991-01-23
EP0376049B1 (en) 1992-09-16
CN1018374B (zh) 1992-09-23
JP2825248B2 (ja) 1998-11-18
JPH02176187A (ja) 1990-07-09
DE68902913D1 (de) 1992-10-22
KR900010233A (ko) 1990-07-06
DE68902913T2 (de) 1993-01-07
US5028222A (en) 1991-07-02
CN1045162A (zh) 1990-09-05

Similar Documents

Publication Publication Date Title
EP0301273B1 (en) Fluid compressor
US4872820A (en) Axial flow fluid compressor with angled blade
KR930004662B1 (ko) 유체 압축기
JP2829017B2 (ja) 流体圧縮機
KR930009733B1 (ko) 유체 압축기
JP2825236B2 (ja) 流体圧縮機
KR970009959B1 (ko) 유체 압축기
JP2609835B2 (ja) 流体圧縮機
KR910009222B1 (ko) 유체 압축기
JPH0732951Y2 (ja) 流体圧縮機
KR930006372B1 (ko) 유체 압축기
JP2880771B2 (ja) 流体圧縮機
JPH07107392B2 (ja) 流体圧縮機
JP2807247B2 (ja) 流体圧縮機
JP2829019B2 (ja) 流体圧縮機
KR930004663B1 (ko) 스크루형 유체 압축기
JP2879045B2 (ja) 圧縮機
JP3456878B2 (ja) ヘリカルコンプレッサ
JP2898710B2 (ja) 流体圧縮機
JPH0219682A (ja) 流体圧縮機
JPH0463995A (ja) 流体圧縮機
JPH0463990A (ja) 流体圧縮機
JPH02201082A (ja) 流体圧縮機
JPH02199290A (ja) 流体圧縮機の給油機構
JPH02201089A (ja) 流体圧縮機

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040331

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee